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Chapter 1

Introduction

1.1 Background

In the second half of the 18th century, scientists studying the many body problem in ce-
lestial mechanics realised that they could considerably simplify their equations by noting
that the periodic perturbations of the other planets on the earth and sun approximately
cancel out over time. This became later known as the averaging principle[SVM07].

One hundred years later, when Boltzmann was laying the foundations for statistical
mechanics, he noted that the probability of a collection of particles being in a certain
state was closely related to the time a typical particle with a su�ciently long trajectory
spent in that state. This was the beginning of ergodic theory [Von91].

Both ergodic theory and the averaging principle rely on the idea that on a su�ciently
long trajectory perturbations will eventually cancel out. When combined they lead to
stochastic averaging principles, the main topic of this work.

The first main object we will study are integral functionals of the form

ST =

Z T

0
f(t,Xt)dt, f 2 C1

c

where X is a solution to an SDE on Rn with possibly time-dependent coe�cients

dXt = b(t,Xt)dt+ �(t,Xt)dBt, X0 = x

with b(t, x), �(t, x) continuous in t and locally Lipschitz continuous in x, � taking values
in the space of nondegenerate n⇥ n matrices and B being a standard Brownian motion
on Rn.

The second main object are the solutions (X,Y ) to the following SDE on Rn
⇥ Rm:

dX↵
t = ↵bX(X↵

t , Y
↵
t )dt+

p
↵�XdBX

t , X0 = x

dY ↵
t = bY (X

↵
t , Y

↵
t )dt+ �Y dB

Y
t , Y0 = y
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where bX , bY are locally Lipschitz continuous functions from Rn
⇥ Rm to Rn and Rm

respectively, �X , �Y are constant non-degenerate n ⇥ n and m ⇥ m matrices and BX ,
BY standard Brownian motions on Rn and Rm respectively. The parameter ↵ > 0
expresses the “acceleration” of X with respect to Y , which is why the process (X↵, Y ↵)
is interpreted as a two-timescale process.

Both objects share the common property that random fluctuations “average out”. In the
first case, we will develop a novel martingale argument to quantify the distance between
ST and its expectation via concentration inequalities. For the two-timescale process, we
will extend and quantify existing results and introduce a new approach to show that as
↵ ! 1 the slow component Y ↵

t converges to a process Ȳ adapted to BY . This can be
interpreted as the random fluctuations of BX being averaged out, since F

X = �(BX)
provides no additional information on Y ↵ in the limit as ↵ ! 1.

Both the ergodic theorem and the averaging principle have a long history in physics and
engineering, where they are typically used to derive reduced models of complex physical
systems. The values of T and ↵ are imposed by the underlying physics and usually
su�ciently large that the asymptotic results hold with very high precision.

More recently, these ideas have become an important ingredient in computer algorithms.
For example, Stochastic Approximation and Stochastic Gradient Descent [LTE17], nowa-
days arguably the most important algorithms for optimisation and machine learning
problems, are built on the principle that it is possible to optimize an objective by iter-
atively optimizing over randomly perturbed versions of it since the perturbations even-
tually cancel out. The averaging principle underlies multiscale simulation algorithms in
physics [ERV09] and the implementation of important artificial intelligence algorithms
such as actor-critic methods in reinforcement learning [Bha+09] and generative adver-
sarial neural networks. What these problems have in common is that T and ↵ become
tuneable parameters, which should be chosen as small as possible since the running time
of the algorithms increases with T and ↵. A quantitative, non-asymptotic understand-
ing of both the ergodic theorem and the averaging principle now becomes essential for
guiding the choice of T and ↵ in practical situations.

The next subsection in this introductory chapter will elaborate on the application of
averaging to the simulation of two-timescale systems by presenting in more detail mul-
tiscale methods and the Temperature-Accelerated Molecular Dynamics method.

The first part of Chapter 2 contains a presentation of the state of the art for concentration
inequalities for functionals like St in the time-homogeneous case. The main purpose is
to anchor the results from Chapter 3 and show that they can lead to new mathematical
results, since such concentration inequalities are their most direct application. The
second part of Chapter 2 gives a short taxonomy of di↵erent approaches to the averaging
principle and serves to establish a context for Chapter 4 which presents a new approach
to the Averaging Principle.

The first main contribution of this work is in Chapter 3, where we show that for T fixed
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the time average ST defined above can be decomposed as

ST = EST +

Z T

0

Z T

t
rPt,sf(Xt)ds · �(t,Xt)dBt

where
Pt,sf(x) = E[f(s,Xs)|Xt = x], t  s

is the transition operator associated to X. In the time-homogeneous case Pt,s = Ps�t is
the familiar one-parameter semigroup associated to X.

To the author’s knowledge, this is the first time that functionals such as ST have been
systematically studied beyond the time-homogeneous setting. It is also the first time
that the martingale part in the martingale representation theorem for ST is explicitly
investigated via di↵erentiation formulas for 2-parameter Markov semigroups.

In particular, when there exist positive constants C and � such that rPt,sf  Ce��(s�t)

for all s 2 [t, T ] then we get a Gaussian concentration inequality for ST .

Chapter 3 concludes with an application of the martingale representation above to av-
eraging.

The proof of the decomposition in Chapter 3 is elementary and we now give a quick
preview. The decomposition follows in fact directly from the application of Itô’s formula
to

RT
t f(x) =

Z T

t
Pt,sf(x)ds

together with the observation that

(@t + Lt)R
T
t f(x) = �f(t, x), x 2 Rn, t  T

so that
f(t,Xt)dt = �dRT

t f(Xt) +rRT
t f(Xt) · �(t,Xt)dBt.

This gives the martingale representation shown above for ST since RT
T = 0. As a special

case, this result also includes the well-known argument based on Poisson equations in
the time-homogeneous ergodic setting. If Ps,t = Pt�s then for a bounded continuous
function f(x) on Rn, centered with respect to the invariant measure, we can let T go to
1 and �LR1

t (f � µ(f)) = f � µ(f) for arbitrary t > 0, where L is the generator and
µ the invariant measure.

The second main contribution is Chapter 4. It describes a new approach to the averaging
principle, based on freezing the whole trajectory of the slow process. In a first step, we
show how the mutual interaction of feedback between X↵ and Y ↵ can be broken. Then
we condition on a trajectory of the slow process, and due to the previous decoupling
operation we can study X↵ as a time-inhomogeneous di↵usion process for each fixed
value of Y ↵

2 C([0, T ],Rm). Finally we integrate over all values of Y ↵ to obtain the
result. In the process, we need to estimate a functional of the form of ST , which we
do using a forward-backward martingale argument under the assumption of a Poincaré
inequality holding for all time marginals of X↵.
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1.2 Applications of Averaging

Averaging methods are well established in the analysis and control of physical systems
in the engineering and natural sciences. In fact, many physical systems exhibit a natural
hierarchy of timescales where some components change slowly while others evolve rapidly.
The physical timescales often di↵er by several orders of magnitude, so that asymptotic
results can be used to derive approximate models of the phenomena under investigation.
Experiments can then validate and complete these reduced models. Typical examples
in the natural sciences include physico-chemical systems such as large molecules, where
physical processes often operate on timescales of femtoseconds (10�15 s) whereas chemical
properties evolve on a timescale of milliseconds (10�3 s). In fact, the 2013 Nobel prize in
chemistry was awarded for the development of multiscale models for complex chemical
systems. Examples in the engineering sciences include the longitudinal movements in
airplane dynamics, which exhibit fast short-period and slow phugoid oscillations, and
the control of a DC-Motor [KKO99].

As computers became more powerful, there has been a growing interest in the simulation
of complex systems with multiple timescales, the prototypical example being molecular
dynamics simulations of large macromolecules such as proteins. The underlying challenge
is that the timestep of the numerical integration is dictated by the fastest timescale in the
system, so that simulations of extended time periods become prohibitively expensive. In
situations where there is a clear separation into fast and slow degrees of freedom, many
numerical methods have been proposed for approximating the evolution of the slow
degrees of freedom without resorting to a complete simulation of the fast components.
A popular approach proceeds by an alternance of slow and fast steps. In each fast step,
the fast degrees of freedom are evolved until they reach stationarity while keeping the
values of the slow coordinates frozen. The slow steps then evolve the slow degrees of
freedom with the value of the fast components replaced by their stationary values. This
corresponds in some sense to a numerical simulation of the approximation used in the
proof of the averaging principle in Section 2.2.2.

Another approach keeps the original dynamics, except that the fast dynamics are now
slowed down by a certain factor which is such that the dynamics of the slow variables
remains intact while significantly increasing the step size of the simulation, and thus
decreasing the number of steps necessary for a given accuracy. In order to determine
how much we can slow down the fast dynamics, it is crucial to have a quantitative un-
derstanding and non-asymptotic understanding of the averaging principle. See [ERV09]
for more complete descriptions and further references on the methods described in this
and the previous paragraph.

A similar principle can be used when the coordinates can not be clearly separated ac-
cording to their timescale, but we are only interested in the approximate dynamics of
certain macroscopic quantities. This method, called Temperature-Accelerated Molecular
dynamics (TAMD), was the original motivation for this work and is described in more
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detail in the next section. Here too, we have to choose the magnitude of the separation
between the timescales.

In a di↵erent spirit, averaging also plays an important role in stochastic approximation
algorithms such as stochastic gradient descent. In particular, when considering a varia-
tion of stochastic gradient descent for two-stage optimisation problems, we are again in
a situation where we have to choose the separation of timescales so that it is important
to have quantitative results on averaging.

1.2.1 Simulation

In this section we will take a brief look at the heterogeneous and seamless multiscale
methods for simulating systems with disparate timescales as described in [ERV09].

For concreteness, suppose that the system we want to simulate is described by an SDE
of the form

dX↵
t = ↵bX(X↵

t , Y
↵
t )dt+

p
↵dBX

t , X0 = x

dY ↵
t = bY (X

↵
t , Y

↵
t )dt+ dBY

t Y0 = y

with BX , BY standard Brownian motions on Rn and Rm respectively, ↵ > 0 and bX , bY
bounded Lipschitz continuous functions.

A standard Euler-Maruyama numerical scheme with step size � is: For k = 1 . . . N set

Xk+1 = Xk +�↵bX(Xk, Yk) +
p

�↵NX
k

Yk+1 = Yk +�bY (Xk, Yk) +
p

�NY
k

withNX
k , NY

k sequences of standard independent n- andm-dimensional normal variables.
From the expression for Xk we can see that in order to keep a fixed approximation error
as ↵ increases, we need to choose � on the order of 1/↵, meaning that the number of
simulation steps N needed to simulate (X,Y ) on a fixed time intervals is of order ↵.

For y 2 Rm let Xy be the solution to

dXy
t = bY (Xt, y)dt+ dBX

t

and suppose that Xy has a stationary measure µy. By the averaging principle as ↵ ! 1

Y ↵ converges in probability to Ȳ solution to

dȲt = b̄(Ȳt)dt+ dBY
t , b̄(y) =

Z
bY (x, y)µ

y(dx).

This observation leads to the following numerical scheme for directly simulating Ȳ : For

8



k = 1 . . . N and i = 1 . . .M set

Xk
i+1 = Xk

i + �bX(Xk
i , Yk) +

p

�NX
k,i, Xk

1 = Xk�1
M

b̄k =
MX

i=1

bY (X
k
i , Ȳk)

Ȳk+1 = Ȳk +�b̄k +
p

�NY
k .

The total number of simulation steps is of order NM , where N can be much smaller
than for the Euler-Maruyama scheme when ↵ is large and M depends on how fast Xy

converges to equilibrium.

The idea behind the seamless multiscale method is the following: Our goal is to numer-
ically approximate a trajectory of Y ↵ where the approximation error is at most c with
probability of at least 1� ". Suppose that for c fixed we know a continuous decreasing
function F such that for all ↵

P(sup|Y ↵
t � Ȳt| > c/2) < F (↵).

Then when ↵ is su�ciently large we can choose � < ↵ such that for given " > 2F (↵)

P(sup|Y ↵
t � Y �

t | > c) < ".

because

P(sup|Y ↵
t � Y �

t | > c)  P(sup|Y ↵
t � Ȳt| > c/2) + P(sup|Y �

t � Ȳt| > c/2)  F (↵) + F (�)

so that we can choose � < ↵ such that F (�) = " � F (↵). Now we can use an Euler-
Maruyama scheme forX� , Y � which requires a number of simulation steps N on the order
of �. We will see later that F (↵) is usually on the order of 1/

p
↵. If F (↵) = K/

p
↵,

then � = ("/K � 1/
p
↵)�2 and the acceleration relative to the Euler-Maruyama scheme

for X↵ is ↵/� = (
p
↵"/K � 1)2 = O(↵).
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1.2.2 TAMD

Following [MV06] (see also [SV17]) consider the TAMD (Temperature-Accelerated Molec-
ular Dynamics) process (Xt, Yt) and its averaged version Ȳt defined by

dX↵
t = �↵rxU(X↵

t , Y
↵
t )dt+

p
↵
p

2��1dBX
t , X0 ⇠ e��U(x,y0)dx

dY ↵
t = �

1
�̄(Y

↵
t � ✓(X↵

t ))dt+

q
2(�̄�̄)

�1
dBY

t , Y0 = y0

dȲt = b̄(Ȳt)dt+

q
2(�̄�̄)

�1
dBY

t , Ȳ0 = y0

U(x, y) = V (x) + 
2 |y � ✓(x)|2,

b̄(y) = Z(y)�1
Z

��̄�1(y � ✓(x))e�

2 |y�✓(x)|2e�V (x)dx,

Z(y) =

Z
e�


2 |y�✓(x)|2e�V (x)dx

with Xt 2 Rn, Yt, Ȳt 2 Rm, Lipschitz-continuous functions V (x) and a map ✓(x) =
(✓1(x), . . . , ✓m(x)), constants ,↵,�, �̄, �̄ > 0 and independent standard Brownian mo-
tions BX , BY on Rn and Rm.

By the averaging principle in [PV03] Y ↵ converges weakly to Ȳ on the space of trajec-
tories.

Let µ(dx) = e��V (x)dx, ⌫(dy) = ✓#µ(dy) be the image measure of µ by ✓ and ⌫ =
⌫ ⇤ N(0,�1) be the convolution of ⌫ with a centered Gaussian measure with variance
�1. Suppose that ⌫ = e�W (y)dy. It can be shown that

b̄(y) = ryW (y).

This means that Ȳ is a reversible di↵usion process with invariant measure e��̄W (y), and so
is Y ↵ in the limit ↵ ! 1. In particular, if we choose �̄ small then the “energy landscape”
is flattened out and the mixing properties of Ȳ are improved. The key for applications
in molecular dynamics is now that µ is still the energy landscape corresponding to V at
the original temperature �, and so the trajectories of Ȳ can provide some insights on
the topography of V at �.
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Chapter 2

Concentration Inequalities and

Averaging Principle

2.1 Concentration Inequalities

The next chapter presents a novel approach for studying functionals of the form

St :=

Z t

0
f(s,Xs)� Ef(s,Xs)ds.

The goal of this section is to build up some context for these results from a well-studied
particular case. This case is that of an ergodic Markov process X with stationary
measure µ. When f is independent of time and the initial measure of X is µ, then St/t
takes the form

1

t

Z t

0
f(Xs)ds�

Z
f(x)µ(dx). (2.1.1)

It is well-known from ergodic theory that this quantity goes to 0 as t ! 1. In the first
subsection, we will review a classical method based on Poisson equations that can be
used to obtain some quantitative estimates for (2.1.1) in the limit as t ! 1. In the next
two subsections we summarize known results on upper bounds for quantities of the form

P
✓
1

t

Z t

0
f(Xs)ds� µ(f) � R

◆
.

2.1.1 Ergodic Theory and Poisson Problems

Consider a Markov di↵usion process Xt on Rn with generator (L,D(L))

Lf(x) = b(x) ·rf(x) +�f(x), f 2 D(L)

11



where b is locally Lipschitz continuous. Suppose that Xt has a unique invariant proba-
bility measure µ such that

Z
Lfdµ = 0 for all f 2 D(L).

Assume furthermore that X is ergodic: For every f 2 D(L), Lf = 0 implies that f is
constant. Then it is well known that for bounded measurable f

1

T

Z T

0
f(Xt)dt !

Z
fdµ (2.1.2)

a.s. for every initial distribution of X [Kal02, Theorem 20.21].

A common method of analysing functionals such as the left-hand side of (2.1.2) is via a
solution to the Poisson problem. We say that a function g solves the Poisson problem
on Rn for L and f if for all x 2 Rn

� Lg(x) = f(x)� µ(f). (2.1.3)

We will see below su�cient conditions on L and f that give existence and uniqueness of
a bounded solution g with bounded first derivative.

Now fix a function f such that g solves the Poisson problem associated to L and f such
that g is bounded with bounded first derivative. Then by Itô’s formula

g(XT ) = g(X0) +

Z T

0
Lg(Xt)dt+Mg

T

where Mg is a continuous local martingale with quadratic variation dhMg
it = |rg|2dt.

Rearranging and using that �Lg = f � µ(f), we get

Z T

0
f(Xt)� µ(f)dt = g(X0)� g(XT ) +Mg

T .

This leads to the following estimate on the L2 distance between 1
T

R T
0 f(Xt)dt and

R
fdµ:

E
����
1

T

Z T

0
f(Xt)dt�

Z
fdµ

����
2

 2
E |g(X0)� g(XT )|

2

T 2
+ 2

EhMg
iT

T 2
 8

kgk21
T 2

+ 2
krgk21

T
.

We also have the well-known resolvent formula for g = (�L�1)(f � µ(f)):

g(x) =

Z 1

0
Ef(Xt)� µ(f)dt. (2.1.4)

At the time of this writing, the most general results on existence and uniqueness to
solutions to the Poisson equation can be found in [PV01]. They also give some bounds
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on the growth rate of the solutions. The next two propositions, which are simplified
versions of the more general theorems found in the reference, give the flavour of the
results available.

They are stated in the context of a second order partial di↵erential operator (L,D(L))

Lf(x) = b(x) ·rf(x) +�f(x), f 2 D(L)

where b is a locally bounded Borel vector function.

Proposition 2.1.1. Suppose that b satisfies the recurrence condition

b(x) · x  �r|x|↵, |x| > M0

with M0 � 0, ↵ > 0 and r > 0. Suppose that f 2 L1(µ) is such that |f(x)|  C1+C2|x|�

for some positive constants C1, C2 and � � 0. Then the resolvent formula (2.1.4) defines
a continuous function g which is a solution to the Poisson problem (2.1.3) for L and f .

Proposition 2.1.2. Assume that the conditions of Proposition 2.1.1 are in force.

• If there exists C > 0 and � < 0 such that

|f(x)|  C(1 + |x|)�+↵�2

then g is bounded.

• If there exists C > 0 and � > 0 such that

|f(x)|  C(1 + |x|)�+↵�2

then there exist positive constants C 0, C 00 such that

|g(x)|  C 0(1 + |x|)�+↵�2

and
|rg(x)|  C 00(1 + |x|�+↵�2 + |x|�).

Although the previous results give existence and growth rate for solutions to a large
class of instances of the Poisson problem, they provide no information on the constants
involved.

If we restrict to the class of Poisson problems where the right-hand side f is Lipschitz
continuous and the operator L satisfies a certain dissipativity condition, we can get
some explicit estimates on the solutions in terms of an auxiliary function (r). With
the same operator (L,D(L)) as above, suppose that the invariant measure µ is such thatR
|x|2dµ < 1. Define (r) as

(r) = inf
|x�y|=r

⇢
�
(x� y) · (b(x)� b(x))

|x� y|

�

13



so that
(x� y)

|x� y|
· (b(x)� b(x))  �(|x� y|)

for all x, y 2 Rn. Let

kfkLip = sup
x 6=y

|f(x)� f(y)|

|x� y|
.

Then we have the following result from [Wu09] Theorem 1.1 and Remark 3.5:

Proposition 2.1.3. Suppose that

cL =

Z 1

0
re�

R r
0 (s)dsdr < 1.

Then for a Lipschitz function f , the resolvent formula (2.1.4) defines a Lipschitz con-
tinous function g that solves the Poisson problem for L and f on Rn and we have the
bound

kgkLip  cLkfkLip.

The following result from [CCG12, Corollary 3.2] gives an idea on the convergence rates
of X to stationarity that are necessary in order for solutions to the Poisson equation to
exist:

Proposition 2.1.4. Let
L = �rV ·r+�

for a smooth function V on Rn and denote Pt the associated semigroup. For f 2 L2(µ)
such that

R
fdµ = 0 we have f 2 D(L�1) i↵

Z 1

0
kPsfk

2
L2(µ)ds < 1

and in this case the Poisson equation has a unique solution g given by (2.1.4).

2.1.2 From Functional to Concentration Inequalities

Consider a stationary ergodic continuous-time Markov process Xt on a Polish space X

with invariant measure µ and semigroup Pt. Assume that Pt is strongly continuous on
L2(µ) and denote L its generator with domain D2(L) in L2(µ).

We will start with some results that apply both to reversible and non-reversible processes.
For that, we need to assume that the quadratic form E on D2(L) defined by

E(f) = E(f, f) := �

Z
fLfdµ

is closeable in L2(µ). Denote (E ,D(E)) its closure, which is the symmetrized Dirichlet
form associated with X. When X is reversible E is always closeable.

14



For a measure ⌫ on X define the Fisher-Donsker-Varadhan information of ⌫ with respect
to µ by

I(⌫|µ) :=

(
E(
p
d⌫/dµ), ⌫ ⌧ µ,

p
d⌫/dµ 2 D(E)

1 else.

For f 2 L1(µ) define J 0
f (r) and its lower semi-continuous regularisation Jf (r) by

J 0
f (r) = inf {I(⌫|µ); ⌫(|f |) < +1; ⌫(f) = r} , Jf (r) = lim

"!0+
J 0
f (r � ").

The following theorem from [Wu00] forms the basis for all subsequent results in this
section.

Proposition 2.1.5. For any initial measure ⌫ of X such that ⌫ ⌧ µ and d⌫/dµ 2 L2(µ)
we have for all t > 0, R > 0 and f 2 L1(µ)

P⌫

✓
1

t

Z t

0
f(Xs)ds� µ(f) > R

◆


����
d⌫

dµ

����
L2(µ)

exp (�t Jf (R� µ(f))) .

Now, showing that certain functional inequalities for µ imply bounds on Jf leads to

concentration inequalities for 1
t

R t
0 f(Xs)ds.

We start with the following observation from [GGW14]: If there is a non-decreasing
left-continuous convex function ↵f with ↵f (0) = 0 such that for all measures ⌫ on X

with f 2 L1(⌫)
↵f (⌫(f)� µ(f))  I(⌫|µ)

then �Jf (r � µ(f))  �↵f (r) by the definition of Jf and the left-continuity of ↵f .

This leads to the definition of transportation-information inequalities as in [Gui+09].
For instance, taking ↵f (r) = r2 for 1-Lipschitz functions f leads to the definition of the
L1 transportation-information inequality W1I.

We say that µ satisfies a W1I(c) inequality if for all measures ⌫ on X

W 2
1 (⌫, µ)  4c2I(⌫|µ).

By the preceding observation together with the Kantorovich-Rubinstein duality we get
the next result.

Proposition 2.1.6. If µ satisfies a W1I(c) inequality, then for all Lipschitz functions
f on X , R > 0 and initial measure ⌫ such that ⌫ ⌧ µ and d⌫/dµ 2 L2(µ)

P⌫

✓
1

t

Z t

0
f(Xs)ds� µ(f) > R

◆


����
d⌫

dµ

����
L2(µ)

exp

 
�

tR2

4c2kfk2Lip

!
.
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If X is reversible the last concentration bound is actually equivalent to the W1I inequal-
ity [Gui+09].

A su�cient condition for W1I(c) is a bound on solutions of the Poisson problem for
Lipschitz continuous functions as in Proposition 2.1.3, see Corollary 2.2 in [Wu09].

We say that a Logarithmic Sobolev inequality with constant C holds for µ if for all
f 2 D2(L) Z

f2 log f2dµ�

Z
f2dµ log

Z
f2dµ  �2C

Z
fLfdµ.

Still in the irreversible setting, the following result was shown in [Wu00].

Proposition 2.1.7. Suppose that µ satisfies a Logarithmic Sovolev inequality with con-
stant C. Then for all f 2 L1(µ)

P⌫

✓
1

t

Z t

0
f(Xs)ds� µ(f) > R

◆


����
d⌫

dµ

����
L2(µ)

exp

✓
�

t

2C
H⇤(R)

◆

where

H(�) = log

Z
e�fdµ� �µ(f)

and
H⇤(r) = sup {�r �H(�);� 2 R} .

For the rest of this section, suppose that X is reversible, i.e.
Z

fLgdµ =

Z
gLfdµ, f, g 2 D2(L).

What follows is a summary of the result from [GGW14] where the authors investigated
the following Bernstein-type inequality for di↵erent classes of functions f and constants
M under various ergodicity assumptions on X:

P⌫

✓
1

t

Z t

0
f(Xs)ds� µ(f) > R

◆


����
d⌫

dµ

����
L2(µ)

exp

0

B@�
tR2

�2
⇣p

1 + 2MR/�2 + 1
⌘2

1

CA



����
d⌫

dµ

����
L2(µ)

exp

✓
�

tR2

2 (�2 +MR)

◆

with

�2(f) = lim
t!1

Varµ

✓Z t

0
f(Xs)ds

◆
.

This inequality was first proved by Lezaud [Lez01] for bounded measurable f under a
Poincaré inequality on µ. The standing assumption for the following results is that µ
satisfies a Poincaré inequality with constant cP in the sense that

Varµ(f)  cPE(f), f 2 D(E).
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1. (Proposition 2.1 [GGW14]) If only the Poincaré inequality holds, then the Bern-
stein inequality holds for bounded measurable f with

M = cP kf
+
k1.

2. (Theorem 3.1 [GGW14]) If a Logarithmic Sobolev inequality holds with constant
cLS , then the Bernstein inequality holds for f 2 L2(µ) such that

⇤(�) := log

Z
e�fdµ < 1

with

M =

Z

�>0

1

�
[cP⇤(�) + 2cLS ].

3. (Corollary 3.1 [GGW14]) If a Logarithmic Sobolev inequality holds with constant
cLS and X has continuous sample paths, then the Bernstein inequality holds for
f 2 D(E) such that k�(f)k1 < 1 with

M = 2cLS
p
cP k�(f)k1.

4. (Theorem 4.1 [GGW14]) If there exist functions U > 1, � > 0 and a constant b > 0
such that

�LU

U
� �� b

then the Bernstein inequality holds for all f 2 L2(µ) such that

K�(f
+) := inf{C � 0 : |f+

|  C�} < 1

with
M = K�(f

+)(bcP + 1).

5. For all f 2 L2(µ) such that the Poisson problem �LF = f has a solution F in
L2(µ) with k�(F )k1 < 1 the Bernstein inequality holds with

M = 2
p
cP k�(f)k1.

2.1.3 Regeneration methods

Following [LL13], consider a positive Harris recurrent continuous-time strong Markov
process X on a Polish space X with invariant measure µ. Denote L the associated
infinitesimal generator and Pt the semigroup, which we assume to have a density with
respect to some �-finite positive measure on X .
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Suppose that the following Lyapunov-type condition holds: There exists a continuous
function V : E ! [1,1), constants b, c > 0 and a closed measurable set B such that for
some 0  ↵ < 1

LV  �cV ↵ + b B.

In [LL13] the authors show that for bounded functions f 2 L1(µ) and " < kfk1, t � 1
it holds that

Px

✓����
1

T

Z T

0
f(Xt)dt� µ(f)

���� � "

◆
 K(↵)V (x)

✓
kfk21
t"2

◆↵/(1�↵)

. (2.1.5)

The proof relies on the so-called Nummelin splitting technique in continuous time, which
yields a sequence of stopping times Rn, called regeneration times, such that the random
variables

⇠n :=

Z Rn+1

Rn
f(Xt)� µ(f)dt

are identically distributed and two-dependent, meaning ⇠n and ⇠n+k are independent for
all k � 2. It can then be shown that the left-hand side of (2.1.5) can be estimated by

Px

 
NX

n=1

|⇠n| > "t/3

!

plus some remainder terms. A deviation inequality for two-dependent identically dis-
tributed random variables then yields a bound in terms of E|⇠1|p for p > 1. Using

E|⇠1|p  2kfkp1E(R2 �R1)
p

the result then follows from an estimate on the expectation in the right-hand side, which
is an analogue of excursion times.

2.2 Averaging Principle

2.2.1 Introduction

The theory of averaging is concerned with processes that admit a decomposition into
fast and slow degrees of freedom. A typical example would be the solution to an SDE
of the form

dXt = ↵bX(Xt, Yt)dt+
p
↵dBX

t , X0 = x (2.2.1a)

dYt = bY (Xt, Yt)dt+ dBX
t , Y0 = y (2.2.1b)

where bX , bY are bounded Lipschitz continuous real-valued coe�cients and BX , BY stan-
dard independent Brownian motions on R. The parameter ↵ � 0 represents the accel-
eration of X relative to Y . We say that an averaging principle holds if there exists an
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averaged process Ȳ that is independent of BX such that Y converges to Ȳ as ↵ ! 1.
Intuitively we expect the fluctuations of X to average out due to the separation of
timescales. We will below review a number of averaging results from the literature,
together with the conditions they impose on the process and the sense in which the
convergence is to be understood.

But first, let us have a closer look at Ȳ . The intuition is that due to the separation of
time scales Y sees X as quasi-static whereas X sees Y as almost equilibrated. Consider
the following process Xy, corresponding to X with the Y component frozen at a fixed
value y:

dXy
t = bX(Xy

t , y)dt+ dBX
t , Xy

0 = x

Suppose that Xy has a stationary distribution µy for each y, and let

b̄(y) =

Z
bY (x, y)µ

y(dx).

Then it is part of the statement of an averaging principle that the averaged process Ȳ
solves the SDE

dȲt = b̄(Ȳt)dt+ dBY
t .

We will concentrate on averaging principles for stochastic di↵erential equations. The
most general SDEs for which an averaging principle is known to hold are of the form

dXt = ↵bX(Xt, Yt)dt+
p
↵�X(Xt, Yt)dB

X
t , X0 = x

dYt = bY (Xt, Yt)dt+
p
↵cY (Xt, Yt) + �Y (Xt, Yt)dB

X
t , Y0 = y

and, depending on the regularity of the coe�cients, averaging principles have been shown
for strong convergence on the space of trajectories and both strong and weak convergence
of the time marginals.

Compared to the simple example (2.2.1), the coe�cient �X(x, y) does not cause any
extra di�culties as long as the process remains elliptic. Neither does �Y = �Y (y)
as long as it only depends on the y variable. The situation with an extra coe�cient
cY requires some additional technical tools but is generally well-understood. However,
�Y = �Y (x, y) introduces a qualitative di↵erence and a simple counterexample to the
strong convergence of Y to Ȳ can be found in [Liu10]. In this case only weak convergence
of the time marginals on compact state spaces has been shown.

Large and moderate deviation principles for averaging are in general well understood,
and there has been some progress on quantitative non-asymptotic estimates under as-
sumptions of strong contractivity or the existence of a reversible stationary distribution
for the process (X,Y ), see [Liu10] and Section 2.2.4 below.

We will now proceed to present the main approaches to averaging for SDEs found in
the mathematical literature and give an outline of their proofs in the setting of the
example (2.2.1).
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2.2.2 Freezing the slow process

This method essentially consists in formalising the intuition of the frozen slow process.
It consists of dividing a fixed time interval [0, T ] into subintervals of size �(↵) on which
Y is kept constant. On each interval of length � an ergodic theorem is then applied to a
process still running on the time scale ↵. This imposes the requirement that ↵�(↵) ! 1

as ↵ ! 1. Since the approximating process still needs to converge to the original
process, we also need �(↵) ! 0 as ↵ ! 1.

We now outline a proof of an averaging principle using a frozen slow process for (2.2.1),
following [FW12, Section 7.9]. Since the estimates hold only asymptotically we make
the dependence of X and Y on ↵ explicit by using the notation X↵, Y ↵ whenever it is
necessary for clarity of presentation. The statement is:

Proposition 2.2.1. Suppose that there exists a constant C independent of y such that
for any y 2 R, T > 0

E
����
1

T

Z T

0
bY (X

y
t , y)dt�

Z
bY (x, y)µ

y(dx)

���� 
C
p
T
.

Then for any T > 0, � > 0 and any initial values x, y of X↵
t , Y

↵
t it holds

lim
↵!1

P
 

sup
0tT

��X↵
t � X̄t

�� > �

!
= 0

Outline of Proof. Consider a partition of [0, T ] into intervals of length �. Construct a
decoupled process X̂, Ŷ piecewise such that for t 2 [k�, (k + 1)�]

X̂t = Xk� + ↵

Z t

k�
bX(X̂s, Yk�)ds+

p
↵

Z t

k�
dBX

s

Ŷt = Ŷk� +

Z t

k�
bY (X̂s, Yk�)ds+

Z t

k�
dBY

s

Note that for t 2 [k�, (k + 1)�], given initial conditions Xk�, Yk� the SDE for X̂t is
closed and can be solved in isolation from Ŷt. We have passed from a system of mutually
dependent SDEs to one in which the dependence only goes in one direction.

Now the proof consists in showing that (X,Y ) converges in probability to (X̂, Ŷ ) and
that Ŷ converges in probability to Ȳ .

We have for t 2 [k�, (k + 1)�]

E
���Xt � X̂t

���
2
= ↵2E

����
Z t

k�
bX(Xs, Ys)� bX(X̂s, Yk�)ds

����
2

 ↵2(t� k�)kbXkLip

Z t

k�
E
���Xs � X̂s

���
2
+ E |Ys � Yk�|

2 ds.
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Now the key to decoupling is that by using the boundedness of bY we can get the estimate

E |Yt � Yk�|
2 = E

����
Z t

k�
bY (Xs, Ys)ds

����
2

 kbY k1�
2

without studying the interdependence of X and Y .

We get

E
���Xt � X̂t

���
2
 ↵2�kbXkLip

Z t

k�
E
���Xs � X̂s

���
2
ds+ ↵2�4

kbXkLipkbY k1

so that by Gronwall’s inequality

E
���Xt � X̂t

���
2
 ↵2�4

kbXkLipkbY k1 exp
�
↵2�2

kbXkLip
�
.

Now

E
����
Z T

0

���bY (Xs, Ys)� bY (X̂s, Ybs/�c�)ds
���
2
����

 TkbY kLip

Z T

0
E
���Xs � X̂s

���
2
+ E

��Ys � Ybs/�c�
��2 ds

 T 2
kbY kLip

�
�4↵2

kbXkLipkbY k1 exp
�
↵2�2

kbXkLip
�
+�2

kbY k1
�
.

If we put �(↵) =
p
log↵
↵ then this expression goes to 0 as ↵ ! 1.

From this we get that as ↵ ! 1

P
 

sup
0tT

���Yt � Ŷt
��� > �

!
! 0

and

sup
0tT

E
���Yt � Ŷt

���
2
! 0. (2.2.2)

Recall the definition of Ȳ

Ȳt = y0 +

Z t

0
b̄(Ȳs)ds+BY

t
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so that

E
���Ŷt � Ȳt

���
2

= E
����
Z t

0
bY (X̂s, Ybs/�c�)� b̄(Ȳs)ds

����
2

 3E
����
Z t

0
bY (X̂s, Ybs/�c�)� b̄(Ys)ds

����
2

+ 3E
����
Z t

0
b̄(Ys)� b̄(Ŷs)ds

����
2

+ 3E
����
Z t

0
b̄(Ŷs)� b̄(Ȳs)ds

����
2

 3E
����
Z t

0
bY (X̂s, Ybs/�c�)� b̄(Ys)ds

����
2

+ 3Tkb̄kLip

Z t

0
E
���Ys � Ŷs

���
2
ds

+ 3Tkb̄kLip

Z t

0
E
���Ŷs � Ȳs

���
2
ds

and by Gronwall’s inequality

E
���Ŷt � Ȳt

���
2


 
3E
����
Z t

0
bY (X̂s, Ybs/�c�)� b̄(Ys)ds

����
2

(2.2.3)

+ 3Tkb̄kLip

Z t

0
E
���Ys � Ŷs

���
2
ds

!
e3T

2kb̄kLip .

We now use our ergodic assumption to obtain

E
�����

Z (k+1)�

k�
bY (X̂t, Yk�)� b̄(Yk�)ds

�����

= �E
����
1

↵�

Z ↵�

0
bY (X

Yk�
t , Yk�)� b̄(Yk�)dt

����

 C
p

�/
p
↵
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and

E sup
0tT

����
Z t

0
bY (X̂s, Ybs/�c�)� b̄(Ys)

����

 E sup
0tT

����
Z t

0
bY (X̂s, Ybs/�c�)� b̄(Ybs/�c�)

����+ E sup
0tT

����
Z t

0
b̄(Ybs/�c�)� b̄(Ys)

����

 E max
0nT/�

�����

nX

k=0

Z (k+1)�

k�
b(X̂s, Ybs/�c�)� b̄(Ybs/�c�)ds

�����

+ kb̄kLipE
Z T

0

��Ys � Ybs/�c�
�� ds



T/��1X

k=0

E
�����

Z (k+1)�

k�
b(X̂s, Ybs/�c�)� b̄(Ybs/�c�)ds

�����+ kb̄kLipT�


TC
p
↵�

+ kb̄kLipT�.

Together with (2.2.3) we finally obtain

P
 

sup
0tT

���Ŷ ↵
t � Ȳ

��� > �

!

 P
 

sup
0tT

����
Z t

0
bY (X̂s, Y

↵
bs/�c�)� b̄(Y ↵

s )

���� > �/3

!

+ P
✓Z T

0

���b̄(Ȳs)� b̄(Ŷ ↵
s )
��� > �/3

◆

+ P
✓Z T

0

���b̄(Ŷ ↵
s )� b̄(Y ↵

s )
��� > �/3

◆

which converges to 0 as ↵ ! 1 by the preceding results.

2.2.3 Asymptotic expansion of the generator

In this section we present the asymptotic expansion approach from [KY04]. The goal is
to establish a weak averaging principle by identifying a process Ȳ independent of ↵ such
that for appropriate test functions f and t > 0 fixed

E[f(Y ↵
t )] ! E[f(Ȳt)] as ↵ ! 1.

The technique consists of a formal series expansion in ↵�1 of the one-parameter semi-
group associated to (X↵, Y ↵), which is justified by making use of the compactness of
the state space, and then letting ↵ ! 1 in the resulting expansion.
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We assume that (X↵, Y ↵) takes values in a compact C1-manifold K = KX ⇥KY where
KX and KY are connected and compact C1-manifolds. Now, the idea behind the asymp-
totic expansion approach is to note that the generator LX for (X,Y ) can be split into two
operators LX and LY such that L = LY +↵LX . Suppose that u(t, x, y) = Ptf(x, y) can
be written as a power series in ↵�1 such that u(t, x, y) = u0(t, y) +

P1
i=1 ↵

�iui(t, x, y).
Then we can formally substitute this series in the backward Kolmogorov equation
@tu = LY u+ ↵LXu and equate coe�cients of matching powers on both sides.

Define the operators LX and LY by

LXf(x, y) = bX(x, y)@xf(x, y) + @2
xf(x, y)

LY f(x, y) = bY (x, y)@yf(x, y) + @2
yf(x, y).

Let u↵(t, x, y) be the solution to the following Cauchy problem on K:

@tu↵ = LY u↵ + ↵LXu↵ (2.2.4a)

u↵(0, x, y) = f(x, y) (2.2.4b)

or equivalently u↵(t, x, y) = Ex,yf(X↵
t , Y

↵
t ).

Due to the compactness of KX and the regularity of the coe�cients there exists for each
y fixed an invariant measure µy associated to LX such that for all smooth test functions
f on KX Z

KX

LXf(x, y)µy(dx) = 0, y 2 KY .

For functions '(x, y) on K we will use the notation

'̄(y) :=

Z

KX

'(x, y)µy(dx).

Define the truncated series

un↵(t, x, y) = u0(t, y) +
nX

i=1

↵�iui(t, x, y) +
nX

i=0

↵�ivi(↵t, x, y)

and the associated error term
e↵,n = un↵ � u↵.

To justify the series expansion up to order n, we need to show that the growth of e↵,n
in ↵ is of order O(↵�(n+1)). We will outline in the following the procedure for n = 0,
see [KY04] for a complete proof and the extension to arbitrary powers n.

We begin by substituting u0(t, y)+
Pn+1

i=1 ↵�iui(t, x, y) into (2.2.4) and equating powers
of ↵ so that

@tuk = LXuk+1 + LY uk (2.2.5)
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and similarly for the boundary layer term vk(⌧, x, y) with ⌧ = ↵t

@⌧v0 = LXv0 (2.2.6a)

@⌧vk = LXvk + LY vk�1. (2.2.6b)

Since the leading term consists of the sum u0 + v0 we can choose the following initial
condition for u0, which is independent of x,

u0(0, y) = µy(f)

and let
v0(0, x, y) = f(x, y)� µy(f).

Using the fact that u0 is a function of t and y only and integrating (2.2.5) against µy for
k = 0 yields

@tu0(t, y) =

Z
LXu1(t, x, y)µ

y(dx) +

Z
LY u0(t, x, y)µ

y(dx)

= L̄Y u0(t, y), L̄Y = b̄(y)@y + @2
y (2.2.7)

where we used the fact that µy is an invariant measure for LX . We have the probabilistic
representation

u0(t, y) = EyµȲt(f).

We also chose above
v0(0, x, y) = f(x, y)� µy(f)

so that from (2.2.6) we get

v0(⌧, x, y) = Exf(Xy
⌧ , y)� µy(f)

where Xy is the process with “frozen” y solution to the SDE

dXy
t = bX(Xy

t , y)dt+ dBX
t , Xy

0 = x.

It can be shown using compactness of the state space that (using multi-index notation)
�����

@|⌫|v0
@⌫1
y . . . @⌫d

yd

�����  c1e
�c2⌧ , |⌫| = 0 . . . 4

for some finite constants c1 and c2. This implies an exponential bound of the same form
on LY v0.

In order to get an error estimate, we also need to determine u1 and v1. Substract-
ing (2.2.7) from (2.2.5) we get

LXu1 = (L̄Y
� LY )u0. (2.2.8)
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The solution writes as
u1(t, x, y) = U1(t, y) + ũ1(t, x, y)

where ũ1(t, x, y) is a particular centered solution of the Poisson equation (2.2.8).

In order to determine U1, we integrate (2.2.5) against µy to get

@tU1(t, y) = L̄Y U1 + µy(LY ũ1)

U1(0, y) =

Z
u1(0, x, y)µ

y(dx).

In order to determine the initial condition, first observe that since there were no terms
in ↵ in the initial conditions for our original Cauchy problem, we have

uk(0, x, y) + vk(0, x, y) = 0 for all k � 1.

We then impose v1(⌧, x, y) ! 0 as ⌧ ! 1 and integrate (2.2.6) in time from 0 to 1 and
in space against µy to get

Z
u1(0, x, y)µ

y(dx) = �

Z
v1(0, x, y)µ

y(dx) =

Z 1

0

Z

KX

LY v0(s, x, y)µ
y(dx)ds

where the right hand side is finite due to the exponential decay of LY v0. This initial
condition together with (2.2.6) uniquely determines v1.

It can again be shown that there exists constants c1 and c2 (possibly di↵erent from the
ones in the estimate for v0) such that

�����
@|⌫|v1

@⌫1
y . . . @⌫d

yd

�����  c1e
�c2⌧ , |⌫| = 0 . . . 4.

This implies in particular that LY v1 is bounded and exponentially decaying. It can be
noted that the proof in [KY04] relies heavily on the compactness of the state space.
Unlike in the case of v0, there is no obvious probabilistic interpretation of v1 and it is
unclear how the result could be extended to a non-compact setting.

We now proceed to bound the growth of e↵,0 so that the series expansion to order 0 is
justified. Let

L↵f = @tf � ↵LXf � LY f.

Now

L↵e↵,0 = L↵u0 + L↵v0

= @tu0 � ↵LXu0 � LY u0 + ↵(@⌧v0 � LXv0)� LY v0

= @tu0 � LY u0 � LY v0
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is of order O(1), since we saw above that LY v0 is bounded. Similarly, using that LY v1
is bounded, it can be shown that L↵e↵,1 is of order O(↵�1). This implies that e↵,1 is
also of order O(↵�1).

We conclude by noting that

e↵,0 = e↵,1 � ↵�1u1 � ↵�1v1

where all the terms on the right hand side are of order O(↵�1).

2.2.4 E↵ective dynamics using conditional expectations

We give a short description of some of the ideas employed in [LL10] and [LLO16]. Let
us introduce a process Ỹ solution to

dỸt = b̃(Ỹt)dt+ dBY
t

with
b̃(y) = E[bY (Xt, Yt)|Yt = y].

Now suppose furthermore that (X,Y ) has a joint stationary probability measure µ =
e�V (x,y)dxdy for a smooth function V and write Eµ for the expectation with initial
measure µ. Then we have for all f 2 C1

c (R⇥ R), g 2 C1
c (R)

Eµg(Yt)f(Xt, Yt) =

Z
g(y)

Z
f(x, y)e�V (x,y)dxdy

=

Z
g(y)

 R
f(x, y)e�V (x,y)dxR

e�V (x,y)dx

!
e�V (x,y)dxdy

= Eµg(Yt)µ̃
Yt(f)

with

µ̃y(dx) =
e�V (x,y)

R
e�V (x,y)dx

so that by Kolmogorov’s characterisation of conditional expectation

Eµ[f(Xt, Yt)|Yt = y] = µ̃y(f)

and therefore
b̃(y) = µ̃y(bY ).

Now suppose furthermore that bX = �@xV (x, y). Then for each y, Xy is a reversible
di↵usion with invariant probability measure µ̃y so that µ̃y = µy and b̃(y) = b̄(y).
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Finally, suppose that bY (x, y) = �@yV (x, y) so that (X,Y ) is reversible with respect to
µ. Then we can use a forward-backward martingale argument to show that for T > t
arbitrary but fixed and f centered, meaning µ(f) = 0,

2

Z t

0
f(Xs, Ys)ds = Mt + (M̃T � M̃T�t)

where M and M̃ are martingale with quadratic variation

hMit = hM̃it =

Z t

0
�((�L)�1f)(Xs, Ys)ds.

Now we make the observation that, since µ is an invariant measure for both L and LX

and f is centered with respect to µ, f 2 D((�LX)�1) and we can write

f = (�LX)(�LX)�1f

so that
Z
�((�L)�1f)dµ =

Z
fL�1fdµ = �

Z
L�1fLX(�LX)�1fdµ

=

Z
�X(L�1f, (�LX)�1f)dµ



✓Z
�X(�L�1f)dµ

◆1/2✓Z
�X((�LX)�1f)dµ

◆1/2



✓Z
�(�L�1f)dµ

◆1/2✓Z
�X((�LX)�1f)dµ

◆1/2

so that after dividing both sides by the square root of the left hand side
Z
�((�L)�1f)dµ 

Z
�X((�LX)�1f)dµ.

Remark 2.2.2 (Probabilistic interpretation).

Z 1

0
Covµ(X0, Xt)dt 

Z 1

0
Covµ(X

Y0
0 , XY0

t )dt

Freezing the slow component degrades the mixing. To be investigated.

We have the following dual formulation of the Poincaré inequality (see [BGL14] Propo-
sition 4.8.3): A measure ⌫ satisfies a Poincaré inequality with constant cP with respect
to a carré du champs � and associated reversible generator L i↵

Z
�(f)d⌫  cP

Z
(Lf)2d⌫.
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Suppose now that a Poincaré inequality with constant cP holds for µy uniformly in y
with respect to the standard carré du champs in the sense that

Z
f2dµy

 cP

Z
|rf |2dµy.

Since �X = ↵|rf |2 this implies a Poincaré inequality with constant cP /↵ with respect
to �X . We can now combine the two previous results to obtain

EµhMit =

Z t

0

Z
�((�L)�1f)(x, y)µ(dx, dy)



Z t

0

Z
�X((�LX)�1f)(x, y)µy(dx)µ(dy) 

cP
↵
kfkL2(µ)t.

Together with the forward-backward martingale decomposition, using Doob’s maximal
inequality this gives

E
����� sup0tT

Z t

0
bY (Xs, Ys)� µYsds

�����

2


27

4

cP
↵
kfkL2(µ)T.

We have

Yt � Ȳt =

Z t

0
bY (Xs, Ys)� µYs(bY )ds+

Z t

0
b̄(Ys)� b̄(Ȳs)ds.

We saw above how to estimate the first term. For the second term, we can assume that
b̄ is Lipschitz so that by Gronwall’s inequality

|Yt � Ȳt| 

✓Z t

0
bY (Xs, Ys)� µYs(bY )ds

◆
ekb̄kLipt

and finally

E sup
0tT

|Yt � Ȳt|
2


27

4

cP
↵
kbY kL2(µ)Te

2kb̄kLipT .

In [LLO16] it is shown how the Lipschitz condition on b̄ can be relaxed to a one-sided
Lipschitz condition in the one-dimensional case.
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Chapter 3

Time Averages of Di↵usion

Processes

3.1 Introduction

For a Markov process (Xt)t with t 2 [0, T ] or t = 0, 1, . . . , T let

ST f =

Z T

0
f(t,Xt)dt

in the continuous-time case or

ST f =
T�1X

t=0

f(t,Xt)

in discrete time.

In the first part of this work, we will show a decomposition of the form

ST f = EST f +MT,f
T

where MT,f is a martingale depending on T and f for which we will give an explicit
representation in terms of the transition operator or semigroup associated to X.

We then proceed to illustrate how the previous results can be used to obtain Gaussian
concentration inequalities for ST when X is the solution to an Itô SDE.

The last part of the work showcases a number of results on two-timescale processes that
follow from our martingale representation.
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3.2 Martingale Representation

Consider the following SDE with time-dependent coe�cients on Rn:

dXt = b(t,Xt)dt+ �(t,Xt)dBt, X0 = x

where B is a standard Brownian motion on Rn with filtration (Ft)t�0 and b(t, x),�(t, x)
are continuous in t and locally Lipschitz continuous in x. We assume that Xt does not
explode in finite time.

Denote C1
c the set of smooth compactly supported space-time functions on R+ ⇥ Rn.

Let Ps,t be the evolution operator associated to X,

Ps,tf(x) = E [f(t,Xt)|Xs = x] , f 2 C1
c .

For T > 0 fixed consider the martingale

Mt = EFt

Z T

0
f(s,Xs)ds.

and observe that since X is adapted and by the Markov property

Mt =

Z t

0
f(s,Xs)ds+ EFt

Z T

t
f(s,Xs)ds =

Z t

0
f(s,Xs)ds+RT

t f(Xt)

with

RT
t f(x) =

Z T

t
Pt,sf(x)ds.

By applying the Itô formula to RT
t f we can identify the martingale M . This is the

content of the following short theorem.

Theorem 3.2.1. For T > 0 fixed, t 2 [0, T ] and f 2 C1
c

Z t

0
f(s,Xs)ds+RT

t f(Xt) = E
Z T

0
f(s,Xs)ds+MT,f

t

with

MT,f
t =

Z t

0
rRT

s f(Xs) · �(s,Xs)dBs.

Proof. From the Kolmogorov backward equation @tPt,sf = �LtPt,sf and since Pt,tf = f
we have

@tR
T
t f(x) = �f(t, x)�

Z T

t
LtPt,sf(x)ds = �f(t, x)� LtR

T
t f(x).
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By Itô’s formula

RT
t f(Xt) = RT

0 f(X0) +

Z t

0
@sR

T
s f(Xs)ds+

Z t

0
LsR

T
s f(Xs)ds

+

Z t

0
rRT

s f(Xs) · �(s,Xs)dBs

= E
Z T

0
f(t,Xt)dt�

Z t

0
f(s,Xs)ds+

Z t

0
rRT

s f(Xs) · �(s,Xs)dBs

and we are done.

Remark 3.2.2 (Poisson Equation). In the time-homogeneous case Pt,s = Ps�t and when
the limit below is finite then it is independent of t and we have

R1f := lim
T!1

RT
t f = lim

T!1

Z T

t
Ps�tfds = lim

T!1

Z T�t

0
Psfds =

Z 1

0
Psfds.

This is the resolvent formula for the solution to the Poisson equation �Lg = f with
g = R1f .

By taking t = T in Theorem 3.2.1 we can identify the martingale part in the martingale
representation theorem for

R T
0 f(t,Xt)dt.

Corollary 3.2.3. For T > 0 fixed, f 2 C1
c

Z T

0
f(t,Xt)dt� E

Z T

0
f(t,Xt)dt =

Z T

0
r

Z T

t
Pt,sf(Xt)ds · �(t,Xt)dBt.

By applying the Itô formula to Pt,T f(Xt) we obtain for T > 0 fixed

dPt,T f(Xt) = rPt,T f(Xt) · �(t,Xt)dBt (3.2.1)

and by integrating from 0 to T

f(T,XT ) = E [f(T,XT )] +

Z T

0
rPt,T f(Xt) · �(t,Xt)dBt.

This was observed at least as far back as [EK89] and is commonly used in the derivation
of probabilistic formulas for rPs,t.

Combining the formula (3.2.1) with Theorem 3.2.1 we obtain the following expression
for St � ESt in terms of rPs,tf .

Corollary 3.2.4. For f 2 C1
c , T > 0 fixed and any t < T

Z t

0
f(s,Xs)� Ef(s,Xs)ds = MT,f

t � ZT,f
t
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with

ZT,f
t =

Z T

t

Z t

0
rPr,sf(r,Xr) · �(r,Xr) dBr ds

MT,f
t =

Z t

0

Z T

r
rPr,sf(r,Xr) ds · �(r,Xr) dBr.

Proof. Let f0(t, x) = f(t, x)� Ef(t,Xt) = f(t, x)� P0,t(x0). We have

RT
t f0(Xt) =

Z T

t
Pt,sf0(Xt)ds

=

Z T

t
Pt,sf(Xt)� P0,sf(X0)ds

=

Z T

t

Z t

0
rPr,sf(r,Xr) · �(r,Xr)dBr ds

where the last equality follows by integrating (3.2.1) from 0 to t (with T = s). Since
RT

0 f0 = 0 and rPt,sf0 = rPt,sf we get from Theorem 3.2.1 that

Z t

0
f0(s,Xs)ds = MT,f

t �RT
t f0(Xt)

and the result follows with ZT,f
t = RT

t f0(Xt).

Remark 3.2.5 (Carré du Champs and Mixing). For di↵erentiable functions f, g let

�t(f, g)(x) =
1
2rf(t, x)(��>)(t, x)rg(t, x).

Then we have the following expression for the quadratic variation of MT,f :

dhMT,f
it =

����
Z T

t
�(t,Xt)

>
rPt,sf(Xt) ds

����
2

dt

=

✓
4

Z

tsrT
�t(Pt,sf, Pt,rf)(Xt) dr ds

◆
dt.

Furthermore, since

@sPr,s(Ps,tfPs,tg) = 2Pr,s(�s(Ps,tf, Ps,tg))
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and setting g(t, x) =
R T
t Pt,sf(x)ds we have

EhMT,f
it = 2

Z T

0

Z T

t
2P0,t�t(Pt,sf, Pt,sg)ds dt

= 2

Z T

0

Z T

t
@tP0,t(Pt,sfPt,sg)ds dt

= 2

Z T

0
@t

Z T

t
P0,t(Pt,sfPt,sg)ds dt+ 2

Z T

0
P0,t(fg)dt

= 2

Z T

0
P0,t(fg)� P0,tfP0,tg dt

= 2

Z

0tsT
Cov(f(t,Xt), f(s,Xs))ds dt.

This shows how the expressions we obtain in terms of the gradient of the semigroup
relate to mixing properties of X.

Remark 3.2.6 (Pathwise estimates). We would like to have a similar estimate for

E sup
0tT

����
Z t

0
f(Xs)� Ef(Xs)ds

���� .

Setting
f0(t, x) = f(x)� Ef(Xt) = f(x)� P0,tf(x0)

we have

E sup
0tT

����
Z t

0
f(Xs)� Ef(Xs)ds

����  E sup
0tT

|MT,f0
t |+ E sup

0tT
|RT

t f0(Xt)|

 2
⇣
EhMT,f0iT

⌘1/2
+ E sup

0tT
|RT

t f0(Xt)|

and

RT
t f0(Xt) =

Z T

t
Pt,sf(Xt)� P0,sf(x0)ds

=

Z T

t

Z t

0
rPr,sf(Xr) · �(r,Xr)dBrds

where the last equality follows from (for s fixed)

dPt,sf(Xt) = rPt,sf(Xt) · �(t,Xt)dBt.
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3.2.1 Discrete time

Consider a discrete-time Markov process (Xn)n=1...N with transition operator

Pm,nf(x) = E[fn(Xn)|Xm = x]

and generator
Lnf(x) = Pn,n+1f(x)� fn(x).

As in the continuous-time setting

Mn := fn(Xn)� f0(X0)�
n�1X

m=0

Lmf(Xm)

is a martingale (by the definition of L) and by direct calculation

Mn �Mn�1 = fn(Xn)� Pn�1,nf(Xn�1).

Let

RN
n f(x) =

N�1X

m=n

Pn,mf(x)

and observe that

LnR
Nf(x) =

NX

m=n+1

Pn,n+1Pn+1,mf(x)�
N�1X

m=n

Pn,mf(x) = �fn(x).

Note that

RN
Nf(x) = 0 and RN

0 f(x) = E
"
N�1X

m=n

f(Xm)

�����X0 = x

#
.

It follows that

n�1X

m=0

fm(Xm) +RN
n f(Xn) = �

n�1X

m=0

LmRNf(Xm) +RN
n f(Xn) = RN

0 f(X0) +MN,f
n

with

MN,f
n �MN,f

n�1 =
N�1X

m=n

Pn,mf(Xn)� Pn�1,mf(Xn�1).

Analogous to the continuous-time case, we define the carré du champs

�n(f, g) := Ln(fg)� gnLnf � fnLng

= Pn,n+1(fg)� fnPn,n+1g � gnPn,n+1f + fngn

= E [(fn+1(Xn+1)� fn(Xn))(gn+1(Xn+1)� gn(Xn))|Fn]
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and using the summation by parts formula

hMN,f
in � hMN,f

in�1 = E[(MN,f
n �MN,f

n�1)
2
|Fn�1]

= 2
X

nkm<N�1

E [(Pn,mf(Xn)� Pn�1,mf(Xn�1))(Pn,kf(Xn)� Pn�1,kf(Xn�1))|Fn�1]

+
N�1X

m=n

E
⇥
(Pn,mf(Xn)� Pn�1,mf(Xn�1))

2
|Fn�1

⇤

= 2
N�1X

m=n

N�1X

k=m

�n�1(Pn�1,mf, Pn�1,kf)(Xn�1) +
N�1X

m=n

�n�1(Pn�1,mf)(Xn�1).

3.3 Concentration inequalities from exponential gradient

bounds

In this section we focus on the case where we have uniform exponential decay of rPs,t

so that
|�(s, x)>rPs,tf(x)|  Cse

��s(t�s) (0  s  t  T ) (3.3.1)

for all x 2 Rn and some class of functions f .

We first show that exponential gradient decay implies a concentration inequality.

Proposition 3.3.1. For T > 0 fixed and all functions f such that (3.3.1) holds we have

P
✓
1

T

Z T

0
f(t,Xt)� Ef(t,Xt)dt > R

◆
 e

�R2T
VT , VT =

1

T

Z T

0

✓
Ct

�t

⇣
1� e��t(T�t)

⌘◆2

dt

Proof. By (3.3.1)

dhMT,f
it =

����
Z T

t
�(t,Xt)

>
rPt,sf(Xt)ds

����
2

dt



✓Z T

t
Cte

��t(s�t)ds

◆2

dt =

✓
Ct

�t

⇣
1� e��t(T�t)

⌘◆2

dt

so that hMT,f
iT  VTT .

By Corollary 3.2.3 and since Novikov’s condition holds trivially due to hMT,f
i being

bounded by a deterministic function we get

E exp

✓
a

Z T

0
f(t,Xt)� Ef(t,Xt)dt

◆
= E exp

⇣
aMT,f

T

⌘

 E

exp

✓
aMT,f

T �
a2

2
hMT,f

iT

◆�
exp

✓
a2

2
hMT,f

iT

◆
 exp

✓
a2

2
VTT

◆
.
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By Chebyshev’s inequality

P
✓
1

T

Z T

0
f(t,Xt)� Ef(t,Xt)dt > R

◆
 exp (�aRT ) exp

✓
a2

2
VTT

◆

and the result follows by optimising over a.

The corresponding lower bound is obtained by replacing f by �f .

For the rest of this section, suppose that � = Id and that we are in the time-homogeneous
case so that Ps,t = Pt�s. An important case where bounds of the form (3.3.1) hold is
when there is exponential contractivity in the L1 Kantorovich (Wasserstein) distance
W1. If for any two probability measures µ, ⌫ on Rn

W1(µPt, ⌫Pt)  Ce��tW1(µ, ⌫). (3.3.2)

then (3.3.1) holds for all Lipschitz functions f with Cs = C, �s = �.

Here the distance W1 between two probability measures µ and ⌫ on Rn is defined by

W1(µ, ⌫) = inf
⇡

Z
|x� y|⇡(dx dy)

where the infimum runs over all couplings ⇡ of µ. We also have the Kantorovich-
Rubinstein duality

W1(µ, ⌫) = sup
kfkLip1

Z
fdµ�

Z
fd⌫ (3.3.3)

and we use the notation

kfkLip = sup
x 6=y

f(x)� f(y)

|x� y|
.

We can see that (3.3.2) implies (3.3.1) from

|rPtf |(x) = lim
y!x

|Ptf(y)� Ptf(x)|

|y � x|
 lim

y!x

W1(�yPt, �xPt)

|y � x|

 kfkLipCe��t lim
y!x

W1(�y, �x)

|y � x|
= kfkLipCe��t

where the first inequality is due to the Kantorovich-Rubinstein duality (3.3.3) and the
second is (3.3.1).

Bounds of the form (3.3.2) have been obtained using coupling methods in [Ebe16; EGZ16;
Wan16] under the condition that there exist positive constants , R0 such that

(x� y) · (b(x)� b(y))  �|x� y|2 when |x� y| > R0.

Similar techniques lead to the corresponding results for kinetic Langevin di↵usions
[EGZ17].
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Using a di↵erent approach, in [CO16] the authors directly show uniform exponential
contractivity of the semigroup gradient for bounded continuous functions, focusing on
situations beyond hypoellipticity.

Besides gradient bounds, exponential contractivity in W1 also implies the existence of
a stationary measure µ1 [Ebe16]. Proposition 3.3.1 now leads to a simple proof of a
deviation inequality that was obtained in a similar setting in [Jou09] via a tensorization
argument.

Proposition 3.3.2. If (3.3.2) holds then for all Lipschitz functions f and all initial
measures µ0

Pµ0

✓
1

T

Z T

0
f(Xt)dt�

Z
fdµ1 > R

◆
 exp

0

@�

 
�
p
T R

CkfkLip(1� e��T )
�

W1(µ0, µ1)
p
T

!2
1

A

Proof. We start by applying Proposition 3.3.1 so that

Pµ0

✓
1

T

Z T

0
f(Xt)dt�

Z
fdµ1 > R

◆

= Pµ0

✓
1

T

Z T

0
f(Xt)� Ef(Xt)dt > R+

1

T

Z T

0
µ1(f)� µ0Pt(f)dt

◆

 exp

 
�

✓
R�

����
1

T

Z T

0
µ1(f)� µ0Pt(f)dt

����

◆2
T

VT

!
, VT =

✓
kfkLipC(1� e��T )

�

◆2

.

By the Kantorovich-Rubinstein duality

����
1

T

Z T

0
µ1(f)� µ0Pt(f)dt

���� 
����
1

T

Z T

0
krfk1W1(µ1Pt, µ0Pt)dt

����


krfk1C

�

(1� e��T )

T
W1(µ, µ0) =

p
VT

T
W1(µ, µ0).

from which the result follows immediately.

3.4 Averaging: Two-timescale Ornstein-Uhlenbeck

Consider the following linear multiscale SDE on R ⇥ R where the first component is
accelerated by a factor ↵ � 0:

dXt = �↵(Xt � Yt)dt+
p
↵dBX

t , X0 = x0

dYt = �(Yt �Xt)dt+ dBY
t , Y0 = y0

with BX , BY independent Brownian motions on R. Denote Pt and L the associated
semigroup and infinitesimal generator respectively.
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Let f(x, y) = x� y and note that Lf = �(↵+1)f . We have by the regularity of Pt and
the Kolmogorov forward equation

@t@xPtf = @xPtLf = �(↵+ 1)@xPtf

so that
@xPtf = @xfe

�(↵+1)t = e�(↵+1)t.

Repeating the same reasoning for @yPt and Pt gives

@yPtf = �e�(↵+1)t and Ptf(x, y) = (x� y)e�(↵+1)t.

From Corollary 3.2.3

Z T

0
Xt � Yt dt = RT

0 f(x0, y0) +MT,f
T

with

RT
t f(x, y) =

Z T

t
Ps�tf(x, y)ds = (x� y)

1� e�(↵+1)(T�t)

↵+ 1
,

MT,f
T =

Z T

0

Z T

t
@xPs�tf(Xt, Yt)ds

p
↵dBX

t +

Z T

0

Z T

t
@yPs�tf(Xt, Yt)ds dB

Y
t

=

Z T

0

1� e�(↵+1)(T�t)

↵+ 1
(
p
↵dBX

t � dBY
t ).

This shows that for each T fixed

YT � (BY
T + y0) =

Z T

0
Xt � Ytdt

is a Gaussian random variable with mean

RT
0 = (x0 � y0)

1� e�(↵+1)T

↵+ 1

and variance

hMT,f
iT =

1

(↵+ 1)

Z T

0

⇣
1� e�(↵+1)(T�t)

⌘2
dt.

3.5 Averaging: Exact gradients in the linear case

Consider

dXt = �↵(Xt � Yt)dt+
p
↵dBX

t , X0 = x0

dYt = �(Yt �Xt)dt� �Yt + dBY
t , Y0 = y0
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Denote Zt((x, y)) = (Xt(x), Yt(x)) the solution for X0 = x, Y0 = y and let Vt(z, v) =
Zt(z + v)� Zt(z). Then

dVt = �AVt dt with A =

✓
↵ �↵
�1 (1 + �)

◆
.

The solution to the linear ODE for Vt is

Vt(z, v) = e�Atv

Since Vt does not depend on z we drop it from the notation. Now for any continuously
di↵erentiable function f on R2 and v 2 R2, z 2 R2 we obtain the following expression
for the gradient of Ptf(z) in the direction v:

rvPtf(z) = lim
"!0

Ptf(z + "v)� Ptf(z)

"
= lim

"!0

Ef(Zt(z + "v))� f(Zt(z))

"

= lim
"!0

Erf(Zt(z)) · Vt("v) + o(|Vt("v)|)

"

= Erf(Zt(z)) · e
�Atv.

Since rvPtf = rPtf · v we can identify rPtf(z) = Ez(e�At)>rf(Zt).

The eigenvalues of A are (�0,↵�1) with

�0 =
1

2

⇣
↵+ � + 1�

p
(↵+ � + 1)2 � 4↵�

⌘
,

�1 =
1

2↵

⇣
↵+ � + 1 +

p
(↵+ � + 1)2 � 4↵�

⌘
.

By observing that

(↵+ � + 1)2 � 4↵� = (↵� (1 + �))2 + 4↵ = (� � (↵+ 1))2 + 4�

we see that asymptotically as ↵ ! 1

�0 = � +O

✓
1

↵

◆

�1 = 1 +
1

↵
+O

✓
1

↵2

◆
.

We can compute the following explicit expression for e�At

e�At = c0(t) Id�
c1(t)

↵
A

=

 
c2(t)
↵ c1(t)

c1(t)
↵ c0(t)�

1+�
↵ c1(t)

!
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with

c0(t) =
↵�1e��0t � �0e�↵�1t

↵�1 � �0
=

(1 + ↵)e��0t � �e�↵�1t

↵�1 � �0
+O

✓
1

↵2

◆
,

c1(t) =
↵

↵�1 � �0

⇣
e��0t � e�↵�1t

⌘
,

c2(t) = ↵(c0(t)� c1(t)) =
↵

↵�1 � �0

⇣
e��0t � (� � ↵)e�↵�1t

⌘
+O

✓
1

↵

◆
.

Note that �0,�1, c0, c1 and c2 are all of order O(1) as ↵ ! 1.

We obtain

�>
rPtf(z) = E

" 
c2(t)p

↵
c1(t)p

↵

c1(t) c0(t)�
1+�
↵ c1(t)

!
rf(Zt)

#

=
↵

1 + ↵

⇣
G0e

��0t +G1↵e
�↵�1t

⌘
Ptrf(z)

with

G0 =

 
1p
↵

1p
↵

1 1

!
+O

✓
1

↵

◆

G1 =

 
1p
↵
�

�0
↵
p
↵

�
1

↵
p
↵

�
1
↵ �

1+�0+�
↵2

!
=

 
1p
↵

0

0 0

!
+O

✓
1

↵

◆

The expression for G0 shows that |�>
rPtf(z)| can be of order 1/

p
↵ only for functions

f↵(z) such that Ez[@xf↵(Zt) + @yf↵(Zt)] = O(1/
p
↵).

Furthermore, for any function f 2 C1
c we have

Cov
�
f(Zt), B

X
t

�
= O

✓
1
p
↵

◆

and

Cov

✓Z t

0
f(s, Zs)ds,B

X
t

◆
= O

✓
1
p
↵

◆
.

Since by Itô’s formula dPs,tf(Zs) = rPs,tf(Zs) · �dBs we have

f(Zt)� Ef(Zt) =

Z t

0
rPs,tf(Zs) · �dBs

=

Z t

0
rxPs,tf(Zs)

p
↵dBX

s +

Z t

0
ryPs,tf(Zs)dB

Y
s
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we have

Cov
�
f(Zt), B

X
t

�
= E

⇥
(f(Zt)� Ef(Zt))B

X
t

⇤

= E
Z t

0
rxPs,tf(Zs)

p
↵ds

�

=

✓
1
p
↵
+O

✓
1

↵

◆◆
↵

1 + ↵

Z t

0
e��0sPs,t(rxf +ryf)(Zs)ds.

The result for
R t
0 f(s, Zs)ds follows by the same arguments from the martingale repre-

sentation for
R t
0 f(s, Zs)ds� E

R t
0 f(s, Zs)ds.

3.6 Averaging: Conditioning on the slow component

Consider the following linear multiscale SDE on R⇥ R accelerated by a factor ↵:

dXt = �↵X(Xt � Yt)dt+
p
↵�XdBX

t , X0 = 0

dYt = �Y (Yt �Xt)dt+ �Y dB
Y
t , Y0 = 0

where BX , BY are independent Brownian motions and ↵,X ,Y ,�X ,�Y are strictly
positive constants and we are interested in the solution on a fixed inverval [0, T ].

We define the corresponding averaged process to be the solution to

dX̄t = �↵X(X̄t � Ȳt)dt+
p
↵�XdBX

t , X̄0 = 0 (3.6.1a)

dȲt = E
h
�Y (Ȳt � X̄t)

���F Ȳ
t

i
dt+ �Y dB

Y
t , Ȳ0 = 0 (3.6.1b)

where F
Ȳ
t is the �-algebra generated by (Ȳs)st.

The conditional measure P(·|F Ȳ
T ) has a regular conditional probability density u 7!

P(·|Ȳ = u), u 2 C([0, T ],R). Now observe that BX remains unchanged under P(·|Ȳ =
u) since Ȳ and BX are independent. This means that for all u 2 C([0, T ],R) and
f 2 C1

c (R), P(·|Ȳ = u) solves the same martingale problem as the measure associated
to

dXu
t = �↵X(Xu

t � u(t))dt+
p
↵�XdBX

t , Xu
0 = 0. (3.6.2)

It follows that the conditional expectation given F
Ȳ
T of any functional involving X̄ equals

the usual expectation of the same functional with X̄ replaced by Xu evaluated at u = Y .

For example, since

EXu
t =

Z t

0
↵Xe�↵X(t�s) u(s) ds
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the drift coe�cient of Ȳ is

E
h
�Y (Ȳt � X̄t)

���F Ȳ
t

i
= �Y (Ȳt � E[X̄t|F

Ȳ
T ]) = �Y (Ȳt � EXu

t |u=Ȳ )

= �Y

✓
Ȳt �

Z t

0
↵Xe�↵X(t�s) Ȳs ds

◆

so that Ȳ solves the SDE

dZt = �↵X(Zt � Ȳt)dt (3.6.3a)

dȲt = �Y (Ȳt � Zt)dt+ �Y dB
Y
t . (3.6.3b)

The key step in our estimate for Yt � Ȳt is the application of the results from the first
section to Z T

0
h(t)(Xu

t � EXu
t )dt

for a certain function h(t).

We begin with a gradient estimate for the evolution operator P u
s,t associated to Xu.

Lemma 3.6.1. Let id(x) = x be the identity function and h(t) 2 C([0, T ],R). We have
for all x 2 R

@xP
u
s,t(h id)(x) = h(t)e�↵X(t�s).

Proof. Denote Xs,x
t the solution to (3.6.2) with Xu

s = x. Then

d(Xs,x+"
t �Xs,x

t ) = �↵X(Xs,x+"
t �Xs,x

t )dt

so that
Xs,x+"

t �Xs,x
t = "e�X↵(t�s)

and
@xPs,t(h id)(x) = lim

"!0
"�1E

h
h(t)Xs,x+"

t � h(t)Xs,x
t

i
= h(t)e�X↵(t�s).

Theorem 3.6.2.

E|YT � ȲT |
2 =

↵2Y �
2
X

(↵X + Y )2

Z T

0

⇣
1� e�↵X(T�t)

⇣
2� e�Y (T�t)

⌘⌘2
dt (3.6.4)


T

↵

2Y �
2
X

2X

and

E|ȲT � �Y B
Y
T |

2 =
2Y �

2
Y

(↵X + Y )2

Z T

0

⇣
1� e�(↵X+Y )t

⌘2
dt (3.6.5)


T

↵2

2Y �
2
Y

2X
.
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Proof of Theorem 3.6.2. We now proceed to show the equality (3.6.4). We decompose

YT � ȲT =

Z T

0
Y (Xt � Yt)dt�

Z T

0
Y (E[X̄t|Ȳ ]� Ȳt)dt

= �Y

Z T

0
(E[X̄t|Ȳ ]� X̄t)dt� Y

Z T

0
(Yt � Ȳt)� (Xt � X̄t)dt. (3.6.6)

Using linearity, we can rewrite this as

YT � ȲT = �Y

Z T

0
h(T � t)(E[X̄t|Ȳ ]� X̄t)dt

for some function h.

Since
d(Xt � X̄t) = �↵X(Xt � X̄t)dt+ ↵X(Yt � Ȳt)dt

we have

Xt � X̄t =

Z t

0
↵Xe�↵X(t�s)(Yt � Ȳt)ds.

With the notation
f(t) = Yt � Ȳt, g(t) = X̄t � E[X̄t|Ȳ ]

equation (3.6.6) reads as

1

Y
f 0(t) + f(t)�

Z t

0
↵Xe�↵X(t�s)f(s)ds = g(t).

Using capital letters for the Laplace transform, this writes as

s

Y
F (s) + F (s)�

↵X
s+ ↵X

F (s) = G(s)

or, after rearranging,

F (s) = Y
s+ ↵X

s(s+ ↵X + Y )
G(s) = Y H(s)G(s).

Inverting the Laplace transform, we find that

h(t) =
↵X

↵X + Y
+

Y
↵X + Y

e�(↵X+Y )t

so that

YT � ȲT = Y

Z T

0
h(T � s)

�
X̄s � E[X̄s|Ȳ ]

�
ds.
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By the properties of conditional expectation and Corollary 3.2.3 we have for any inte-
grable function � that

E�(YT � ȲT ) = E[E�(YT � ȲT )|F
Ȳ
T ] = E[E(�(YT � ȲT )|u = Ȳ )] = E[(E�(Mu

T ))|u=Ȳ ]

with

Mu
T = Y

Z T

0

Z T

t
@xP

u
t,s(h(T � ·) id)(Xt) ds

p
↵�XdBt

= Y
p
↵�X

Z T

0

Z T

t
h(T � s)e�↵X(s�t) ds dBt

=
Y

p
↵�X

↵X + Y

Z T

0

Z T

t
↵Xe�↵X(s�t)ds

+

Z T

t
Y e

�Y (T�s)e�↵X(T�s)e�↵X(s�t) ds dBt

=

p
↵Y �X

↵X + Y

Z T

0
1� e�(↵X+Y )(T�t) dBt.

Since Mu
t is independent of u we can let Mt = Mu

t for an arbitrary u so that

E�(YT � ȲT ) = E�(MT ).

Now we can compute

E
��YT � ȲT

��2 = EhMiT =
↵2Y �

2
X

(↵X + Y )2

Z T

0

⇣
1� e�(↵+Y )(T�t)

⌘2
dt.

We now turn to the computation of E|Ȳt � �Y BY
t |

2.

From equation (3.6.3) we have

d(Ȳt � Zt) = �(↵X + Y )(Ȳt � Zt)dt+ �Y B
Y
t

so that

Ȳt � Zt = �Y

Z t

0
e�(↵X+Y )(t�s)dBY

s . (3.6.7)

is an Ornstein-Uhlenbeck process. This means that

E(Ȳt � Zt)(Ȳs � Zs) =
�2
Y e

�(↵X+Y )t

↵X + Y
sinh((↵X + Y )s), s  t.
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so that

E|Ȳt � �Y B
Y
t |

2 = 2Y

����
Z t

0
Ȳs � Zsds

����
2

= 22Y

Z t

0

Z s

0
E(Ȳs � Zs)(Ȳr � Zr)drds

=
22Y �

2
Y

(↵X + Y )

Z t

0
e�(↵X+Y )s

Z s

0
sinh((↵X + Y )r)drds

=
22Y �

2
Y

(↵X + Y )2

Z t

0
e�(↵X+Y )s (cosh((↵X + Y )s)� 1) ds

=
2Y �

2
Y

(↵X + Y )2

✓Z t

0
1 + e�2(↵X+Y )s

� 2e�(↵X+Y )sds

◆

3.7 Approximation by Averaged Measures

In the previous section, the computation for E|Ȳt � �Y BY
t |

2 relied on the fact that we
had an explicit expression for E[X̄t � Ȳt|Y ]. Here we will see a method that can be used
to obtain similar estimates in more general situations.

Consider a di↵usion process (Xt, Yt) on Rn
⇥ Rm

dXt = bX(Xt, Yt)dt+ �X(Xt, Yt)dB
X
t

dYt = bY (Yt)dt+ �Y (Yt)dB
Y
t

where BX and BY are standard independent Brownian motions. Denote L the generator
of (X,Y ) and F

Y the filtration of BY .

Let
Qtf = EFY

t f(Xt, Yt)

so that, by the Itô formula and since Y is adapted to F
Y and BX and BY are indepen-

dent, we have

Qtf = EFY
t

"
f(X0, Y0) +

Z t

0
Lf(Xs, Ys)ds+

Z t

0
rxf(Xs, Ys) · �X(Xs, Ys)dB

X
s

+

Z t

0
ryf(Xs, Ys) · �Y (Ys)dB

Y
s

#

= EFY
0 [f(X0, Y0)] +

Z t

0
EFY

s Lf(Xs, Ys)ds+

Z t

0
(EFY

s ryf(Xs, Ys)) · �Y (Ys)dB
Y
s .

In other words,

dQtf = QtLfdt+ (Qtryf) · �Y (Yt)dB
Y
t .
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Example 3.7.1 (Averaged Ornstein-Uhlenbeck). Consider again the process (X̄, Ȳ ) from
the previous section. In this case, f(x, y) = x � y is an eigenfunction of �L with
eigenvalue ↵X + Y and we have @yf = �1. Therefore

dQtf = �(↵X + Y )Qtfdt� �Y dB
Y
t

so that we retrieve the result from (3.6.7)

E[X̄t � Ȳt|Ȳ ] = Qtf = ��Y

Z t

0
e�(↵X+Y )(t�s)dBY

s .
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Chapter 4

Towards a Quantitative

Averaging Principle for

Stochastic Di↵erential Equations

This chapter is a reproduction of the preprint [Pep17], which is why the notation di↵ers
slightly from the rest of the thesis.

4.1 Introduction and notation

4.1.1 Motivation and main result

We are interested in stochastic di↵erential equations of the form

dXt = "�1bX(Xt, Yt)dt+ "�1/2�X(Xt, Yt)dB
X
t , X0 = x0,

dYt = bY (Xt, Yt)dt+ �Y (Yt)dB
Y
t , Y0 = y0

for some " > 0 and x0 2 Rn, y0 2 Rm. The precise assumptions on the coe�cients are
stated in Assumption 4.1.1 and they essentially amount to bX being one-sided Lipschitz
outside a compact set, bY being di↵erentiable with bouded derivative, �X being bounded
and the process being elliptic.

It is well known (see for example [FW12]) that when all the coe�cients and their first
derivatives are bounded, Y (which depends on ") can be approximated by a process Ȳ
on Rm in the sense that for all T > 0 fixed

P
 

sup
0tT

|Yt � Ȳt| > "

!
! 0 as " ! 0.
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The process Ȳ solves the SDE

dȲt = b̄Y (Ȳt)dt+ �Y (Ȳt)dB
Y
t , Ȳ0 = y0

with

b̄(y) =

Z

Rn
bY (x, y)µ

y(dx).

Here (µy)y2Rm is a family of measures on Rn such that for each y, µy is the unique
stationary measure of Xy with

dXy
t = bX(Xy

t , y)dt+ �X(Xy
t , y)dB

X
t .

The work [Liu10] replaces the boundedness assumption on bX and �X by a dissipativity
condition and shows the following rate of convergence of the time marginals:

sup
0tT

E|Yt � Ȳt|  C"1/2

for some constant C independent of ".

In [LLO16] the authors relax the growth conditions on the coe�cients of the SDE and
show that when (Xt, Yt) is a reversible di↵usion process with stationary measure µ =
e�V (x,y)dxdy such that for each y, a Poincaré inequality holds for e�V (x,y)dx, then there
exists a constant C independent of " such that

E sup
0tT

|Yt � Ȳt|  C"1/2.

The present work extends the approach from [LLO16] to the non-stationary case and
drops the boundedness assumption on bY , �Y commonly found in the averaging liter-
ature. The general setting and notation will be outlined in Section 4.1.2. Section 4.2
presents a forward-backward martingale argument under the assumption of a Poincaré
inequality for the regular conditional probability density ⇢yt of Xt given Yt = y. By
dropping the stationarity assumption, we have to deal with the fact that ⇢yt is no longer
equal to µy defined above. This is done in Section 4.3 by developing the relative entropy
between ⇢yt and µy along the trajectories of Y . Dropping the boundedness assumption
on bY forces us to consider the mutual interaction between Xt and Yt. In Section 4.4 we
address this problem when the timescales of X and Y are su�ciently separated. The
main theorem is proven in Section 4.5. Section 4.6 applies the theorem to a particular
class of SDEs to obtain su�cient conditions such that for any T > 0 and " su�ciently
small

E sup
0tT

��Yt � Ȳt
��  C"1/2

where C will be explicitly given in terms of the coe�cients of the SDE and the Poincaré
constant for ⇢yt .
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4.1.2 Setting and notation

The results in Sections 2 to 5 will be stated in the setting of an SDE on X⇥Y = Rn
⇥Rm

of the form

dXt = bX(Xt, Yt)dt+ �X(Xt, Yt)dB
X
t , X0 = x

dYt = bY (Xt, Yt)dt+ �Y (Xt, Yt)dB
Y
t , Y0 = y

where x 2 X = Rn, y 2 Y = Rm, BX , BY are independent standard Brownian motions
on Rn and Rm respectively and bX = (biX)1in, bY = (biY )1im, �X and �Y are
continuous mappings from X ⇥ Y to X , Y, Rn⇥n and Rm⇥m respectively.

The matrices AX = (aijX(x, y))i,jn and AY = (aijY (x, y))i,jm are defined by

AX(x, y) = 1
2�X(x, y)�X(x, y)T , AY (x, y) =

1
2�Y (x, y)�Y (x, y)

T

and the infinitesimal generator L of (X,Y ) has a decomposition L = LX +LY such that

LXf =
nX

i=1

biX@xif +
nX

i,j=1

aijX@2
xixj

f,

LY f =
mX

i=1

biY @xif +
mX

i,j=1

aijY @
2
xixj

f,

Lf = (LX + LY )f.

We will also make use of the square field operators � and �X , defined by

�(f, g) = 1
2(L(fg)� gLf � fLg) =

nX

i,j=1

aijX@xif@xjg +
mX

i,j=1

aijY @yif@yjg,

�X(f, g) = 1
2(L

X(fg)� gLXf � fLXg) =
nX

i,j=1

aijX@xif@xjg.

We denote ⇢t(dx, dy) the marginal distribution of (X,Y ) at time t, i.e. for ' 2 C1
c

E['(Xt, Yt)] =

Z

X⇥Y
'(x, y)⇢t(dx, dy)

and we let ⇢yt (dx) be the regular conditional probability density of P (Xt 2 dx|Yt = y).

If a measure µ(dx, dy) is absolutely continuous with respect to Lebesgue measure we will
make a slight abuse of notation and denote µ(x, y) its density.

We will also make use of a family of auxiliary processes (Xy)y2Y defined by

dXy
t = bX(Xt, y)dt+ �X(Xt, y)dB

X
t , Xy

0 = x
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which we assume to be uniformly ergodic and we denote µy the unique stationary in-
variant measure of Xy.

We will furthermore use another auxiliary process X̃ solution to

dX̃t = bX(X̃t, Yt)dt+ �X(X̃t, Yt)dB̃
X
t , X̃0 = x

where B̃X is an n-dimensional Brownian motion independent of BX and BY and we
denote ⇢̃yt the regular conditional probability density of P (X̃t 2 dx|Yt = y).

For the section on decoupling and the main theorem we need in addition to a separation
of timescales the following regularity conditions on the coe�cients of (X,Y ):

Assumption 4.1.1. Regularity of the coe�cients:

• bX verifies a one-sided Lipschitz condition with constant X and perturbation ↵:

(x1 � x2)
T (bX(x1, y)� bX(x2, y))  �X |x1 � x2|

2 + ↵ for all x1, x2 2 X , y 2 Y

• bY has a bounded first derivative in x:

Y
2 :=

1

m

mX

i=1

sup
x,y

|rxb
i
Y (x, y)|

2 < 1

• AX is nondegenerate uniformly with respect to (x, y), i.e. there exist two constants
0 < �X  ⇤X < 1 such that the following matrix inequalities hold (in the sense
of nonnegative definiteness):

�X Id  AX(x, y)  ⇤X Id

• �Y is invertible and AY is uniformly elliptic with respect to (x, y), i.e. there exists
a constant �Y > 0 such that the following matrix inequality holds (in the sense of
nonnegative definiteness):

�Y Id  AY (x, y)

Assumption 4.1.2. Regularity of the time marginals:

• There exists M0 such that for |x|2 + |y|2 > M0, r > 0, ↵ > 0

rx log ⇢t(x, y)
Tx+ry log ⇢t(x, y)

T y  �r(|x|2 + |y|2)↵/2.

• The regular conditional probability densities ⇢̃yt of P (X̃t 2 dx|Yt = y) satisfy
Poincaré inequalities with constants cP (y) independent of ":

Z
(f � ⇢̃yt (f))

2d⇢̃yt  cP (y)

Z
|�Xrxf |

2d⇢̃yt .

In order to characterise the separation of timescales, we introduce a parameter � defined
by

� =
X2�Y

⇤XY 2
.
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4.2 Approximation by conditional expectations

We will start with a Lemma for a form of the Lyons-Meyer-Zheng forward-backward
martingale decomposition.

Lemma 4.2.1 (Forward-backward martingale decomposition). For a di↵usion process
⇠t with generator Lt and square field operator �t we have for f(s, ·) 2 D(Ls+ L̃T�s) and
1  p  2

E sup
0tT

����
Z t

0
�(Ls + L̃T�s)f(s, ⇠s)ds

����
p

 3p�1(2Cp + 1)

✓
E
Z T

0
2�t(f)(⇠t)dt

◆p/2

where L̃s is the generator of the time-reversed process ⇠̃t = ⇠T�t and Cp is the constant
in the upper bound of the Burkholder-Davis-Gundy inequality for Lp.

Proof. First, suppose that f(t, x) is once di↵erentiable in t and twice di↵erentiable in x
so that we can apply the Itô formula.

We express f(t, ⇠t)� f(0, ⇠0) in two di↵erent ways, using the fact that ⇠t = ⇠̃T�t:

f(t, ⇠t)� f(0, ⇠0) =

Z t

0
(@s + Ls)f(s, ⇠s)ds+Mt (1)

f(0, ⇠0)� f(t, ⇠t) = (f(0, ⇠̃T )� f(T, ⇠̃0))� (f(t, ⇠̃T�t)� f(T, ⇠̃0))

=

Z T

T�t
(�@s + L̃s)f(T � s, ⇠̃s)ds+ M̃T � M̃T�t

=

Z t

0
(�@s + L̃T�s)f(s, ⇠̃T�s)ds+ M̃T � M̃T�t

=

Z t

0
(�@s + L̃T�s)f(s, ⇠s)ds+ M̃T � M̃T�t (2)

where M and M̃ are martingales with

hMiT =

Z T

0
2�s(f)(s, ⇠s)ds,

hM̃iT =

Z T

0
2�T�s(f)(T � s, ⇠̃s)ds =

Z T

0
2�s(f)(s, ⇠s)ds = hMiT .

Summing (1) and (2), we get
Z t

0
�(Ls + L̃T�s)f(s, ⇠s) = Mt + M̃T � M̃T�t.

We have by the Burkholder-Davis-Gundy Lp-inequality that

E sup
0tT

|Mt|
p
 CpE[hMi

p/2
T ]

E sup
0tT

|M̃T�t|
p = E sup

0tT
|M̃t|

p
 CpE[hM̃i

p/2
T ] = CpE[hMi

p/2
T ]

52



so that

E
"

sup
0tT

����
Z t

0
�(Ls + L̃T�sf)(s, ⇠s)

����
p

ds

#
= E sup

0tT

���Mt + M̃T � M̃T�t

���
p

 3p�1

 
E sup

0tT
|Mt|

p + E|M̃T |
p + E sup

0tT
|M̃T�t|

p

!

 3p�1(2Cp + 1)(EhMiT )
p/2

 3p�1(2Cp + 1)

✓
E
Z T

0
2�t(f)(t, ⇠t)dt

◆p/2

For a general f(t, x), C2 in x and locally integrable in t, we approximate first in space
by stopping ⇠t and then in time by mollifying f(·, x).

For R > 0, " > 0 and a function f(t, x) we will use the notation

(f)R(t, x) = f(t, x
|x| ^R

|x|
),

(f)"(t, x) =

Z +1

�1
f(s, x)�"(t� s)ds

where �" is a mollifier. In particular, (f)R(t, ·) is bounded and (f)"(·, x) is di↵erentiable.

Let Kt = Lt + L̃T�t. Kt is a second order partial di↵erential operator and so can be
written as

Ktf(t, x) =
X

bi(t, x)@xif(t, x) +
X

aij(t, x)@2
xixj

f(t, x)

for some functions bi and aij .

Define the stopping times ⌧R = inf{t > 0 : |⇠t| � R}. Then

E sup
0tT

����
Z t^⌧R

0
Ks(f)"(s, ⇠s)ds

����
p

= E sup
0t⌧R^T

����
Z t

0
(Ks(f)")

R(s, ⇠s)ds

����
p

 E sup
0tT

����
Z t

0
(Ks(f)")

R(s, ⇠s)ds

����
p

 3p�1(2Cp + 1)

✓
E
Z T

0
2(�t((f)")

R(t, ⇠t)dt

◆p/2

.

(4.2.1)

By di↵erentiating inside the integral for (f)" we get

Z t^⌧R

0
Ks(f � (f)")(s, ⇠s)ds  sup

0tT,|x|R
|bi(t, x)|

Z T

0
sup
|x|R

|(@xif � (@xif)")(s, x)|ds

+ sup
0tT,|x|R

|aij(t, x)|

Z T

0
sup
|x|R

|(@2
xixj

f � (@2
xixj

f)")(s, x)|ds.
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As " ! 0, (g)" ! g in L1([0, T ], L1(BR)) and the integrals on the right hand side go to
0. We now let first " ! 0 with dominated convergence and then R ! 1 with monotone
convergence to get

E sup
0tT

����
Z t

0
Ksf(s, ⇠s)ds

����
p

= lim
R!1

lim
"!0

E sup
0tT

����
Z t^⌧R

0
Ks(f)"(s, ⇠s)ds

����
p

For the right hand side of (4.2.1), note that

(�t(f)��t((f)"))
R = �t(f � (f)", f +(f)")

R = (aij)R(@xif � (@xif)")
R(@xjf +(@xjf)")

R

so that
Z T

0
|(�t(f)��t((f)"))

R
|  sup

0tT,|x|R
aij(t, x)(@xjf+(@xjf)")

Z T

0
sup
|x|R

|@xif�(@xif)"|dt.

Now the convergence follows again by first letting " ! 0 with dominated convergence
and then R ! 1 with monotone convergence.

Lemma 4.2.2. Let L and L̂ be generators of di↵usion processes with common invariant
measure µ and square field operators � and �̂ respectively. Let f, g be a pair of functions
such that

Lf = L̂g and

Z
�̂(f)dµ 

Z
�(f)dµ.

Then Z
�(f)dµ 

Z
�̂(g)dµ.

Proof.
Z
�(f)dµ =

Z
fLfdµ =

Z
fL̂gdµ =

Z
�̂(f, g)dµ



✓Z
�̂(f)dµ

◆1/2✓Z
�̂(g)dµ

◆1/2



✓Z
�(f)dµ

◆1/2✓Z
�̂(g)dµ

◆1/2

.

The result follows by dividing both sides by
�R
�(f)dµ

�1/2
.

Lemma 4.2.3. Consider a generator L with invariant measure µ and associated square
field operator �. Assume that the following Poincaré inequality holds:

Z
('� µ('))2dµ  cP

Z
�(')dµ.

Then for any su�ciently nice f
Z
�(f)dµ  cP

Z
(�Lf)2dµ  cP

2
Z
�(�Lf)dµ
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Proof. Since both � and L are di↵erential operators, we can assume that µ(f) = 0. Now,

✓Z
�(f)dµ

◆2

=

✓
�

Z
fLfdµ

◆2



Z
f2dµ

Z
(�Lf)2dµ  cP

Z
�(f)dµ

Z
(�Lf)2dµ

and the first inequality follows after dividing both sides by
R
�(f)dµ. For the second

inequality, we apply the Poincaré inequality again with ' = (�Lf).

Proposition 4.2.4. In the general setting of section 4.1.2 with Assumption 4.1.2 let
⌫⌘t (dx) be the regular conditional probability density of P(Xt 2 dx|�(Yt) = ⌘) for a
measurable function � : Y ! Rl. If ⌫⌘t satisfies a Poincaré inequality with constant
cP (⌘) independent of t with respect to �X then for any function ft(x, y) with at most

polynomial growth in x and y such that ft(·) 2 C2(X ⇥ Y),
R
X ft(x, y)⌫

�(y)
t (dx) = 0 and

1  p  2

E sup
0tT

����
Z t

0
fs(Xs, Ys)ds

����
p

 3p�12�p/2(2Cp + 1)

✓
E
Z T

0
cP (�(Yt))f

2
t (Xt, Yt)dt

◆p/2

where Cp is the constant in the upper bound of the Burkholder-Davis-Gundy inequality
for Lp.

Proof of Proposition 4.2.4. The generator of the time-reversed process (X,Y )T�t is [HP86]

L̃t' = �

nX

i=1

biX@xi'�

mX

i=1

biY @yi'+
nX

i,j=1

aijX@2
xixj

'+
mX

i,j=1

aijY @
2
yiyj'

+
1

pT�t

nX

i,j=1

@xj (2a
ij
XpT�t)@xi'+

1

pT�t

mX

i,j=1

@yj (2a
ij
Y pT�t)@yi'

so that the symmetrized generator is

Kt' :=
(L+ L̃T�t)'

2

=
1

pt

nX

i,j=1

@xj (a
ij
Xpt)@xi'+

nX

i,j=1

aijX@2
xixj

'+
1

pt

mX

i,j=1

@yj (a
ij
Y pt)@yi'+

mX

i,j=1

aijY @
2
yiyj'

=
nX

i,j=1

1

pt
@xi(pta

ij
X@xj') +

mX

i,j=1

1

pt
@yi(pta

ij
Y @yj').

For fixed ⌧ � 0, we see from the expression for K that p⌧ (dx, dy) is an invariant measure
for K⌧ (use integration by parts).

By the properties of conditional expectation
R
f⌧dp⌧ = 0. From Assumption 4.1.2 and

Theorem 1 in [PV01] it follows that for each ⌧ there exists a unique solution F⌧ 2

C2(X ⇥ Y) to the Poisson Problem K⌧F⌧ = f⌧ .
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We can now apply the forward-backward martingale decomposition via Lemma 4.2.1 to
obtain

E sup
0tT

����
Z t

0
fs(Xs, Ys)ds

����
p

= E sup
0tT

����
Z t

0
KsFs(Xs, Ys)ds

����
p

= 2�pE sup
0tT

����
Z t

0
(L+ L̃T�s)Fs(Xs, Ys)ds

����
p

 2�p3p�1(2Cp + 1)

✓
E
Z T

0
2�(Fs)(Xs, Ys)ds

◆p/2

.

Now, we want to pass from � to �X in order to use our Poincaré inequality for ⌫⌘t .

For ' 2 C2(X ) and y 2 Y, ⌧ � 0 fixed let K̂⌧,y' be the the reversible generator associated

to �X(')(·, y) and ⌫�(y)⌧ .

Since ⌫�(y)⌧ satisfies a Poincaré inequality and
R
f⌧ (x, y)⌫

�(y)
⌧ (dx) = 0 by assumption,

K̂⌧ F̂
⌧,y(x) = f⌧ (x, y)

has a unique solution F̂ ⌧,y(x).

If we set K̂⌧'(x, y) = (K̂⌧,y'(·, y))(x) and F̂⌧ (x, y) = F̂ ⌧,y(x) then
Z

X⇥Y
K̂⌧'(x, y)pt(dx, dy) =

Z

Y

Z

X
(K̂⌧,y'(·, y))(x)⌫�(y)t pt(X , dy) = 0 and

K̂⌧ F̂⌧ (x, y) = f⌧ (x, y) = K⌧F⌧ (x, y).

By Lemma 4.2.2 we get that
Z

X⇥Y
�(Ft)dpt 

Z

X⇥Y
�X(F̂t)dpt.

Since K̂F̂t = ft and K̂t is the generator associated with �X and ⌫�(y)t , we can use the

Poincaré inequality on ⌫�(y)t in Lemma 4.2.3 to estimate the right hand side by
Z

X⇥Y
�X(F̂t)(x, y)pt(dx, dy) =

Z

Y

Z

X
�X(F̂t)(x, y)⌫

�(y)
t (dx)pt(X , dy)



Z

Y
cP (�(y))

Z

X
ft

2(x, y)⌫�(y)t (dx)pt(X , dy)

=

Z

X⇥Y
cP (�(y))ft

2(x, y)pt(dx, dy)

which completes the proof.
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4.3 Distance between conditional and averaged measures

We will first show a general result on the relative entropy between ⇢Yt
t and µYt by

studying the relative entropy along the trajectories of Yt. We are still in the setting of
section 4.1.2.

Proposition 4.3.1. Let ft(x, y) =
d⇢yt
dµy (x). If µy satisfies a Logarithmic Sobolev inequal-

ity with constant cL uniformly in y with respect to �X then for r 2 R

EH(⇢Yt
t |µYt)ert  EH(⇢Y0

0 |µY0)�

✓
2

cL
� r

◆Z t

0
EH(⇢Ys

s |µYs)ersds

+

Z t

0
E[LY log fs(Xs, Ys)]e

rsds.

Proof. We have

H(⇢yt |µ
y) =

Z

X
ft log ftµ

y(dx) = E[log ft(Xt, Yt)|Yt = y]

so that the quantity we want to estimate is

EH(⇢Yt
t |µYt) = E[log ft(Xt, Yt)].

Now by Itô’s formula

dert log ft(Xt, Yt) = ((@t + L) log ft(Xt, Yt) + r log ft(Xt, Yt)) e
rtdt+ dMt

=
�
(@t log ⇢

y
t (x))(Xt, Yt) + LX log ft(Xt, Yt) + LY log ft(Xt, Yt)

+ r log ft(Xt, Yt)
�
ertdt+ dMt

where Mt is a local martingale.

Since ⇢yt dx is a probability measure, we have

E[@t log ⇢yt (x)(Xt, Yt)|Yt = y] =

Z

X
(@t log ⇢

y
t (x))⇢

y
t (x)dx

=

Z

X
@t⇢

y
t (x)dx

= @t

Z

X
⇢yt (x)dx = 0.

By the definition of µy as an invariant measure for Xy we have for all ' in the domain
of LX Z

X
LX'(x, y)dµy = 0. (4.3.1)
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From the Logarithmic Sobolev inequality for µy we get

H(⇢yt |µ
y)  1

2cL I(⇢yt |µ
y) = 1

2cL

Z

X

�X(ft)(x, y)

ft(x)
µy(x)dx.

Together with the formula LX(g � f) = g0(f)LXf + g00(f)�X(f) this implies

E[LX log ft(Xt, Yt)|Yt = y] =

Z

X
LX(log ft)(x, y)⇢

y
t (x)dx

=

Z

X
LXft(x, y)µ

y(x)dx�

Z

X

�X(ft)(x, y)

ft(x)
µy(x)dx

= � I(⇢yt |µ
y)

 �
2

cL
H(⇢yt |µ

y).

By the tower property for conditional expectation and the preceding results,
E[(@t log ⇢yt (x))(Xt, Yt)] = 0 and E[LX log ft(Xt, Yt)]  �

2
cL
EH(⇢Yt

t |µYt) so that

EH(⇢Yt
t |µYt)ert = E[log ft(Xt, Yt)e

rt]

 EH(⇢Y0
0 |µY0)�

✓
2

cL
� r

◆Z t

0
EH(⇢Ys

s |µYs)ersds+

Z t

0
E[LY log fs(Xs, Ys)]e

rsds.

We now proceed to estimate the term E[LY log fs(Xt, Yt)] in a restricted setting where
the coe�cients of LY are independent of x and µy has a density µy(x) = Z(y)�1e�V (x,y)

where V has bounded first and second derivatives in y.

Lemma 4.3.2. If the coe�cients biY and aijY of LY only depend on y then for ft(x, y) =
d⇢yt
dµy (x) Z

X
LY log ftd⇢

y
t  �

Z

X
LY logµyd⇢yt

Proof. Let gt(x, y) = ⇢yt (x). Provided that all the integrals exist, we have
Z

X
LY (log gt)(x, y)⇢

y
t (dx) =

Z

X
LY (log gt(x, ·))(y)⇢

y
t (dx)

=

Z

X
LY (gt(x, ·))(y)dx�

Z

X

�Y (gt(x, ·))(y)

gt(x, y)
⇢yt (dx)



Z

X
LY (gt(x, ·))(y)dx

= LY

✓Z

X
gt(x, ·)dx

◆
(y) = 0
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since gt(x, y)dx is a probability measure. Now the result follows since

LY log ft = LY log gt � LY logµy.

Lemma 4.3.3. Consider a probability measure µ(dx, dy) with density µ(x, y) on X ⇥Y

and let Z(y) =
R
X µ(x, y)dx, µy(dx) = µ(dx, y)/Z(y). We have the identities

@yi logZ(y) =

Z

X
@yi logµ(x, y)µ

y(dx),

@2
yiyj logZ(y) =

Z

X
@2
yiyj logµ(x, y)µ

y(dx) + Covµy(@yi logµ, @yj logµ).

Proof. By di↵erentiating under the integral

@yi logZ(y) =
@yiZ(y)

Z(y)
=

Z

X
@yiµ(x, y)

dx

Z(y)
=

Z

X

@yiµ(x, y)

µ(x, y)

µ(x, y)dx

Z(y)
=

Z

X
@yi logµ(x, y)µ

y(dx)

and

@2
yiyj logZ(y)

= @yi

Z

X
@yj logµ(x, y)µ

y(dx)

=

Z

X
@yi@yj logµ(x, y)µ

y(dx) +

Z

X
@yj logµ(x, y)

@yiµ(x, y)

Z(y)
dx�

Z

X
@yj logµ(x, y)µ(x, y)

@yiZ(y)

Z(y)2
dx

=

Z

X
@2
yiyj logµ(x, y)µ

y(dx)

+

Z

X
@yj log µ(x, y)@yi logµ(x, y)µ

y(dx)� @yi logZ(y)

Z

X
@yj logµ(x, y)µ

y(dx)

=

Z

X
@2
yiyj logµ(x, y)µ

y(dx) + Covµy(@yi logµ, @yj log µ).

Lemma 4.3.4. For any Lipschitz function f

����
Z

fdµy
�

Z
fd⇢yt

����
2

 kfk2Lip⇤XcLH(⇢yt |µ
y)

uniformly in y 2 Y.

Proof. By the Logarithmic Sobolev inequality of µy with respect to �X and the uniform
boundedness of A we have

Entµy(f2)  2cL

Z
�X(f)dµy = 2cL

Z
(rxf)

TA(·, y)(rxf)dµ
y
 2cL⇤X

Z
|rxf |

2dµy
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which says that µy satisfies a Logarithmic Sobolev inequality with respect to the usual
square field operator |rx|

2 with constant cL⇤X . By the Otto-Villani theorem, this
implies a T2 inequality with the same constant:

W2(⇢
y
t , µ

y)2  cL⇤XH(⇢yt |µ
y).

By the Kantorovich duality formulation of W1 and monotonicity of Kantorovich norms
it follows from the preceding T2 inequality that

����� sup
kfkLip1

Z
fd(⇢yt � µy)

�����

2

= W1(⇢
y
t , µ

y)2  W2(⇢
y
t , µ

y)2  cL⇤XH(⇢yt |µ
y)

from which the result follows.

Proposition 4.3.5. If bY , �Y depend only on y and µy(dx) = Z(y)�1e�V (x,y)dx such
that k@yiV (·, y)kLip < 1, k@2

yiyjV (·, y)kLip < 1 for all y then

ELY ft(Xt, Yt) 
⇤XcL
2

E

0

@
mX

i=1

k@yiV (·, Yt)k
2
Lip +

mX

i,j=1

k@2
yiyjV (·, Yt)k

2
Lip

1

AH(⇢Yt
t |µYt)

+ E�(Ys)

where

�(y) = 1
2

mX

i=1

biY (y)
2 + 1

2

mX

i,j=1

aijY (y)
2 +

mX

i,j=1

aijY (y) Covµy(@yiV, @yjV ).

Proof. Using Lemmas Lemma 4.3.2, 4.3.3 and 4.3.4 together with the inequality 2ab 
a2 + b2 we get

Z

X
LY log ftd⇢

y
t

= �

Z

X
LY logµyd⇢yt

= LY logZ(y)�

Z

X
LY logµd⇢yt

= biY (y)

Z

X
@yi logµd(µy

� ⇢yt ) + aijY (y)

Z

X
@2
yiyj logµd(µy

� ⇢yt )

+ aijY (y) Covµy(@yi logµ, @yj logµ)


1
2b

i
Y (y)

2 + 1
2k@yi logµk

2
Lip⇤XcLH(⇢yt |µ

y) + 1
2a

ij
Y (y)

2

+ 1
2k@

2
yiyj logµk

2
Lip⇤XcLH(⇢yt |µ

y) + aijY (y) Covµy(@yi logµ, @yj logµ).

The result now follows from the tower property of conditional expectation.
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4.4 Decoupling

We are still in the general setting of Section 4.1.2. We also require that �Y (x, y) = �Y (y)
only depends on y and that Assumption 4.1.1 is in force. The key requirement for the
results in this section is a su�cient separation of timescales expressed by assumptions
on �.

The goal in this subsection is to estimate expressions of the type EF (X,Y ) by EF (X̃, Y )
for any functional F on WX ⇥WY .

Denoting P the Wiener measure on C([0, T ],X ⇥ Y), define a new probability measure
Q = E(M)P with

dMt =
⇣
�Y (Yt)

�1(bY (X̃t, Yt)� bY (Xt, Yt))
⌘T

dBY
t .

Corollary 4.4.5 will show in particular that under our assumption on � E(M) is a true
martingale so that Q is indeed a probability measure.

Under this conditions, there is a Q-Brownian motion B̃Y such that

dYt = bY (X̃t, Yt)dt+ �Y (Yt)dB̃
Y
t

with
dB̃Y

t = dBY
t � �Y (Yt)

�1(bY (X̃t, Yt)� bY (Xt, Yt))dt.

The following Proposition 4.4.2 states the key property of Q which we are going to use.

Lemma 4.4.1. Under Q, BX , B̃X and B̃Y are independent Brownian motions.

Proof. Girsanov’s theorem states that if L is a continuous P-local martingale, then L�

hL,Mi is a continuous Q-local martingale. Thus B̃Y = BY
� hBY ,Mi is a continuous

Q-local martingale by definition, and BX , B̃X are continuous Q-local martingales since
hBX ,Mi = 0 and hB̃X ,Mi = 0. Since the quadratic variation process is invariant under
a change of measure we can conclude using Lévy’s characterisation theorem.

Proposition 4.4.2. The laws of (X,Y, X̃) under P and of (X̃, Y,X) under Q are equal.

Proof. (X,Y ) solves the martingale problem for L under P, and (X̃, Y ) solves the mar-
tingale problem for L under Q. Since bX and bY are locally Lipschitz, the martingale
problem has a unique solution.

Note in particular that under Q BX
t and Y are independent.

The rest of this section is dedicated to show that we can estimate expectations under P
by expectations under Q when we have a su�cient separation of timescales.

61



Lemma 4.4.3. For any p > 1, q > 1 and Ft-measurable variable X

⇣
EX
⌘p



⇣
EQX

p
⌘⇣

Ee�(p,q)hMit
⌘p�1

q with �(p, q) =
q

2(p� 1)2
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1

q � 1

◆

Proof. We have

EX = E[XE(M)1/pE(M)�1/p]  (EXp
E(M))1/p(EE(M)�p0/p)

1/p0

= (EQX
p)1/p(EE(M)�p0/p)

1/p0

with 1
p + 1

p0 = 1

Furthermore, using that for any ↵ 2 R we have E(M)�↵ = E
↵(�M)e↵(1+↵)/2, we get

E[E(M)�p0/p] = E
⇣

E(M)�q0p0/p
⌘1/q0�

= E
"⇣

E
q0p0/p(�M)

⌘1/q0✓
e

q0p0
2p ( q

0p0
p +1)hMi

◆1/q0
#



⇣
EEq0p0/p(�M)

⌘1/q0✓
Ee

qp0
2p ( q

0p0
p +1)hMi

◆1/q

with 1
q +

1
q0 = 1



✓
Ee

q

2(p�1)2

⇣
p+ 1

q�1

⌘
hMit

◆1/q

The first expectation in the second line is  1 since E
q0p0/p(�M) is a positive local

martingale and therefore a supermartingale. Expressing q0 and p0 in terms of p and q in
the second expectation, we pass to the last line and conclude.

Lemma 4.4.4. Under Assumption 4.1.1 for

� 
�

4

we have

E exp (�hMit)  exp

✓
2�X(↵+ n�̄X)t

⇤X�

◆

Proof. From the definition of Mt we have

dhMit =
����Y �1

⇣
b(Xt, Yt)� b(X̃t, Yt)

⌘���
2
dt 

1

�Y

���b(Xt, Yt)� b(X̃t, Yt)
���
2
dt


Y
�Y

���Xt � X̃t

���
2
dt.

We also have

d|Xt � X̃t|
2 = 2

⇣
Xt � X̃t

⌘T ⇣
bX(Xt, Yt)� bX(X̃t, Yt)

⌘
dt

+ 2
⇣
Xt � X̃t

⌘T ⇣
�X(Xt, Yt)dB

X
t � �X(X̃t, Yt)dB̃

X
t

⌘

+ 2Tr(AX(Xt, Yt))dt+ 2Tr(AX(X̃t, Yt))dt

(m)
 �2X |Xt � X̃t|

2dt+ 2(↵+ n�̄X)dt
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where
(m)
 means inequality modulo local martingales, and

dh|Xt � X̃t|
2
i = 4(Xt � X̃t)

T
⇣
AX(Xt, Yt) +AX(X̃t, Yt)

⌘
(Xt � X̃t)

 8⇤X |Xt � X̃t|
2

so that

de
r
2 |Xt�X̃t|2e�hMit =

✓
r

2
d|Xt � X̃t|

2 + �dhMit +
r2

8
dh|Xt � X̃t|

2
i

◆
e

r
2 |Xt�X̃t|2e�hMit

(m)


✓✓
r2⇤X � rX +

�2Y
�2
Y

◆
|Xt � X̃t|

2 + r(↵+ n�̄X)

◆
e

r
2 |Xt�X̃t|2e�hMitdt

=
⇣
⇤X(r � r�)(r � r+)|Xt � X̃t|

2 + r(↵+ n�̄X)
⌘
e

r
2 |Xt�X̃t|2e�hMitdt

with
r± =

X
2⇤X

⇣
1±

p
1� 4�/�

⌘
.

According to our assumptions, 1� 4�/� > 0 and we have, choosing r = r�

de
r�
2 |Xt�X̃t|2e�hMit

(m)
 r�(↵+ n�̄X)e

r�
2 |Xt�X̃t|2e�hMitdt

so that

e
r�
2 |Xt�X̃t|2e�hMit

(m)
 er�(↵+n�̄X)t

and
Ee�hMit  Ee

r�
2 |Xt�X̃t|2e�hMit  er�(↵+n�̄X)t.

Since 1�
p
1� x  x for 0  x  1 we have furthermore

r� 
X
2⇤X

4�

�

so that

Ee�hMit  exp

✓
2�X(↵+ n�̄X)t

⇤X�

◆
.

Corollary 4.4.5. If � > 2 then

E(M)t is a true martingale.

Proof. Since 1
2 < �

4 by our assumption we get from the previous Proposition that

E
h
e

1
2 hMit

i
< 1

and Novikov’s criterion leads directly to the conclusion.
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Proposition 4.4.6. Under assumption 4.1.1 for any Ft-measurable random variable Z

and 1 + 2
� + 2

q
2
�  p  2

(EZ)p  EQ [Zp] exp

0

@ pX(↵+ n�̄X) t⇣
p� 1�

p
2/�
⌘
⇤X �

1

A

Proof. We would like to apply Lemmas 4.4.3 and 4.4.4, so we need to find conditions
that ensure the existence of a q such that �(p, q)  �

4 .

After some straightforward computations we get the identities

�(p, q)�
�

4
=

p(q � q�)(q � q+)

2(p� 1)2(q � 1)
,

q± =
�(p� 1)

4p

✓
p� 1 +

2

�
±

p
(p� p�)(p� p+)

◆
,

p± = 1 + 2
� ± 2

q
2
� .

Our assumption on p implies that 1 + 2
� + 2

q
2
�  2 () � �

1
(
p
3�

p
2)2

> 2 so that

p � p� > p � 1 + 2
� > 0 and by our assumption on p, p � p+ > 0 as well so that q± is

real and �(p, q+) =
�
4 .

For our particular values of p� and p+ we have furthermore (p�p�)(p�p+) � (p� p+)
2

so that

q+ �

�(p� 1)(p� 1�
q

2
� )

2p

Now, apply Lemma 4.4.3 with q = q+ to obtain

E[Z]p  EQ
⇥
Zp
⇤
E
⇥
e
�
4 hMit⇤

p�1
q+ .

We estimate the second expectation on the right hand side using Proposition 4.4.4

E
⇥
e
�
4 hMit⇤

p�1
q+

 exp

✓
(p� 1)

q+

X(↵+ n�̄X)t

2⇤X

◆

 exp

0

@ pX(↵+ n�̄X) t⇣
p� 1�

p
2/�
⌘
⇤X �

1

A

which leads to our result.
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4.5 Proof of the main theorem

Lemma 4.5.1. If b̄Y is Lipschitz then

sup
0tT

|Yt � Ȳt|  sup
0tT

����
Z t

0
bY (Xs, Ys)� b̄(Ys)ds

���� e
kb̄kLipT

Proof.

sup
0tT

|Yt � Ȳt| = sup
0tT

����
Z t

0
bY (Xs, Ys)� b̄Y (Ȳs)ds

����

 sup
0tT

����
Z t

0
bY (Xs, Ys)� b̄Y (Ys)ds

����+ kb̄kLip

Z T

0
sup
0st

|Ys � Ȳs|ds

and the conclusion follows from Gronwall’s inequality.

Theorem 4.5.2. Under Assumption 4.1.1 if �Y (x, y) = �Y (y), a Poincaré inequality
with constant cP holds for ⇢̃yt , a Logarithmic Sobolev inequality with constant cL holds
for µy(dx) = Z(y)�1e�V (x,y)dx both with respect to �X , X0 ⇠ µY0 and b̄ is Lipschitz
then for 1  p 

2

1+
2
�+2

r
2
�

we have the estimate

E
"

sup
0tT

|Yt � Ȳt|
p

#2/p
 mY

2⇤X

✓
27cP
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2X
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aijY (y)
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@
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Proof. By Lemma 4.5.1 we have
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Using Proposition 4.4.6 we get for 1  p 
2

1+
2
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r
2
�

that
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By Proposition 4.4.2
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Now we decompose
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E[bY (X̃s, Ys)|(Xs, Ys)]� b̄(Ys)ds

����
2
#
. (4.5.1)

For the rest of the proof we put ourselves in the setting of section 4.1.2 where we
substitute X̃ for X and (X,Y ) for Y .

For 1  i  m we now apply Proposition 4.2.4 with � : (x, y) 7! y, ⌫yt = ⇢̃yt and
ft(x̃, x, y) = biY (x̃, y) � E[biY (X̃s, Ys)|(Xs, Ys) = (x, y)]. Since ⇢̃yt satisfies a Poincaré in-
equality by assumption and

R
ft(·, y)d⇢̃

y
t = 0 by the properties of conditional expectation,

we get
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where the second inequality follows from the tower property of conditional expectation
and applying the Poincaré inequality a second time to ⇢̃yt and the last line from �X(biY ) =

rxbiY
T
AXrxbiY  ⇤X |rxbiY |

2
 ⇤XkrxbiY k

2
1. Summing over the components biY we

get

E
"

sup
0tT

����
Z t

0
bY (X̃s, Ys)� E[bY (X̃s, Ys)|(Xs, Ys)]ds

����
2
#


27cP 2⇤XT

2

mX

i=1

krxb
i
Y k

2
1

=
27cP 2⇤XmY 2T

2

We now turn to the second term on the right hand side in the decomposition (4.5.1).
First, note that
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Now, for some r 2 R to be fixed later, use Propositions 4.3.1 and 4.3.5 to get

EH(⇢̃Xt,Yt
t |µYt)ert  �

✓
2

cL
�

cV 2⇤XcL
2

� r

◆Z t

0
EH(⇢Xs,Ys

s |µYs)ersds+

Z t

0
E�(Xs, Ys)e

rsds.

(4.5.2)

We have

E�(Xs, Ys) = E

2

41
2

mX

i=1

biY (Xs, Ys)
2 + 1

2

mX

i,j=1

aijY (Ys)
2 +

mX

i,j=1

aijY (Ys) CovµYs (@yiV, @yjV )

3

5

67



and we estimate the first term on the right hand side as follows:
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 3E[biY (Xs, Ys)� biY (X̃s, Ys)]

2

+ 3[EbiY (X̃s, Ys)�

Z

X
biY (x, Ys)µ

Ys(dx)]2 + 3

����
Z

X
biY (x, Ys)µ

Ys(dx)

����
2

.

Since bY is Lipschitz in the first variable we get for the first term
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Still using the Lipschitzness of bY , we use Lemma 4.3.4 together with the tower property
for conditional expectation on the second term to get
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Substituting � in (4.5.2) we get
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By the preceding inequality and the Young inequality for convolutions on L1([0, T ])
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Assembling the previous results, we obtain
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4.6 Applications

4.6.1 Averaging

For " > 0 fixed consider an SDE of the form

dXt = �"�1
rxV (Xt, Yt)dt+ "�1/2

q
2��1

X dBX
t (4.6.1)

dYt = bY (Xt, Yt)dt+
q
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Y dBY
t (4.6.2)

with Y0 = y0 2 Rm and X0 ⇠ µy0 = e��V (x,y0)dx and V (x, y) is of the form

V (x, y) =
1

2
(x� g(y))Q(x� g(y)) + h(x, y)
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where h is uniformly bounded in both arguments and both @yh and @2
yh are Lipschitz

in x uniformly in y. Under these conditions

µy(dx) = Z(y)�1e��XV (x,y)dx with Z(y) =

Z

X
e��XV (x,y)dx

is a Gaussian measure with covariance matrix �XQ and mean g(y) perturbed by a
bounded factor e��Xh(x,y). As such it satisfies a Logarithmic Sobolev inequality with
respect to the usual square field operator |r|

2 with constant

c0L = (�X�Q)
�1e�X osc(h) with osc(h) = suph� inf h

and �Q is the smallest eigenvalue of Q. In particular, µy satisfies a Logarithmic Sobolev
inequality with constant

cL = "��1
Q e�X osc(h)

with respect to �X = "�1��1
X |r|

2.

We have

�(x1 � x2)
T (rxV (x1, y)�rxV (x2, y))

= �(x1 � x2)
TQ(x1 � x2)� (x1 � x2)

T (rxh(x1, y)�rxh(x2, y))

 ��Q|x1 � x2|
2 + |x1 � x2|krxhk1

 ��Q|x1 � x2|
2 +

krxhk1
4�Q

so that we can choose

X = "�1�Q, ↵ = "�1 krxhk1
4�Q

.

We also have trivially

�X = ⇤X = �̄X = "�1��1
X , ⇤Y = ��1

Y , Y = krxbY k1

and the separation of timescales is

� =
X2�Y

⇤XmY 2
= "�1 �Q

2��1
Y

krxbY k21��1
X

.

If � > 1
(
p
3�

p
2)2

⇡ 9.899 we can apply Theorem 4.5.2 with p = 1 to get

E
"

sup
0tT

|Yt � Ȳt|

#2
 "C1

✓
27(cP (")/cL)

2T + C2E
Z T

0
 (Yt)dt

◆
exp

�
2p0C3T + 2kb̄kLipT

�

with
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C1 = "�1mY
2⇤XcL

2 = mY
2��1

X ��2
Q e2�X osc(h),

C2 =
2

4� cL2⇤X(mY 2 + 3cV 2)
 1 for " 

2�Qe��X osc(h)�X
krXbY k21 + 3cV 2

,

C3 =
X(↵+ n�̄X)

�⇤X
=

krxbY k21(krxhk1
4�Q

+ n��1
X )

��1
Y �Q

,

 (y) =
3mY 2(↵+ n�̄X)

2X
+ 3

2 |b̄(y)|
2 + 1

2

mX

i,j=1

aijY (y)
2 +

mX

i,j=1

aijY (y) Covµy(@yi�XV, @yj�XV )

=
3krxbY k21(krxhk1

4�Q
+ n��1

X )

2�Q
+ 1

2m��2
Y + ��1

Y �2
X

X

i

Varµy(@yiV ) + 3
2 |b̄(y)|

2



3krxbY k21(krxhk1
4�Q

+ n��1
X )

2�Q
+ 1

2m��2
Y + ��1

Y �2
Xc0L

X

i

k@yiV k
2
Lip +

3
2 |b̄(y)|

2

=
3krxbY k21(krxhk1

4�Q
+ n��1

X )

2�Q
+ 1

2m��2
Y + �X(�Y �Q)

�1e�X osc(h)
X

i

k@yiV k
2
Lip +

3
2 |b̄(y)|

2,

2 < p0 =
1

1� 1
2

⇣
1 +

q
2
�

⌘ <
2

3�
p
2
p
3
⇡ 3.633

and

cV
2 = sup

y

0

@
mX

i=1

k@yiV (·, y)k2Lip +
mX

i,j=1

k@2
yiyjV (·, y)k2Lip

1

A .

If we suppose that cP (")/cL converges to a finite limit as " ! 0 and that

E
Z T

0
b̄(Yt)

2dt < 1

then there exists a constant C depending on T, V,�X , bY and �Y such that for " su�-
ciently small

E sup
0tT

|Yt � Ȳt| 
p
"C.

In other words, we obtain a strong averaging principle of order 1/2 in ".
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4.6.2 Temperature-Accelerated Molecular Dynamics

In [MV06] the authors introduced the TAMD process (Xt, Yt) and its averaged version
Ȳt defined by

dXt = �
1
"rxU(Xt, Yt)dt+

q
2(�")�1dBX

t , X0 ⇠ e��U(x,y0)dx

dYt = �
1
�̄(Yt � ✓(Xt))dt+

q
2(�̄�̄)

�1
dBY

t , Y0 = y0

dȲt = b̄(Ȳt)dt+

q
2(�̄�̄)

�1
dBY

t , Ȳ0 = y0

U(x, y) = V (x) + 
2 |y � ✓(x)|2,

b̄(y) = Z(y)�1
Z

��̄�1(y � ✓(x))e�

2 |y�✓(x)|2e�V (x)dx, Z(y) =

Z
e�


2 |y�✓(x)|2e�V (x)dx

withXt 2 Rn, Yt, Ȳt 2 Rm, a Lipschitz-continuous function V (x), constants , ",�, �̄, �̄ >
0 and independent standard Brownian motions BX , BY on Rn and Rm.

Let D ⇢ Rm be a compact set and define the stopping time ⌧ = inf{t � 0 : Yt /2 D}.

We will show that under some additional assumptions, a strong averaging principle with
rate 1/2 holds in the sense that for any fixed T and " su�ciently small but fixed, there
exists a constant C not depending on " such that

sup
0tT

|Yt^⌧ � Ȳt^⌧ |  C"1/2.

We need the following extra assumptions on the TAMD process:

0 < �✓ Idm < D✓(x)D✓(x)T < ⇤✓ Idm < 1,

�(x1 � x2)
T (rx(✓(x1)� y)2 �rx(✓(x2)� y)2)  �✓|x1 � x2|

2 + ↵✓

lim
|x|!1

|✓(x)| = 1

�✓ > ⇤✓�
�1.

In order to apply Theorem 4.5.2 we also need to suppose that Assumption 4.1.2 holds
for the TAMD process.

We will now briefly comment on the form of Ȳt. Let

µ(dx) = Z�1
0 e�V (x)dx, Z0 =

Z
e�V (x)dx
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so that

b̄(y) =
Z0

Z(y)

Z
��̄�1(✓(x)� y)e�


2 |✓(x)�y|2µ(dx)

=
Z0

Z(y)
�̄�1

Z
�(z � y)e�


2 |z�y|2✓#µ(dz)

=
Z0

Z(y)
�̄�1

ry

Z
e�


2 |z�y|2✓#µ(dz)

where ✓#µ denotes the image measure of µ by ✓. Now note that

Z(y)

Z0
=

Z
e�


2 |✓(x)�y|2µ(dx) =

Z
e�


2 |z�y|2✓#µ(dz)

so that

b̄(y) = �̄�1
ry log

Z
e�


2 |z�y|2✓#µ(dz) = ry log(✓#µ ⇤N (0,�1))(y).

In the last expression, ⇤ denotes convolution, N (0,�1) denotes the Gaussian measure
with mean 0 and variance �1 and we identify through an abuse of notation measures
and their densities which we suppose to exist.

Thus,

dȲt = �̄�1
ry log(✓#µ ⇤N (0,�1))(Ȳt)dt+

q
2(�̄�̄)

�1
dBY

t .

In physical terms, Ȳt evolves at an inverse temperature of �̄ on the energy landscape
corresponding to the image measure of µ by ✓ convolved with a Gaussian measure of
variance �1.

We proceed to establish a Logarithmic Sobolev inequality for µy via the Lyapunov func-
tion method. From [CG17] Theorem 1.2 it follows that a su�cient condition for a
Logarithmic Sobolev inequality to hold for an elliptic, reversible di↵usion process with
generator L and reversible measure µ is: there exist constants � > 0, b > 0, a function
W � w > 0, a function V (x) such that V goes to infinity at infinity, |rV (x)| � v > 0
for |x| large enough and such that µ(eaV ) < 1 verifying

LW (x)  ��V (x)W (x) + b.

Fix y and let F (x, y) = 1
2 |✓(x) � y|2. In order to establish a Logarithmic Sobolev

inequality for µy we are going to show that the preceding condition holds for V (x) =
F (x, y) and W (x) = eF (x,y). We have

rxF (x) = D✓(x)T (✓(x)� y),

�✓|✓(x)� y|2  |rxF |
2
 ⇤✓|✓(x)� y|2,

�F = n�̄✓ + (�✓)T (✓ � y).
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Furthermore

"LXF = �rxV
T
0 rxF � |rxF |

2 + ��1�F

= �rxV
T
0 D✓T (✓ � y)� |D✓T (✓ � y)|2 + ��1n�̄✓ + ��1�✓T (✓ � y)

 |rxV0|
p
⇤✓|✓ � y|� �✓|✓ � y|2 + ��1n�̄✓ + ��1

|�✓||✓ � y|

 ��✓F +
(|rxV0|

p
⇤✓ + ��1

|�✓|)2

2�✓
+ ��1n�̄✓

= ��✓F +G(x)

where we used the fact that �ax2 + bx+ c  �
1
2ax

2 + b2

2a + c for the second inequality.

Let W (x, y) = eF (x,y). Now,

"LXW (x, y) = "LXF (x, y)W (x, y) + ��1
|rxF (x, y)|2W (x, y)

 �(�✓� ⇤✓�
�1)F (x, y)W (x, y) + kGk1W (x, y)

= �((�✓� ⇤✓�
�1)F (x, y)� kGk1)W (x, y).

Since F goes to infinity at infinity, for x outside a compact set

�(�✓� ⇤✓�
�1)F (x, y) + kGk1  �

1
2(�✓� ⇤✓�

�1)F (x, y)

so that
"LXW (x, y)  �

1
2(�✓� ⇤✓�

�1)F (x, y)W (x, y) +K

for some constant K. This establishes a Log-Sobolev inequality for the measure µy with
respect to "�X in the sense that

Z
f2 log f2dµy

 2cyL

Z
"�Xdµy

for some constant cyL depending on y. Let cL = supy2D cyL so that

Z
f2 log f2dµy

 2"cL

Z
�Xdµy.

This shows that a Log-Sobolev inequality with a constant "cL holds for each measure
µy, y 2 D.

It remains to estimate X ,Y , k@yiUk
2
Lip, k@

2
yiUk

2
Lip and b̄(y)2.

We have bX = �"�1
rxV (x)� "�1 

2rx|✓(x)� y|2 and we want to find X such that

(x1 � x2)
T (bX(x1, y)� bX(x2, y))  �X |x1 � x2|

2 + ↵ for all x1, x2 2 Rn, y 2 Rm.
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Since |rxV | is bounded and using the assumption on ✓, we get

(x1 � x2)
T (bX(x1, y)� bX(x2, y))

= �"�1(x1 � x2)
T (rxV (x1)�rxV (x2))� "�1 

2 (x1 � x2)
T (rx|✓(x1)� y|2 �rx|✓(x2)� y|2)

 �"�1 
2✓|x1 � x2|

2 + 2"�1
|x1 � x2|krxV (x)k1 + "�1↵✓

 �"�1✓
4

|x1 � x2|
2 + 4"�1 krxV k1

✓
+ "�1↵✓

so that we can identify

X = "�1✓
4

↵ = 4"�1 krxV k1
✓

+ "�1↵✓.

We have
biY (x, y) = �ryiU(x, y) = �(yi � ✓i(x))

so that
rxb

i
Y (x, y) = rx✓i(x)

and

Y
2 =

1

m

mX

i=1

2krx✓i(x)k
2
1  2⇤✓.

We also have
k@yiUk

2
Lip = kbiY k

2
Lip  2krx✓ik

2
1  2⇤✓

and
k@2

yiUk
2
Lip = k@yi✓(x)k

2
Lip = 0

so that

cV
2 = sup

y

0

@
mX

i=1

k@yiU(·, y)k2Lip +
mX

i,j=1

k@2
yiyjU(·, y)k2Lip

1

A  m2⇤✓.

From the expression for "LXF we get that

F  �
"

�✓
LXF +

G(x)

�✓
.
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Now

b̄2(y) =

✓Z
�(y � ✓(x))µy(dx)

◆2

 2
Z

F (x, y)µy(dx)

 �
"

�✓

Z
LXF (x, y)µy(dx) +



�✓

Z
G(x)µy(dx)

=


�✓

Z
G(x)µy(dx)

since µy is invariant for LX(·, y).

The separation of timescales is

� =
X2�Y

⇤xY 2
� "�1 ✓

2(�̄�̄)�1

16⇤✓(��1)
.

If � > 1
(
p
3�

p
2)2

we can now apply Theorem 4.5.2 as in the previous section to show that

an averaging principle holds for the stopped TAMD process with rate "1/2, i.e. there
exists a constant C depending on T, V,�X , bY and �Y such that for

" 
16(

p
3�

p
2)2⇤✓�̄��1

2✓ b̄
1

we have
E sup
0tT

|Yt^⌧ � Ȳt^⌧ | 
p
"C.
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