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The development of hybrid methodologies is of current interest in both multi-scale 
modelling and stochastic reaction–diffusion systems regarding their applications to biology. 
We formulate a hybrid method for stochastic multi-scale models of cells populations 
that extends the remit of existing hybrid methods for reaction–diffusion systems. Such 
method is developed for a stochastic multi-scale model of tumour growth, i.e. population-
dynamical models which account for the effects of intrinsic noise affecting both the 
number of cells and the intracellular dynamics. In order to formulate this method, we 
develop a coarse-grained approximation for both the full stochastic model and its mean-
field limit. Such approximation involves averaging out the age-structure (which accounts 
for the multi-scale nature of the model) by assuming that the age distribution of the 
population settles onto equilibrium very fast. We then couple the coarse-grained mean-
field model to the full stochastic multi-scale model. By doing so, within the mean-field 
region, we are neglecting noise in both cell numbers (population) and their birth rates 
(structure). This implies that, in addition to the issues that arise in stochastic-reaction 
diffusion systems, we need to account for the age-structure of the population when 
attempting to couple both descriptions. We exploit our coarse-graining model so that, 
within the mean-field region, the age-distribution is in equilibrium and we know its 
explicit form. This allows us to couple both domains consistently, as upon transference 
of cells from the mean-field to the stochastic region, we sample the equilibrium age 
distribution. Furthermore, our method allows us to investigate the effects of intracellular 
noise, i.e. fluctuations of the birth rate, on collective properties such as travelling wave 
velocity. We show that the combination of population and birth-rate noise gives rise to 
large fluctuations of the birth rate in the region at the leading edge of front, which cannot 
be accounted for by the coarse-grained model. Such fluctuations have non-trivial effects 
on the wave velocity. Beyond the development of a new hybrid method, we thus conclude 
that birth-rate fluctuations are central to a quantitatively accurate description of invasive 
phenomena such as tumour growth.
© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Cells behaviour within tissues respond to a number of stimuli. Their behaviour result from a complex network of in-
teractions between genes and gene products which ultimately regulates gene expression. Such systems of gene regulation 
are often modelled as non-linear, high-dimensional dynamical systems whose structure has been moulded in the course of 
biological evolution. In addition to such intracellular complex dynamics, cells are also influenced by intricate interactions 
between different components of the biological systems at all levels, from complex signalling pathways and gene regulatory 
networks to complex non-local effects where perturbations occur at whole-tissue level [3,61,47,51,50,19,58,39]. These and 
other factors contribute towards a highly complex dynamics in biological tissues which is an emergent property of all the 
layers involved. To tackle such complexity, a number of multi-scale models of biological systems, particularly in the context 
of tumour growth, have been developed [3,40,61,47,51,59,72,9,46,50,60,19,55,73,20,58,70,13,15,64,39,74].

Many current multi-scale models of tumour growth formulated so far are individual-based, i.e. cells are individually re-
solved and their response to different types of cues (chemical, mechanical, etc.) is explicitly described by models of cell 
behaviour of varying levels of complexity [3,40,61,50,19,55,58,70,15,39]. Further to the individual-based approach to multi-
scale modelling of biological cell populations, we have recently introduced new stochastic models that allow to analyse the 
effects of fluctuations, both at the intracellular level (intrinsic noise in signalling pathways and gene regulatory networks) 
and at the level of the birth-and-death dynamics of cells [32,17].

Multi-scale approaches have been shown to have both strengths and limitations. Among the latter, it prominently fea-
tures the computational intensity of these models. The level of detail they involve implies that large scale simulations are 
computationally costly, which limits the scope of such models. In order to simulate growth in a wider range of conditions, 
along with model development, algorithms and analytic methods must be developed that enable us for more efficient analy-
sis and simulation of such models. The formulation of hybrid methods for multi-scale models of tumour growth [44,42,43] is 
one such development. The basis of hybrid methodologies is to use models at different resolutions in different regions of the 
simulation domain, whereby cells (or other structures such as vessels in models of angiogenesis) are individually resolved 
in some region of interest. Away from such region, the system is described by a lower-resolution, coarse-grained model, 
obtained for example by means of homogenisation methods [12,65,54,52,53,48]. Such homogenised model describes the sys-
tem at a reduced level of detail but with the benefit of a much smaller computational cost. The challenges involved in these 
hybrid methodologies include defining criteria to identify the different domains, derive coarse-grained models consistent 
with their individual-based counterparts, and formulate the appropriate boundary conditions between the individual-based 
and coarse-grained regions.

A similar situation arises in a different area in which fair progress has been made: stochastic reaction–diffusion systems. 
Such systems are also costly to simulate using standard methods (i.e. variations of the Gillespie method [68,6,21]), so 
it is often necessary to resort to hybrid methods [49]. The rationale for a hybrid method is that noise levels, roughly 
associated with the local population or number of particles, is not uniform over the whole system, resulting in regions where 
fluctuations have more severe effects than in others. An archetypic example of this situation is the propagation of fronts 
such as travelling waves [7,8,49,14]. In such systems, the population behind the propagating front approaches the carrying 
capacity of the system. If the carrying capacity is large enough, fluctuations in the region behind the front will be relatively 
small, so that the system may be described by the mean-field limit of the system. By contrast, at the front and ahead of it 
fluctuations dominate system behaviour and therefore the full stochastic description is needed. Such inhomogeneities in the 
noise level have been exploited to formulate hybrid simulation methods. According to this methodology, the mean-field limit 
of the system is used in low-noise regions which are then coupled to the full stochastic dynamics describing the high-noise 
regions. The coupling between both descriptions is achieved by means of appropriately defined boundary conditions at the 
interface(s) between mean-field and stochastic regions [49,22,34,23,62,67,75,71].

In this paper, we extend and further develop the hybrid method formulated by Spill et al. [67] for stochastic reaction–
diffusion systems to stochastic multi-scale models of tumour growth. Such models [32,17] consider fluctuations regarding 
both number of cells (population noise) and the intracellular (cell-cycle) dynamics (structure noise), and consequently any 
attempt to formulate a hybrid method for such systems must find a way to accommodate both types of noise. Structure 
noise is associated with noise at the intracellular level and it manifests itself in fluctuations of the birth rate. We show in 
our analysis that this source of noise is at least as important as the population noise on the behaviour of the system. In 
particular, we show that the speed of propagation of travelling wave solutions is heavily affected by birth rate fluctuations 
at the leading edge of the front. More specifically, when a model in which the intracellular dynamics is coarse-grained (i.e. 
fluctuations of the birth rate are averaged out) is considered, the speed of the travelling wave front is over-estimated by a 
rather significant percentage. However, when the coarse-grained mean-field model is coupled to the full stochastic multi-
scale population-dynamical model, the deviation travelling wave speed is very much rectified and a much more accurate 
result is obtained. This result demonstrates the usefulness of such hybrid approaches: they can recover accurately the be-
haviour predicted by the more detailed models whilst, by averaging out some of those details in regions where they are not 
necessary, their computational performance is much improved.

The paper is organised as follows. In Section 2, we present a summary of the stochastic multi-scale model. For an in-
depth presentation, the reader is referred to de la Cruz et al. [17]. Section 3 contains a multiple scale asymptotic analysis 
which concludes with the derivation of versions of both the full stochastic model and its mean-field limit where the in-
tracellular dynamics (i.e. age-structure) has been coarse-grained. The resulting models are described by the growth rate 
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Fig. 1. Schematic representation of the different elements that compose our multi-scale model. We show the different levels of biological organisation as 
well as associated characteristic time scales [32,17] associated to each of these layers: resource scale, i.e. oxygen which is supplied at a constant rate and 
consumed by the cell population, cellular scale, i.e. oxygen-regulated cell cycle progression which determines the age-dependent birth rate into the cellular 
layer, and, finally, the cellular scale, which is associated to the stochastic population dynamics.

corresponding to the intracellular state distribution (age-distribution) of the population being at equilibrium (in a sense to 
be precisely defined in Section 3.2.4). In Section 4, we introduce the hybrid method for the stochastic multi-scale model, 
which is an extension of that developed by Spill et al. [67] to accommodate the intracellular dynamics (i.e. age-structure) as-
sociated with the multi-scale model. In Section 5, we proceed with an assessment of the accuracy of the coarse-grained and 
hybrid models for travelling wave solutions. We take as a benchmark the full stochastic multi-scale model solved by means 
of the age-structured Gillespie algorithm [17]. During this analysis we conclude that failure of the coarse-grained growth 
rate to describe the population dynamics at the leading edge of the front is responsible for the discrepancies between the 
travelling wave speeds. The hybrid method does away with such discrepancies by providing a more accurate description of 
the population dynamics within that region. Finally, in Section 6 we discuss our results and present our conclusions.

2. Summary of the stochastic multi-scale model

Before proceeding further, we present a general overview of the stochastic multi-scale model of tumour growth as 
well as a summarised discussion of the different elements involved in the formulation of the stochastic multi-scale model. 
The model presented here is closely related to that presented in [17], the main difference being the introduction of spatial 
heterogeneities, which were neglected in our previous work. The model we present in this paper accounts for processes with 
widely different characteristic time scales, as depicted in the scheme shown in Fig. 1. This model intends to describe the 
growth of cellular populations in a spatially heterogeneous environment under the restriction of finite amount of available 
resources (in this case, oxygen c(t, x)) supplied at a finite rate, S(t, x).

The general approach to the stochastic population dynamics used here is a natural generalisation of the standard 
continuous-time birth-and-death Markov process and its description via a Master Equation [24]. de la Cruz et al. [17]
showed that the consideration of the multi-scale structure of the system, i.e. the inclusion of the physiological structure 
associated with the cell-cycle variables, can be accounted by an age-structure within the population: the birth rate depends 
on the age of cell (i.e. time elapsed since last division) which determines, through the corresponding cell-cycle model, the 
cell-cycle status of the corresponding cells.

We summarise the different sub-models involved in the formulation or the stochastic multi-scale model schematically 
represented in Fig. 1. For a detailed discussion of a non-spatial version of the model we refer the reader to de la Cruz et al. 
[17]. Here, we emphasise the new elements introduced by considering spatially extended systems.
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Fig. 2. Representation of the setting of our model. Diffusible substances (e.g. oxygen), c(t, x), is modelled as a continuous field described by a reaction–
diffusion PDE, it is represented by green solid line. The birth-and-death dynamics with diffusion of the cell population is modelled by means of a RDME 
on a lattice L. Each vertex of the lattice, xi ∈ L, is associated to a compartment or voxel within which the population is assumed to be well-mixed 
and its stochastic dynamics ruled by a local law of mass action. L is the total length of the system and h is the lattice spacing, so that L = NLh where 
NL = card(L). Here N(t, xi) depict the number of cells in compartment i and it is calculated as N(t, xi) =

∫ ∞
0 n(t, a, xi)da, with n(t, a, xi) being the number 

of cells of age a at time t and compartment xi . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.)

2.1. General setting

Our model couples partial differential equations (PDEs), continuum models for diffusible substances, which drive indi-
vidual cell behaviour, with a spatially discrete cell population dynamics described by a reaction–diffusion Master Equation 
(RDME) [68,6,38,66,33]. The scheme that we are using is a simple extension of the Chemical Master Equation (CME), where 
the space is discretised into a lattice. Each lattice site is associated to a compartment and the population within each 
compartment is assumed to be homogeneous (well-mixed) with reaction rates modelled according to the (local) law of 
mass action: reaction rates depend on the population within the corresponding compartment only. Diffusion is modelled by 
means of continuous-time random walk on the lattice.

Regarding the coupling between the diffusible substances (in this particular case, oxygen) and the birth-and-death dy-
namics, we assume that all the cells within a compartment are exposed to the same concentration and, therefore, they all 
respond identically to their stimuli. From the numerical point of view, we will assume that the grid on which we solve the 
PDEs is the same as the lattice which sustains the stochastic population dynamics. Since we primarily focus on one dimen-
sional numerical experiments, PDEs are solved using a finite-difference discretisation and an explicit Euler or a four-stage 
Runge–Kutta method.

We must note that the RDME approach has been recently criticised as it has been shown that, except in one dimension, 
it does not converge to a continuum reaction–diffusion PDE [37]. A convergent RDME scheme has been recently proposed 
[38], although at this point we limit ourselves to the classical RDME scheme.

2.2. Resource layer: dynamics of diffusible substances

The evolution of the concentration of oxygen, c(t, x), (resource scale, see Fig. 1) is modelled by:

∂c

∂t
= Dc

∂2c

∂x2
− kc

∑
xi∈L

N(t, xi)δ(x − xi) + S(t, x) − k2c, (1)

where δ is the Dirac delta function, L is the lattice defined in Section 2.1 (see Fig. 2), and N(t, xi), i = 1, . . . , NL , is the 
number of cells in compartment i at time t . Note that, in general, the evolution of N(t, xi) is a stochastic process, and, 
therefore, in principle Eq. (1) should be treated as a stochastic differential equation [35]. S(t, x) is a source that accounts 
for oxygen delivery to the system. Dc is the oxygen diffusion coefficient, and k is the oxygen consumption rate. The term 
k2c, has been included for two reasons. First, in its absence, the oxygen concentration ahead of the front grows boundlessly. 
This fact is likely to introduce artifacts in the stochastic population dynamics. Beyond that, this term also has a biological 
interpretation: it is associated with a native (passive) population which keeps the oxygen concentration finite, and against 
which the tumour modelled by our stochastic multi-scale system is growing.
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2.3. Intracellular layer: oxygen-dependent birth rate

In our stochastic growth model, cell proliferation is fuelled by oxygen. The model of the oxygen-dependent growth rate 
is derived from a stochastic version of a model of oxygen-regulated progression through the cell cycle, in particular the 
G1/S transition [5]. The cell cycle is the pathway that orchestrates cell division. By means of this pathway, cells monitor 
their internal state and the presence of signalling cues. All this information is integrated by the cell cycle machinery which, 
upon detection of favourable conditions, drive the cell through a number of transitions between the different stages of the 
cell cycle (gap phase 1 (G1), DNA synthesis (S), gap phase 2 (G2), and mitosis (M)) which culminate with cell division at 
the end of the M-phase [26–30]. Mathematical modelling of the cell cycle has been traditionally done using systems of 
ordinary differential equations (ODEs) for the concentration of the proteins involved in cell cycle regulation [26]. Within 
this framework, the aforementioned transitions are identified with dynamically-induced bifurcations where key cell cycle 
regulators, known as cyclin dependent kinases (CDKs), are successively activated. Roughly speaking, the onset of each stage 
of the cell cycle is associated with the activation of the corresponding CDK [27]. Each stage therefore can be identified with 
the concentration of the associated CDK exceeding some threshold.

This picture lends itself to stochastic modelling, particularly to the application of first passage time problems, where one 
addresses the statistical properties of the time needed for the sample paths of a stochastic process to hit the boundary of 
a certain region. In this case, we are interested on the mean first-passage time (MFPT) problem associated to the activation 
of CycB (which binds to Cdk1), which determines the onset of the S-phase through the G1/S transition. The timing of this 
transition has been shown to strongly depend on the concentration of oxygen: the more abundant oxygen is, the faster the 
cell-cycle goes through the G1/S transition. Following our previous work [3,51,32,17], we consider a simplified picture in 
which the time to the G1/S transition is regulated by a model of the oxygen-regulated G1/S transition and we lump the 
remaining of the cell cycle into an average waiting time. The biological justification for this comes from the fact that the 
duration of S, G2, and M seem to be only weakly dependent on the concentration of oxygen [2].

The MFPT associated to the stochastic version of the G1/S transition model proposed by Bedessem and Stephanou [5]
has been studied in detail in [17]. Here, we report only the result of this analysis and refer the reader to our previous work 
for full details. We have shown that the MFPT for the cell to reach the G1/S transition depends on the oxygen concentration 
and the relative concentration of enzymes regulating the activity of SCF, an inhibitor of CycB [1,16]. We refer to the MFPT 
for the cell to reach the G1/S transition as the age at the G1/S transition, aG1/S , since this time is counted from the moment 
of birth of the cell:

aG1/S

(
c,

p6

p3

)
�

⎧⎨
⎩

a+
(

p6
p3

)
e−c/c0 if p6

p3
> rcr

a−
(

c
ccr(p6/p3)

− 1
)−β

if p6
p3

< rcr .
(2)

Here, c0, a± , and β are constants, p6 and p3 are the momenta coordinates associated with the SCF-activating and inac-

tivating enzymes, rcr is critical value of the ratio p6/p3 above which there is no transition to quiescence, and ccr

(
p6
p3

)
is:

ccr

(
p6

p3

)
= 1 − 1

β1
log

⎛
⎜⎝ 1

a3 H0

⎛
⎜⎝a1 + a2d2

d1[e2 f ]t

⎛
⎜⎝1 − 1

1 − a0

(
p3
p6

)2

⎞
⎟⎠

⎞
⎟⎠

⎞
⎟⎠. (3)

The parameters a1, a2, a3, d1, d2, β1, [e2 f ]t , and H0 are kinetic parameters of the mean-field model defined in [5] and [17]
and a0 is calculated in [17].

2.4. Cellular scale: age-structured birth-and-death with diffusion

Consider the random variable n(t, a, x j), i.e. the number of cells of age a in position x j at time t . Age is defined as 
the time elapsed since last division. Let us further define the random vector N (t, a) = (n(t, a, x1), . . . , n(t, a, xNL)) where 
NL = card(L). An age-dependent Master Equation can be written for the birth-and-death with diffusion process described 
in Table 1, which is an extension of the age-dependent birth-and-death process formulated in [17] to account for the effects 
of cell diffusion. de la Cruz et al. [17] have shown that the evolution on each characteristic curve or genealogy (see Fig. 3) is 
independent and, therefore, the following equality holds on each characteristic curve:

P (N , t + δt,a + δa) =
NL∑
j=1

z+2∑
i=1

W i(N −Ri, t,a, x j)δt P (N −Ri, t,a)

+
(

1 −
4∑

W i(N , t,a, x j)δt

)
P (N , t,a), (4)
i=1
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Table 1
This table shows the details regarding the rates and stoichiometric matrix associated with the birth-and-death and diffusion process. This process is a 
straightforward generalisation of the age-dependent birth–death-process formulated in [17]. Here b(a) is the age-dependent birth rate, ν is the death 
rate (which, for simplicity, we assume to be age-independent), and Dn is the diffusion coefficient of the cells. h is the lattice spacing defined in Fig. 2. 
Furthermore, 〈x j〉 stands for the set of neighbours of x j in L, and z is the so-called coordination number, i.e. the number of neighbours of a node: 
z = card(〈x j〉).

Event Reaction Transition rate, Wk(n, t,a, x j) rk

Birth n(t,a, x j) → n(t,a, x j) − 1 W1(n, t,a, x j) = b(a)n(t,a, x j) r1 j = −1, r1k = 0, k 	= j
∅→ n(t,a = 0, x j) = 2

Death n(t,a, x j) → n(t,a, x j) − 1 W2(n, t,a, x j) = νn(t,a, x j) r2 j = −1, r1k = 0, k 	= j

Diffusion n(t,a, x j) → n(t,a, x j) − 1 W2+k(n, t,a, x j) = Dn
h2 n(t,a, x j), k = 1, . . . , z r2+k j = −1, r2+kl = 1, xl ∈ 〈x j〉

n(t,a, x j±1) → n(t,a, x j±1) + 1

Fig. 3. This plot shows a schematic representation of the characteristic curves, a = t + a0, corresponding to our age-structured stochastic dynamics and the 
emergence of new genealogies (red line) when a birth occurs (indicated by the red dashed line) within a previously existing one. Genealogies terminate 
when the corresponding population becomes extinct (indicated by the red point). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)

where P (N , t, a) is the probability of the number of cells of age a to be N at time t , δa = δt , z is the coordination 
number of the lattice L and Ri = (ri1 , . . . , riNL

). The quantities W i , and ri j are such that P (N , a + δt, t + δt|N − ri j, a, t) =
W i(n, a, t, x j)δt + O (δt2), i.e. W i(n, a, t, x j) is the probability per unit time of event i, which can be birth, death or random 
diffusion (see Table 1), to affect the population n(a, t, x j) in (t, t + δt). The vector ri j is the change in the state of the system 
associated with such event. Re-arranging terms and taking the limit δt → 0, we obtain:

∂ P (N , t,a)

∂t
+ ∂ P (N , t,a)

∂a
=

NL∑
j=1

z+2∑
i=1

(
W i(N −Ri, t,a, x j)P (N −Ri, t,a) − W i(N , t,a, x j)P (N , t,a)

)
. (5)

A cornerstone in our model is the age-dependent birth rate, b(a), defined in Table 1, since it constitutes the coupling 
between the three layers that compose our multi-scale model: nutrient, intracellular, and cellular layer. In Section 2.3, we 
have discussed a model in which we consider that cell division is divided into parts: a regulated one culminating in the 
G1/S transition, characterised by the oxygen-dependent MFPT, aG1/S , Eq. (2), and an unregulated one characterised by an 
average duration, τ−1

p . This model can be described by an age-dependent birth rate:

b(a) = τ−1
p H(a − aG1/s(c, p6/p3)), (6)

where H(·) is Heaviside’s step function and aG1/S is given by Eq. (2). Eq. (6) can be interpreted as follows: cell division 
cannot occur in cells younger than the oxygen regulated age aG1/S . Cells that have aged beyond aG1/S undergo cell division 
at a constant rate τ−1

p .

2.5. Linking scales together

The connections between different time-scales described in Fig. 1 is given by coupling the different sub-models so that 
the global behaviour of the system arises as an emergent property of this linkage:

1. The coupling between the intracellular and the cellular layers takes place through the age-dependent birth rate, Eq. (6).
2. The intracellular layer and the resource layer are coupled through the oxygen-dependence MFPT to the G1/S transition, 

given by Eq. (2).
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3. Finally, the resource layer is coupled to the cellular layer, via Eq. (1), where the cell population regulates the concentra-
tion of oxygen, where N is

N(t, x j) =
∞∫

0

n(t,a, x j)da. (7)

3. Separation of time scales and coarse-graining of the age structure

In this section we analyse the system regarding the separation of time scales in the system. This analysis requires to 
make assumptions involving typical key parameter values, particularly the oxygen diffusion coefficient, Dc , the cell diffusion 
coefficient, Dn , and the average cell life expectancy, ν−1. These assumptions are consistent with typical values of these 
parameters reported in the literature.

We start our analysis by considering the mean-field (deterministic) limit of our model, where the different time scales 
arise in a more intuitive way. We will then generalise our analysis to the full stochastic system using the Poisson repre-
sentation [45,4,41], rather than the Master Equation representation Eq. (5). In both cases, we will show that provided that 
τn 
 ν−1 
 τc , where τc = h2/Dc and τn = h2/Dn , is satisfied, it is possible to approximate the age-structured system by 
a coarse-grained version of it where the age distribution within the population reaches a quasi-steady state that can be 
explicitly calculated. This allows for a huge simplification of the model and the formulation of efficient hybrid numerical 
schemes.

3.1. Mean-field model

The mean-field limit of our stochastic model is a straightforward generalisation of the one obtained in [17] for the 
non-spatial model:

∂c

∂t
= Dc

∂2c

∂x2
− kN(t, x)c + S(t, x) − k2c, N(t, x) =

∞∫
0

n(t,a, x)da, (8)

∂n

∂t
+ ∂n

∂a
= Dn

∂2n

∂x2
− (b(a) + ν)n(t,a, x), (9)

n(t,a = 0, x) = 2

∞∫
0

b(a)n(t,a, x)da, (10)

with no-flux boundary conditions at the boundaries of the domain and b(a) is given by Eq. (2). We first proceed to express 
the system in dimensionless units: τ = νt , α = νa, x → x/h, and c → c/c0, where c0 is the characteristic scale of the oxygen 
concentration. Eqs. (8)–(10) now read:

ε1
∂c

∂τ
= ∂2c

∂x2
− κN(τ , x)c + S(τ , x) − κ2c, N(τ , x) = ν−1

∞∫
0

n(τ ,α, x)dα, (11)

ε1

(
∂n

∂τ
+ ∂n

∂α

)
= ε2

∂2n

∂x2
− (τcb(α) + ε1)n(τ ,α, x), (12)

n(τ ,α = 0, x) = 2ν−1

∞∫
0

b(α)n(τ ,α, x)dα, (13)

with ε1 = τcν � 1, ε2 = τc/τn = Dn/Dc � 1, κ = τck, and S = τc S/c0.
Under the assumption that ε1 � 1, ε2 � 1, and ε2 � ε1 hold, we now show that there are three different regimes: 

a regime that corresponds to the very early evolution, where the oxygen distribution evolves under a constant-in-time 
population until it reaches a quasi-equilibrium state, an intermediate regime where the only evolution is associated to the 
local evolution of the age-distribution (no cell diffusion) until the age-distribution reaches a quasi-steady state equilibrium, 
and a third regime, which corresponds to the long-time evolution of the system, where both cell diffusion and population 
birth-and-death occur, only that the latter corresponds to the quasi-steady state age-distribution.

3.1.1. Early evolution
Consider the following time and age re-scaling: T = ε−1

1 τ and A = ε−1
1 α. Under this re-scaling the left-hand sides of 

Eqs. (11) and (12) become O (1). However, the two terms on the right-hand side of Eq. (12) stay O (ε2) and O (ε1). Therefore, 
at the lowest order, i.e. O (ε0), n(T , A, x) � cnt., i.e. n(T , A, x) � n(T = 0, A, x). Therefore,
1
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∂c

∂T
= ∂2c

∂x2
− κN(x)c + S(T , x) − k2c, N(x) = τc

∞∫
0

n(T = 0, A, x)dA, (14)

that is the oxygen concentration evolves against a background of constant population, until it reaches a quasi-equilibrium 
oxygen distribution.

3.1.2. Intermediate regime
This regime does not involve any re-scaling. We only need to recall that ε2 � ε1 and ε1 � 1. Under these assumptions, 

one can neglect O (ε2)-cell diffusion in Eq. (12), with all the remaining terms of O (ε1). Similarly, we can neglect the 
O (ε1)-left-hand side of Eq. (11) compared to the O (1) right-hand side. The resulting approximation reads:

0 = ∂2c

∂x2
− κN(τ , x)c + S(τ , x) − κ2c, N(τ , x) = ν−1

∞∫
0

n(τ ,α, x)dα, (15)

∂n

∂τ
+ ∂n

∂α
= −(ν−1b(α) + 1)n(τ ,α, x), (16)

n(τ ,α = 0, x) = 2ν−1

∞∫
0

b(α)n(τ ,α, x)dα, (17)

this means the population evolves in a purely local fashion, with no diffusion, where within each compartment the 
age-distribution evolves towards equilibrium with a quasi-steady state oxygen distribution. This local quasi-equilibrium age-
distribution has been studied and described in [17].

3.1.3. Long-time behaviour
Consider the re-scaling σ = ε2

ε1
τ and γ = ε2

ε1
α. Under this re-scaling, the left-hand sides of both Eqs. (11) and (12)

become O (ε2). Since, the right-hand side of Eq. (11) remains O (1), the approximation is:

0 = ∂2c

∂x2
− κN(σ , x)c + S(σ , x) − κ2c, N(σ , x) = ν−1 ε1

ε2

∞∫
0

n(σ ,γ , x)dγ , (18)

∂n

∂σ
+ ∂n

∂γ
= ∂2n

∂x2
− ε1

ε2
(ν−1b(γ ) + 1)n(σ ,γ , x), (19)

n(σ ,γ = 0, x) = 2ν−1 ε1

ε2

∞∫
0

b(γ )n(σ ,γ , x)dγ . (20)

Since ε2 � ε1, Eqs. (19) and (20) imply that the local birth-and-death process, which drives the evolution of the age-
distribution of the population, is much faster than the spatial spread of the cells. In other words, the local age-distribution 
reaches a quasi-equilibrium state against the background of a quasi-steady state distribution of oxygen. This property sug-
gests that the long term evolution of the system can be described by a coarse-grained (age-independent) system where 
the local birth-and-death dynamics is determined by the (oxygen-dependent) net growth rate, λn(c). This quantity can be 
obtained from the local equilibrium age distribution in a straightforward way, as we have shown in [17].

To make this statement more precise, consider a separable solution of Eqs. (19) and (20) in one dimension:

n(σ ,γ , x) = (σ)�(γ )X(x), (21)

and assume the oxygen concentration to be a constant. This solution is characterised by two sets of eigenvalues, λD (k), 
which are associated to cell diffusion and which, for no-flow boundary conditions in one dimension, are given by λD(k) =
−k2 π2

L2 , k = 0, 1, 2, . . . with L being the length of the domain measured in units of h, i.e. the lattice spacing. The second 
set of eigenvalues, λn(c), are associated to the local birth-and-death dynamics. If b(a) is given by Eq. (6), λnk (c) are the 
solutions of the following characteristic equation [36]:

2
ε1

ε2
(τpν)−1 e

−
(
λnk +λD (k)+ ε1

ε2

)
γG1/S

λnk + λD(k) + 1
ε2

(ε1 + τcτ
−1
p )

= 1, (22)

where γG1/S is a function of c. Now for each k we may solve for λnk in terms of λD(k), allowing for a full expansion of 
the solution in terms of Fourier modes. That is, we extract the Fourier coefficients ak, bk from the Fourier expansion of the 
initial condition and we construct the associated solution as
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n(σ ,α, x) = (0)�(0)

∞∑
k=0

eλnk σ exp

⎛
⎝λD(k)γ − (ε1/ε2 + λnk )γ − ε1

νε2

γ∫
0

b(τ )dτ

⎞
⎠

× (ak sin(kπx/L) + bk cos(kπx/L)) . (23)

Consider now the (unique) solution of Eq. (22) with λD(k) = 0, x0. Then λnk = x0 −k2 π2

L2 . Clearly the slowest mode would 
be the one for k = 0. From Eq. (22) and since ε2 � ε1, many modes have nearly the same time decay rate, being roughly the 
one dictated by λn0 . This accumulation of modes around the one associated to the equilibrium age-structure distribution 
justifies that the local age-distribution reaches a quasi-equilibrium state against the background of a quasi-steady state 
distribution of oxygen.

3.1.4. Coarse-grained mean-field description
In view of the above analysis, particularly the results of Sections 3.1.2 and 3.1.3, we formulate a coarse-grained limit of 

Eqs. (11)–(13), where the local age-distribution is assumed to be in quasi-equilibrium with the quasi-steady distribution of 
oxygen:

0 = ∂2c

∂x2
− κncg(σ , x)c + S(σ , x) − κ2c, (24)

∂ncg

∂σ
= ∂2ncg

∂x2
+ λn(c)ncg, (25)

2
ε1

ε2
(τpν)−1 e

−
(
λn+ ε1

ε2

)
γG1/S

λn + 1
ε2

(ε1 + τcτ
−1
p )

= 1. (26)

This description is valid from time σ = O (1) onwards. It will fail to describe the earlier evolution of the system, where the 
local age-distribution of the population has not had time to reach equilibrium.

3.2. Stochastic system

We now proceed with multiple time scale analysis of the full stochastic system. As in the case of the mean-field analysis 
carried out in Section 3.1, our aim here is to try and find regimes where the stochastic system defined in Section 2.4 can 
be approximated by simpler versions that are more amenable to analysis and efficient numerical simulation. In particular, 
we will show that, under the same hypothesis as in Section 3.1 regarding time scales, it is possible to coarse-grain the 
system so that the local (i.e. within each compartment) age-distribution of the population can be assumed to have reached 
quasi-equilibrium.

We start by reformulating Eq. (5) in terms of the Poisson representation [45,31,4,41]:

n(t,a, x j) = n(t = 0,a − t, x j) − Y

⎛
⎝ t∫

0

(b(a(t)) + ν)n(t,a(t), x j)dt

⎞
⎠

+
∑

xl∈〈x j〉

⎛
⎝Y

⎛
⎝τ−1

n

t∫
0

n(t,a(t), xl)dt

⎞
⎠ − Y

⎛
⎝τ−1

n

t∫
0

n(t,a(t), x j)dt

⎞
⎠

⎞
⎠ , (27)

n(t,a = 0, x j) = 2Y

⎛
⎝ ∞∫

0

b(a)n(t,a, x j)da

⎞
⎠ , (28)

where a(t) is the equation of the characteristic curve (see Fig. 3) and Y (λ) ∼ Poisson(λ), i.e. Y (λ) is a random number 
sampled from a Poisson distribution with parameter λ. By writing the system in terms of the dimensionless variables 
τ = νt and α = νa:

ε1
∂c

∂τ
= ∂2c

∂x2
− κc

∑
xl∈L

N(τ , xl)δ(x − xl) + S(τ , x) − κ2c, N(τ , x j) = ν−1

∞∫
0

n(τ ,α, x j)dα, (29)

n(τ ,α, x j) = n(τ = 0,α − τ , x j) − Y

⎛
⎝ε−1

1

τ∫
0

(τcb(α(t)) + ε1)n(t,α(t), x j)dt

⎞
⎠

+
∑

xl∈〈x j〉

⎛
⎝Y

⎛
⎝ε−1

1 ε2

τ∫
n(t,α(t), xl)dt

⎞
⎠ − Y

⎛
⎝ε−1

1 ε2

τ∫
n(t,α(t), x j)dt

⎞
⎠

⎞
⎠ , (30)
0 0
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n(τ ,α = 0, x j) = 2Y

⎛
⎝ε−1

1

∞∫
0

τcb(α)n(τ ,α, x j)dα

⎞
⎠ .

Under the same assumptions regarding time scales, i.e. ε1 � 1, ε2 � 1, and ε2 � ε1, we now show that the stochastic 
system exhibits exactly the same three regimes as its mean-field counterpart, namely, early evolution, where the oxygen 
distribution evolves under a constant-in-time population until it reaches a quasi-equilibrium state, an intermediate stage 
where the local age-distribution evolves (with no cell diffusion) until it reaches a quasi-steady state equilibrium, and a third 
regime, associated with the long-time behaviour, where both cell diffusion and population birth-and-death occur with the 
latter determined by the quasi-steady state age-distribution.

3.2.1. Early evolution
Consider the re-scaling: T = ε−1

1 τ and A = ε−1
1 α. Under this change of variables, both the right and left-hand sides of 

Eq. (29) are now O (1). The stochastic evolution of the population becomes:

n(T , A, x j) = n(T = 0, A − T , x j) − Y

⎛
⎝ε1

T∫
0

(ν−1b(A(t)) + 1)n(T , A(t), x j)dt

⎞
⎠

+
∑

xl∈〈x j〉

⎛
⎝Y

⎛
⎝ε2

T∫
0

n(t, A(t), xl)dt

⎞
⎠ − Y

⎛
⎝ε2

T∫
0

n(t, A(t), x j)dt

⎞
⎠

⎞
⎠ , (31)

n(T , A = 0, x j) = 2Y

⎛
⎝ε−1

1

∞∫
0

ν−1b(A)n(T , A, x j)dA

⎞
⎠ .

Taking into account that, upon re-scaling the waiting times associated to both diffusion and birth and death are very large, 
one can assume that n(T , A, x j) = n(T = 0, A − T , x j) + O (ε1). So that at the lowest order, i.e. O (ε0

1 ), n(T , A, x j) remains 
constant, n(T , A, x j) � n(T = 0, A − T , x j) [4,41], so that:

∂c

∂T
= ∂2c

∂x2
− κc

∑
xl∈L

N(x)δ(x − xl) + S(T , x) − κ2c, N(x) = ν−1ε1

∞∫
0

n(T = 0, A − T, x)dA. (32)

3.2.2. Intermediate regime
Since ε2 � 1, to the lowest order, Eqs. (29) and (30) can be approximated by [4,41]:

0 = ∂2c

∂x2
− κc

∑
xl∈〈x j〉

N(τ , x)δ(x − xl) + S(τ , x) − κ2c, N(τ , x j) = ν−1

∞∫
0

n(τ ,α, x j)dα, (33)

n(τ ,α, x j) = n(τ = 0,α − τ , x j) − Y

⎛
⎝ τ∫

0

(ν−1b(α(t)) + 1)n(t,α(t), x j)dt

⎞
⎠ , (34)

n(τ ,α = 0, x j) = 2Y

⎛
⎝ν−1

∞∫
0

b(α)n(τ ,α, x j)dα

⎞
⎠ .

Eqs. (33) and (34) imply that, during this intermediate dynamics, cell do not diffuse and the population dynamics is 
purely local against the background of a quasi-steady state distribution of oxygen. This evolution during this stage of the 
dynamics drives the local age-distribution towards local equilibrium.

3.2.3. Long-time behaviour
We finish our analysis by, once again, considering the following re-scaling of the time and age variables: σ = ε2

ε1
τ and 

γ = ε2
ε1

α. Under this change of variables and recalling that ε1
ε2


 1, Eqs. (29) and (30) transform into:

0 = ∂2c

∂x2
− κc

∑
xl∈〈x j〉

N(σ , x j)δ(x − xl) + S(σ , x) − κ2c, N(σ , x j) = ν−1 ε1

ε2

∞∫
0

n(σ ,γ , x j)dγ , (35)

n(σ ,γ , x j) = n(σ = 0, γ − σ , x j) − Y

⎛
⎝ε1

ε2

σ∫
(ν−1b(γ (t)) + 1)n(t, γ (t), x j)dt

⎞
⎠

0
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+
∑

xl∈〈x j〉

⎛
⎝Y

⎛
⎝ σ∫

0

n(t, γ (t), xl)dt

⎞
⎠ − Y

⎛
⎝ σ∫

0

n(t, γ (t), x j)dt

⎞
⎠

⎞
⎠ , (36)

n(σ ,γ = 0, x j) = 2Y

⎛
⎝ε1

ε2

∞∫
0

ν−1b(γ )n(σ ,γ , x j)dγ

⎞
⎠ ,

where we have neglected terms of O (ε2).
Eqs. (35) and (36) are the basis for the formulation of our coarse-grained model. Eq. (36) implies that the rate at which 

the events associated with the local birth-and-death dynamics fire up is at a rate which is of order O (
ε1
ε2

) 
 1, whereas 
diffusion occurs at a rate of order O (1). This property implies that, between diffusion events and as long as such separation 
of time scales is large enough, the local age-distribution evolves through the birth-and-death dynamics, unperturbed by the 
diffusion part of the process, until it settles down onto quasi-equilibrium [10,11].

3.2.4. Stochastic coarse-grained model
On the basis of the argument we have put forward in Section 3.2.3, we propose a coarse-grained model of the stochastic 

evolution Eqs. (29)–(30). This coarse-graining strategy consists of integrating out the age structure taking and formulating 
the stochastic birth-and-death dynamics in terms of the total local population only. This is done by using the fact that 
age-distribution is in quasi-equilibrium, and therefore it is no longer valid in the early evolution of the system. In order 
to proceed with this programme, we first consider the number of new cells at time σ and position x j , n(σ , γ = 0, x j). 
According to Eqs. (6) and (36), we can write:

n(σ ,γ = 0, x j) = 2Y

⎛
⎜⎝ε1

ε2
(ντp)−1

∞∫
γG1/S

n(σ ,γ , x j)dγ

⎞
⎟⎠ = 2Y

(
ε1

ε2
BN(σ , x j)

)
, (37)

where the coarse-grained birth rate is given by:

B = (ντp)−1

∫ ∞
γG1/S

n(σ ,γ , x j)dγ∫ ∞
0 n(σ ,γ , x j)dγ

. (38)

In a general setting, the quantity B should be considered as a function of time. However, under the conditions discussed in 
Section 3.2.3, where the age-distribution is in quasi-equilibrium, B is time independent. This is a simple consequence of the 
fact that at equilibrium, the ratio between the population younger than γG1/S and the population older than γG1/S is, on 
average, time independent [36].

Using the quasi-equilibrium condition, the (constant) fraction of the population younger than γG1/S and the population 
older than γG1/S can be estimated with regard to the probability of survival to age γ , P S(γ ), which is given by:

P S(γ ,λn) ∝ e
−λnγ − ε1

ε2

(
γ +(τpν)−1(γ −γG1/S )H(γ −γG1/S )

)
, (39)

where λn is the mean-field growth rate, given by the characteristic equation (Eq. (22)), and H(γ ) is Heaviside’s step function 
[36,17]. At equilibrium, P S (γ , x j) provides the proportion of the total population at compartment x j of age γ . Therefore the 
ratio in Eq. (38) can be calculated from Eq. (39), so that:

B = (ντp)−1

(
λn + ε1

ε2

)
e
− ε1

ε2
γG1/S

λn + ε1
ε2

+ (τpν)−1 ε1
ε2

(
1 − e

− ε1
ε2

γG1/S

) . (40)

Eq. (40) allows us to write a coarse-grained stochastic evolution which is given by:

0 = ∂2c

∂x2
− κc

∑
xl∈〈x j〉

N(σ , x j)δ(x − xl) + S(σ , x) − κ2c, N(σ , x j) = ν−1 ε1

ε2

∞∫
0

n(σ ,γ , x j)dγ , (41)

Ncg(σ , x j) = Ncg(σ = 0, x j) + Y

⎛
⎝ε1

ε2
B

σ∫
0

Ncg(t, x j)dt

⎞
⎠ − Y

⎛
⎝ε1

ε2

σ∫
0

Ncg(t, x j)dt

⎞
⎠

+
∑

xl∈〈x j〉

⎛
⎝Y

⎛
⎝ σ∫

0

Ncg(t, xl)dt

⎞
⎠ − Y

⎛
⎝ σ∫

0

Ncg(t, x j)dt

⎞
⎠

⎞
⎠ , (42)

with B given by Eq. (40) taking into account that γG1/S = γG1/S(c), i.e. it is a function of c given by Eq. (2).
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4. Hybrid method for stochastic multi-scale models of tumour growth

We now proceed to describe the hybrid algorithm for stochastic multi-scale models. For simplicity, we focus our dis-
cussion to the case of a single interface in one dimension. The formulation of our hybrid methodology follows closely that 
of Spill et al. [67]. We consider an interface between the mean-field and stochastic domains based on the number of total 
number cells: the interface, I , is located in the last compartment such that its total population is larger than a threshold, �:

N(t, xI ) =
∞∫

0

n(t,a, xI )da > �. (43)

Since the description of the dynamics at the interface compartment is mixed, i.e. partly stochastic and partly mean-field, we 
impose that � be large enough compared to system size, so that both descriptions accurately account for the dynamics of 
the system. In order to increase the computational efficiency of our hybrid algorithm, we use the coarse-grained mean-field 
description coupled to the full age-structured stochastic model. We therefore need to provide specific rules for how age is 
introduced when cells are moved from the mean-field portion of the domain to the stochastic one.

Hybrid algorithm We first provide a general overview of the algorithm. The parts that need more detailed discussion are 
dealt with later on.

1. Set �.
2. Set initial condition. We chose as an initial condition:

N(t, xi) = K H(xI − xi), c(t, xi) = c∞ = cnt.

where K is the carrying capacity and c∞ is the associated equilibrium oxygen concentration. The age-distribution 
of the interface compartment, whose population dynamics is described by means of the stochastic model, is set to 
the equilibrium distribution Eq. (39). This choice is motivated by the fact that at the interface compartment both 
descriptions, i.e. the coarse-grained mean-field and the age-dependent stochastic process must hold.

3. Set time step as the waiting time to next stochastic event using the age-dependent Gillespie method [17].
4. Update the population within the stochastic domain according to the age-dependent Gillespie method [17].
5. Solve the PDEs for the coarse-grained mean-field population (over the mean-field domain) and the oxygen concentration 

(over the whole domain) in the interval [t, t + τ ). The PDE for the oxygen is solved in the whole domain, mean-field 
plus stochastic parts, coupled to the coarse-grained population PDE and the stochastic population model, respectively.

6. Renormalise the number of cells in the interface compartment so that it is an integer.
7. Recalculate the position of the interface compartment.
8. Iterate 3–7 until some stopping condition is satisfied.

4.1. Coupling the mean-field and the stochastic models at the interface: fluxes, reactions and age-structure at the interface

This section provides details of how the mean-field and stochastic domains are coupled. Our procedure follows closely 
that presented in [67]. We currently provide the specific changes introduced to deal with age structure within the interface 
and beyond.

Recall that the interface compartment is considered as belonging to both the mean-field and the stochastic domains, 
so that the density of cells (associated with the mean-field description) is given by ncg(t, xI ) = N(t,xI )

h . Within the interface 
compartment, the population has age-structure and the birth-and-death dynamics is determined by the stochastic dynamics. 
The diffusive fluxes affecting it are considered exactly as in [67]: diffusion between the interface compartment and its 
stochastic neighbour are modelled using the usual diffusion transition rates:

WnxI −1,nxI +1+1|nxI ,nxI +1 = D

h2
n(a, t, xI ),

WnxI +1,nxI +1−1|nxI ,nxI +1 = D

h2
n(a, t, xI + 1), (44)

where, for simplicity, we have used the notation nxI = n(a, t, xI ). The diffusive fluxes to and from the last mean-field com-
partment need to be slightly modified with respect to the ones proposed in [67] in order to accommodate the age-structure 
of the interface population. The flux, J I,I−1, from the interface compartment, xI , into the last mean-field compartment, xI−1, 
simply involves integrating out the age and using ncg(t, xI ) = N(t,xI )

h :

J I,I−1 = Ds

h2

(
ncg(t, xI ) − ncg(t, xI−1)

)
. (45)

The flux from compartments xI−1 into xI is modelled deterministically with ncg(t, xI ):

ncg(t + τ , xI ) = ncg(t, xI ) + τ
Ds

2

(
ncg(t, xI ) − ncg(t, xI−1)

)
. (46)
h
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We now need to address two issues: cells entering the interface compartment must be assigned an age and the number 
of cells must be an integer. In order to deal with these, we first renormalise the number of cells using the same procedure 
as in [67]. This procedure involves the consideration of the fractional part of the population probabilistically: we consider it 
as one minus the probability of regularising the interface population by removing its fractional part. In this case the excess 
of mass is moved to and distributed over the mean-field domain. Otherwise, the necessary amount of mass is evenly taken 
from the mean-field part and a whole cell is added to the interface. Upon renormalisation, we need to assign an age to the 
cell being removed or added to the interface. In the case of removal, this age is sampled from the age-structure distribution 
at the interface and one cell is removed from that age group. In the case of addition, the age of the added cell is sampled 
from the age-structure equilibrium distribution given by (39) and one cell is added to that age group.

4.2. Moving the interface

After completing the previous set of operations we must assess if the current interface position, held fixed through 
steps 3–6 of the hybrid algorithm, is consistent with the updated state of the system. If this is not the case then we 
shall relocate the interface accordingly before we resume with step 3. Let us specify how to do this. First we check if 
the interface condition (43) continues to be satisfied at the interface compartment. If this is not the case (population at 
the current interface location dropped below �), we displace the interface one compartment to the left and check if the 
interface condition is met with this new choice of interface. If this happens to be true we stick with this new choice. If not 
we repeat this procedure until a compartment satisfying the interface condition is met, and then we displace the interface 
there. Incidentally we may find that we reach the left end of our spatial domain without fulfilling the previous criterion. In 
that case the whole spatial domain shall be described using the stochastic model on the next time step. However, this did 
not happen in any of our simulations – note that we are describing an invasion process.

Assume now that the interface condition (43) continues to be satisfied at the current interface compartment. What we 
do in this case is to check if the next compartment to the right does also satisfy this condition. In such a case we must shift 
the interface location one slot to the right and repeat this check (thus enlarging the mean field domain), until we make 
sure that we have relocated the interface so that its rightmost neighbour does not satisfy the interface condition.

The previous set of rules tells us how to position the interface after the state of the system is updated. If the interface 
experiences a net displacement then the mean field and stochastic regions are redefined. To be consistent with that we have 
to switch carefully between both descriptions at those voxels that changed from one domain to the other. If the interface 
moves to the right then we assign values to N(t, x) at those locations in which it was not previously defined simply by 
integrating out the age variable. The procedure is subtler if the interface moves left, as we have to provide an age structure 
to those compartments entering the stochastic region from scratch. In the simple case of the interface moving a single 
voxel to the left, we proceed as follows: (i) we convert population density to cell number at new interface’s site – this will 
probably yield a non-integer cell number, (ii) we round the previous cell number into an integer value using the same mass 
transfer rules given in the previous paragraph, (iii) we assign an age structure to the resulting population by sampling the 
equilibrium age distribution (39) as many times as cells sit in the new interface compartment. Larger displacements are 
handled recursively by iterating unit displacements as we have just explained.

5. Assessing the accuracy of the coarse-grained and hybrid descriptions: travelling wave solutions

We now proceed to assess the accuracy of the coarse-grained mean-field and hybrid approximations by comparing 
them to the full stochastic simulations, which we take as our benchmark. We focus our analysis on the case where the 
system exhibits travelling wave behaviour. This regime has been used as a prototype to test a number of hybrid approaches 
in reaction–diffusion systems [67,71]. Furthermore, travelling waves are a setting of particular interest regarding tumour 
modelling, as it has been used to describe both growth and invasion in several cancer models [25,69]. In order to carry out 
a quantitative comparison between the predictions of the three models, we consider two quantities: the average position of 
the front of the travelling wave as a function of time, X(τ ), and the average speed of the travelling wave.

We start our discussion by comparing the (average) position of the wave front as a function of time. Fig. 4 shows that, 
for all three models, the system exhibits travelling wave behaviour as the position of the wave front is a linear function 
of time, i.e. their speeds are constants (see also supplementary movies A.8 and A.9). However, we appreciate that, whereas 
agreement between the results of the stochastic and hybrid models is rather good, an important departure exists between 
the results of the coarse-grained mean-field model and the stochastic and hybrid models.

This discrepancy is analysed in a more quantitative way in the results shown in Fig. 5, where we compare the travelling 
wave velocity measured in the coarse-grained mean-field simulation, vcg , the stochastic model simulations, v , and the 
hybrid method simulations, vh . We observe that whereas relative difference between v and vh is typically of the order of a 
5%, the relative difference between vh and vcg is of the order of a 30%. Before addressing this difference, we have checked 
the robustness of the wave speed vh with respect to variations in �. Our results, see Fig. 6, show that, as long as � is 
of the order of magnitude of the carrying capacity, K , vh is rather insensitive to changes in � (see also supplementary 
movie A.10).

The rather substantial difference observed in the wave speeds and how the hybrid model rectifies this variation need 
to be explained, since fluctuations in the N(t, x j) do not seem to play a sufficiently significant role (see supplementary 
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Fig. 4. Plot showing the time evolution of the average front position for the three models: the coarse-grained mean-field model (green line), hybrid model 
(blue line), and stochastic model (red line). Results shown for the hybrid and stochastic models correspond to an average over 100 and 40 realisations 
respectively. � = 2000. For other parameter values see Section 5. Position calculation: average of the positions x where the population is greater than 0 
and smaller than (K-100). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. These plots show the absolute value of the relative difference between the velocity of the front predicted by hybrid simulations and full stochastic 
age-dependent SSA simulations (plot (a)) and the coarse-grained mean-field system (plot (b)). The green solid line represents the mean value over time. 
Each point corresponds to an average over 40 realisations of the age-structured SSA and 100 realisations of the hybrid method. The velocity of the front is 
calculated using the data corresponding to the position of the (average) front shown in Fig. 4. The threshold, �, in the hybrid simulations is taken to be 
� = 2000. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

movie A.8). In order to address these issues, we need to look beyond purely demographic noise, i.e. fluctuations of N(t, x j), 
and look into fluctuations associated with the age distribution of the population, or, in other words, fluctuations associated 
with the intracellular, cell-division dynamics. Recall that our coarse-grained approach is predicated upon the hypothesis that 
the age distribution of the system be in equilibrium (see Sections 3.1.3 and 3.2.3), given by Eq. (39). Under this hypothesis 
the growth rate of the population is given by Eq. (26), and the birth rate, whose general expression is Eq. (38), is given by 
Eq. (40). Departure of the empirically measured birth rate (i.e. using Eq. (38)) from its equilibrium value is a signature of 
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Fig. 6. Comparison of the velocity average of 100 realisations of hybrid simulation with different threshold � = 1000, 1500, 2000, 2500, 3000 and 3500. 
Error bars correspond to standard error of the mean.

Fig. 7. Plots showing the time evolution of probability distribution function of the birth rate as obtained from simulation of the full stochastic multi-scale 
model. We show three snapshots (time increasing from left to right) for the region behind the interface (upper row) and ahead of the interface (lower 
row). These results show that behind the interface the distribution of the empirical birth rate, calculated using Eq. (38), is centred around the equilibrium 
birth rate, Eq. (40), vertical red line. By contrast, ahead of the interface the birth rate distribution is much broader. Therefore, whereas behind the interface 
the equilibrium birth rate is a good approximation, this is not the case ahead of the interface. See also supplementary movies A.11 and A.12. � = 2000. For 
other parameter values see Section 5. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 
article.)

non-equilibrium fluctuations of the age structure and, therefore, of the intracellular cell-division dynamics. It also heralds 
failure of the coarse-grained approximation to accurately describe the dynamics of the system.

To assess the accuracy of the assumption that the age structure of the population is in equilibrium, we have run sim-
ulations of the full stochastic model and compared the empirical birth rate, Eq. (38), with equilibrium birth rate, Eq. (40). 
Results are shown in Fig. 7 and also in supplementary movies A.11 and A.12, where we plot the time evolution of the prob-
ability distribution function (PDF) of the empirical birth rate, as obtained from simulation of the full stochastic multi-scale 
model. We can see that behind the wave the front (Fig. 7(a), (b) and (c), and supplementary movie A.12(a)), where cell 
numbers approach the carrying capacity of the system, the empirical birth rate is reasonably approximated by the equi-
librium birth rate. However, closer to and, crucially, ahead of the front, the empirical birth rate exhibits huge fluctuations 
both above and below the equilibrium birth rate. The latter implies that the age-structure of the population within the 
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compartments located at the edge of wave is strongly off-equilibrium (Fig. 7(d), (e) and (f), and supplementary movies A.11 
and A.12(b)). This observation explains the reason for the disparity of the wave velocities the coarse-grained mean-field and 
the stochastic models: the speed of propagation of a travelling wave is critically affected by the behaviour of the region 
close to the absorbing boundary, just at the edge of the wave front. In the case of our stochastic front, the equilibrium 
birth rate completely fails to describe the population dynamics in that region, and therefore the speed of the front is deter-
mined by stochastic effects associated to non-equilibrium fluctuations of the age distribution. By contrast, when the hybrid 
model is considered, the coarse-grained mean-field model deals only with the part of the system that is (approximately) in 
equilibrium. The part of the system whose age distribution is off-equilibrium, i.e. the population at the edge of the wave, 
is modelled by the full stochastic age-structured model, which provides the actual value of the birth rate. This fact also 
explains why the hybrid model provides a much more accurate description of the behaviour of the system.

Parameter values The parameter values associated to the population dynamics are taken from [17]: ν = 0.0000416667 min−1

and τp = 480 min. Estimates for the oxygen diffusion coefficient and the cell diffusion coefficient are Dc = 10−3 mm2/sec
and Dn = 10−7 mm2/sec, respectively [55,63]. The rates of oxygen supply and oxygen consumption are taken to be 
S = 1.57 · 10−2 μM/sec and k = 1.57 · 10−4 sec−1 [17]. Furthermore, unless otherwise stated, the oxygen decay rate, k2 is 
taken so that S

κ2
= O (1). Finally, the carrying capacity, K , is given by:

K = S
κc∞

, (47)

where c∞ is given by the (unique) solution of:

αG1/S(c∞, p6/p3) = − log

(
τpν + 1

2

)
, (48)

with αG1/S(c∞, p6/p3) given by Eq. (2) [17], where we take p6/p3 = 1.

6. Discussion and conclusions

The development of hybrid methodologies is a current field of interest in both multi-scale modelling and stochastic 
reaction–diffusion systems, particularly regarding their applications to model biological systems. In this paper, we have pro-
posed a hybrid methodology for a stochastic multi-scale model of tumour growth, i.e. a population-dynamical model which 
accounts for the effects of intrinsic noise affecting both the number of cells and the intracellular dynamics, associated in our 
model to cell proliferation (cell cycle). In order to formulate this method, we have developed an asymptotic theory which, 
taking into account the hierarchy of characteristic time scales and their separation, allows us to formulate a coarse-grained 
approximation for both the full stochastic model and its mean-field limit. This coarse-grained approximation involves aver-
aging out the age-structure (which accounts for the multi-scale nature of the model) by assuming that the age distribution 
of the population settles onto equilibrium very fast compared with the time scales associated with cell motility.

Our hybrid model consists of coupling the coarse-grained mean-field model to the full stochastic simulation. By doing 
so, we are neglecting noise in both cell numbers (population) and their birth rates (structure). This means that, in addition 
to the issues that arise in stochastic-reaction diffusion systems, we need to account for the age-structure of the population 
when attempting to couple both descriptions. In this case, we exploit the nature of our coarse-graining strategy, namely, the 
fact that in the mean-field region the age-distribution is in equilibrium, of which we know its explicit form. This very much 
simplifies the coupling between both regimes, as upon transference of cells from the mean-field to the stochastic regime 
we just have to sample the equilibrium age distribution.

In order to check the accuracy of both the coarse-grained and the hybrid approximations, we have chosen to study a 
particular situation of interest in many biological problems, including tumour growth: the propagation of travelling waves. 
By taking as a benchmark the solution of the full stochastic model by means of the age-structured Gillespie algorithm 
previously formulated by de la Cruz et al. [17], we have been able to test both approaches for their accuracy in reproducing 
the behaviour of the moving front in terms of its position and velocity. The first observation we make is that the travelling 
wave velocity predicted by the mean-field coarse-grained model (where fluctuations in both population and birth rate are 
averaged out and thus not considered) is way off the benchmark. In fact, inaccuracies are larger than those expected from 
fluctuations in cell numbers alone. In view of this, we have investigated whether spatially-heterogeneous fluctuations of 
the birth rate are responsible for these discrepancies. Indeed, we have found that whereas such fluctuations have a modest 
effect behind the interface (i.e. in the mean-field region), noise associated to the birth rate is much larger ahead of the 
interface (i.e. in the stochastic region). The hybrid method, by incorporating the appropriate model of the birth rate in the 
different regions, leads to a much more faithful description of the dynamics of the full system than the coarse-grained limit 
alone.

We have thus formulated a method that extends the remit of existing hybrid methods for stochastic reaction–diffusion 
systems. A number of possible lines of improvement are shared with hybrid methods for reaction–diffusion systems: con-
sistent ways to set the position of the interface (e.g. based on quantification of the local fluctuations), use of a convergent 
version of the Master Equation rather than the regular reaction–diffusion Master Equation, whose mean-field limit only 
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converges to the associated reaction diffusion PDE in 1D [38], and extension to finite-element or unstructured meshes [21], 
among others. Other extensions of the current method are specific to the presence of structure variables, which reflect the 
multi-scale nature of the system. In particular, we need to explore the inclusion of more general structure variables (size, 
physiological, etc.) [18,56,57], for which the coarse-graining is likely to be more challenging. All these issues will be the 
subject matter of future research.

Our method has the additional merit of allowing us to explore the effects of intracellular noise, i.e. fluctuations in the 
birth rate associated with an out-of-equilibrium age distribution, on collective properties such as the speed of the travelling 
wave. We have showed that the interplay between population and structure noise results in large fluctuations of the birth 
rate in the region at the leading edge of front, which cannot be accounted for by the coarse-grained model. Such fluctuations 
have non-trivial effects on the speed of the wave. This leads us to conclude that the consideration of birth-rate fluctuations 
is necessary for a quantitatively accurate description of invasive phenomena such as tumour progression.
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