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Deviation from power law of the 
global seismic moment distribution
Isabel Serra1 & Álvaro Corral1,2

The distribution of seismic moment is of capital interest to evaluate earthquake hazard, in particular 
regarding the most extreme events. We make use of likelihood-ratio tests to compare the simple 
Gutenberg-Richter power-law (PL) distribution with two statistical models that incorporate an 
exponential tail, the so-called tapered Gutenberg-Richter (Tap) and the truncated gamma, when fitted 
to the global CMT earthquake catalog. Although the Tap distribution does not introduce any significant 
improvement of fit respect the PL, the truncated gamma does. Simulated samples of this distribution, 
with parameters β = 0.68 and mc = 9.15 and reshuffled in order to mimic the time occurrence of the 
order statistics of the empirical data, are able to explain the temporal heterogeneity of global seismicity 
both before and after the great Sumatra-Andaman earthquake of 2004.

The Gutenberg-Richter (GR) law is not only of fundamental importance in statistical seismology1 but also a 
cornerstone of non-linear geophysics2 and complex-systems science3. It simply states that, for a given region, the 
magnitudes of earthquakes follow an exponential probability distribution. As the (scalar) seismic moment is an 
exponential function of magnitude, when the GR law is expressed in terms of the former variable, it translates 
into a power-law distribution4,5, i.e.,

∝ β+f M
M

( ) 1 ,
(1)1

with M seismic moment, f(M) its probability density, (fulfilling ∫ =∀ f M dM( ) 1M ), the sign “∝​” denoting pro-
portionality, and the exponent 1 +​ β taking values close to 1.65. This simple description provides rather good fits 
of available data in many cases6–9, with, remarkably, only one free parameter, β. A totally equivalent characteriza-
tion of the distribution uses the survivor function (or complementary cumulative distribution), defined as

∫= ′ ′
∞

S M f M dM( ) ( ) , (2)M

for which the GR power law takes the form S(M) ∝​ 1/Mβ.
The power-law distribution has important physical implications, as it suggests an origin from a critical branch-

ing process or a self-organized-critical state3,10,11. Nevertheless, it presents also some conceptual difficulties, due 
to the fact that the mean value 〈​M〉​ provided by the distribution turns out to be infinite4,12. These elementary 
considerations imply that the GR law cannot be naively extended to arbitrarily large values of M, and one needs 
to introduce additional parameters to describe the tail of the distribution, coming presumably from finite-size 
effects. However, a big problem is that the change from power law to a faster decay seems to take place at the 
highest values of M that have been observed, for which the statistics are very poor13.

Kagan7 has enumerated the requirements that an extension of the GR law should fulfil; in particular, he con-
sidered, among other: (i) the so called tapered (Tap) Gutenberg-Richter distribution (also called Kagan distribu-
tion14), with a survivor function given by

∝ θ β−S M e M( ) / (3)tap
M/

and (ii) the (left-) truncated gamma (TrG) distribution, for which the density is

∝ .θ β− +f M e M( ) / (4)trg
M/ 1
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Note that both expressions have essentially the same functional form, but the former refers to the survivor 
function and the later to the density. As f(M) =​ −​dS(M)/dM, differentiation of Stap(M) in (i) shows the difference 
between both distributions. In both cases, parameter θ represents a crossover value of seismic moment, signalling 
a transition from power law to exponential decay; so, θ gives the scale of the finite-size effects on the seismic 
moment. The corresponding value of (moment) magnitude (sometimes called corner magnitude) can be obtained 
from θ= − .m (log 9 1)c

2
3 10 , when the seismic moment is measured in N · m15,16.

Kagan7 also argues that available seismic catalogs do not allow the reliable estimation of θ, except in the global 
case (or for large subsets of this case), in particular, he recommends the use of the centroid moment tensor (CMT) 
catalog17,18. From his analysis of global seismicity, and comparing the values of the likelihoods, Kagan7 concludes 
that the tapered GR distribution gives a slightly better fit than the truncated gamma distribution, for which in 
addition the estimation procedure is more involving. In any case, the β−​value seems to be universal (at variance 
with θ), see also refs 9, 19 and 20.

Nevertheless, the data analyzed by Kagan7, from 1977 to 1999, comprises a period of relatively low global seis-
mic activity, with no event above magnitude 8.5; in contrast, the period 1950–1965 witnessed 7 of such events21. 
Starting with the great Sumatra-Andaman earthquake of 2004, and following since then with 5 more earthquakes 
with m ≥​ 8.5 (up to the time of submitting this article), the current period seems to correspond to the past higher 
levels of activity.

Main et al.22 and Bell et al.23 have re-examined the problem of the seismic moment distribution including 
recent global data (shallow events only). Using a Bayesian information criterion (BIC), Bell et al.23 compare the 
plain GR power law with the tapered GR distribution, and conclude that, although the tapered GR gives a signif-
icantly better fit before the 2004 Sumatra event, the occurrence of this changes the balance of the BIC statistics, 
making the GR power law more suitable; that is, the power law is more parsimonious, or simply, is enough for 
describing global shallow seismicity when the recent mega-earthquakes are included in the data. Similar results 
have been published in ref. 24.

In the present paper we revisit the problem with more recent data, including also the truncated gamma distri-
bution, using other statistical tools, and reaching somewhat different conclusions: when data includes periods of 
high seismic activity, indeed, the tapered GR distribution does not introduce any significant improvement with 
respect to the power law23, but the truncated gamma does.

Data, Models and Maximum Likelihood Estimation
As Main et al.22 and Bell et al.23, we analyze the global CMT catalog17,18, in our case for the period between January 1,  
1977 and October 31, 2013, with the values of the seismic moment converted into N · m (1 dyn · cm =​ 10−7 N · m). 
We restrict to shallow events (depth <​70 km) and, in order to avoid incompleteness, to magnitude m >​ 5.75 
(equivalent to M >​ 5.3 · 1017 N · m), as Main et al.22 and Bell et al.23. This yields 6150 events.

As statistical tools, we use maximum likelihood estimation (MLE) for fitting, and likelihood-ratio (LR) 
tests for comparison of different fits. Maximum likelihood estimation is the best-accepted method in order to 
fit probability distributions, as it yields estimators which are invariant under re-parameterizations, and which 
are asymptotically efficient for regular models, in particular for exponential families25 (the three models under 
consideration here are regular, and the PL and the TrG belong to the exponential family). When maximum like-
lihood is used under a wrong model, what one finds is the closest model to the true distribution in terms of the 
Kullback-Leibler divergence25.

Model selection tests based on the likelihood ratio have the advantage that the ratio is invariant with respect 
to changes of variables (if these are one-to-one25). Moreover, for comparing the fit of models in pairs, LR test is 
preferable in front of the computation of differences in BIC or AIC (Akaike information criterion), as the test 
relies on the fact that the distribution of the LR is known, under a suitable null hypothesis, which provides a sig-
nificance level (or level of risk) to its value. So, LR tests constitute probability-based model selection (in contrast 
to BIC and AIC). But note that the log-likelihood-ratio is equal to the difference of BIC or AIC when the number 
of parameters of the two models is the same.

In order to perform MLE it is necessary to specify the densities of the distributions, including the normali-
zation factors. In our case, all distributions are defined for M above the completeness threshold a, i.e., for M >​ a, 
being zero otherwise (as mentioned above, a is fixed to 5.3 ×​ 1017 N · m). For the power-law (PL) distribution 
(which yields the GR law for the distribution of M) Eq. (1) reads

β
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with β >​ 0. For the tapered Gutenberg-Richter,
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with β >​ 0 and θ >​ 0. And for the left-truncated (and extended to β >​ 0) gamma distribution;
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with −​∞​ <​ β <​ ∞​ and θ >​ 0, and with ∫γΓ = γ∞ − −z x e dx( , )
z

x1  the upper incomplete gamma function, defined 
for z >​ 0 when γ <​ 0.
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We summarize the parameterization of the densities as f(M; Θ​), where Θ​ =​ {β, θ} for the Tap and TrG distri-
butions and Θ​ =​ β for the power law. Note that for the TrG distribution, it is clear that the exponent β is a shape 
parameter and θ is a scale parameter; in fact, these parameters play the same role in the Tap distribution, which 
turns out to be a mixture of two truncated gamma distributions, one with shape parameter β and the other with 
β −​ 1, but with common scale parameter θ. Exactly,

β θ β β θ β θ β θ β θ
θ

= 

Γ − + Γ − − 







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β
θf M a f M a f M a e( ; , ) ( , / ) ( ; , ) (1 , / ) ( ; 1, )

(8)tap trg trg
a/

(in our case, the contribution of the second TrG will be only about 0.14%). In contrast, the power law lacks a scale 
parameter. In all cases the completeness threshold a is a truncation parameter, but it is kept fixed and is not a free 
parameter, therefore.

Other authors consider the upper truncated power-law distribution13,26, given by f(M; β, θ) ∝​ 1/M1+β for 
a <​ M <​ θ, and zero otherwise; then θ becomes a truncation parameter. We disregard this model because such an 
abrupt truncation is unphysical7, because the occurrence of one single earthquake with size larger than the result-
ing value of θ invalidates the selected model, and because the fact that the support of the distribution involves 
the unknown parameter θ leads to a violation of the regularity conditions for which standard likelihood theory 
holds25.

The knowledge of the probability densities allows the direct computation of the likelihood function as 
Θ = Π Θ=L f M( ) ( ; ),i

N
i1  where Mi are the N observational values of the seismic moment. Maximization of the 

likelihood function with respect the values of the parameters leads to the maximum-likelihood estimation Θ̂ of 
these parameters, with = Θˆ ˆL L ( ) the value of the likelihood at its maximum. Note that the independence assump-
tion that is implicit in the expression for L(Θ​) arises in fact as the maximum-entropy solution when there is no 
information about dependence27. If the data cannot be considered independent, the MLE results will just describe 
a marginal distribution f(M; Θ​) of the sample under consideration, and inference about the underlying popula-
tion will not be possible, as the sample may be not representative of the population. In any case, the results of MLE 
for our three models are reported in Table 1, and an illustration of the corresponding fits is provided in the 
Supplementary Information (SI). Although the TrG model has the highest likelihood one has to perform a proper 
model comparison.

Model Comparison
A powerful method for comparison of pairs of models is the likelihood-ratio test, specially suitable when one 
model is nested within the other, which means that the first model is obtained as a special case of the second one. 
This is the case of the power-law distribution with respect to the other two distributions; indeed, the power law 
is nested both within the Tap and within the truncated gamma, as taking θ →​ ∞​ in any of the two leads to the 
power-law distribution. This is easily seen taking into account that Stap(M) =​ (a/M)βe−(M−a)/θ, or just performing 
the limit in the expression for ftap(M) above. For the truncated gamma distribution, when doing the θ →​ ∞​ limit 
in ftrg(M) one needs to use that, for γ <​ 0, zγ/Γ​(γ, z) →​ −​γ when z →​ 0, see ref. 28 for γ ≠​ −​1, −​2, …​

Given two probability distributions, 1 and 2, with 1 nested within 2, the likelihood-ratio test evaluates ˆ ˆL L/2 1, 
where L̂2 is the likelihood (at maximum) of the “bigger” or “full” model (either Tap or TrG) and L̂1 corresponds to 
the nested or null model (power law in our case). Taking logarithms we get the log-likelihood-ratio

 = = −
ˆ
ˆ
L
L

l lln ,
(9)

2

1
2 1

with = = ∑ Θ=
ˆ ˆl L f Mln ln ( ; )j j i

N
j i j1 , where fi denotes the probability density function of the distribution j for 

every j =​ 1, 2, and the MLE corresponds to βΘ =ˆ ˆ
1 1 and β θΘ =ˆ ˆ ˆ{ , }2 2 2 . In order to compare the fit provided by the 

two distributions, it is necessary to characterize the distribution of .
Let n1 and n2 be the number of free parameters in the models 1 and 2, respectively. In general, if the models are 

nested, and under the null hypothesis that the data comes from the simpler model, the probability distribution of 

β̂ θ̂ (N · m) m̂c l (M in N · m) l − lpl ltrg − ltap

PL
MLE 0.685

∞ ∞ −268466.609
s.e. 0.009

Tap
MLE 0.684 3.3 ×​ 1022 8.94

−​268465.315 1.294
s.e. 0.009 2.6 ×​ 1022 0.23

TrG
MLE 0.681 6.7 ×​ 1022 9.15

−​268464.844 1.765 0.471
s.e. 0.009 6.6 ×​ 1022 0.27

Table 1.   Maximum likelihood estimation of the parameters with their standard errors (s.e.) and maximum 
value of the log-likelihood function, l = lnL̂ when the PL, Tap, and TrG distributions are fitted to the 
seismic moment of shallow CMT earthquakes, using the whole data set (N = 6150). The standard error for β̂ 
and θ̂ is computed from the Fisher information matrix and corresponds to one standard deviation of the 
distribution of each parameter. The standard error for m̂c is computed from that of θ̂ using the delta method42.
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the statistic 2  in the limit N →​ ∞​ is a chi-squared distribution with degrees of freedom equal to n2 −​ n1 >​ 0. So, 
for n2 =​ n1 +​ 1,

> .2 3 84 (10)

with a level of risk equal to 0.05. Note that the chi-squared distribution provides a penalty for model complex-
ity as the “range” or “scale” of the distribution is given directly by the number of the degrees of freedom. This 
likelihood-ratio test constitutes the best option to choose among models 1 and 2, in the sense that it has a conver-
gence to its asymptotic distribution faster than any other test29. The null and alternative hypotheses correspond to 
accept model 1 or 2, respectively, although the acceptance of model 1 does not imply the rejection of 2, it is simply 
that the “full” model 2 does not bring any significant improvement with respect the simpler model 1, which is 
more parsimonious.

On the other hand, when the nesting of distribution 1 within 2 takes place in such a way that the space of 
parameters of the former one lies within a boundary of the space of parameters of distribution 2, the approach just 
explained for the asymptotic distribution of 2 is not valid30,31. This happens when testing both the Tap or the 
TrG distributions in front of the power-law distribution, as the θ →​∞​ limit of the latter corresponds to the 
boundary of the parameter space of the two other distributions, and then, what one should obtain for 2 is a 
mixture of a chi-square and a Dirac delta function. Nevertheless, this latter result is also unapplicable in our case, 
as the power-law distribution does not fulfil the sufficient conditions stated in ref. 30, due to the divergence of the 
second moment32. This illustrates part of the difficulties of performing proper model selection when fractal-like 
distributions are involved33. In order to obtain the distribution of 2 and from there the p−​values of the LR tests, 
we are left to the simulation of the null hypothesis. We advance that the results seem to indicate that the distribu-
tion of 2, for high percentiles, is close to chi-square with one degree of freedom, so that Eq. (10) is approxi-
mately valid, but we lack a theoretical support for this fact.

Let us proceed, using this method, by comparing the performance of the power-law and Tap fits when applied 
to the global shallow seismic activity, for time windows starting always in 1977 and ending in the successive times 
indexed by the abscissa in Fig. 1(a) (as in ref. 23). The log-likelihood-ratio of these fits (times 2), is shown in the 
figure together with the critical region of the test. In agreement with Bell et al.23, we find that: (i) the power-law 
fit can be safely rejected in front of the Tap distribution for any time window ending between 1984 and before 
2004; and (ii) the results change drastically after the occurrence of the great 2004 Sumatra earthquake, for which 
the power law cannot be rejected at the 0.05 level. So, for parsimony reasons, the power law becomes preferable 
in front of the Tap distribution for time windows ending later than 2004. The fact that, for these time windows, 
the Tap distribution cannot be distinguished from the power law is also in agreement with previous results show-
ing that the contour lines in the likelihood maps of the Tap distribution are highly non-symmetric and may be 
unbounded for smaller levels of risk7,24,34.

When we compare the power-law fit with the truncated gamma, using the same test, for the same data, the 
results are more significant, see Fig. 1(b). The situation previous to 2004 is nearly the same, with an extremely 
poor performance of the power law; but after 2004, despite a big jump again in the value of the likelihood ratio, 
the power law remains non-acceptable, at the 0.05 level. It is only after the great Tohoku earthquake of 2011 that 
the p−​value of the test enters slightly into the non-rejection region, but keeping values very close to the 0.05 limit. 

Figure 1.  Results of the likelihood-ratio tests. The points (joined by lines) denote the value of the statistic 2  
for the empirical data. Lines show different percentiles of the distribution of 2  for 10000 simulations of the 
power-law null hypothesis with the same number of data (dotted black lines: first, second, and third quartiles), 
including the critical value of the test (at level 0.05, dashed red line). The abscissa corresponds to the ending 
point of a time window starting always in Jan 1, 1977. Note that the year is considered a continuous variable (not 
a categorical variable), so, the time window ending on Dec 31, 2004 takes value 2004.99…​≃​2005. (a) Tap 
distribution versus power law. (b) Truncated gamma versus power law.
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From here we conclude that, in order to find an alternative to the power-law distribution, the truncated gamma 
distribution is a better option than the Tap distribution, as it is more clearly distinguishable from the power law 
(for this particular data).

At this point, a direct comparison between these two distributions (Tap and TrG) seems pertinent. In this case 
we may use the likelihood-ratio test of Vuong for non-nested models35,36. As the number of parameters is the same 
for both models, their log-likelihood-ratio coincides with the difference in BIC or AIC, but the LR procedure 
incorporates a statistical test which specifies the distribution of the statistic under consideration. Unfortunately, 
the results are inconclusive, as no significance difference shows up. This is not surprising if one considers that the 
LR test for non-nested models is less powerful than the LR test for nested models used above.

In order to check the possible influence of the different heterogeneous populations present in global seismicity, 
associated to different tectonic zones, we have separately analyzed subduction zones, similarly as done in ref. 37, 
using Flinn-Engdahl’s regionalization6. The results for the LR tests are qualitatively the same, with the main dif-
ference that the values of ltrg −​ lpl become somewhat smaller (not shown); nevertheless, as long as a time window 
of several years is considered, the power-law hypothesis can always be rejected except after the Tohoku earth-
quake. The resulting MLE parameters for the TrG are β = .ˆ 0 649 and = .m̂ 9 23c  (θ = . ×ˆ 8 78 1022 N · m) for 
N =​ 4067 events. Then, the slightly larger value of  m̂c with respect the global case (Table 1) makes the power law 
a bit harder to reject.

Simulated Data with Temporal Reshuffling
As we have seen, in contrast to the Tap, the TrG distribution does bring an improvement with respect the PL, so, 
we concentrate on further comparisions between TrG and PL. With the purpose of gaining further insight, we 
simulate random samples following the truncated gamma distribution, with the parameters β̂trg  and θ̂trg  obtained 
from MLE of the complete dataset (Table 1), with the same truncation parameter a and number of points 
(N =​ 6150) also. To avoid that the conclusions depend on the time correlation of magnitudes in the empirical data, 
we reshuffle the simulated data in such a way that the temporal occurrence of the order statistics in the seismic 
moment is the same as for the empirical data; in other words, the largest simulated event is assigned to take place 
at the time of the 2011 Tohoku earthquake (the largest of the CMT catalog23), the second largest at the time of the 
2004 Sumatra event, and so on. In this way, we model earthquake seismic moments as arising from a gamma 
distribution with fixed parameters, with occurrence times given by the empirical times, and with practically the 
same seismic-moment correlations as the empirical data.

We simulate 1000 datasets with N =​ 6150 each. The results, summarized in Fig. 2 using boxplots38, show that 
the behaviour of the empirical data is not atypical in comparison with this gamma modelling. In nearly all time 
windows the empirical data lies in between the first and third quartile of the simulated data, although before 2004 
the empirical values are close to the third quartile whereas after 2004 they lay just below the median. This leads us 
to compute the statistics of the jump in the log-likelihood-ratio between 2004 and 2005. The estimated probability 
of having a jump larger than the empirical value is around 4.5%, which is not far from what one could accept from 
the gamma modelling explained above. Thus, a TrG distribution, with fixed parameters, is able to reproduce the 
empirical findings, if the peculiar time ordering of magnitude of the real events is taken into account. Notice also 
that, although the simulated data come from a TrG distribution, they are not distinguishable from a power law 
for about half of the simulations of the last time windows, as the critical region is close to the median indicated 
by the boxplots.

We can also compare the evolution of the estimated parameters for the empirical dataset and for the reshuffled 
TrG simulations, with a good agreement again, see Fig. 3. There, it is clear that although the exponent β reaches 
very stable values relatively soon (around 1990), the scale parameter θ (equivalent to mc) is largely unstable, and 
the occurrence of the biggest events makes its value increase.

As a complementary control we invert the situation, simulating 1000 synthetic power-law datasets with 
β =​ 0.685 (Table 1), a =​ 5.3 ×​ 1017 N · m, and N =​ 6150, for which the same time reshuffling is performed, in such 
a way that the order of the order statistics is the same. In this case, the results of the simulations lead, on average, 
to much smaller values of the log-ratio in comparison with the empirical data, which corresponds to the limit 
of rejection for many time windows, see Fig. 4. So, a power-law distribution with temporal reshuffling cannot 

Figure 2.  Comparison of the empirical values of the statistic 2 = 2 −l l( )trg pl  (points with lines, shown 
also in Fig. 1) with those resulting from 1000 simulations of the TrG distribution (boxplots) using the final 
parameters of Table 1 (i.e., β = 0.681 and mc = 9.15). The 95th percentile of the boxplots is also shown, in 
continuous red. Simulated seismic moments are reshuffled as explained in the text to make the comparison 
possible. The agreement between empirical data and simulations is very remarkable. The red dashed line is the 
same as in Fig. 1. Remember that the central lines in the boxplots represent the three quartiles of the 
distribution of 2.
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account for the empirical results as clearly as a truncated gamma distribution. Doing the same with a Tap distri-
bution one finds something in between, see SI.

Discussion
Testing different statistical models for the distribution of seismic moment of global shallow seismicity (using the 
CMT catalog) we have found that, in contrast to the Tap distribution, the truncated gamma brings significant 
improvement with respect to the power law. Moreover, in order to reproduce the time evolution of the statistical 
results, it suffices that independent seismic moments following a truncated gamma distribution with fixed param-
eters β =​ 0.68 and mc =​ 9.15 are reshuffled so that the peculiar empirical time sequence of magnitudes is main-
tained (note that after reshuffling independence is broken). So, despite the fact that the future occurrence of more 
and larger mega-earthquakes could significantly change the value of parameter mc

13, the current value is enough 
to explain the available data. Although ref. 13 claims that no less than 45,000 events are necessary for the reliable 
estimation of mc, our simulations with 6150 events indicate otherwise, see for instance the last boxplot for the 
estimation of mc in Fig. 3, which yields a mean value of 9.11, with a standard deviation of 0.24, totally consistent 
with the results in Table 1. We conclude that the fundamental problem in the estimation of mc is not the number 
of available data but the temporal heterogeneity of the seismic moment distribution. We have also found, with 
a similar reshuffling procedure, that a power-law distribution cannot account for the empirical findings. Direct 
comparison of Figs 2 and 4 shows how the TrG distribution outperforms the power law. Additionally, it would 
be very interesting to investigate if the high values of the likelihood ratio attained before the 2004 Sumatra event 
could be employed to detect the end of periods of low global seismic activity. Certainly, more case studies would 
be necessary for that purpose.

As extra arguments in favour of the truncated gamma distribution in front of the tapered GR, we can bring not 
statistical evidence but physical plausibility and statistical optimality. On the one hand, the former distribution 
can be justified as coming from a branching process that is slightly below its critical point12,39. Further reasons 
that may support the truncated gamma are that this arises (i) as the maximum entropy outcome under the con-
strains of fixed (arithmetic) mean and fixed geometric mean of the seismic moment40; (ii) as the closest to the 
power law, in terms of the Kullback-Leibler divergence, when the mean seismic moment is fixed41; and (iii) as a 
stable distribution under a fragmentation process with a power-law transition rate41. We are not aware of similar 

Figure 3.  Comparison between empirical estimated parameters β̂ and m̂c for the TrG distribution (points 
with lines) and the estimations for the 1000 simulations of Fig. 2 (i.e., TrG with β = 0.681 and mc = 9.15 
with temporal reshuffling, boxplots). The different stability of both parameters is apparent, as well as the 
similarity between data and simulations. (a) β̂. (b) m̂c.

Figure 4.  As Fig. 2, but simulating a power law with parameter β = 0.685 (Table 1) instead of a TrG 
distribution. The reshuffling is also as in Fig. 2, as explained in the text. The simulations lead, on average, to 
values of the likelihood ratio smaller than the empirical ones. Note that the difference with Fig. 1(b) is that there 
(i) there is no reshuffling and (ii) the value of β in the simulations corresponds to the obtained β̂ for each time 
window.
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theoretical support in favour of the Tap distribution. On the other hand, it is straightforward to check that the 
truncated gamma belongs to the exponential family25, in contrast to the Tap distribution. And it is well known 
that estimators in the exponential family achieve the Cramér-Rao lower bound for any sample size, in contrast to 
other regular models, where the bound is only achieved asymptotically.
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