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Abstract – We demonstrate the existence of long-lived prethermalized states in the Mott in-
sulating Hubbard model driven by periodic electric fields. These states, which also exist in the
resonantly driven case with a large density of photo-induced doublons and holons, are character-
ized by a nonzero current and an effective temperature of the doublons and holons which depends
sensitively on the driving condition. Focusing on the specific case of resonantly driven models
whose effective time-independent Hamiltonian in the high-frequency driving limit corresponds to
noninteracting fermions, we show that the time evolution of the double occupation can be re-
produced by the effective Hamiltonian, and that the prethermalization plateaus at finite driving
frequency are controlled by the next-to-leading–order correction in the high-frequency expansion
of the effective Hamiltonian. We propose a numerical procedure to determine an effective Hubbard
interaction that mimics the correlation effects induced by these higher-order terms.

Introduction. – The properties of materials can be
tuned by chemical substitution, applied pressure, or static
external fields. In the theoretical description, these modi-
fications correspond to changes in the Hamiltonian param-
eters or the addition of extra terms describing the applied
fields. In recent years, “Floquet engineering” has emerged
as a versatile tool which enables new levels of control [1].
The idea is to apply periodic perturbations to a system
which lead to modified parameters or new terms in the ef-
fective static Hamiltonian describing the “stroboscopic”
evolution from one period to the next. The theoreti-
cally predicted phenomena range from hopping renormal-
izations [2,3] and modified exchange couplings [4–6] to
synthetic gauge fields [1,7] and topological phase transi-
tions [8–10]. Some of these effects have been demonstrated
in cold atom systems [11–14] and laser-irradiated topolog-
ical insulators [15].

Since the Hamiltonian of a periodically driven sys-
tem satisfies H(t + T ) = H(t), where T is the period,
the time evolution operator U(t2, t1) can be written as
U(t2, t1) = e−iKeff(t2)e−iHeff(t2−t1)eiKeff(t1), where Heff is
a time-independent static Hamiltonian and Keff(t) the
so-called kick operator [1]. In the regime of large driv-
ing frequency Ω = 2π

T one can derive Heff by a high-
frequency expansion, which is truncated at a given order in
1
Ω [1,16,17]. While the resulting effective model may con-
tain new terms associated with interesting physical effects

or novel phases, low-energy properties of this model can
only be realized if heating effects are small, and the driven
system is stuck in a long-lived quasi-steady state exhibit-
ing the desired properties. When the driving frequency is
large enough compared to the characteristic energy scales
of the system, the effective Hamiltonian evaluated with
the high-frequency expansion describes the system for ex-
ponentially long times [16,18]. However, for nonintegrable
systems and not too large driving frequency, the validity
of these assumptions is not a priori clear. Such systems
are expected to heat up in the presence of periodic driving,
and an interesting question is whether, and for how long,
a quasi-steady “Floquet prethermalized state” (FPS) dif-
ferent from the trivial infinite temperature state can be
established.

Several recent theoretical works have demonstrated
the existence of long-lived FPSs in interacting mod-
els [16,19–26], or questioned the general belief that heat-
ing to infinite temperature occurs in such systems. In
this work we consider the Mott insulating single-band
Hubbard model in time-periodic electric fields. We will
show that FPSs exist under various driving conditions,
even when the driving frequency is smaller than the
Hubbard interaction and comparable to the bandwidth.
Focusing specifically on the case of resonant driving, where
the local interaction is a multiple of the driving fre-
quency and a violent heating might be naively expected,
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Fig. 1: (Colour online) Half-filled Hubbard model with U = 6 and initial inverse temperature β = 2. Panels (a)–(h): time
evolution of the current j, double occupation d, and kinetic energy Ekin after the switch-on of an electric field with indicated
amplitude E0 and frequency Ω. Panels (i)–(l): time-averaged nonequilibrium spectral function Ā(ω) and nonequilibrium
distribution function f̄(ω) for the indicated values of E0 and Ω.

we demonstrate that the system can be trapped in long-
lived states with a suppressed number of double occupa-
tions and/or a nonzero current and kinetic energy. In the
driving regime where the leading-order term in Heff de-
scribes free fermions, we can interpret the FPS as a state
resulting from a quench to a weakly interacting effective
Hubbard model.

Model. – The Hamiltonian of the driven half-filled
Hubbard model is H(t) = −v

∑
〈i,j〉σ c†iσcjσ +U

∑
j(nj↑−

1
2 )(nj↓ − 1

2 ) − qE(t)
∑

iσ(ê · �ri)niσ with c†iσ the creation
operator for an electron of spin σ at site i, n = c†c the
number operator, v the nearest-neighbor hopping, U the
on-site interaction, q the electron charge (which is set
to 1), and Eê the electric field with polarization ê. To
solve the model we use the nonequilibrium dynamical
mean field theory (DMFT) [27] in combination with a
strong coupling perturbative impurity solver (noncrossing
approximation (NCA)) [28,29]. We consider an infinite-
dimensional hybercubic lattice with a Gaussian density of
states ρ(ε) = exp(−ε2/W 2)/

√
πW and apply the electric

field along the body diagonal, E(t)ê = (E(t), E(t), . . .). In
a gauge with pure vector potential A(t), the electric field
E(t) = −∂tA(t) enters the calculation as a time-dependent
shift of the noninteracting dispersion, εk → εk−qA(t).
The implementation and NCA treatment of this problem
has been discussed in refs. [27,30]. We start at t = 0
in the equilibrium state at inverse temperature β and

switch on the electric field as E(t) = E0 sin(Ωt), where
E0 is the field amplitude and Ω the driving frequency.
Energy is measured in units of W = 1 and time in
units of W−1.

Results. – Figure 1 shows the time dependence of
the current j = �j · ê = 1

N 〈
∑

kσ ∂kεk−qA(t)nkσ〉 · ê, the
double occupation d = 〈ni↑ni↓〉 and the kinetic energy
Ekin = 1

N 〈
∑

kσ εk−qA(t)nkσ〉 in a model with U = 6 for
indicated values of the field amplitude and driving fre-
quency. (For the DMFT measurement of these quantities
in an infinite-dimensional hypercubic lattice, see ref. [27].)
All these results correspond to resonant driving (U = nΩ,
with n integer). In the non-resonant case, the time evolu-
tion is slow, and we cannot reach the timescales needed to
observe a saturation in a prethermalized state, or a heat-
ing to infinite temperature. In the following, we will thus
focus on resonantly driven systems, where the doublon-
holon production is strong and a (quasi-)steady FPS is
rapidly reached.

Panels (a) and (e) show that for small driving fre-
quency and large field amplitude, the system quickly ap-
proaches the infinite temperature state characterized by
j = 0, d = 0.25 and Ekin = 0. Especially for strong
fields, the main mechanism for doublon-holon production
in this low-frequency driving regime is field-induced tun-
neling, which creates an almost flat (infinite temperature)
energy distribution of the photo carriers [31,32]. This is

2

ht
tp
://
do
c.
re
ro
.c
h



consistent with the observed rapid heating to infinite tem-
perature in panel (e). On the other hand, for Ω = 2
and 3, the system can be trapped in a long-lived quasi-
steady state with a suppressed double occupation and a
strongly oscillating current and kinetic energy (panels (b),
(f), (c) and (g)). Note that the drift of the double occupa-
tion and kinetic energy, and hence the heating rate in the
quasi-steady state, depends in a nontrivial way on the field
amplitude and driving frequency. There are also examples
of FPSs with d ≈ 0.25, but Ekin ≈ const < 0 (panels (d)
and (h)). In general, the time scale on which the steady
state (either infinite temperature state or FPS) is reached
becomes longer as we decrease the field strength1.

The effective temperature of the doublons and
holons in the trapped state can be estimated by cal-
culating the time-dependent spectral functions from
the lesser and retarded local Green’s function G as
A<(ω, t) = 1

2π Im
∫ tmax

t
dt′eiω(t′−t)G<(t′, t) and A(ω, t) =

− 1
π Im

∫ tmax

t
dt′eiω(t′−t)Gret(t′, t). Averaging these spec-

tral functions over one period yields Ā<(ω) and Ā(ω),
which can be used to define the “nonequilibrium distri-
bution function” f̄(ω) = Ā<(ω)/Ā(ω). Panels (i)–(l) of
fig. 1 show Ā(ω) and f̄(ω) obtained by averaging the
Fourier transforms starting from t = 25. The almost flat
distribution function in panel (i) confirms the expecta-
tion from the quasi-static picture. For panels (j)–(l), one
can estimate the effective temperature of the excited dou-
blons and holons by fitting the slopes of f̄(ω) with a
Fermi function 1/(1 + exp(βeff(ω − μeff))) in the energy
range of the Hubbard bands. This yields βeff = 5.53,
μeff = ±3.00 for E0 = 4, Ω = 2, βeff = 2.61, μeff = ±3.00
for E0 = 6, Ω = 3, and βeff = 0.495, μeff = ±3.00 for
E0 = 4, Ω = 6. Hence, the effective temperature of the
long-lived trapped state can be lower than the tempera-
ture of the initial equilibrium state (β = 2). For driving
frequencies Ω somewhat above the resonant value U/n we
furthermore find negative effective temperatures, i.e., in-
verted populations of doublons and holons in the Hubbard
bands.

We also note that f̄(ω) satisfies f̄(ω + nΩ) = f̄(ω).
This property can be explained by analyzing the Green’s
functions in terms of the kick operator and the effective
Hamiltonian assuming that the system has reached a ther-
mal state of the effective Hamiltonian at βeff and that
the characteristic energy scale of the effective Hamilto-
nian is smaller than Ω. These assumptions imply that
f̄(ω) around ω = nΩ behaves like the Fermi distribu-
tion function f(ω − nΩ) at βeff , see Supplemental Mate-
rial Supplementarymaterial.pdf (SM) for details. Hence
under these assumptions, which are likely fulfilled in the
present cases (see also the discussion below), the tempera-
ture of doublons and holons estimated by the above fitting
corresponds to the effective temperature of the system de-
scribed by the effective Hamiltonian.

1Similar FPSs in the Mott phase have recently been studied with
another excitation protocol (U -modulation) in ref. [26].

While the response of the Mott insulating Hubbard
model to the electric field driving is complex and de-
pends sensitively on the parameters of the driving field,
our DMFT results clearly demonstrate the existence of
long-lived FPSs, even for resonant driving, moderate fre-
quencies (Ω � 2W ) and for large field amplitudes. An in-
teresting question is how well the FPSs and the relaxation
into these states are described by the time-independent
effective Hamiltonian.

To shed some light on this issue, we consider the
case of resonant driving U = nΩ with even n, where
the effective Hamiltonian becomes simple. As shown by
Bukov, Kolodrubetz and Polkovnikov [7], the leading-
order effective Hamiltonian H

(0)
eff has two terms,

describing doublon/holon hopping, and doublon-holon
production/recombination. For even n and suitably cho-
sen driving amplitude, H

(0)
eff corresponds to free fermions.

In the specific case of a hypercubic lattice with hopping v,
the leading term in the high-frequency expansion becomes
H

(0)
eff = −v

∑
〈i,j〉σ[J0(ξ)gijσ + (Jn(ξ)(−ηij)nh†ijσ + h.c.)],

with ξ = |Zij |, ηij = sign(Zij) and Zij = −qE0
Ω ê · �ri−j

(q = 1). Here, Jn denotes the n-th–order Bessel func-
tion, gijσ = (1 − niσ̄)c†iσcjσ(1 − njσ̄) + niσ̄c†iσcjσnjσ̄

the operator describing the hopping of doublons and
holons, and h†ijσ = niσ̄c†iσcjσ(1 − njσ̄) the operator for
doublon-holon production2. If E0

Ω is chosen such that
the two amplitudes are equal, i.e., J0(ξ) = Jn(ξ), and
n is even so that (−ηij)n = 1, then the driven system
(in the high-frequency limit) is expected to behave like a
noninteracting model with hopping amplitude J0(ξ)v.

We demonstrate this behavior in fig. 2, where we com-
pare the time evolution of the double occupation of the
driven system with interaction U to the double occupa-
tion in a Hubbard model after a quench from Uinitial = U
to Ufinal = 0 and a simultaneous reduction in the hopping
amplitude. We choose Ω = U/2 and E0/Ω = 1.841, so
that J0(E0/Ω) = J2(E0/Ω) = 0.316, and we quench the
hopping amplitude from vinitial = v to vfinal = 0.316v. For
U = 18 (panel (a)) we are in the high frequency driving
regime, where the leading-order effective Hamiltonian of
Bukov et al. should be valid. Indeed, the time dependence
of the double occupation shows the behavior expected for
a quench from the undriven H to H

(0)
eff and the double

occupation increases to a value close to d = 0.25. As the
interaction (and hence the driving frequency) is reduced
(panels (c) and (e)), larger deviations between the driven
system and the effective static description appear. While
the quench to the noninteracting H

(0)
eff inevitably leads to

a saturation of the double occupation at d = 0.25, the
dynamics of the driven system shows a trapping of d at a
value below 0.25.

2To be precise, this effective Hamiltonian is for E(t) =
E0 cos(Ωt). In our case of E(t) = E0 sin(Ωt), the leading-order ef-
fective Hamiltonian from the van Vleck high-frequency expansion is
identical to the free Hamiltonian after a further unitary transforma-
tion, which can be absorbed into a redefinition of the kick operator.

3

ht
tp
://
do
c.
re
ro
.c
h



Fig. 2: (Colour online) Resonant driving with n = 2. Pan-
els (a), (c) and (e) compare the time evolution of the driven
Hubbard model (blue) to the quench dynamics for a quench to
the leading-order (noninteracting) static model H

(0)
eff . Here, the

driving amplitude is chosen such that J0(E0/Ω) = J2(E0/Ω)
corresponds to the first crossing of the Bessel functions, and the
final hopping is vf = vJ0(E0/Ω). Panels (b), (d), (f): zoom
of the plateau region and comparison with the U -quench to
|δU∗| and simultaneous hopping quench to vf (black line), as
well as the prediction from the equilibrium interacting model
with U = |δU∗| and inverse temperature identical to βeff of the
driven state (red line).

The observed deviations from the effective model de-
scription must be due to the higher-order corrections in
Heff. The explicit expression for H

(1)
eff (see SM and also

refs. [7,33]) contains a large number of terms involving up
to three different sites. One can see that H

(1)
eff induces

correlations and modifications of the bandwidth, which
represent the O( 1

Ω ) corrections to the leading-order non-
interacting Hamiltonian H

(0)
eff . For example, some of these

terms describe the hopping of a pair of electrons from (to)
the same site. This acts like a local interaction whose
strength is determined by some average kinetic energy
squared times a prefactor ∼ 1

Ω . Another term describes
a three body interaction ni↑ni↓n̄j, which may also act as
a local interaction whose strength is determined by the av-
erage of the occupancy on neighbouring sites. In addition
there are correlated hopping terms which cannot be re-
duced to an effective Hubbard interaction, but which may
change the effective bandwidth. It is thus an interesting
question to what extent the effect of the additional terms
in Heff can be captured by a simple Hubbard Hamiltonian
with modified interaction and bandwidth.

First of all, we note that a significant change of the
effective bandwidth would manifest itself in a change of
the timescale on which the double occupation grows after

Fig. 3: (Colour online) Resonantly driven Hubbard model with
interaction U + δU , driving frequency Ω = U/2 and amplitude
E0/Ω = 1.841 (initial inverse temperature β = 2). Panel (a):
double occupation in the FPS for different values of U . The
arrows indicate the value δU∗, where the double occupation
reaches a maximum close to 0.25. Panel (b): double occupation
as a function of δU −δU∗ with dashed lines at |δU∗|. Panel (c):
scaling of |δU∗| with inverse driving frequency.

the electric field quench. However, fig. 2 shows that the
quench v → 0.316v correctly reproduces this growth rate
not only in the high-frequency regime (U = 18), but also
for U = 9 and 6. This implies that the band widening
effect of H

(1)
eff is not significant.

Instead, our numerical analysis shows that the effects of
H

(1)
eff are, to a large extent, mimicked by a local Hubbard

interaction Ueff. To determine Ueff, we drive the system
with Ω = U/2, choose E0/Ω = 1.841 corresponding to
the noninteracting condition for H

(0)
eff , and vary the in-

teraction of the driven system as U ′ = U + δU . In the
high-frequency driving regime, this model should behave
like a static Hubbard model with interaction δU and a
rescaled hopping parameter. At finite driving frequency,
H

(1)
eff produces additional interaction effects, so that the ef-

fective static model is Heff = H
(0)
eff +

∑
i δU(nj↑− 1

2 )(nj↓−
1
2 ) + H

(1)
eff + O( 1

Ω2 ). The measured time-averaged double
occupation in the trapped state is plotted as a function
of δU in the top panel of fig. 3. The double occupation
reaches a maximum very close to the noninteracting value
d = 0.25 at some negative value δU∗ of δU . There is
apparently a cancellation between the interaction coming
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from H
(1)
eff and the local interaction δU at this particu-

lar point. Conversely, the resonantly driven system with
δU = 0 has an effective Hubbard interaction of strength
Ueff = |δU∗|, which originates from H

(1)
eff . Indeed |δU∗|

scales with 1/Ω (see panel (c)), which is consistent with
the interpretation of an effective interaction coming from
the next leading order.

In panel (b) of fig. 3, we plot the double occupation
in the FPS as a function of δU − δU∗. If the effective
Hubbard interaction |δU∗| would perfectly capture the ef-
fect of higher-order terms in Heff, and the absorbed en-
ergy were independent of Ω and the kick operator, we
would expect a collapse of the curves for different U . The
shifted data show a rather good agreement for U = 18,
9 and 6, but small deviations remain. These deviations
indicate that some of the correlations induced by H

(1)
eff can-

not be captured by an effective Hubbard interaction, and
they provide a rough estimate of these beyond-Hubbard
effects on d.

An interesting question is why the double occupation
shows a parabolic maximum near d = 0.25 as the interac-
tion is varied near the resonance condition (fig. 3(a)). In
fact, the expression for Heff suggests that below the effec-
tive noninteracting point δU∗, the driven system should
behave like an attractive Hubbard model, which usually
yields d > 0.25. The observed suppression for δU < δU∗

occurs because in this regime, the driven system exhibits
an inverted population. In panel (a) of fig. 4 we plot the
effective inverse temperature of the model with U = 9 as
a function of δU . This figure shows that the effectively
noninteracting driven system has an infinite temperature
distribution, while the effectively attractive system has a
negative effective temperature. The nonequilibrium dis-
tribution functions f̄(ω) for δU = +0.4, 0, −0.4 are illus-
trated in panel (b). As discussed in ref. [3], the Hubbard
model with interaction δU − δU∗ and negative effective
temperature can be mapped onto a Hubbard model with
interaction −(δU − δU∗) and positive temperature. This
explains why the doublon occupation does not exceed 0.25
even when the effective model shows an attractive inter-
action. On the other hand, the resonantly driven model
(δU = 0) with effective interaction Ueff = |δU∗| coming
from H

(1)
eff has a positive temperature distribution and

an effective inverse temperature comparable to the ini-
tial equilibrium state (β = 2). For driving frequencies
below the resonance (δU > 0), the driven system can be
effectively colder than the initial state.

We also note that the parabolic dependence of d on δU
and the |δU∗| ∼ 1

Ω scaling imply that the deviation of the
double occupation in the FPS from 0.25 is proportional
to 1

Ω2 . This at-first-sight surprising scaling is the result of
an effective interaction proportional to 1/Ω and the fact
that the system approaches an infinite temperature state
in the high-frequency limit as βeff ∝ 1/Ω, see fig. 4(e).

It is interesting to check how well the effective
Hubbard model explains the observed values of the double

Fig. 4: (Colour online) Resonantly driven Hubbard model with
interaction U + δU , driving frequency Ω = U/2 and amplitude
E0/Ω = 1.841 (U = 9, initial inverse temperature β = 2).
Panel (a): effective inverse temperature βeff of the doublons
and holons. Panels (b)–(d): time-averaged spectral functions
Ā, Ā< and energy distribution functions f̄(ω) of the driven
system for δU = +0.4, 0, −0.4. Panel (e): βeff for δU = 0 as a
function of inverse driving frequency (U = 6, 9, 18).

occupation in the FPSs of the resonantly driven system
(fig. 2). An interaction quench to |δU∗| does not repro-
duce the plateau value very well (black dashed line). This
is because the absorbed energy, and hence the effective
temperature of the trapped or quenched state, depends
sensitively on the details of the transient evolution, i.e.,
the kick operator. It is thus more meaningful to extract
the effective inverse temperature βeff of the driven system
from a Fermi function fit of f̄(ω) and to compare the dou-
ble occupation of a Hubbard model with interaction |δU∗|
and inverse temperature βeff to the double occupation in
the FPS. The corresponding results are indicated by the
red dashed lines in the right-hand panels of fig. 2, and
they are in rather good agreement with the time-averaged
double occupation. The remaining deviation to the FPS is
comparable to the deviations evident in fig. 3(b), and may
be attributed to “beyond-Hubbard” interaction effects.

We finally comment on the question whether the FPS
observed here is a thermal or prethermal state in terms
of Heff. Due to the vicinity to the integrable noninteract-
ing limit, the FPS might be expected to be a long-lived
prethermalized state [34], where the properties of nonlocal
observables are different from those of the thermalized
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system described by Heff. Though the direct simulation of
Heff and the analysis of nonlocal observables are beyond
the scope of this study, we confirmed that the quench to
the effective Hubbard model with Ueff = |δU | shows a fast
thermalization of local observables such as the double oc-
cupation, kinetic energy, and distribution function f(ω).

Summary. – In this study, we have analyzed the prop-
erties of the resonantly driven Mott insulating Hubbard
model. Contrary to naive expectations, and despite an ef-
ficient doublon-holon production in the resonant regime,
this nonintegrable system can be trapped in long-lived
Floquet prethermal states characterized by a suppressed
double occupation and a nonzero current. While such
trapping phenomena are found under various driving con-
ditions, we have focused on the case U = nΩ, with n even,
where the leading-order effective Hamiltonian reduces to
a noninteracting fermion model. In this driving regime,
the long-lived trapped states can be understood as states
resulting from a quench to a weakly interacting effec-
tive Hamiltonian. While these interactions originate from
higher-order terms in the high-frequency expansion, i.e.,
multi-site correlated hopping terms, their effect on local
observables can to a large extent be captured by an ef-
fective Hubbard repulsion Ueff = |δU∗|. We have demon-
strated a numerical procedure for evaluating |δU∗| and
showed that it scales with 1/Ω, as expected for an inter-
action resulting from the next-leading order.

We have also demonstrated that driving below the res-
onance can lead to a cooling of the doublons and holons,
and that for driving above the resonance, the driven Mott
insulators can exhibit inverted doublon and holon pop-
ulations. In the latter case, a sign change in the inter-
action terms of the effective Hamiltonian is required to
correctly describe the properties of the Floquet prether-
malized states by means of the effective static model with
a positive temperature.
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