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Introduction

In the next months, public institutions and governments 
will certainly start regulating the non-regulated activities of 
cryptocurrencies such as Bitcoin or Ether. Some governments already 
claimed they were investigating cryptocurrencies activities [1-3]. 
These regulations will probably introduce new sets of rules and ask 
for more transparency among the blockchain players. As a result, 
financial products would probably require key information document 
to advise potential investors of the risk of these investments. 
Ethereum, with already more than one million accounts, is one of the 
major platforms for smart contracts relying on Ether cryptocurrency 
for its existence. Still, the platform supports very few documentation 
about how blockchain players interact. It also lacks of transparency 
for non-specialists. Modeling smart contracts and predictive analytics 
is thus essential for future regulation purpose. Our contributions are 
twofolds:

1. We describe Paratuck2 Tensor Decomposition (TD) for smart 
contracts. A non-negative scheme is presented to determine a 
set of latent factors, where a huge multi-dimensional matrix is 
decomposed into a less dimensional structure.

2. A second contribution is the prediction of smart contracts 
activities using Long Short Term Memory (LSTM) trained on 
Paratuck2 TD. The main novelty is the prediction of future 
activities by using a set of latent factors. We used LSTM since 
it has been shown to learn from both long term and recent 
observations.

We describe the theoretical foundations of our approach in the 
section materials and methods. We explain how our approach is applied 
to smart contracts profiling. Then, the results and discussion section 
highlights the predictions of Ethereum smart contracts exchanges 
over time. Finally, we conclude with pointers to future works.
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Materials and Methods

The first tensor decomposition, the Candecomp/Parafac has been 
introduced in [4] and [5]. It has been followed then by more complex 
decomposition [6] that were used for large scale latent analysis [7], 
[8]. The Paratuck2 decomposition, introduced in [9], was used by Bro 
in [10] for food analysis and in [11,12] for signal analysis.

In parallel, LSTM networks were introduced in [13] to solve the 
problem of vanishing gradients of Recurrent Neural Networks (RNN) 
[14]. It has opened a wide range of applications domains for predictive 
analytics, space analytics and trajectories modeling [15-17].

Consequently, we present the theoretical tensor background, and 
then the novel non-negative scheme for the Paratuck2 resolution. 
Finally, we explain how to perform latent predictions with LSTM.

Mathematical Foundations

Terminology in this paper follows the one described by Kolda and 
Bader in [18]. Scalars are denoted by lower case letters, a. Vectors 
and matrices are described by boldface lowercase letters and boldface 
capital letters, respectively a and A. High order tensors are represented 
using upper case letter notation such as X.
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Abstract

Background: Past few months have seen the rise of blockchain and cryptocurrencies. In this context, the 
Ethereum platform, an open-source blockchain-based platform using Ether cryptocurrency, has been 
designed to use smart contracts programs. These are self-executing blockchain contracts. Due to their 
high volume of transactions, analyzing their behavior is very challenging. We address this challenge in 
our paper.
Methods: We develop for this purpose an innovative approach based on the non-negative tensor 
decomposition Paratuck2 combined with long short-term memory. The objective is to assess if predictive 
analysis can forecast smart contracts activities over time. Three statistical tests are performed on the 
predictive analytics, the mean absolute percentage error, the mean directional accuracy and the Jaccard 
distance.
Results: Among dozens of GB of transactions, the Paratuck2 tensor decomposition allows asymmetric 
modeling of the smart contracts. Furthermore, it highlights time dependent latent groups. The latent 
activities are modeled by the long short term memory network for predictive analytics. The highly 
accurate predictions underline the accuracy of the method and show that blockchain activities are not 
pure randomness.
Conclusion: Herein, we are able to detect the most active contracts, and predict their behavior. In the 
context of future regulations, our approach opens new perspective for monitoring blockchain activities.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/156903588?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.15344/2456-4451/2018/132
https://doi.org/10.15344/2456-4451/2018/132


Int J Comput Softw Eng                                                                                                                                                                                           IJCSE, an open access journal                                                                                                                                          
ISSN: 2456-4451                                                                                                                                                                                                        Volume 3. 2018. 132                                   

The transpose matrix of A Є RI×J is denoted by AT.

The Moore-Penrose inverse of a matrix A Є RI×J is denoted by

X is called a n-way tensor if X is a n-th multidimensional array. It is 
expressed by                                  . 

The square root of the sum of all tensor entries squared of the 
tensor X defines its norm.

                                                                                                        (1)

The rank-R of a tensor                is the number of linear  
components that could fit X exactly such that

                                                                                                         (2)

with the symbol  representing the vector outer product.

The Kronecker product between two matrices A Є RI×J and B Є RK×L,
denoted by             , results in a matrix C Є RIK×KL.

                                                                                                           (3)

The Khatri-Rao product between two matrices A Є RI×K and B Є 
RJ×K, denoted by         , results in a matrix C of size RIJ×K. It is the 
column-wise Kronecker product. 

                                                                                                          (4)

Non-Negative Paratuck2

The Paratuck2 decomposition, [9], is well suited for the analysis of 
intrinsically asymmetric relationships between two different sets of 
objects. It represents a tensor X Є RI×J×K as a product of matrices and 
tensors.

                                                                                                         (5)

A, H and B are matrices of size RI×P, RP×Q, and RJ×Q. The matrices
                       and                                                     are the slices of the tensors
DA Є RP×P×K and DB Є RQ×Q×K . The latent factors p and q are related to 
the rank of each object set as illustrated in figure 1. The columns of  
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the matrices A and B represent respectively the latent factors p and 
q, the matrix H describes the asymmetry between the p latent factors 
and the q latent factors. Finally, the tensors DA and DB represent the 
degree of participation, also called strength, for each of the latent 
factors, respectively p and q, according to the third dimension.

To achieve the computation of the Paratuck2 decomposition, the 
following minimization equation has to be solved

                                                                                                   (6)

with      the approximate tensor described by the decomposition and 
X the original tensor.

To solve equation 6, the Alternating Least Squares (ALS) method is 
used as presented by Bro in [10]. All of the matrices and the tensors 
are updated iteratively. To simplify the resolution explanation, we 
consider one level k of K, the third dimension of the tensor.

To update A, equation 5 is rearranged such that

                                                                                                        (7)

The simultaneous least square solution for all k leads to

                                                                                                         (8)

To update DA, equation 5 is rearranged such that

                                                                                                         (9)
The matrix      is a diagonal matrix which lead to the below resolution.

                                                                                                        (10)

The notation (k, :) represents the k-th row of           .

To update H, equation 5 is rearranged such that 

                                                                                                         (11)

which brings the solution  

                                                                                                           (12)
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Figure 1: Paratuck2 decomposition of a three-way tensor with dimension notations.
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To update B and DB, the methodology presented for the update of A 
and DA is applied respectively.

In the experiments, we use the non-negative Paratuck2 
decomposition leveraging the non-negative matrix factorization 
presented by Lee and Seung in [19]. The matrices A, B and H, and 
the tensors DA and DB are computed according to the following 
multiplicative update rule.

                                                                                                           (13)

with

                                                                                                              (14)

The non-negative multiplicative update rule helps to better 
calibration of LTSM since it uses the elements of the tensor 
decomposition as a starting point. Hereinafter is the complete 
algorithm of the non-negative ALS Paratuck2 resolution.
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Algorithm 1 Non-Negative ALS Paratuck2 with P and Q latent 
components for a tensor X of size I × J × K

1. procedure NN-PARATUCK2(X, P , Q)
2. random initialization A Є RI×P, H Є RP×Q, B Є RJ×Q

3. set                  and                     equal to 1 for k = 1,...,K
4. X = [X1 X2...Xk]
5. x = vec(X)
6. repeat:
7. 

8. 

9. 

10. 

11. 

12. until maximum number of iterations or stopping criteria satisfied

Latent LSTM predictions

Based on the notation of Sak et al. in [20], LSTM contains memory 
blocks in the recurrent hidden layer. Each memory block is connected 
to an input gate and an output gate. Similarly to RNN, the input gate 
plays the role of the input activation of the memory cells. The output 
gate is in charge of the flow of cell activations into the rest of the 
network. In addition, a forget gate is added to the memory block 
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Figure 2: Overview of a LSTM memory cell. In our model, the activation
functions g and h are described by tanh, and f is the forget gate.
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since Gers, Cummins and Schmidhuber presented it in [21]. The 
forget gate allows the reset of the cell’s memory depending on the 
information received through the input gate. If we consider the input 
sequence denoted by x such as x = (x1,...,xT), the output sequence 
denoted by y such as y = (y1,...,yT) for a sequence of events from t = 1 
to t = T. The mapping between x and y for all network unit activations 
within LSTM is described by the set of equations (15). The activation 
of the input gate is denoted by it, the candidate value for the states of the 
memory cells by       , the activation of the memory cells forget gates by 
ft, the memory cells new state by Ct, the value of their output gates by 
ot and the outputs of the output gates by ht.

                                                                                                              (15)
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In the set of equations 15 at time t, xt stands for the memory cell 
layer, Wk and Uk with k= {i, c, f, o} for the weight matrices and bk for 
the bias vectors. In the model used for the experiments, the activation 
of a cell’s output gate is independent of the memory cell’s state Ct 
such that V0 = 0. The main advantage by fixing V0 = 0 is the ability to 
perform faster computation, especially on large datasets.

With regards to figure 1, the tensors DA and DB collects data about 
the tensor factorization related to the third dimension, which is very 
often the time. It means that the evolution of each groups, or clusters, 
characterized by the latent factors P and Q of the TD contained in 
the tensors DA and DB can be modeled using LSTM. More precisely, 
LSTM is calibrated on the historical data of the tensors DA and DB 

to predict afterwards the future evolution of each P and Q groups 
contained in the tensors DA and DB as illustrated in figure 3.

Only the diagonals of the tensors Dm with m = {A, B} contain numbers. 
Therefore, the tensors Dm Є RL×L×K can be reduced to a matrix, E Є RL×K. 
The notation L = {P,Q} denotes the latent factors of the Paratuck2 TD.

Figure 3: Overview of LSTM training and predictions on the tensor Dm Є RL×L×K with m= {A,B} and L= {P,Q}.

Figure 4: Three way tensor containing Ether amount exchanged between different smart contracts
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Data contained in E is then used to train LSTM before performing the
predictions on an interval Є related to the third dimension K. The 
resulting matrix of size RL×(K+Є) gathers the historical data of each latent 
component L as well as the predicted values. A new tensor denoted by 
      of size RL×L×(K+Є) is built. The methodology is applied on both 
tensors DA and DB for the same Є. Consequently, the Paratuck2 TD is 
linked to historical data and predicted data.

Results and Discussion

In this section, we apply our multidisciplinary tensor neural 
network approach, Paratuck2-LSTM, for Ethereum smart contracts 
profiling. The experiment is performed on a machine with 15 Intel 
Xeon E5-4650 v4 2.20 Ghz CPU cores and 80 GB of RAM. We have 
implemented in Python the algorithm for non-negative Paratuck2 
decomposition combined with LSTM code available in [22].

Application to Smart Contracts

Smart contracts activities have been extracted from the Ethereum 
platform. The data was collected starting 1 January 2016 and ending 
1 July 2016. Through the collection process, different data types 
have been stored, such as the hash key, the sender accounts, the 
receiver accounts or the blockheights. For the considered six months 
period, more than 5 millions of transactions have been made. This 
accounts for an average of 26 transactions per sender account and 18 
transactions per receiver account.
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In the data set, some smart contracts only relate to one transaction, 
payment or reception. Such behavior is difficult to predict, and should 
be considered as unexpected behavior. Our aim is to predict future 
interactions based on exchanges that already happened. Consequently, 
only the 1% most active smart contracts have been kept in the training 
set for their regular activities. This represents a list of 100 smart 
contracts sending an Ether amount, and a list of 200 smart contracts 
receiving an Ether amount from the sender contracts.

The features extracted from the dataset are well suited for a tensor 
representation. Two tensors denoted by X Є RI×J×K  are built from the 
Ethereum data. The first dimension, I, lists the sender accounts, the 
second dimension J, the receiver accounts and the third dimension, 
K, the time. For each tensor, the interaction between a sender and 
a receiver is represented by the amount of Ether exchanged at 
a time. The dense tensor is built based on figure 4. The size of the 
tensor is R100×200×50. The tensor is decomposed to highlights the latent 
component over time. Then, LSTM latent predictions are performed.

As illustrated in figure 5, the information evolving over time is 
contained in the tensors Dm with m= {A, B}. The matrix A gathers 
static information regarding P senders groups and the matrix B static 
information regarding Q receivers groups. The matrix H contains 
the asymmetric information between the P and the Q latent factors 
which have been set to respectively to 20 and 30. As a result, the LSTM 
network is trained on Dm for the sender and the receiver activities 
predictions.

 

mD

Figure 5: Paratuck2 decomposition applied to smart contracts profiling. The model training and predictions are 
applied on the tensors DA and DB.

Figure 6: Paratuck2-LSTM applied to smart contracts profiling. This simulation highlights training 
and predictions on one latent component of the tensor DA.
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Predictions results

Figures 6 and 7 show the difference between the true experimental 
data and the predictions for one rank of the tensors DA and DB. The 
LSTM predictions of smart contracts activities are close to the one 
observed in the tensor decomposition of the complete true dataset. It 
means LSTM is appropriate for the modeling of the smart contracts 
having regular exchanges. To further quantify the accuracy of LSTM 
predictions, statistical tests are performed. The mean absolute 
percentage error (MAPE) and the mean directional accuracy (MDA) 
are computed betwen the predictions and the true data set. A third 
measure, the Jaccard distance, is also evaluated. As a benchmark 
for LSTM predictions, the results are compared to the predictions 
performed by a Decision Tree (DT).

Citation: Charlier J, State R (2018) Non-Negative Paratuck2 Tensor Decomposition Combined to LSTM Network for Smart Contracts Profiling. Int J Comput 
Softw Eng 3: 132. doi: https://doi.org/10.15344/2456-4451/2018/132

       Page 6 of 7

Tables 1 and 2 highlights similar MAPE results for both LSTM 
predictions and DT predictions. Differences are not significant. 
On the other hand, the MDA score is lot higher, around a factor 7, 
for LSTM predictions than for DT predictions. It means the LSTM 
predictions are able to better reproduce the variations observed in the 
smart contracts activities through time than the DT predictions. From 
these first statistical tests, we can observe that the LSTM model is able 
to reproduce the changes over time of smart contracts activities. It 
outperforms the decision tree benchmarking algorithm. In addition, the 
Jaccard distance is computed to underline the distribution divergence 
between the predictions and the true experimental data. In table 3, it 
can be observed that LSTM predictions are significantly closer to the 
true experimental distribution than DT predictions. All LSTM Jaccard 
distances are within the range 0.20 and 0.30 while the DT Jaccard

Test MAPE LSTM MDA LSTM MAPE DT MDA DT

1 lat. var. 0.0189 0.5800 0.0092 0.0800

All lat. var. 0.0206 0.5955 0.0112 0.0785

Test MAPE LSTM MDA LSTM MAPE DT MDA DT

1 lat. var. 0.0285 0.5800 0.0320 0.0800

All lat. var. 0.0239 0.6283 0.0188 0.0795

Test Jaccard Dist. LSTM Jaccard Dist. DT

1 DA lat. var. 0.2091 0.5725

All DA lat. var. 0.2453 0.5900

1 DB lat. var. 0.2942 0.6866

All DB lat. var. 0.3015 0.6639
Table 3: Jaccard distances to assess the accuracy of LSTM predactions. Predactions are 
challenged by a decision tree (DT). 

Table 2: Tests to assess the accuracy of LSTM predections on tensor DB. Predactions are 
challenged by a decision tree (DT). 

Table 1: Tests to assess the accuracy of LSTM predections on tensor DA. Predactions are 
challenged by a decision tree (DT). 

Figure 7: Paratuck2-LSTM applied to smart contracts profiling. This simulation highlights training and predictions on 
one latent component of the tensor DB.
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distances are between 0.57 and 0.69. LSTM Jaccard distances are 
between 2 to 3 times lower than the DT Jaccard distances. It confirms 
the MDA scores in tables 1 and 2.

From the highlighted results, the combined approach of Paratuck2-
LSTM delivered good results, validated visually and statistically. 
It outperformed the DT benchmarking for predictive analytics on 
several statistical criteria including the MDA and the Jaccard distance.

Conclusion

We proposed in this paper a multi-disciplinary approach 
leveraging multidimensional linear algebra and neural networks 
for modeling the complex activities occurring on a certain type of 
blockchains. Our method combines Paratuck2 tensor decomposition 
and LSTM to predict behavior in relation to asymmetric data over 
time. The asymmetry is expressed within the tensor decomposition 
using two sets of latent factors related to two sets of objects. Our 
use case considered sender and receiver contracts of the Ethereum 
platform. Our approach allowed to detect common behaviors over 
time. Furthermore, it was able to predict accurate interactions and 
exchanges. We validated our results using statistical tests.

Although the method showed good results in terms of accuracy, 
it currently lacks the required scalability to be used on big data sets. 
This is due to the non-negative ALS update rule which is time and 
memory consuming. We plan to address in future works this issue 
and develop additional resolution method to the Paratuck2 tensor 
decomposition using other iterative schemes. Last but not least, the 
better scalability of the method would help to increase the accuracy 
of the LSTM network as the training could be performed on longer 
time period and smaller time step discretization. We plan to address a 
particular use-case about fraud detection and detection of suspicious 
behavior over time.
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