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ABSTRACT

Coral reefs are threatened worldwide by a variety of natu-
ral and human-induced stressors; anomalous temperatures are
presently among the most serious threats by causing extensive
coral bleaching. Amphistegina spp. exhibit similar bleaching
as corals in the presence of photo-oxidative stress induced by
either light or temperature, especially during times of maxi-
mum solar irradiance. At 11 islands (34 sampling sites) in the
North Ari Atoll in the Maldives, bleaching in Amphistegina was
observed a few weeks before the onset of an extensive El Niño-
related coral bleaching that was more severe than expected for
this region. Assessment using the Amphistegina Bleaching In-
dex (ABI) showed that the proportions of bleached specimens
of Amphistegina in April–May 2015 can be explained by photo-
inhibitory stress associated with temperatures exceeding 30◦C
during peak seasonal solar irradiance and water transparency.
Importantly, the ABI indicates that environmental conditions
are suitable for Amphistegina and other calcifying symbioses
at most of the investigated sites, and that either chronic or
relatively recent onset of photo-oxidative stress was present at
the time of sampling. The observed bleaching in Amphistegina
further demonstrates the potential of these unicellular protists
to identify stressors in coral reefs; such applications should be
considered in future reef-management plans.

INTRODUCTION

Anomalously high temperatures can affect coral reefs
worldwide, producing massive bleaching and consequently
are among the primary threats to these ecosystems (e.g.,
Wilkinson et al., 1999; Graham et al., 2015). Climate-induced
coral bleaching and subsequent loss of vital coral cover di-
rectly impact the economies of coastal regions dependent
upon tourism and fisheries, as loss of coral directly com-
promises the related functions and services that coral reefs
provide (Wilkinson et al., 1999).

The term “bleaching”, in the context of organisms that
host algal endosymbionts, is usually defined as the temporary
or permanent loss of the symbiotic microalgae or the loss of
their pigments (Glynn, 1996). Triggers of bleaching include,
but are not limited to, high or low temperatures, salinity stress
(Jokiel & Coles, 1990), changes in visible or ultraviolet solar
irradiance (e.g., Gleason & Wellington, 1993; Glynn, 1996),
sedimentation (Hoegh-Guldberg & Smith, 1989), disease,
pollution, heavy metals (Jones & Hoegh-Guldberg, 1999), or
a combination of these factors. Most reef-dwelling organisms
that host algal symbionts are susceptible to bleaching includ-
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ing sponges, anemones, stony corals, octocorals, giant clams
and larger foraminifers (e.g., Talge & Hallock, 2003; Schmidt
et al., 2011). The majority of coral-bleaching events have been
associated with anomalous increases in sea-surface tempera-
ture (Jokiel & Coles, 1990; Hoegh-Guldberg, 1999). Thermal
and associated photo-inhibitory stresses are the main drivers
of bleaching because thermal stress increases the suscepti-
bility of the symbionts to photo-inhibition through photo-
oxidative reactions, resulting in symbiont loss in corals and
larger benthic foraminifers (Coles et al., 1976; Goreau &
Hayes; 1994; Glynn, 1996; Hoegh-Guldberg, 1999; Talge &
Hallock, 2003). In particular, when an excess of solar energy
exceeds the rate of light utilization (photochemistry), pro-
duction of reactive oxygen species (ROS) can damage both
symbionts and the hosting cells (e.g., Lesser & Farrell, 2004;
Sheppard et al., 2009). During an acute bleaching episode, a
coral host may lose up to 90% of its symbionts, while the re-
maining symbionts may lose 50–80% of their photosynthetic
pigments (Glynn, 1996).

Larger benthic foraminifers (LBF) are unicellular protists
having symbiotic relationships with algae analogous to those
in corals (Lee & Anderson, 1991; Hallock, 1999). Bleaching
in foraminifers was first described in laboratory experiments
(Hallock et al., 1986), however, it was unknown in field pop-
ulations until Hallock et al. (1993) collected several speci-
mens of Amphistegina gibbosa that appeared “spotted” dur-
ing a post-bleaching coral survey in 1988. Since 1991, some
bleaching of A. gibbosa has been consistently observed in
field samples from the Florida Keys during summer months
(Hallock et al., 1995; Williams et al., 1997; Mendez-Ferrer
et al., 2018). Symbiont loss may affect over 80% of the total
adultAmphistegina population; individual specimens display
unusual color sometimes restricted to a few white spots, or
progressing to near absence of symbiont color (Hallock et al.,
1995; Mendez-Ferrer et al., 2018). A detailed history of ob-
servations in foraminiferal bleaching in the Florida Keys is
summarized in Hallock et al. (2006a). Since the first ob-
servations, bleaching in Amphistegina spp. has been doc-
umented on the eastern and western shelves of Australia,
the Bahamas, Jamaica, Hawaii, and Micronesia (Hallock,
2000).

Based on many years of laboratory experiments and field
observations, Hallock et al. (2006a, and references therein)
summarized similarities and differences between bleaching
in Amphistegina and bleaching in corals. They identified im-
portant differences in the modality, timing and causes of
bleaching. In particular, they note that mass bleaching in
corals occurs primarily by expulsion of symbionts; it requires
high light intensity but most strongly correlates with elevated
temperatures. In contrast, bleaching in Amphistegina occurs
by digestion of damaged symbionts (Talge & Hallock, 2003)
and, in field studies, has been demonstrated to correlate with
the solar cycle that precedes seasonal temperature extremes
(Williams, 2002; Hallock et al., 2006a).
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Temperature can also induce bleaching in foraminifers
(Talge & Hallock, 2003; Schmidt et al., 2011; Stuhr et al.,
2017). Schmidt et al. (2011) observed that a 2–3◦C in-
crease in temperature can produce rapid bleaching in sev-
eral diatom-bearing benthic foraminiferal species, includ-
ing Amphistegina, which hosts naked diatom cells lacking
silica frustules (e.g., Lee & Anderson, 1991; Talge & Hal-
lock, 2003). Laboratory experiments conducted by Schmidt
et al. (2016a, b) demonstrated that reduced photosynthetic
activity in Amphistegina lobifera occurs at 32◦C. The com-
bination of elevated temperatures, nutrients and bleaching
in A. lobifera from outer-shelf habitats on the Great Barrier
Reef, Australia, has been reported by Prazeres et al. (2016,
2017).

Biotic indices are quantitative indicators for ecological wa-
ter quality based on faunal composition in sediments (e.g.,
Borja et al., 2011; Alve et al., 2016). Bioindicator species can
be used as a measure or a model to characterize an ecosys-
tem or one of its critical components (Jackson et al., 2000).
A biotic index, based on abundance and population health
state of the bioindicatorAmphistegina spp., was proposed by
Hallock (1995), discussed further by Hallock et al. (2006b),
and improved by Ramirez (2008). However, this index has
not been tested further outside Florida.

Maldivian coral reefs are some of the most diverse reefs
of the Indian Ocean, hosting more than 250 species of corals
and 1200 species of fish (Naseer & Hatcher, 2004). Their
remote location, combined with a fishery that historically
has not been based on reef fish, place them among the reefs
across the world with relatively low local anthropogenic dis-
turbances. Despite their isolation, Maldivian reefs have been
severely affected by coral bleaching with many reefs los-
ing more than 80% of their coral cover following the 1998
bleaching event (McClanahan, 2000; Morri et al., 2015). Post
bleaching recoveries have been variable with respect to rates
of recovery of coral cover and return to the original commu-
nity composition (McClanahan, 2000; Edwards et al., 2001;
Morri et al. 2015).

The goals of our study were to quantify occurrences of
bleached specimens ofAmphistegina spp. collected from coral
reefs near 11 Maldivian islands in the North Ari Atoll (Fig.
1), during the REGENERATE Cruise in 2015. Importantly,
this study also aimed to apply the index proposed for the
reefs in Florida by Hallock et al. (2006b) and applied by
Ramirez (2008; hereafter termedAmphisteginaBleaching In-
dex, ABI) and to test whether the visual response to stres-
sors of Amphistegina populations has the potential to serve
as a low-cost risk-assessment tool for the Maldivian reefs
in view of climate change or local anthropogenic impacts.
The ABI was not conceived as an indicator of coral bleach-
ing per se but, if combined with ecological data and phys-
ical parameters, can be used to determine the presence of
stressors that could induce coral bleaching. The ABI indi-
cates whether water quality supports calcifying symbioses
and whether damaging photo-inhibitory stress is present in
the environment (Hallock et al., 2006b). This research is the
first to provide an ABI data set for the Maldivian coral reefs,
and, in addition to data from Florida (summarized in Hal-
lock et al., 2006a), it provides the framework for future appli-
cation of the ABI to reefs worldwide in the context of climate
change.

MATERIALS AND METHODS

The Maldives include 16 complex atolls with >1100 islands
extending from the central part of the Chagos-Maldives-
Laccadive ridge in the central Indian Ocean, from approxi-
mately 7◦07’N to 0◦40’S in latitude and 72◦33’E to 73◦45’E in
longitude. Eleven islands were surveyed between 22 April–6
May 2015 (Fig. 1) during the International Union for Con-
servation of Nature (IUCN) REGENERATE Cruise. Sur-
veyed islands included three community islands: Rasdhoo,
Feridhoo and Maalhos; four uninhabited islands: Gaatha-
fushi, Alikoirah, Vihamafaru and Madivaru; and four resort
islands: Velidhu, Kandholhudhoo, Maayafushi, and Madoo-
gali. At each island reef, three sites at 10 m water depth were
randomly chosen along the slope, and nine pieces of coral
rubble per sampling sub-site (27 per island) were collected
by SCUBA divers to quantify bleaching inAmphistegina spp.
The positions of each site and sub-site are shown in detail in
Pisapia et al. (2016). Each count of living Amphistegina was
based on nine pieces of reef rubble for each sampling site (a,
b and c in Table 1). On the vessel, rubble samples were stored
in Petri dishes in the shade for a maximum of two hours be-
fore processing. Although strict control of temperature and
light was not logistically practical, exposure to bright light
and temperature extremes (e.g., >3◦C) were avoided, as rec-
ommended by Hallock et al. (2006b).

To evaluate the number of bleached Amphistegina, bio-
genic material was removed from the rubble surfaces us-
ing a small brush and the resultant sediment-meiobenthos
slurries were placed in labeled Petri dishes. Rubble pieces
were also scrutinized using a stereomicroscope to record still-
attached specimens. Material scrubbed from rubble was left
to rest for a few hours and then all specimens belonging to
the genus Amphistegina showing pseudopodial activity (e.g.,
when pseudopods were visibly extruded from the test and/or
the specimens displayed ability to move) were picked using a
small brush, counted and evaluated for the degree of bleach-
ing following Hallock et al. (2006a, b) and Ramirez (2008).
The categories evaluated were: Normal = no bleaching ob-
served; partially bleached = < 50% of bleached surface; com-
pletely bleached = > 50% of bleached surface. Each piece of
rubble was photographed on a gridded paper to estimate area
of bottom cover. All images were then processed using the
software Image J (http://imagej.nih.gov/ij) to quantify the
planar areal extent of every rubble piece.

Basic data from each site were a) bottom area of the rubble
in cm2, b) total number of live Amphistegina (adults and ju-
veniles), and c) numbers of normal-appearing, partially, and
completely bleached specimens. TheAmphisteginaBleaching
Index was calculated following Ramirez (2008) based on the
density ofAmphistegina and the percent experiencing bleach-
ing (Table 1), to assess whether water quality supports cal-
cifying symbioses and whether damaging photo-inhibitory
stress is present in the environment. On the X-axis of the
matrix (Fig. 2A, B), the density rank was plotted, which rep-
resents the number of live Amphistegina standardized for a
rubble area of 100 cm2 (number of live Amphistegina/rubble
area in cm2) in three categories (<101/100 cm2, 101–102/100
cm2, >102/100 cm2). On the Y-axis, the bleaching rank was
plotted, which represents the relative abundance of bleached
specimens in three categories (>40%, 5–40% and <5%). The
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FIGURE 1. Location map of North Ari atoll and the islands investigated in this study. The three community islands are Rasdhoo, Feridhoo and
Maalhos; the four uninhabited islands are Gaathafushi, Alikoirah, Vihamafaru and Madivaru; and the four resort islands are Velidhu, Kandholhudhoo,
Maayafushi, and Madoogali (after Pisapia et al., 2016).
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TABLE 1. Average abundances per site of partially bleached, completely bleached and total specimens exhibiting bleachingAmphistegina spp., plotted
versus their abundance per 100 cm2 of rubble surface. PB = Partially bleached; CB = Completely bleached; a, b and c mark the sub-sampling sites.

Island Site Total Living Normal Spec. PB Spec. CB Spec. TB Spec. Rubble Area Living x 100 cm2 % PB % CB % TB

Rasdhoo (c) a 225 134 82 9 91 93.6 240 36.4 4 40.4
b 202 134 66 2 68 86.7 233 32.7 0.99 33.7
c 73 58 11 4 15 120 60.7 15.1 5.48 20.6

Feridhoo (c) a 9 8 1 0 1 93.5 9.63 11.1 0 11.1
c 5 5 0 0 0 104 4.79 0 0 0

Maalhos (c) a 46 28 15 3 18 49.5 92.9 32.6 6.52 39.1
b 14 10 4 0 4 80.8 17.3 28.6 0 28.6
c 34 30 4 0 4 89.2 38.1 11.8 0 11.8

Alikoirah (u) a 8 5 3 0 3 73.9 10.8 37.5 0 37.5
b 47 31 11 3 14 87.0 54.0 23.4 6.38 29.8
c 58 48 10 0 10 71.6 81.0 17.2 0 17.2

Vihamafaru (u) a 71 64 7 0 7 90.9 78.1 9.86 0 9.86
b 117 96 21 0 21 111 105 17.9 0 17.9
c 27 18 9 0 9 89.7 30.1 33.3 0 33.3
ab 84 69 12 3 15 80.5 104 14.3 3.57 17.9
bb 97 60 18 19 37 70.6 137 18.6 19.59 38.1

Madivaru (u) a 127 119 7 1 8 62.5 203 5.51 0.79 6.3
b 281 263 11 7 18 94.0 299 3.91 2.49 6.41
c 50 45 4 1 5 74.3 67.2 8.0 2.0 10.0

Gaathafushi (u) a 61 52 6 0 6 73.1 83.5 9.84 0 9.84
b 43 33 10 0 10 73.6 58.4 23.3 0 23.3
c 24 20 4 0 4 78.3 30.7 16.7 0 16.7

Velidhu (u) a 50 34 8 8 16 52 96.2 16.0 16.0 32.0
b 14 7 7 0 7 30.6 546 50.0 0 50.0
c 35 2 9 24 33 34.8 101 25.7 68.57 94.3

Maayafushi (r) a 113 105 15 13 28 82.0 162 11.3 9.77 21.1
b 157 138 11 8 19 77.6 202 7.01 5.10 12.1
c 60 49 11 0 11 74.9 80.1 18.3 0 18.3

Madoogali (r) a 27 11 11 5 16 57.3 47.1 40.7 18.52 59.3
b 45 36 7 2 9 64.0 70.3 15.6 4.44 20.0
c 33 26 7 0 7 67.5 48.9 21.2 0 21.2

Kandholhudhoo (r) a 23 17 6 0 6 82.1 28.0 26.1 0 26.1
b 70 55 11 4 15 79.0 88.6 15.7 5.71 21.4
c 58 33 21 4 25 84.4 68.7 36.2 6.90 43.1

intercept point of these two parameters on the matrix (Fig.
2A, B) represents the Amphistegina Bleaching Index, which
may fall in one of the nine squared fields describing an eco-
logical status.

Water samples, which were collected into plastic bottles
by SCUBA divers, were taken above the seabed from the
same locations where coral rubble samples were collected.
Immediately after collection of water samples, pH, tempera-
ture and conductivity were measured using a multiparameter
meter Oriontm Star A325. Dissolved oxygen (DO) was mea-
sured with DO600 Waterproof ExStikR© II Dissolved Oxygen
Meter, which has an auto-calibration function. Full details
of conductivity to salinity calculations, model sensors and
calibrations are described in Pisapia et al. (2016). Water pa-
rameters were also measured at the sea surface to record
potential difference between the surface and the sea floor
(10 m depth). In some cases conditions, such as rough sea
prevented the collection of water samples (e.g., Madivaru).

RESULTS

Live Amphistegina were recorded at all sites (Fig. 1, Table
1), though <20 specimens were found at 5 of the 34 sites
(15%); when corrected for area sampled, <50 specimens/100
cm2 were recorded at 10 sites (30%). At 23 sites (with ≥20
live specimens; 79% of total investigated sites), between 10–

41% of the Amphistegina specimens were partially bleached
(Table 1). When bleached specimens are added to the totals,
>6% of the specimens exhibited symbiont loss at all of the 29
sites and >10% at 25 of the 29 sites (Table 1). The percentage
of live specimens exhibiting partial or complete bleaching
exceeded 60% at only one site (Table 1).

The application of the ABI, based on the table matrix pro-
posed by Ramirez (2008), and based on the percent bleached
specimens (partially + completely bleached) as summarized
in Figure 2A, B, revealed that most sites fell in fields BB
(chronic photo-inhibitory stress, possibly other stressors)
and BA (stress either chronic and mild or recent and mod-
erate). Five samples all from sites near inhabited or resort
islands fell within the CB field (acute photo-inhibitory stress
or chronic photo-inhibitory stress with other stressors). Sam-
ples from one community island had very low density (AC or
BC, environmental conditions unfavorable), while one higher
density sample showed >40% exhibiting bleaching, likely in-
dicating recent, acute photo-oxidative stress (Fig. 2B).

Mean values of temperature (◦C), DO (mg L−1), conduc-
tivity (mS/cm), salinity (�) and pH are presented in Table 2.
Mean temperatures ranged from 28.8–31.8◦C, with the over-
all mean at 10 m depth of 30.3◦C. During the cruise, a gen-
eralized warming occurred in the region and, as a result, the
highest temperatures (up to 32.2◦C, see Pisapia et al., 2016)
were recorded at the resort island of Kandholhudhoo on
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FIGURE 2. (A) Matrix modified from Ramirez (2008) used for the Amphistegina Photic Index, based on the density of Amphistegina and the
percent of Amphistegina specimens experiencing bleaching in a sample (re-drawn after Ramirez, 2008). High densities of live, healthy Amphistegina
(>50/100 cm2) on rubble in reefal habitats indicates that ambient water quality supports this and other calcifying host-symbiont associations. Low
densities, in which most samples indicate densities (<10/100 cm2) indicate that conditions do not support calcifying host-symbiont associations, with
moderate densities (10–50/100 cm2) indicating marginal conditions. (B) The Amphistegina Bleaching Index (ABI) in the North Ari Atoll, based on the
density of Amphistegina and the percent of Amphistegina specimens experiencing bleaching (modified after Ramirez, 2008). On the X-axis, the density
rank (Amphistegina spp. per 100 cm2 expressed in log10); on the Y-axis is the bleached rank: % of total (partially bleached + completely bleached
population). The sites are named with u (uninhabited islands), c (community islands) and r (resort islands) to distinguish the three categories. The full
name of each site is presented in the legend.
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TABLE 2. Mean values for water sample parameters measured at each site and group of sites. (Modified after Pisapia et al., 2016).

Site Depth (m) pH T (◦C) Cond. (ms/cm) DO (mg.L−1) Salinity (�)

Rasdhoo 10 8.18 30.08 51.96 5.35 34.31
Feridhoo 10 8.04 30.30 51.61 5.94 33.92
Maalhoss 10 8.01 30.71 51.56 6.12 33.88
Community Mean 10 8.07 30.36 51.71 5.80 34.04
Community Surface 8.14 30.59 51.72 7.99 34.11
Velidhoo 10 8.15 28.89 51.79 5.65 34.06
Madoogali 10 ND 30.02 51.81 4.80 34.07
Mayafushi 10 8.05 29.89 58.51 5.09 39.08
Kandholhudhoo 10 8.03 31.76 50.50 6.13 33.11
Resort Mean 10 8.08 30.39 53.15 5.42 35.08
Resort Surface 8.16 30.59 58.17 8.27 35.09
Vihamaafaru 10 8.05 30.15 51.21 5.55 33.63
Gaathafushi 10 8.04 30.97 51.75 5.63 34.03
Alikoirah 10 8.04 30 50.52 5.24 33.14
Uninhabited Mean 10 8.04 30.37 51.16 5.47 33.60
Uninhabited Surface 8.16 30.70 51.11 8.43 33.56

29 April 2015 (Fig. 3). Dissolved oxygen varied from 4.8–6.1
mg L−1 at 10 m depth, and was ≥8 mg L−1 in surface-water
samples. The pH varied from 8.0 to 8.2. Salinity ranged from
33.0–35.1, with minimal variability across all sites, except for
Maayafushi, where the anomalously high salinity values (up
to 39) were probably due to instrumental problems.

DISCUSSION

Foraminifers are well-established indicators of water qual-
ity based on cellular responses (e.g., Murray, 2006; Praz-
eres et al., 2011, 2012) to morphological and community
composition (Hallock, 2012; Reymond et al., 2012). Com-
bining foraminiferal studies with ecological data and phys-
ical parameters may be helpful to describe environmental
conditions that can induce bleaching. Amphistegina is a
circumtropically-distributed genus of benthic foraminifers
(e.g., Langer et al., 2013) that thrives in high water quality
(e.g., low inorganic nutrients, low sedimentation and low tur-
bidity). Talge & Hallock (2003) demonstrated that the cyto-
logical responses to bleaching of field-collectedAmphistegina
and specimens from laboratory cultures were statistically in-
distinguishable, indicating the potential for this genus to be

used as a tool to investigate the presence of photo-oxidative
stresses that could lead to coral bleaching.

Temperature, DO and pH are highly dependent upon time
of day of measurement, while both temperature and salinity
can be influenced by tidal cycle and local conditions such as
rainfall or evaporation in shallow reef flat in hot, dry weather
(Yates et al., 2007; Wild et al., 2010). The range of pH (8.0–
8.2) is typical of tropical waters during the warm, dry season
(Table 2). The range of DO (4.8–8.4 mg L−1) is typical of the
diurnal cycle in well-oxygenated waters, where lower morn-
ing DO is reduced by the influence of nighttime respiration,
and higher afternoon DO reflects the accumulated influence
of photosynthesis over the course of the day (Yates et al.,
2007; Wild et al., 2010). All measured water parameters
were within the typical ranges in the Indian Ocean, tropi-
cal settings and/or coral reef environments (Ramamirtham,
1968; Wild et al., 2010; Zweng et al., 2013; Lauvset et al.,
2015) and should not have stressed the Amphistegina popu-
lations. Additionally, Pisapia et al. (2016) demonstrated that
the management regime (community, resort and uninhabited
islands) does not remarkably influence the measured water
parameters and that benthic foraminiferal assemblages are
typical of tropical reefs in the North Ari Atoll, with minimal

FIGURE 3. Average temperatures measured in selected islands from the North Ari Atoll showing the increasing temperature during the REGEN-
ERATE Cruise.
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FIGURE 4. Summary of thermal conditions at the Maldives in 2014 and 2015. Modified after NOAA Coral Reef Watch (2015a). The period of the
REGENERATE Cruise is marked with a green vertical bar. DHW = Degree Heating Week; SST = Sea Surface Temperature.

differences among sites. The only parameter assessed at
the sampling sites that appears problematic is temperature
(means range between 28.8–31.7◦C), with only two of the
means reported in Table 2 falling below 30◦C, and several
exceeding 30.5◦C. Schmidt et al. (2011) have shown that tem-
perature effects are species-specific, and that a temperature
above 31◦C has a negative effect onAmphistegina. Several au-
thors have demonstrated that temperatures exceeding 30◦C
significantly decrease photosynthetic activity in the diatom
symbionts of LBF (Sinutok et al., 2011; Uthicke et al., 2012;
Schmidt et al., 2016a, b; Stuhr et al., 2017).
Amphistegina spp. generally colonize hard and phytal sub-

strates from shallow depths down to around 120 m, depend-
ing upon the penetration limits of visible radiation (Hallock,
1999; Hohenegger et al., 1999). Healthy Amphistegina are
known to be negatively phototactic at light intensities only
slightly above those supporting optimal growth rates (Lee
& Anderson, 1991), therefore, they move to avoid photo-
inhibitory stress. However, as noted in previous bleaching
studies (Hallock et al., 1995), photo-oxidative damage in
Amphistegina disrupts normal phototaxis, such that stressed
specimens tend to seek light rather than retreat.
Amphistegina bleaches when exposed to photo-oxidative

stress, whether the stress is primarily induced by light or by
temperature. Hallock et al. (1995) demonstrated that onset of
bleaching in Amphistegina consistently preceded maximum
temperatures (see also Mendez-Ferrer et al., 2018). The re-
sponse to acute photo-inhibition occurs within hours to days
and to chronic stress over several days to a few weeks (Hal-
lock et al., 1995, 2006a; Stuhr et al., 2017). These responses
can be detected cytologically before visible loss of symbionts
becomes evident (Talge & Hallock, 1995, 2003). In contrast,
the overall reaction of a coral ecosystem may occur weeks,
even months, after initiation of the stress event.

In this study, the observed bleaching in Amphistegina in
late April and early May 2015 occurred during the highest

temperatures and highest bleaching warning (Figs. 3, 4), as
documented by NOAA Coral Reef Watch (2015a). Although
neither solar irradiance nor photo-oxidative stress were di-
rectly assessed at the sites examined in this study, our field-
work occurred soon after the sun was directly overhead at
the ∼4◦N latitude sites sampled, at the end of the dry season,
together indicating maximum solar irradiance reaching the
seafloor at 10 m. April and May also are typically the hottest
months (Fig. 4) which, combined with maximum solar irradi-
ance, can result in the highest potential for photo-inhibitory
stress. Thus, while this study did not definitely demonstrate
that temperature was the predominant stressor at our study
sites and did not explicitly test photo-oxidative stress, other
potential sources of “stress” (salinity, pH, and DO, and man-
agement regime in the North Ari Atoll) assessed in this study
all occurred within normal ranges for tropical waters and can
be excluded. In particular, ABI values for resort, inhabited
and community islands generally fall within the same fields
of either chronic or recent onset of moderate stress (Fig. 2B)
indicating that the management regime did not play a role in
Amphistegina bleaching.

When a suite of samples are collected, Amphistegina den-
sities in the absence of bleaching can reflect water quality
(Hallock et al., 2003; Hallock, 2012). Thus, Amphistegina
densities combined with bleaching prevalence together can
indicate kinds, duration and intensity of stress (Hallock et al.,
2006b). Specifically, low Amphistegina densities with low–
intermediate bleaching percentages indicate unfavorable wa-
ter quality, while low densities and high (acute) bleaching
percentages in adult size-classes can indicate ongoing acute
photo-oxidative stress. Intermediate–high densities with high
bleaching percentages indicate favorable water quality and
relatively recent acute photo-oxidative stress, while interme-
diate densities and intermediate bleaching percentages in-
dicate chronic stressors, one of which is photo-inhibitory
stress (Hallock et al., 2006b). The density data presented in
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Figure 2, and the water quality data in Table 2, indicated that
DO, pH and salinity conditions were suitable for Amphiste-
gina and other calcifying symbioses at the sites sampled in
North Ari Atoll. However, the incidences of partial to severe
bleaching indicated either chronic or relatively recent onset
of moderate stress. This observation corroborates the envi-
ronmental assessment based on total benthic foraminiferal
assemblages of Pisapia et al. (2016). This study used the Mal-
divian system as a novel example to test the ABI, and doc-
umented that ABI can be successfully used to assess relative
degree of stresses including bleaching. Sampling methods for
ABI are not destructive, only require collection of coral rub-
ble, counts of living Amphistegina and degree of bleaching
(absent, chronic, or acute), and therefore can easily be in-
corporated into a preexisting monitoring program (Hallock
et al., 2006b) based on coral investigations.

Hoegh-Guldberg (1999) and Wilkinson (1999) linked sus-
tained periods characterized by higher temperatures (a few
degrees above the local average maximum) to coral mass
bleaching. Strong et al. (1998) and Hoegh-Guldberg (1999)
showed that only one degree above normal temperature last-
ing for one month may be responsible for bleaching in the
majority of susceptible corals in an ecosystem. More recently,
Frieler et al. (2013) concluded that limiting low-latitude
warming to <1.5◦C will be necessary to preserve coral reefs
worldwide. The threshold for coral bleaching in the Maldives,
given by NOAA as just below 31◦C, was reached during April
and May 2015, and lasted for at least 2 months (Fig. 4).

The major mass-bleaching events in the past two decades
have occurred during ENSO years (Hoegh-Guldberg, 1999),
and particularly the global bleaching events in 1998 (e.g.,
Hoegh-Guldberg, 1999; Wilkinson, 1999; Kelmo & Attrill,
2013) and 2010 (e.g., Miranda et al., 2013). Temperature
anomalies ranged from 3–5◦C higher with respect to the nor-
mal annual average in 1998 (Wilkinson, 1999), but they were
less extreme in 2010. A coral bleaching event occurred in
June 2015 in the North Ari Atoll, triggered by El Niño-
associated anomalous temperatures, affecting several coral
taxa, in particular Pocillopora (CP, personal observation).
Based on local observations, coral bleaching in the Mal-
dives was variable but more severe than expected from the
level of thermal stress (NOAA Coral Reef Watch, 2015b).
The moderate photo-inhibitory stress, as shown by Amphis-
tegina in April–May 2015, occurred when solar irradiance
and water transparency were highest, indicating elevated
photo-oxidative stresses predating the extreme thermal El
Niño pulse heralding a mass bleaching event.

CONCLUSION

Bleaching in Amphistegina spp. was observed at 11 is-
lands in the North Ari Atoll in the Maldives during the
REGENERATE Cruise in April–May 2015. The Amphis-
tegina Bleaching Index (ABI) proposed by Hallock et al.
(2006b) indicated that the proportions of bleached specimens
of Amphistegina in April–May 2015 at these sites were likely
associated with photo-inhibitory stress induced by seawater
temperatures exceeding 30◦C during peak seasonal solar ir-
radiance. The ABI indicated that environmental conditions
in the North Ari Atoll were suitable for calcifying symbioses
at most of the investigated sites, with chronic or relatively

recent onset of moderate stress at some sites (as indicated
by observations of 5–40% specimens with bleaching), which
likely reflected El Niño conditions. This study further demon-
strated how these unicellular protists respond to stressors in
reef environments and their potential to predict coral bleach-
ing.
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