
HistoSketch: Fast Similarity-Preserving Sketching
of Streaming Histograms with Concept Drift

Dingqi Yang∗, Bin Li†, Laura Rettig∗, Philippe Cudré-Mauroux∗
∗eXascale Infolab, University of Fribourg, Fribourg, Switzerland

Email: {firstname.lastname}@unifr.ch
†School of Computer Science, Fudan University, Shanghai, China

Email: libin@fudan.edu.cn

Abstract—Histogram-based similarity has been widely adopted
in many machine learning tasks. However, measuring histogram
similarity is a challenging task for streaming data, where the
elements of a histogram are observed in a streaming manner.
First, the ever-growing cardinality of histogram elements makes
any similarity computation inefficient. Second, the concept-drift
issue in the data streams also impairs the accurate assessment
of the similarity. In this paper, we propose to overcome the
above challenges with HistoSketch, a fast similarity-preserving
sketching method for streaming histograms with concept drift.
Specifically, HistoSketch is designed to incrementally maintain a
set of compact and fixed-size sketches of streaming histograms to
approximate similarity between the histograms, with the special
consideration of gradually forgetting the outdated histogram
elements. We evaluate HistoSketch on multiple classification tasks
using both synthetic and real-world datasets. The results show
that our method is able to efficiently approximate similarity
for streaming histograms and quickly adapt to concept drift.
Compared to full streaming histograms gradually forgetting the
outdated histogram elements, HistoSketch is able to dramatically
reduce the classification time (with a 7500x speedup) with only
a modest loss in accuracy (about 3.5%).

Index Terms—Similarity-Preserving Sketching, Histograms,
Streaming Data, Concept Drift, Consistent Weighted Sampling

I. INTRODUCTION

Histograms are an important statistic reflecting the empirical
distribution of data. They have been widely used not only
as a popular data analysis and visualization tool, but also as
a feature for measuring similarities between data instances,
such as color histograms for images or word histograms for
documents. As a result, histogram-based similarity measures
have been extensively exploited in many classification and
clustering tasks and for various application domains, including
image processing [1], [2], document analysis [3], [4], and
social network analysis [5].

Despite its importance in machine learning, computing his-
togram similarities is often difficult in practice, particularly for
data streams. In this study, we consider streaming histograms,
where the elements of a histogram are observed over a data
stream. This is often the case when online or offline businesses
observe their customers’ activity data. For example, a Point
of Interest (POI), such as a supermarket or a restaurant, may
observe a continuous data stream of visits from its customers
and consider to analyze the histogram of its customers’ visits.
By measuring the similarity between two POIs based on such

histograms, one can build various high-quality applications,
such as POI and activity recommendation [6], [7], semantic
place labeling [8] or event detection [9]. However, it is
challenging to measure the similarity between such streaming
histograms in practice, due to the ever-increasing cardinality
of the histogram elements over time. In the above example,
this corresponds to the case of an ever-growing number of
customers. The monotonically increasing size of the stream-
ing histograms makes any similarity computation inefficient,
which further makes learning algorithms impractical.

To solve this problem, similarity-preserving data sketch-
ing (hashing) techniques [10] have been intensively studied
in stream data processing [11], [12]. Their key idea is to
maintain a set of compact and fixed-size sketches for the
original data while still preserving their similarity under a
certain measure. In the current literature, most existing data
sketching techniques [13], [14], [15], [16] consider the case
of streaming data instances, where complete data instances
are received one by one from a data stream (e.g., a stream
of images whose color histogram can be easily derived). In
contrast, a streaming histogram assumes that the elements
of a histogram describing an individual data instance are
continuously received in arbitrary order from a data stream
(e.g., the histogram of customers’ visits to a POI). Therefore,
any sketching method for streaming histograms needs to be
incrementally updatable, which departs from classical tech-
niques that focus on sketching complete data instances. In
other words, the new sketch of a streaming histogram should
be incrementally computed from the former sketch and the
newly arrived histogram element.

Moreover, as a common problem in data streams, con-
cept drift also has to be taken into account for streaming
histograms, where the underlying distribution of a streaming
histogram changes over time in unforeseen ways. Taking the
example of customers’ visits to POIs, the customer population
of a restaurant may change abruptly if the restaurant changes
its type (e.g., from a Japanese restaurant to a pizzeria), or
gradually if it updates its menu. Our collected POI dataset (see
Section V-A) shows that 6.34% of POIs have changed their
types (abrupt drift) in a period of two years. Considering con-
cept drift issues can indeed improve the accuracy of histogram-
based similarity techniques (see for example Section V-C1,
where classification accuracy significantly increases when

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/156905032?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

considering concept drift adaptation). It is therefore critical
to consider this issue in sketching streaming histograms. The
most common approach to handle concept drift is forgetting
the outdated data [17]. A typical solution is gradual forgetting,
where the streaming data are associated with weights inversely
proportional to their age [18]. In the case of streaming
histograms, this means that a newer element of a histogram
should have a higher weight than older ones when constructing
the histogram. Taking exponential decay [19] as an example,
the weight of a histogram element decreases by a weight
decay factor every time when a new element is received
from the data stream. Although such a weighting process
is easy to implement when building a histogram from its
streaming elements, it is not straightforward to incorporate
such weights in sketching streaming histograms. This problem
becomes even more challenging when further considering the
requirement of incrementally updatable sketching.

To address the above challenges, we introduce HistoS-
ketch, a similarity-preserving sketching method for streaming
histograms with concept drift. HistoSketch is designed to
efficiently and incrementally maintain a set of compact and
fixed-sized sketches over streaming histograms to approximate
similarity between the histograms with the special consid-
eration of gradually forgetting outdated histogram elements.
To measure the similarity between histograms, our method
focuses on normalized min-max similarity, which has been
proven to be an effective similarity measure for nonnega-
tive data in various application domains [16]. To create a
sketch from a histogram, we borrow the idea from consistent
weighted sampling [20], which was originally proposed for
approximating min-max similarity for complete data instances.
To incrementally maintain the sketch when a new histogram
element is observed, we first adjust the former sketch to
seamlessly incorporate the weight decay factor for gradually
forgetting old elements of the histogram, and then compute
the new sketch based on the adjusted sketch and the incoming
histogram element. Our main contributions can be summarized
as follows:

• To the best of our knowledge, this is the first piece of
work considering the concept-drift issue for similarity-
preserving sketching over streaming histograms. His-
toSketch allows for fast maintenance of the sketches
while gradually forgetting outdated data to ensure the
robustness of our technique to concept drift.

• We formally prove both the correctness and scale-
invariance of HistoSketch, and use those two properties
to derive an incremental sketch updating technique that
is efficient in both space and time.

• We empirically evaluate our method on multiple classifi-
cation tasks using both simulated and real-world datasets.
Our results show that HistoSketch is able to efficiently
approximate similarity for streaming histograms and to
quickly adapt to concept drift. Compared to full streaming
histograms with gradual forgetting weights, HistoSketch
is able to dramatically reduce the classification time (with

a 7500x speedup) at the expense of a modest loss in
accuracy (about 3.5%).

II. RELATED WORK

As a key statistical tool in empirical data analysis, his-
tograms have been widely used not only as a popular vi-
sualization of empirical data distribution [21], but also as a
feature to measure data similarity that is further exploited in
many machine learning tasks [1], [4], [5], [22]. Although the
histogram of a static dataset can often be easily computed, it
is practically difficult to compute histograms for data streams
with typically unknown cardinality and which thus require an
unbounded amount of memory to maintain the histogram. In
this context, count sketch [23] and count-min sketch [24] and
other online histogram building methods [25] were proposed to
approximate the frequency table of elements (i.e., histograms)
from a data stream with a fixed-size data structure. However,
the resulting sketches do not preserve the similarity between
different data streams. This paper differs from the objective
of count-min sketch by addressing the problem of similarity-
preserving sketching of data streams.

Similarity-preserving sketching [10] has been extensively
studied to efficiently approximate the similarity of high di-
mensional data, such as documents, images and graph [26],
[27]. Its basic idea is to maintain a set of compact sketches of
the original high dimensional data to efficiently approximate
their similarities, such as Jaccard [13], [14], cosine [15],
and min-max [20], [16], [28], [8], [29] similarities. These
sketches can then enable many applications, particularly for
information retrieval systems like image or document search
engines [26]. However, most of these methods are designed
to sketch complete data instances, which are fundamentally
different from streaming histograms, where histograms are
incrementally built from the streams of its elements. More im-
portantly, little attention has been given on studying concept-
drift issues in similarity-preserving data sketching, to which
we give specific consideration in this paper.

Concept drift is a common problem in streaming data pro-
cessing and refers to the case where the underlying statistical
properties of the streaming data change over time (often in
unknown ways), which further degrades the performance of
learning algorithms [30]. According to a recent survey on
concept-drift, the most popular approach to handling data
streams with unknown dynamics is forgetting outdated data
[17]. Existing solutions can be classified into two categories.
First, the abrupt forgetting approach selects a set of data for
learning. A sliding window is often used to select recent data.
Although this approach is effective against abrupt drifts (in
terms of the data statistical properties), it is less applicable
to gradual drifts [31] as it gives the same significance to all
selected pieces of data while completely discarding all other
data. Second, the gradual forgetting approach assigns weights
that are inversely proportional to the age of the data [18], such
as exponential decay weights [19]. In this study, we advocate
the gradual forgetting approach to tackle the concept-drift
problem in streaming histograms. The histogram is built with

Fig. 1. Illustration of a streaming histogram with gradual forgetting (expo-
nential decay weights). Left: The different histogram elements are assigned
different colors, and their heights indicate the corresponding weights. Right:
The same elements are accumulated to build the corresponding histogram.

weighted elements from the streams, with weights decreasing
over time. Different from existing methods using gradual
forgetting against concept drift, we consider incorporating
the gradual forgetting approach in similarity-preserving data
sketching of streaming histograms.

III. BACKGROUND AND PROBLEM FORMULATION

We consider a streaming histogram computed over a data
stream of its elements xt where t ∈ N indicates the order of the
observed element in the stream. Element xt ∈ E are observed
one by one. Due to its streaming nature, the cardinality |E|
of a histogram continuously increases over time. A classical
histogram can then be represented as a vector V ∈ N|E|,
where each value Vi encodes the cumulative count of the
corresponding histogram elements i ∈ E , i.e., Vi =

∑
t 1xt=i,

where 1cond is an indicator function which is equal to 1 when
cond is true and 0 otherwise.

To tackle the concept-drift issue in streaming histograms,
we adopt the gradual forgetting approach when building V
from xt. Specifically, each streaming element xt is associated
with a weight wt, which is inversely proportional to its age.
To compute wt, we adopt the exponential decay weight [19],
which is computed as wt = e−λ(tn−t), where tn is the order
of the latest histogram element received from the stream and
λ is the weight decay factor. Subsequently, we compute the
histogram V ∈ R|E|>0 such that Vi is the weighted cumulative
count of the corresponding histogram elements i, i.e., Vi =∑
t wt1xt=i. Fig. 1 shows an example of streaming histograms

with gradual forgetting (exponential decay weights).
To measure the similarity between such streaming his-

tograms, we resort to normalized min-max similarity, which
has been shown to be an effective measure for nonnegative data
on many classification tasks over a sizable collection of public
datasets [16]. Specifically, given two streaming histograms V a

and V b, the min-max similarity is defined as follows:

SimMM (V a, V b) =

∑
i∈E min(V ai , V

b
i)∑

i∈E max(V ai , V
b
i)

(1)

As a histogram is often used to characterize the empirical data
distribution, we apply the sum-to-one normalization before
computing the similarity:∑

i∈E
V ai = 1,

∑
i∈E

V bi = 1. (2)

Fig. 2. Illustration of the incremental sketch update problem. Left: Weights
decrease (exponentially) when a new histogram element xt+1 is received
(former weights are represented in gray). Right: Incremental sketch update
problem.

In that way, Eq. 1 becomes the normalized min-max similarity,
denoted by SimNMM .

For streaming histograms, the ever-increasing cardinality |E|
makes the computation of the normalized min-max similarity
become inefficient. Therefore, we propose to maintain two
sketches Sa and Sb of size K (K � |E|) for V a and V b,
respectively, with the property that their collision probability
is exactly the normalized min-max similarity between V a and
V b:

Pr[Saj = Sbj] = SimNMM (V a, V b) (3)

where j = 1, 2, ...,K. Then, the normalized min-max similar-
ity between V a and V b can be approximated by the Hamming
similarity [32] between Sa and Sb. The computation over S,
which is compact and of fixed size, is much more efficient
than the one over the full histogram V , which is a large, ever-
growing vector.

The problem tackled by this paper is how to create and
maintain the similarity-preserving sketch S for the streaming
histogram V with gradual forgetting weights, such that the new
sketch S(t+1) can be efficiently and incrementally computed
based on the incoming histogram element xt+1, the former
sketch S(t), and the weight decay factor λ. Fig. 2 illustrates
the incremental sketch update problem.

IV. HISTOSKETCH

Our HistoSketch method is designed to efficiently maintain
a set of compact and fixed-size sketches for streaming his-
tograms with gradual forgetting weights, in order to efficiently
approximate their similarities. In this section, we first present
consistent weighted sampling, which inspired our HistoSketch
method. We then describe our method for sketch creation,
followed by the proposed incremental sketch update process.

A. Consistent Weighted Sampling

Consistent weighted sampling was originally proposed to
approximate min-max similarity for complete and high dimen-
sional data (e.g., a vector of large size) [20], [28], [16]. The
basic idea is to generate data samples such that the probability
of drawing identical samples for a pair of vectors is equal to
their min-max similarity. A set of such samples can then be
regarded as a sketch of the input vector.

The first consistent weighted sampling method [20] was
designed to handle integer vectors. Specifically, taking a
classical histogram V ∈ N|E| as an example, it first uses

a random hash function hj to generate independent and
uniform distributed random hash values hj(i, f) for each
(i, f), where i ∈ E and f ∈ {1, 2, ..., Vi}, and then returns
(i∗j , f

∗
j) = argmini∈E,f∈{1,2,...,Vi} hj(i, f) as one sample

(i.e., one sketch element Sj). Note that the random hash
function hj depends only on (i, f), and maps (i, f) uniquely
to hj(i, f). By applying K independent random hash functions
(j = 1, 2, ...,K), we generate sketch S (of size K) from V (of
arbitrary size). Following this process, the collision probability
between two sketch elements (ia∗j , f

a∗
j) and (ib∗j , f

b∗
j), which

are generated from V a and V b, respectively, is proven to be
exactly the min-max similarity of the two vectors [20]:

Pr[(ia∗j , f
a∗
j) = (ib∗j , f

b∗
j)] = SimMM (V a, V b) (4)

To improve the efficiency of the above method and allow
real vectors as input, Ioffe [28] later proposed an improved
method. Its key idea is that, rather than generating Vi different
random hash values (where Vi has to be an integer), it directly
generates one hash value ai,j (and its corresponding f ∈ N,
f ≤ Vi) for each i by taking Vi as the input of the random hash
value generation process. In such a case, Vi can be any positive
real number. Based on this method, Li [16] further proposed
to simplify the sketch by only keeping i∗j rather than (i∗j , f

∗
j),

and empirically proved the following property:

Pr[ia∗j = ib∗j] ≈ Pr[(ia∗j , fa∗j) = (ib∗j , f
b∗
j)] (5)

A short description of the method proposed in [16] is presented
in the following. To generate one sketch element Sj (sample
i∗j), the method first draws three random variables offline as
parameters: ri,j ∼ Gamma(2, 1), ci,j ∼ Gamma(2, 1) and
βi,j ∼ Uniform(0, 1), and then computes

yi,j = exp

(
ri,j

(
b log Vi
ri,j

+ βi,jc − βi,j
))

(6)

ai,j =
ci,j

yi,j exp(ri,j)
(7)

The sketch element is then returned as Sj = argmini∈E ai,j .
Please refer to [16], [28] for more details and for the proof of
Eq. 4 and 5.

In this paper, we design an incrementally updatable sketch-
ing process to handle the streaming histograms with gradual
forgetting weights, where V ∈ R|E|>0. Specifically, we propose
a new approach to compute yi,j , which has the following
two highly desirable properties: 1). The generated yi,j follows
the exact same distribution as the one generated using Eq. 6,
which ensures the correctness of our sketching method (i.e.,
Eq. 4 and Eq. 5 still hold), and 2). The created sketch S is
invariant under uniform scaling of V , which serves as a basis
for incremental sketch update. In the following, we first present
our sketch creation method, and then the incremental sketch
update process.

B. Sketch Creation

Our sketch creation method borrows the idea of consistent
weighted sampling with real number inputs [16]. Different

from the original method, we propose a new approach to
compute yi,j . Specifically, the objective of the original method
is to sample yi,j such that log yi,j is uniformly distributed on
[log Vi−ri,j , log Vi] conditioned on ri,j . Among many possible
formulations that can fulfill this distribution requirement, the
original formulation (Eq. 6) is specifically designed to also
sample the corresponding fj to obtain the sketch element
(i∗j , f

∗
j) (where f = b log Vi

ri,j
+ βi,jc in [28]). However, as

proved in [16], f∗j can be ignored from the sketch (i∗j , f
∗
j)

(i.e., Eq. 5). In such a case, it is only necessary to sample yi,j
satisfying its distribution requirement. Therefore, we propose
to compute yi,j as follows:

yi,j = exp(log Vi − ri,jβi,j) (8)

for which the following proposition holds.

Proposition 1. Eq. 8 generates yi,j following the same distri-
bution as generated by Eq. 6, i.e., log yi,j follows a uniform
distribution on [log Vi − ri,j , log Vi] conditioned on ri,j .

Proof. Considering the variable log yi,j , Eq. 6 can be derived
as (we ignore the subscript (i, j) of r and β in the following
proof):

log yi,j = r

(
b log Vi

r
+ βc − β

)
= r

(
b log Vi

r
+ βc −

(
log Vi
r

+ β

)
+

log Vi
r

)
= log Vi − r

((
log Vi
r

+ β

)
− b log Vi

r
+ βc

) (9)

where (log Vi

r + β) − b log Vi

r + βc is the frac function of
log Vi

r + β, which returns its fractional part [33]. Since both
Vi and r are known, this frac function can be considered as
frac(β + C), where C = log Vi

r is a constant. Considering
β ∼ Uniform(0, 1), this function actually returns the frac-
tional part of a variable following Uniform(C,C+1), which
remains the same as Uniform(0, 1). In other words, it is a
uniform mapping from Uniform(0, 1) to itself. Subsequently,
we have frac(log Vi

r + β) ∼ Uniform(0, 1), which can be
replaced by β. Therefore, we obtain:

log yi,j = log Vi − rβ (10)

which is the same as in Eq. 8. Therefore, yi,j generated by
Eq. 8 follows the same distribution as generated by Eq. 6.

We introduce z = log yi,j and compute its Cumulative
Distribution Function (CDF) as follows:

FZ(z) = P (Z < z) = P (log Vi − rβ < z)

= P

(
log Vi − z

r
< β

)
(11)

Considering β ∼ Uniform(0, 1), we obtain:

FZ(z) = 1− log Vi − z
r

=
z − (log Vi − r)

log Vi − (log Vi − r)
(12)

which is the CDF of Uniform(log Vi − r, log Vi). This
completes the proof.

Fig. 3. Creating one sketch element from histogram V with cardinality |E| =
5 (i = 1, 2, ..., 5). By computing the hash value ai,j for each i, we select the
histogram element whose hash value is minimal as the sketch element and
also keep its corresponding hash value, i.e., (Sj = 3, Aj = 0.14).

Algorithm 1 Sketch creation
Input: Histogram V , Sketch length K, Parameters r, c and

β
Output: Sketch S and the corresponding hash values A

1: for j=1,2,...,K do
2: Compute yi,j = exp(log Vi − ri,jβi,j)
3: Compute ai,j = ci,j/(yi,j exp(ri,j))
4: Set sketch element Sj = argmini∈E ai,j
5: Set the corresponding hash value Aj = mini∈E ai,j
6: end for
7: return S and A

Proposition 1 ensures the correctness of our sketching
method (i.e., Eq. 4 and 5). In summary, to create sketch S
from V , we first sample the following independent random
variables offline as input parameters: ri,j ∼ Gamma(2, 1),
ci,j ∼ Gamma(2, 1) and βi,j ∼ Uniform(0, 1) for i ∈ E and
j = 1, 2, ...,K. We then use Alg. 1 for sketch creation. Note
that we keep both sketch S and its corresponding hash values
A (the latter will be used for incremental sketch update). Fig.
3 illustrates the sketch creation process for one sketch element
Sj .

C. Incremental Sketch Update

Incremental sketch update requires that a new sketch S(t+
1) can be computed based on the former sketch S(t) (with
its corresponding hash values A(t)), the incoming histogram
element xt+1, and the gradual forgetting weight decay factor
λ. Specifically, when a new histogram element is received
from the data stream, the weights of all existing elements
of the histogram evolve by a factor of e−λ (as shown in
Fig. 2), which results in a uniform scaling of V . One of the
two key properties of our sketch created by Alg. 1 is that it
is invariant under uniform scaling of V , which allows us to
perform the scaling by quickly adjusting A only. Afterwards,
the new sketch S(t+1) can be computed based on the adjusted
sketch S(t) (with A(t)) and the incoming histogram element
xt+1. In the following, we first present the uniform scaling
invariance property of our sketch, and then the incremental
update process.

Proposition 2. If sketch S (with its corresponding hash values
A) is created for V using Alg. 1, then for any positive constant
γ, S remains the sketch for γV with the corresponding hash
values 1

γA.

Proof. Alg. 1 computes a sketch element S′j for γV as follows
(we ignore the subscript (i, j) of r, β and c in the following
proof):

y′i,j = exp(log(γVi)− rβ) = γ exp(log Vi − rβ) = γyi,j

(13)

a′i,j =
c

γyi,j exp(r)
=

1

γ
· c

yi,j exp(r)
=

1

γ
ai,j (14)

S′j = argmin
i∈E

(
1

γ
ai,j

)
= argmin

i∈E
ai,j = Sj (15)

A′j = min
i∈E

1

γ
ai,j =

1

γ
min
i∈E

ai,j =
1

γ
Aj (16)

This completes the proof.

Proposition 2 implies that our sketching method actually
approximates the normalized min-max similarity, as the sum-
to-one normalization is indeed a uniform scaling. More impor-
tantly, it serves as a basis for our incremental sketch update
process, which works as follows (for one sketch element Sj):

Step I. When a new histogram element xt+1 = i′ is
received, we scale V (t) by a factor of e−λ, and
adjust the sketch according to Proposition 2, i.e.,
Sj(t) and Aj(t) · eλ.

Step II. We add the incoming histogram element i′ to the
scaled histogram1, i.e., Vi′(t+1) = Vi′(t) · e−λ+1
if i′ ∈ E . In case of i′ /∈ E , we add i′ to E and
expand V to include Vi′(t + 1) = 1. Afterwards,
we need to recompute only the hash value for i′,
i.e., ai′,j .

Step III. By comparing the new hash value ai′,j with the
adjusted hash value Aj(t) ·eλ, we update the sketch
Sj(t+ 1), Aj(t+ 1) as follows:

Sj(t+ 1) =

{
i′, if ai′,j < Aj(t) · eλ

Sj(t), otherwise
(17)

Aj(t+ 1) =

{
ai′,j , if ai′,j < Aj(t) · eλ

Aj(t) · eλ, otherwise
(18)

Fig. 4 illustrates the incremental sketch update process
following the previous example shown in Fig. 3.

D. Implementation Details

Our incremental sketch update process requires to access
the former histogram V (t) in order to compute V (t+ 1). To
maintain such a streaming histogram V of an ever-increasing
size, we propose an extended count-min sketch model. Specifi-
cally, the classical count-min sketch [24] is a fixed-sized prob-
abilistic data structure Q (d rows and g columns) serving as a

1The newest histogram element has weight 1 as wt = e−λ(tn−t), where
t = tn is the order of the latest histogram element received from the stream,
and thus wt = e0 = 1.

Fig. 4. An example of incrementally updating one sketch element. I). Accord-
ing to the scaling of the histogram, we keep the sketch invariant Sj(t) = 3,
and adjust its hash value from Aj(t) = 0.14 to Aj(t)·eλ = 0.147 (λ = 0.05
in this example). II). By adding the incoming histogram element xt+1 = 2
(2 ∈ E) to the scaled histogram, we recompute only the hash value for
i = 2, i.e., a2,j = 0.142. III). By selecting the minimum hash value between
Aj(t) · eλ = 0.147 and a2,j = 0.142, we update Sj(t + 1) = 2 and
Aj(t+ 1) = 0.142.

frequency table of streaming elements. It uses d independent
random hash functions hl (l = 1, 2, ..., d) to map streaming
elements onto a range of 1, 2, ..., g (counters). Every time a
new element i is received, for each row l, its hash function
hl is applied to i to determine a corresponding column hl(i),
and then the counter Ql,hl(i) is increased by 1. To get the
estimated frequency at time t, the corresponding hash function
is applied to i to look up the corresponding counter for each
row. The estimate is then returned as the minimum of all the
probed counters across all rows, i.e., Vi(t) = minlQl,hl(i).
The estimated frequency error is guaranteed [34] to be at most
2
g with probability 1− (12)

d.
In our case of streaming histogram with gradual forgetting

weights, the cumulative frequency (weights) of all historical
histogram elements is scaled with a factor e−λ (i.e., V (t)·e−λ)
every time a new element is received from the data streams.
Therefore, we extend the above count-min sketch method to
consider such decay weights as follows: before adding every
new element from the data stream, we uniformly scale all
counters across all rows by that factor, i.e., Q(t) · e−λ, and
keep the following steps unchanged. In such a way, for any
histogram element i, its estimated weighted cumulative count
Vi(t) is also scaled to minlQl,hl(i)(t)·e−λ = e−λ·Vi(t), which
corresponds exactly to Step I in our sketch update process.
In addition, it is easy to see that the estimated error does
not change under this extension, as a uniform scaling does
not affect the data structure itself. In this study, we set the
parameters d = 10, g = 50 to guarantee an error of at most
4% with probability 0.999.

E. Time and Space Complexity Analysis

Time. Since our sketches are incrementally maintained, we
discuss the time complexity for each incoming histogram ele-
ment from the data streams. Specifically, to update a sketch of
length K, we perform our incremental sketch update process
for all K sketch elements, which takes O(K) time. In addition,
we also need to retrieve/update the corresponding count-min
sketch Q (with d rows), which takes O(d) time. The total
time complexity for updating one histogram element is hence
O(K + d).

Space. Each streaming histogram is represented by a sketch
of length K taking O(K) space. For the incremental sketch
update purpose, we store the raw streaming histogram V in
a count-min sketch data structure (d rows and g columns)
taking O(dg) space. Subsequently, the total space complexity
is O(K + dg) for one streaming histogram.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate HistoSketch on multiple classifi-
cation tasks using both synthetic and real-world datasets. In the
following, we first present our experimental setup, followed by
the results on both types of datasets.

A. Experimental Setup

To evaluate the performance of our similarity-preserving
sketches, we perform classification tasks based on these
sketches in difference scenarios. Specifically, based on labeled
streaming histograms, we try to classify those histogram
instances without labels. We use a KNN classifier [35] which
can always take the most up-to-date training data (sketches)
for classification. Such a property fits our case of classifying
streaming histograms with continuously incoming histogram
elements, where the sketches are continuously updated accord-
ingly. We empirically set KNN to consider the five nearest
neighbors. We consider the following evaluation scenarios:

Synthetic Dataset. Synthetic data is widely used in studying
concept drift adaptation [19], [36]. The advantage is that we
can simulate different cases of concept drift in streaming
histograms with controllable parameters. Typical methods of
simulating data streams with concept drift often use a moving
hyperplane to generate a stream of complete data instances
[36]. However, it cannot be directly adopted for streaming
histograms, as the elements of a histogram are observed
in a streaming manner. Therefore, we design our own data
simulation method. Specifically, we consider two Gaussian
distributions N (100, 20) and N (110, 20) representing two
classes of histograms, respectively. The streaming histogram
elements are then generated as the nearest integers of the
random numbers sampled from those distributions. For each
class, we simulate 500 histograms with 1000 elements each.
We then split the 500 histograms to 50%-50% for training
and the testing, respectively. The histogram elements are
generated in a random order. To simulate concept-drift issues,
we consider both abrupt and gradual drift cases [19] in testing
data.

Fig. 5. Probability of streaming histogram elements generated from its initial
distribution for the synthetic dataset.

• For abrupt drift, starting from 25% of streaming his-
togram elements, the testing data of one distribution
abruptly starts to receive the histogram elements gener-
ated from the other distribution, and also changes their
labels immediately.

• For gradual drift, from 25% to 35% of streaming his-
togram elements, the testing data of one distribution grad-
ually starts to receive the histogram elements generated
from the other distribution with an increasing probability
(from 0 to 1). The labels of the testing data also change
gradually from one class to the other, i.e., from 0% to
100%.

Fig. 5 shows the probability of streaming histogram el-
ements generated from its initial distributions. Note that it
is complementary to the probability of histogram elements
generated from the other distribution.

POI Dataset. Our sketching method can be applied to solve
the problem of semantic place labeling [8], where we want to
infer a place’s category (e.g., supermarket or bar) based on its
customers’ visiting patterns (i.e., the streaming histogram of
its customers’ visits). The basic intuition is that POIs of the
different type usually have different temporal visiting patterns,
e.g., bars are mostly visited during the night while museums
are often visited during the daytime. Previous studies have
shown that considering user-time pairs as histogram elements
(i.e., fine-grained visiting patterns) yields much higher accu-
racy than considering only time (i.e., coarse-grained visiting
patterns) [8]. We thus consider fine-grained patterns in the
following. Specifically, for one user’s visit to a POI, we first
map the visiting time onto one of the 168 hours in a week
period (discretization of time), and then consider the user-time
pair as a histogram element. With a large and continuously
increasing number of users over time, the cardinality of the
streaming histogram rapidly increases. More importantly, the
visiting pattern of a POI may change both abruptly (e.g.,
caused by the change of POI type) and gradually (e.g., caused
by the introduction of new menu items in a restaurant).

To evaluate our method using this task, we use a dataset
from Foursquare provided by [22], [37]. The dataset contains
user check-in data on POIs for about two years (from April
2012 to March 2014). Each check-in records one visit of a
user to a POI (with the associated category) at a certain time.
We randomly select 20% of the POIs as unlabeled testing
data and regard the rest as training data. The classification
is performed at the end of each month on the second year (in

TABLE I
POI DATASET STATISTICS

Dataset New York City
(NYC)

Tokyo
(TKY)

Istanbul
(IST)

Number of check-ins 142,495 494,702 292,771
Number of POIs 3,174 2,993 3,120
Number of users 12,798 9,160 15,479

order to avoid too few check-ins for some POIs during the
first year). The categories (labels) of POIs in the dataset are
classified by Foursquare into 9 root categories (i.e., Arts &
Entertainment, College & University, Food, Great Outdoors,
Nightlife Spot, Professional & Other Places, Residence, Shop
& Service, Travel & Transport), which are further classified
into 291 sub-categories2. Without loss of generality, we select
three big cities, New York City, Tokyo and Istanbul, for our
experiments. Table I summarizes the main characteristics of
our dataset.

B. Performance on Synthetic Dataset

As the main purpose of HistoSketch is to efficiently approx-
imate similarities for streaming histograms with concept drift,
our experiments focus on how well it can approximate the
similarity (considering the impact of the sketch length K),
and how fast it can adapt to concept drift (considering the
impact of the weight decay factor λ) in different scenarios.

1) Impact of sketch length K: The sketch length K in-
fluences how well the sketch can approximate the similarity
with the original data. In this experiment, by fixing the gradual
forgetting weight decay factor λ = 0.02, we vary the sketch
length K within [20, 50, 100, 200, 500, 1000] to investigate the
performance of our method. We also compare our method with
the following two methods that keep the full histograms in
memory:
• Histogram-Classical where the histogram’s elements are

unweighted.
• Histogram-Forgetting where the elements are assigned

gradual forgetting (exponential decay) weights.
Fig. 6 shows the classification accuracy over time (number

of streaming elements per histogram) for both abrupt and grad-
ual drift. First, compared to Histogram-Classical that slowly
adapts to concept drift, Histogram-Forgetting shows fast adap-
tation for both cases. In the case of abrupt drift, for example,
accuracy recovers after 700 and 400 elements for Histogram-
Classical and Histogram-Forgetting, respectively. Second, His-
toSketch can also quickly adapt to concept drift, showing
similar adaptation speed as that of Histogram-Forgetting (i.e.,
accuracy recovers after 400 streaming histogram elements).
Moreover, we find that the sketch length K has no obvious
impact on the adaptation speed, which is actually controlled by
the gradual forgetting weight decay factor λ (we will discuss
this in the next experiment). Finally, we observe a positive
impact of sketch length K on the classification accuracy, i.e.,
larger values of K imply a higher accuracy, as longer sketches

2https://developer.foursquare.com/categorytree

(a) Abrupt drift

(b) Gradual drift

Fig. 6. Impact of sketch length K.

can preserve more information and thus better approximate
the similarities of the Histogram-Forgetting. The accuracy
flattens out after K = 500 (HistoSketch with K ≥ 500 are
highly overlapped with Histogram-Forgetting), indicating that
a sketch of length 500 is sufficient for accurate similarity
approximation.

2) Impact of weight decay factor λ: The weight de-
cay factor λ balances the trade-off between the concept
drift adaptation speed and the similarity approximation per-
formance. In this experiment, by fixing the sketch length
K = 100, we vary the weight decay factor λ within
[0, 0.005, 0.01, 0.02, 0.05, 0.1] to investigate the performance
of our method. We also compare our method with Histogram-
LatestK where the histogram is built with the latest K his-
togram elements from the stream, which is a typical method
for abrupt forgetting (i.e., sliding window based concept-drift
adaptation) [17]. It can also be regarded as a sketching method
in the sense that the latest K histogram elements (unweighted)
are the sketches to represent the histogram. We set the same
sketch length K = 100 for Histogram-LatestK.

Fig. 7 shows the classification accuracy over time in both
cases of abrupt and gradual drift. First, by comparing the
results of different weight decay factors, we observe clearly
the trade-off between the concept drift adaptation speed and
classification accuracy. On one hand, larger λ values imply
faster adaptation to concept drift, as the algorithm quickly for-
gets outdated data (i.e., it puts lower weights on the outdated
data). On the other hand, larger values of λ lead to lower
classification accuracy, as the algorithm uses less information
from former histogram elements for sketching, which leads to
worse similarity performance. Second, we find that Histogram-
LatestK shows comparable results, i.e., its adaptation speed is
faster than HistoSketch-λ-0.02 and slower than HistoSketch-

(a) Abrupt drift

(b) Gradual drift

Fig. 7. Impact of weight decay factor λ.

λ-0.05 while its accuracy is lower than HistoSketch-λ-0.02
and higher than HistoSketch-λ-0.05. Despite such similar
results, there are two obvious advantages of our methods: 1)
HistoSketch is able to balance the adaptation speed and the
accuracy under fixed-size sketches while Histogram-LatestK
needs to vary sketch length K to tune such trade-off; 2)
our method is much faster in similarity computation than
Histogram-LatestK, as the latter requires set operations while
HistoSketch only relies on Hamming distance. For example,
to classify one histogram using our testing PC3, our method
needs only 13ms while Histogram-LatestK takes 133ms, which
shows a 10x speedup.

C. Performance on POI Dataset

To evaluate our method in the semantic place labeling
task, we first compare it with state-of-the-art approaches, and
then show its classification accuracy over time, followed by
its runtime performance. We focus on the tradeoff between
classification time and accuracy, and show that our sketches
can dramatically reduce the classification time with only a
small loss in accuracy.

1) Comparison with other methods: We compare HistoS-
ketch with the following methods:
• Histogram-Coarse: Discretized time slots (168 hours in a

week, i.e., coarse-grained visiting patterns) are considered
as histogram elements [7];

• Histogram-Fine-Classical: User-time pairs (i.e., fine-
grained visiting patterns) are regarded as histogram el-
ements (unweighted) [8];

• Histogram-Fine-LatestK: Histogram-Fine with only lat-
est K histogram elements;

3Intel Core i7-4770HQ@2.20GHz, 16GB RAM, Mac OS X, implementa-
tion using MATLAB v2014b

Fig. 8. Comparison with other methods

• Histogram-Fine-Forgetting: Histogram-Fine with grad-
ual forgetting weights (λ is empirically set to 0.01);

• POISketch: POISketch is a state-of-the-art sketching
method to approximates Histogram-Fine-Classical [8],
which is equivalent to our HistoSketch with λ=0 (giving
equal weights to all histogram elements);

• HistoSketch: Approximation of Histogram-Fine-
Forgetting (λ=0.01).

The sketch length K is empirically set to 100 for all related
methods.

Fig. 8 plots the average classification accuracy over 12
months for all datasets on two-level POI categories. First,
we observe that Histogram-Coarse has the worst accuracy, as
coarse-grained visiting patterns can only capture the temporal
dynamics of POIs. Second, based on fine-grained visiting pat-
terns, Histogram-Fine-Forgetting yields the highest accuracy,
showing the effectiveness of considering gradual forgetting
weights on streaming histogram elements. Third, our His-
toSketch also outperforms POISketch by considering gradual
forgetting weights in the sketching process. In particular,
HistoSketch can efficiently approximate the similarity with
only a small loss of classification accuracy (e.g., about 3.5%
for root POI categories on the NYC dataset) compared to
Histogram-Fine-Forgetting. Finally, HistoSketch also outper-
forms Histogram-Fine-LatestK, showing the effectiveness of
gradual (rather than abrupt) forgetting of historical data in the
semantic place labeling task.

2) Classification accuracy over time: In this experiment,
we study the classification accuracy of our method over time.
In addition to the randomly selection strategies of testing POIs,
we further consider only the POIs with category changes as
testing data, as the change of POI categories will likely lead
to concept drift (particularly of the abrupt kind). We keep the
same parameter setting as in the previous experiment.

Fig. 9(a) shows the classification accuracy for each of the
12 testing months on the NYC dataset with the 9 root levels of
POI categories (Experiments on the other datasets and on the
291 sub-categories show similar results). We observe that the
accuracy slightly increases over time with the accumulated
histogram elements, as observing more histogram elements
leads to more accurate similarity measurement of stream-

(a) Random testing POIs (b) Category-changing POIs

Fig. 9. Classification performance over time

ing histograms. Compared to POISketch that approximates
Histogram-Fine-Classical, our HistoSketch achieves consis-
tently higher accuracy by efficiently approximating Histogram-
Fine-Forgetting.

Fig. 9(b) shows the same results on the testing POIs with
category changes only. We observe a larger improvement of
our method over POISketch than that in Fig. 9(a), which
further shows the effectiveness of our method at handling
concept drift. Note that as opposed to the synthetic dataset,
we do not observe any sudden drop of accuracy, as sets of
POIs rarely change their types simultaneously.

3) Runtime performance: In this experiment, we investigate
the runtime performance of both sketch-based classification
and HistoSketch maintenance. More precisely, we evaluate
both the classification time and the streaming histogram pro-
cessing speed of our method w.r.t. sketch length K (as the
time complexity of maintaining HistoSketch mainly depends
on the sketch length K).

Fig. 10(a) plots the KNN classification time (log scale) on
our test PC3. We observe that compared to the full histograms
(Histogram-Fine-Forgetting), using HistoSketch dramatically
reduces the classification time (with a 7500x speedup), since
the Hamming distance between sketches of size K (e.g.,
K=100 in previous experiments) can be much more efficiently
computed than the normalized min-max similarity between
the full histograms of much larger size |E| (e.g., |E|=2M for
the NYC dataset). This also indicates that our sketches take
significant less memory to maintain. Compared to Histogram-
Fine-LatestK, our method also shows a 15x speedup, as
Histogram-Fine-LatestK requires set operations for similarity
computation.

Fig. 10(b) shows the processing speed of streaming his-
togram elements. We observe that our method is able to pro-
cess histogram elements at high velocity, i.e., about 2000 per
second for all three datasets. We also find that the processing
speed slightly decreases with increasing sketch lengths, as
longer sketches required a little more time to update. We
believe that such a processing speed can handle most real-
world use cases. For example, Foursquare check-in streams
achieved a peak-day record of 7 million check-ins/day in 2015
(about 81 check-ins/sec on average). In addition, our method
can be easily parallelized w.r.t. the number of histograms (i.e.,
number of POIs), as sketches of streaming histograms are
independently maintained from each other.

(a) Classification time (b) Processing speed

Fig. 10. Runtime performance

VI. CONCLUSION AND FUTURE WORK

This paper introduces HistoSketch, an efficient similarity-
preserving sketching method for streaming histograms with
concept drift. HistoSketch maintains a set of compact and
fixed-sized sketches of streaming histograms to approximate
their normalized min-max similarity. By incrementally up-
dating the sketches with incoming histogram elements, our
method can gradually forget outdated elements and thus
gracefully adapt to concept drift. Based on both synthetic
and real-world datasets, our empirical evaluation showed both
the efficiency and the effectiveness of our method for simi-
larity approximation and concept drift adaptation. Compared
to full streaming histograms with gradual forgetting weights
in particular, HistoSketch is able to dramatically reduce the
classification time (with a 7500x speedup) at the expense of a
small loss in accuracy only (about 3.5%).

As future work, we plan to further explore the problem of
sketching two-dimensional (bivariate) streaming histograms,
and apply our method to other application domains, such as
for recommendation or community detection.

ACKNOWLEDGMENT

This project has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement
683253/GraphInt).

REFERENCES

[1] O. Chapelle, P. Haffner, and V. N. Vapnik, “Support vector machines for
histogram-based image classification,” IEEE Trans. on Neural Networks,
vol. 10, no. 5, pp. 1055–1064, 1999.

[2] T. Ojala, M. Pietikäinen, and D. Harwood, “A comparative study of
texture measures with classification based on featured distributions,”
Pattern recognition, vol. 29, no. 1, pp. 51–59, 1996.

[3] F. Pereira, N. Tishby, and L. Lee, “Distributional clustering of english
words,” in Proc. of ACL. Association for Computational Linguistics,
1993, pp. 183–190.

[4] L. D. Baker and A. K. McCallum, “Distributional clustering of words
for text classification,” in Proc. of SIGIR, 1998, pp. 96–103.

[5] R. Zafarani and H. Liu, “Connecting users across social media sites: a
behavioral-modeling approach,” in Proc. of KDD, 2013, pp. 41–49.

[6] D. Yang, D. Zhang, Z. Yu, and Z. Wang, “A sentiment-enhanced
personalized location recommendation system,” in Proce. of HT, 2013,
pp. 119–128.

[7] D. Yang, D. Zhang, V. W. Zheng, and Z. Yu, “Modeling user activity
preference by leveraging user spatial temporal characteristics in lbsns,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 45,
no. 1, pp. 129–142, 2015.

[8] D. Yang, B. Li, and P. Cudré-Mauroux, “Poisketch: Semantic place
labeling over user activity streams,” in Proc. of IJCAI, 2016, pp. 2697–
2703.

[9] L. Chen, J. Jakubowicz, D. Yang, D. Zhang, and G. Pan, “Fine-grained
urban event detection and characterization based on tensor cofactoriza-
tion,” IEEE Transactions on Human-Machine Systems, vol. 47, no. 3,
pp. 380–391, 2017.

[10] J. Wang, H. T. Shen, J. Song, and J. Ji, “Hashing for similarity search:
A survey,” arXiv preprint arXiv:1408.2927, 2014.

[11] C. C. Aggarwal and P. S. Yu, “On classification of high-cardinality data
streams,” in Proc. of SDM, 2010, pp. 802–813.

[12] Y. Bachrach, E. Porat, and J. S. Rosenschein, “Sketching techniques for
collaborative filtering,” in Proc. of IJCAI, 2009, pp. 2016–2021.

[13] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher, “Min-
wise independent permutations,” in Proc. of STOC, 1998, pp. 327–336.

[14] M. Mitzenmacher, R. Pagh, and N. Pham, “Efficient estimation for high
similarities using odd sketches,” in Proc. of WWW, 2014, pp. 109–118.

[15] K. Kutzkov, M. Ahmed, and S. Nikitaki, “Weighted similarity estimation
in data streams,” in Proc. of CIKM, 2015, pp. 1051–1060.

[16] P. Li, “0-bit consistent weighted sampling,” in Proc. of KDD, 2015, pp.
665–674.

[17] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A
survey on concept drift adaptation,” ACM Computing Surveys, vol. 46,
no. 4, p. 44, 2014.

[18] I. Koychev, “Gradual forgetting for adaptation to concept drift.” Proc.
of ECAI Workshop, 2000, pp. 101–107.

[19] R. Klinkenberg, “Learning drifting concepts: Example selection vs.
example weighting,” Intelligent Data Analysis, vol. 8, no. 3, pp. 281–
300, 2004.

[20] M. Manasse, F. McSherry, and K. Talwar, “Consistent weighted sam-
pling,” Technical Report MSR-TR-2010-73, 2010.

[21] M. O. Ward, G. Grinstein, and D. Keim, Interactive data visualization:
foundations, techniques, and applications. CRC Press, 2010.

[22] D. Yang, D. Zhang, and B. Qu, “Participatory cultural mapping based on
collective behavior data in location-based social networks,” ACM Trans.
on Intelligent Systems and Technology, vol. 7, no. 3, p. 30, 2016.

[23] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items
in data streams,” in International Colloquium on Automata, Languages,
and Programming. Springer, 2002, pp. 693–703.

[24] G. Cormode and S. Muthukrishnan, “An improved data stream summary:
the count-min sketch and its applications,” J. Algorithms, vol. 55, no. 1,
pp. 58–75, 2005.

[25] Y. Ben-Haim and E. Tom-Tov, “A streaming parallel decision tree
algorithm,” Journal of Machine Learning Research, vol. 11, no. Feb,
pp. 849–872, 2010.

[26] A. Gionis, P. Indyk, R. Motwani et al., “Similarity search in high
dimensions via hashing,” in Proc. of VLDB, vol. 99, no. 6, 1999, pp.
518–529.

[27] B. Li, X. Zhu, L. Chi, and C. Zhang, “Nested subtree hash kernels for
large-scale graph classification over streams,” in Proc. of ICDM, 2012,
pp. 399–408.

[28] S. Ioffe, “Improved consistent sampling, weighted minhash and l1
sketching,” in Proc. of ICDM, 2010, pp. 246–255.

[29] W. Wu, B. Li, L. Chen, and C. Zhang, “Consistent weighted sampling
made more practical,” in Proc. of WWW, 2017, pp. 1035–1043.

[30] A. Tsymbal, “The problem of concept drift: definitions and related
work,” Technical Report TCD-CS-2004-15 Computer Science Depart-
ment, 2004.

[31] Y. Koren, “Collaborative filtering with temporal dynamics,” Communi-
cations of the ACM, vol. 53, no. 4, pp. 89–97, 2010.

[32] R. W. Hamming, “Error detecting and error correcting codes,” Bell Labs
Technical Journal, vol. 29, no. 2, pp. 147–160, 1950.

[33] R. L. Graham, Concrete mathematics: a foundation for computer sci-
ence. Pearson Education India, 1994.

[34] G. Cormode and S. Muthukrishnan, “Approximating data with the count-
min data structure,” IEEE Software, 2012.

[35] T. M. Mitchell, “Machine learning.” pp. I–XVII, 1997.
[36] H. Wang, W. Fan, P. S. Yu, and J. Han, “Mining concept-drifting data

streams using ensemble classifiers,” in Proc. of KDD, 2003, pp. 226–
235.

[37] D. Yang, D. Zhang, L. Chen, and B. Qu, “Nationtelescope: Monitoring
and visualizing large-scale collective behavior in lbsns,” Journal of
Network and Computer Applications, vol. 55, pp. 170–180, 2015.

