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Abstract

As the Internet has become an integral part of our everyday life for activities such as
e-mail, online-banking, shopping, entertainment, etc., vulnerabilities in Web software ar-
guably have greater impact than vulnerabilities in other types of software. Vulnerabilities in
Web applications may lead to serious issues such as disclosure of confidential data, integrity
violation, denial of service, loss of commercial confidence/customer trust, and threats to
the continuity of business operations. For companies these issues can result in significant
financial losses.

The most common and serious threats for Web applications include injection vulnerabili-
ties, where malicious input can be “injected” into the program to alter its intended behavior
or the one of another system. These vulnerabilities can cause serious damage to a system
and its users. For example, an attacker could compromise the systems underlying the appli-
cation or gain access to a database containing sensitive information.

The goal of this thesis is to provide a scalable approach, based on symbolic execution
and constraint solving, which aims to effectively find injection vulnerabilities in the server-
side code of Java Web applications and which generates no or few false alarms, minimizes
false negatives, overcomes the path explosion problem and enables the solving of complex
constraints. In this work, we focus on Java because it is one of the most widely used tech-
nologies for Web development in the industrial context.

The main contributions of this thesis are:

• Sound and scalable security auditing. We define a specific security slicing approach for the
auditing of security vulnerabilities in the server-side source code of Web applications
which filters out irrelevant and secure code from the generated vulnerability report.

• Search-driven constraint solving. A search-driven technique for solving string constraints
with complex string operations in the context of vulnerability detection.

• Integrated Approach. An integrated analysis technique for injection vulnerabilities, which
leverages the synergistic combination of security slicing with hybrid constraint solv-
ing.

• Specialized Security Analysis. The application of the above-mentioned techniques to
detect the five most common types of injection vulnerabilities (Cross-Site-Scripting,
SQL injection, XML injection, XPath injection, LDAP injection) in the context of Java
applications.

• Tool support. The implementation of the proposed techniques in prototype tools.

• Extensive empirical evaluation. An extensive empirical evaluation of the approaches
mentioned above.
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Chapter 1

Introduction

1.1 Motivation

As the Internet has become an integral part of our everyday life for activities such as e-mail,
online-banking, shopping, entertainment, etc., vulnerabilities in Web software arguably have
greater impact than vulnerabilities in other types of software. Vulnerabilities in Web appli-
cations may lead to serious issues such as disclosure of confidential data, integrity violation,
denial of service, loss of commercial confidence/customer trust, and threats to the continuity of
business operations. For companies these issues can result in significant financial losses [56].

This demonstrates that software security assurance is an important process in software de-
velopment that protects the sensitive data and resources contained in and controlled by the
software. Addressing security vulnerabilities early in the software development stage could
decrease the cost of addressing them in later stages by a factor ranging between 30 and 60
times [84].

The most common and serious threats for Web applications include injection vulnerabilities,
which are usually caused by improperly sanitized user inputs which are provided through in-
put sources and used in security-sensitive program operations (sinks). These vulnerabilities can
cause serious damage to a system and its users. For example, an attacker could compromise
the systems underlying the application or gain access to a database containing sensitive in-
formation. According to the “Open Web Application Security Project (OWASP) Top 10 2017”
vulnerability report [95], injection vulnerabilities are the most serious vulnerabilities for Web
systems. Among them, Cross-Site-Scripting (XSS), SQL injection (SQLi), XML injection (XMLi),
XPath injection (XPathi), and LDAP injection (LDAPi) vulnerabilities are the most commonly
found in Web applications and Web services.

Symbolic execution and constraint solving represent a state-of-the-art approach used in se-
curity analysis to identify vulnerabilities in software systems. Symbolic execution executes a
program with symbolic inputs and generates a set of path conditions. Each of them corresponds
to a constraint imposed on the symbolic inputs to follow a certain program path. By solving

3



1. INTRODUCTION

these constraints with a constraint solver, one can determine which concrete inputs can cause a
certain program path to be executed.

In the context of security analysis for Web systems, this approach is used [64, 112, 40, 153]
to detect injection vulnerabilities. Roughly speaking, this approach consists of solving attack
conditions, i.e., the constraints obtained by conjoining the path conditions (generated by the
symbolic execution) with attack specifications (what we are referring to as threat models) pro-
vided by security experts. The main strength of this approach is that vulnerability detection
yields a limited number of false positives, since the concrete inputs determined with constraint
solving prove the existence of vulnerabilities. However, the scalability, effectiveness and pre-
cision of this approach face two main challenges that affect symbolic execution and constraint
solving [24]:

CH1 (Path Explosion). The path explosion problem is triggered by the huge number of feasible
program paths that symbolic execution has to explore in large programs.

CH2 (Solving Complex Constraints). The problems related to solving complex constraints (e.g.,
constraints involving regular expressions or containing string/mixed or integer opera-
tions) are mainly due to the support for strings and their operations. In general, solv-
ing constraints that contain string operations requires to analyze the implementation of
these operations, unless they can be treated as primitive functions in the constraint solver.
However, there are typically thousands of string operations in a given programming
language that cannot be solved because their semantics is not known to the constraint
solver (e.g., java.lang.String.regionMatches and java.lang.String.format); we de-
note these operations as unsupported operations. Existing approaches support only a lim-
ited number of string operations (such as concatenation, assignment, and equality) as
primitive functions. More complex operations have to be analyzed and transformed into
an equivalent set of basic constraints containing primitive functions. This task is often not
trivial and requires proficiency in the input language of the solver. A constraint solver that
supports a limited set of operations can fail to solve constraints that contain unsupported
operations, resulting in missed vulnerabilities.

Notice that while CH1 and CH2 are independent from the context in which symbolic execu-
tion and constraint solving are applied, the solutions to address them need to be tailored to a
specific context.

1.2 Research Contributions

The ultimate goal of this work is to provide a scalable approach, based on symbolic execution and
constraint solving, which aims to effectively find injection vulnerabilities in the server-side code of Java
Web applications and which generates no or few false alarms, minimizes false negatives, overcomes the
path explosion problem and enables the solving of complex constraints. In this work, we focus on Java
because it is one of the most widely used technologies for Web development in the industrial
context [26].

To achieve the above mentioned goal, the path explosion problem (CH1) and the challenge
of solving complex constraints (CH2) have to be addressed first.

4



1.2. Research Contributions

Web Application
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Figure 1.1: General overview of our approach.

For addressing CH1 we propose security slicing, i.e., an approach to extract security slices
from Java Web programs. A security slice contains a concise and minimal sequence of program
statements that affect a given security-sensitive program location (sink), such as an SQL query
statement. Given the bytecode of the Web application to analyze and the catalogue of vulner-
abilities, it identifies sinks in the program and for each sink extracts only the security-relevant
program parts leading to it. Since security slicing filters out program parts that are irrelevant
to security, it can be used to reduce the manual effort in the context of security auditing, i.e.,
the examination of the source code for the purpose of detecting vulnerabilities. For the same
reason it can be used to mitigate the path explosion problem in the context of symbolic execu-
tion. Symbolic analysis can be performed on security slices instead of the whole program; in
this way path conditions are analyzed only with respect to the paths leading to sinks instead of
every path in the program. Based on our experience, the number of sinks in a program is low1

and security slices are much smaller (approx. 1%) than the program containing them.
For addressing CH2, we propose a hybrid constraint solving approach that orchestrates a con-

straint solving procedure for string/mixed and integer constraints with a search-based solving
procedure which enables the constraint solver to solve unsupported operations and complex string
operations.

Finally, we propose an integrated hybrid vulnerability analysis framework for injection vulnera-
bilities in Web applications, which leverages the synergistic combination of the two aforemen-
tioned steps: security slicing and hybrid constraint solving.

Our integrated approach is outlined in Figure 1.1 where dotted rounded rectangles corre-
spond to global inputs/outputs, solid rounded rectangles correspond to intermediate input-
s/outputs, solid rectangles correspond to operations, and the dashed rectangle correspond to
a macro-step. It shows the “Integrated Hybrid Vulnerability Analysis Framework” macro-step
that is composed of the “Security Slicing” and “Hybrid Constraint Solving” steps.

The first step (“Security Slicing”) performs security slicing, i.e., given the bytecode of the
Web application to analyze and the catalogue of vulnerabilities, it identifies sinks in the program
and for each sink computes the path condition leading to it. This information is then used,
together with the list of threat models, to generate attack conditions, i.e., conditions that could
trigger a security attack over a security slice.

1Our experiments show that, on average, there are only 3 sinks in a Web program, related to the type of vulner-
abilities we consider.
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The second step (“Hybrid Constraint Solving”) takes as input the attack conditions gener-
ated in the previous step, in the form of a constraint. The resulting constraint is then given as
input to a hybrid constraint solver. The results yielded by the hybrid constraint solver are used to
create the vulnerability report.

To summarize, the specific contributions of this thesis are:

I Sound and scalable security auditing. We define a specific security slicing approach for the
auditing of security vulnerabilities in the server-side source code of Web applications.
Like taint analysis, our approach also uses static program analysis techniques, which are
known to be scalable [137]. However, our analysis additionally extracts control-depend-
ency information, which is often important for the security auditing of input validation
and sanitization procedures. Additionally, it filters out irrelevant and secure code from
the generated vulnerability report. This ensures soundness and scalability.

II Search-driven constraint solving. A search-driven technique for solving string constraints
with complex string operations in the context of vulnerability detection.

III Integrated Approach. An integrated analysis technique for injection vulnerabilities, which
leverages the synergistic combination of security slicing with hybrid constraint solving.
This technique is general and language-independent.

IV Specialized Security Analysis. The application of the above-mentioned techniques to detect
the five most common types of injection vulnerabilities (XSS, SQLi, XMLi, XPathi, LDAPi)
in the context of Java Web applications.

V Tool support. The implementation of the proposed techniques in prototype tools: JoanAudit,
i.e., the tool which implements our security slicing approach, ACO-Solver and JOACO-CS,
i.e., the tools that implement hybrid constraint solving, and JOACO, i.e., the implementa-
tion of the integrated approach for vulnerability detection.

VI Extensive empirical evaluation. An extensive empirical evaluation of the approaches men-
tioned above.

1.3 Dissemination

Our research work has led to the following publications (listed in chronological order based on
their publication date):

P1 THOMÉ, J. A scalable and accurate hybrid vulnerability analysis framework. In Pro-
ceedings of the International Symposium on Software Reliability Engineering Workshops (2015),
IEEE, pp. 61–62

P2 THOMÉ, J., SHAR, L., AND BRIAND, L. Security slicing for auditing XML, XPath, and
SQL injection vulnerabilities. In Proceedings of the International Symposium on Software Reli-
ability Engineering (2015), IEEE, pp. 553–564
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P3 THOMÉ, J., SHAR, L., BIANCULLI, D., AND BRIAND, L. Search-driven string constraint
solving for vulnerability detection. In Proceedings of the International Conference on Software
Engineering (2017), IEEE, pp. 198–208

P4 THOMÉ, J., SHAR, L., BIANCULLI, D., AND BRIAND, L. Joanaudit: A tool for audit-
ing common injection vulnerabilities. In Proceedings of the Joint Meeting on Foundations of
Software Engineering (2017), ACM, pp. 1004–1008

P5 THOMÉ, J., SHAR, L., BIANCULLI, D., AND BRIAND, L. Security slicing for auditing com-
mon injection vulnerabilities. Journal of Systems and Software 137 (March 2018), 766–783

P6 THOMÉ, J., SHAR, L., BIANCULLI, D., AND BRIAND, L. An integrated approach for ef-
fective injection vulnerability analysis of Web applications through security slicing and
hybrid constraint solving. Tech. Rep. TR-SNT-2017-4, SnT Centre, 2018 (under submis-
sion)

P1 provides a roadmap for the whole project; P2, P4 and P5 present our security slicing
approach and are the basis for Chapter 3; P3 presents our search-driven constraint solving
approach and is the basis for Chapter 4; the unpublished report P6 describes our integrated
approach for injection vulnerability analysis of Web applications and is the basis for Chapter 5.

1.4 Organisation of the Thesis

In the remainder of Part I, i.e., in Chapter 2, we introduce some background concepts which are
used throughout this thesis.

Part II is organized according to the steps illustrated in Figure 1.1: Chapter 3 explains our
security slicing approach in detail; Chapter 4 introduces hybrid constraint solving; Chapter 5
illustrates the synergistic combination of security slicing, symbolic execution and constraint
solving; Chapter 6 discusses the related work.

In the final part of the thesis (Part III), we provide conclusions and directions for future work
in Chapter 7.
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Chapter 2

Background

This chapter presents several background concepts which are used throughout this thesis; it is
organized as follows: Section 2.1 introduces security concepts; Section 2.2 introduces concepts
related to static analysis and program slicing; Section 2.3 provides definitions for constraints
and constraint networks, and Section 2.4 provides insights into the Ant Colony Optimization
(ACO) meta-heuristic.

2.1 Security

This section illustrates various security concepts and is structured as follows: Section 2.1.1 intro-
duces injection vulnerabilities such as XSS, SQLi, XMLi, XPathi and LDAPi vulnerabilities; Sec-
tion 2.1.2 explains the concepts of sources and sinks; Section 2.1.3 defines threat models.

2.1.1 Injection vulnerabilities

Injection vulnerabilities are program locations in which certain malicious input can be “injected”
into the program to alter its intended behavior or the one of another system. An injection may
occur when the user input is passed through the program to an interpreter or to an external
program (e.g., a shell interpreter, a database engine) and the input data contain malicious com-
mands or command modifiers (e.g., a shell script, an additional constraint of an SQL query).
An injection vulnerability arises when the input is not properly validated or sanitized in corre-
spondence of a sink.

Injection vulnerabilities can cause serious damage to a system and its users. For example, an
attacker could compromise the systems underlying the application or gain access to a database
containing sensitive information. The “OWASP Top 10 2017” report [95] shows that injection
vulnerabilities represent the most common application security risk for Web applications.

There are several types of injection vulnerabilities. In this work we focus on the following
five types, for which we give a short overview and an example based on the Common Weakness
Enumeration (CWE) [32].
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2.1.1.1 Cross-Site-Scripting (XSS)

It is an attack technique that injects malicious scripts into a trusted Web application. It can be ac-
complished by inserting untrusted, browser-executable data (e.g., JavaScript code, HTML tags)
through a web request. When these data are used to dynamically generate a page requested by
an end-user, the malicious script (injected through the untrusted data) will be executed in the
user’s browser, which is misled to consider the script as coming from a trusted source (and thus
safe to execute). This untrusted code, once executed in the browser, may access and transmit to
the attacker confidential information such as the user’s session cookies (possibly leading to the
hijacking of the user’ session), or may alter the presentation of the content (possibly leading to
phishing attacks).

As an example, consider the code snippet below:

1 String name = req.getParameter("user");
2 res.println("<div>Welcome "+name+"!</div>");

It dynamically generates an HTML element div based on the input received (through a Web
request) and stored in the name variable. An attacker could perform an XSS attack by providing
as input the string <script language="JavaScript">alert(’XSS’);</script>, which con-
tains a snippet of JavaScript code. This code will be executed by the browser when it interprets
the HTML code provided in the HTTP response. While in this case the injected code just dis-
plays a pop-up dialogue, in principle it could have much more harmful effects, like the ones
mentioned above.

2.1.1.2 SQL injection (SQLi)

It is an attack technique that injects an SQL query in the input of a program, in order to read-
/write/admin a relational database by affecting the execution of predefined SQL statements. It
can be accomplished by placing a meta-character into the input string, which acts as a modifier
of the original SQL statement and allows the attacker to alter its behavior.

As an example, consider the code snippet below:

1 String userid = req.getParameter("userid");
2 String query = "SELECT * FROM users WHERE user=’"
3 + userid + "’";
4 Statement st = conn.createStatement();
5 ResultSet rs = st.executeQuery(query);

It dynamically builds a query string based on the input received (through a Web request)
on the first line, by concatenating a constant string with the user input string. If a malicious
user provides as input the string name’ OR 1=1 �, the resulting query string will be SELECT *
FROM users WHERE user=’name’ OR 1=1 �’. Notice that the malicious input string is built to
correctly enclose (with a single quote character) the first condition of the WHERE clause and to
add a second condition OR 1=1. The latter represents a tautology and causes the WHERE clause
to always evaluate to true. The query becomes logically equivalent to SELECT * FROM users,
allowing the attacker to access all the contents of the table users in the database.
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2.1.1.3 XML injection (XMLi)

It is a technique that allows attackers to change the structure or the contents of an XML docu-
ment before it is processed by the program. It can be accomplished by placing reserved words
or meta-characters into the input string. Such an attack may yield various consequences, such
as invalidating the XML document, injecting malicious content in the document, or forcing the
XML parser to access external entities.

Consider, for example, the following XML document named students.xml:

1 <students>
2 <student>
3 <sid>1</sid>
4 <email>wd@svv.lu</email>
5 <uid>wd003</uid>
6 <pwd>300wd</pwd>
7 </student>
8 <student>
9 <sid>2</sid>

10 <email>abf@svv.lu</email>
11 <uid>abf004</uid>
12 <pwd>400abf</pwd>
13 </student>
14 </students>

and the following Java snippet that updates the email address of a student:

1 File db = new File("students.xml");
2 Document doc = DocumentBuilderFactory.newInstnce()
3 .newDocumentBuilder().parse(db);
4 String uid = req.getParameter("uid");
5 String pwd = req.getParameter("pwd");
6 String emailnew = req.getParameter("emailnew");
7 //code to find the right <student> element and
8 //its children
9 if (student-uid.equals(uid) &&

10 student-pwd.equals(pwd)) {
11 if ("email".equals(node.getNodeName())) {
12 node.setTextContent(emailnew);
13 }
14 }

A malicious user could invalidate the XML document by entering an email address that
contains a meta-character, such as an angular parenthesis like <. For example, if the attacker
enters the email wd@svv.lu<, the corresponding element updated by the snippet above will
look like <email>wd@svv.lu<</email> and will invalidate the document, possibly leading to
data integrity issues.

2.1.1.4 XPath injection (XPathi)

It is an attack technique that injects an XPath query in the input of a program, in order to query
or navigate an XML document. This attack can be accomplished by placing a meta-character
into the input string, which alters the behavior of the original query by modifying the query
logic or bypassing authentication. XPathi can be exploited directly by an application to query
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an XML document as part of a larger operation, such as applying an XSLT transformation or an
XQuery to an XML document.

As an example, consider the aforementioned document students.xml and the snippet of
Java code below, which retrieves the student identification number with an XPath query:

1 File db = new File("students.xml");
2 Document doc = DocumentBuilderFactory.newInstance()
3 .newDocumentBuilder().parse(db);
4 XPath xpath = XPATHFactory.newInstance().newXPath();
5 String query = "//students/student[uid/text()=’"
6 + req.getParameter("uid")
7 + "’ and pwd/text() = ’"
8 + req.getParameter("pwd")
9 + "’]/sid");

10 NodeList nl = (NodeList) xpath.evaluate(query,doc);

The XPath query is built dynamically using the inputs received through a Web request. An
attacker could access all the student identification numbers by simply entering as user id the
string foo’ or 1=1 or ’a’=’a and any random password. In this way, the XPath query will
look like

//students/student[uid.text()=’foo’ or 1=1
or ’a’=’a’ and pwd.text()=’nopwd ’]/sid

and the conditions of the selection will always evaluate to true, returning all the nodes and
thus possibly leaking confidential information.

2.1.1.5 LDAP injection (LDAPi)

It is an attack technique that targets programs that build LDAP statements based on user input.
The attack can be accomplished by inserting meta-characters or crafted LDAP filters that alter
the logic of the query. As a consequence, permissions can be granted for unauthorized queries
or for modifying the LDAP tree.

As an example, consider the code snippet below, extracted from an LDAP-based authenti-
cation system:

1 DirContext ctx = new InitialDirContext(env);
2 String userid = req.getParameter("userid");
3 String pwd = req.getParameter("pwd");
4 String base = "OU=snt,DC=uni,DC=lu";
5 String filter = "(&(sn=" + userid + ")(password="
6 + pwd + "))";
7 SearchControls ctls = new SearchControls();
8 NamingEnumeration <SearchResult > results =
9 ctx.search(base, filter, ctls);

where env is a HashTable object containing the environment properties for the LDAP connec-
tion. The filter object is dynamically constructed using the user input strings (userid and
pwd) and then used for querying the LDAP server. If an attacker knows a valid user id (e.g.,
"brianli"), he can make an attack by entering a user id of the form briandli)(&), and any
value for the password (e.g., "nopwd"). This malicious string makes the filter string look like
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(&(sn=briandli)(&))(password=nopwd)). Since an LDAP server processes only the first filter,
the query will return true and will grant access to the attacker, even if he does not know the
password of user briandli.

2.1.2 Input Sources and Sinks

Input sources are operations that access external data that can be manipulated by malicious users.
Specifically, in our approach, we define as input sources the accesses to: HTTP request parame-
ters (e.g., getParameter), HTTP headers, cookies, session objects, external files, and databases.

Sinks are operations that are sensitive to XSS, SQLi, XMLi, XPathi, or LDAPi. Specifically,
we define the following elements as sinks:

• HTML document operations (e.g., javax.servlet.jsp.JspWriter.print);

• SQLi queries (e.g., java.sql.Statement.executeQuery);

• XML document operations (e.g., org.xml.sax.XMLReader.parse);

• XPath queries (e.g., javax.xml.xpath.XPATH.evaluate);

• LDAPi queries (e.g., com.novell.ldap.LDAPConnection.search).

We now illustrate XMLi and XPathi vulnerabilities and the concepts of input sources and
sinks using the example in Listing 2.1.

1 protected void doPost(HttpServletRequest req, ...) {
2 String account = req.getParameter("account");
3 String password = req.getParameter("password");
4 String mode = req.getParameter("mode");
5 if(mode.equals("login")) {
6 allowUser(log,account, password);
7 } else {
8 createUser(log,account,password);
9 }

10 }
11 protected boolean allowUser(String account,
12 String password) {
13 Document doc = builder.parse("users.xml");
14 XPath xpath = xPathfactory.newXPath();
15 String q = "/users/user[@nick=’"+
16 ESAPI.encoder().encodeForXPath(account) +
17 "’ and @password=’" + ESAPI.encoder().encodeForXPath(password) + "’]";
18 NodeList nl = (NodeList)xpath.evaluate(q, doc, XPathConstants.NODESET);
19 }
20 protected void createUser(String account,
21 String password) {
22 String newUser = "<user nick=\"" + ESAPI.encoder().encodeForXMLAttribute(account) +
23 "\" password=\"" + ESAPI.encoder().encodeForXMLAttribute(password) + "\" />";
24 FileWriter fw = new FileWriter("users.xml");
25 String newXML = "<users>\n" + getPresentUsers() + newUser + "\n</users>";
26 fw.write(newXML);
27 }

Listing 2.1: Secure servlet with sanitization functions.

13



2. BACKGROUND

The Java code snippet illustrated in Listing 2.1 grants or denies access to a Web application
or service and/or creates a new user. The Java servlet interface implementation doPost stores
the values of three POST parameters (account, password, and mode) in variables that carry
the same names. All the parameters are provided by the user of the Web application. If the
mode parameter is equal to the string login, function allowUser is called with account and
password as parameters, to allow the user to access the application; otherwise, a new user
account is created by invoking function createUser with account and password as parameters.
We assume that users credentials are stored in the XML document shown in Listing 2.2 and
named users.xml.

1 <users>
2 <user nick="alice" password="alicepass"/>
3 <user nick="bob" password="bobpass"/>
4 </users>

Listing 2.2: The user file users.xml

The accesses to HTTP parameters at lines Lines 2–4 are input sources. The XPath query
at Line 18 and the XML document processing operation at Line 26 are sinks.

For granting or denying access, function allowUser in Listing 2.1 executes the XPath query
(sink) at Line 18. This query compares the password, which is stored in the XML attribute
password, for one of the entries in users.xml with the one accessed from an input source (the
POST parameter password). In the example, the user inputs are sanitized at Lines 16–17 by
invoking methods from the OWASP Enterprise Security API (ESAPI) [94], which provides a rich
set of sanitization functions for various vulnerability types. If the user input was used directly
in the sink without such sanitization, the sink could be subject to XPathi attacks. For example,
in the case of users.xml, by just knowing a user name, an attacker could launch a tautology
attack using the value ’ or ’1’ = ’1 as password, gaining access to the user’s credential data.

Likewise, in the absence of any sanitization, the operation at Line 26 would be vulnerable to
XMLi attacks. More specifically, at Line 26 an XML tag is created with a user input using string
concatenation. If the user inputs stored in account and password were not sanitized, as they
are at lines Lines 22–23, a user could compromise the integrity of the XML file by using one of
the following meta-characters: < > / ’ = ".

2.1.3 Threat Models

A threat model describes possible attacks that can be conducted through an input used in a sink.
If an input can potentially contain values that match a threat model, the sink that uses such an
input should be marked as vulnerable. According to our definition of a threat model and based
on the types of vulnerabilities we focus on in this thesis, an attacker is not required to know the
source code of the application; we only assume that the attacker is capable of providing input
to the potentially vulnerable Web application through an input source.

In our approach we support the threat models listed in Table 2.1, which are based on var-
ious attack patterns defined as part of the OWASP security project [95]; for each model we
indicate the corresponding constraint on the input. They are grouped by the type of sink (i.e.,
the type of vulnerability they exploit), and for each sink type we indicate also various contexts,
which denote the possible ways in which inputs can be used in a sink. Each threat model is
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Table 2.1: Constraints corresponding to threat models.

No. Sink
type Context Constraint

1

XSS

Element content: <tag>input</tag> input.matches(".*[<>/].*")
2 Event handler value: <... onclick="input"> input.matches(".+")
3 Source value: <iframe src="input"> input.matches(".+")
4 Attribute value with single quotes: <div attr=’input’> input.matches(".*’.*")

5 Attribute value with double quotes:
<div attr="input">

input.matches(".*\".*")

6 Attribute value without quotes: <div attr=input> input.matches(".*[=<>/,;+-%\*\[\]].*")

7 URL parameter value:
<a href="http://...?param=input">

input.matches(".*[’\"=<>/,;+-&\*\[\] ].*")

8

SQLi

Attribute value with single quotes:
SELECT column From table WHERE row=’input’

TAUTCSTR(input , "’")

9 Attribute value with double quotes:
SELECT column From table WHERE row="input"

TAUTCSTR(input , "\"")

10 Attribute value with date delimiters:
SELECT column From table WHERE row=#input#

TAUTCSTR(input , "#")

11 Attribute value without quotes or delimiters:
SELECT column From table WHERE row=input

TAUTCSTR(input , "")

12

XMLi

Element content: <node>input</node> input.matches(".*[<>].*")
13 CDATA content: <![CDATA[input]]> input.matches(".*\]\]>.*")

14 Attribute value with single quotes:
<node attr=’input’/>

input.matches(".*’.*")

15 Attribute value with double quotes:
<node attr="input"/>

input.matches(".*\".*")

16 Attribute value without quotes: <node attr=input/> input.matches(".*[’\"<>].*")
17 External entity: <!ENTITY xxe SYSTEM "input">]> input.matches(".+")

18
XPathi

Attribute value with single quotes:
//table[column=’input’]

TAUTCSTR(input , "’")

19 Attribute value with double quotes:
//table[column="input"]

TAUTCSTR(input , "\"")

20 Attribute value without quotes or delimiters:
//table[column=input]

TAUTCSTR(input , "")

21 LDAPi LDAP search: search="(attr=input)" input.matches(".*[()|\*&].*")

indicated for a specific context of a specific sink type, to reflect the specialization of an attack
to exploit a certain vulnerability with a particular input. Notice that a precise characterization
of the threat models is a fundamental step required to minimize the number of false positive
and false negative results yielded by a vulnerability analysis technique. This list of threat mod-
els is not exhaustive but new attack patterns can be supported by modeling them with their
corresponding constraint.

Threat models 1, 12, and 13 are applicable to the input used in element contents of HTML
and XML documents. They reflect the attacks containing meta-characters such as < and >, which
can be used to inject additional (malicious) elements into a document. For example, the con-
straint corresponding to the first threat model input.matches(".*[<>/].*") matches attacks
like <script>alert();</script>.

Threat models 2, 3, and 17 are applicable to the input used as value of event handlers, for
source attributes in HTML documents, and for external entities in XML documents. No input
should be allowed in these contexts, since an attack can be conducted by simply providing
URLs gointing to malicious hosts, by injecting JavaScript code such as javascript:alert(), or
by using the value /etc in an external entity of an XML document (to gain unauthorized access
to local files). Moreover, input sanitization would not help in this case, since these attacks do
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TAUTCSTR(input , ctxDel) = TAUTCSTRNUM(input , ctxDel)∨
TAUTCSTRSTR(input , ctxDel)

TAUTCSTRNUM(input , ctxDel) =
∨

nrel∈{>,<,≤,≥,=,6=}(

input.matches(".*".concat(ctxDel.concat(" +[Oo][Rr] "))
.concat(N1.toString()).concat(nrel.toString())
.concat(N2.toString()).concat(".*") ∧N1 nrel N2)

TAUTCSTRSTR(input , ctxDel) =
∨

cstr∈{=,6=}
∨

d∈{’,"}(

input.matches(".*".concat(ctxDel.concat(" +[Oo][Rr] "))
.concat(d).concat(S1).concat(d).concat(cstr.toString())
.concat(d.concat(S2).concat(d)).concat(".*")) ∧
S1 cstr S2)

Figure 2.1: Tautology constraint template TAUTCSTR.

not need to use meta-characters to be effective. Hence, these threat models are expressed with
the constraint input.matches(".+"), which enforces input to match any character except the
empty string.

Threat models 4–7, 14–16, and 21 are applicable to the input used as the value of HTML,
XML, and LDAP attributes. The difference among these models lies in the different type of
quotation used for the attribute values. For example, if an input is enclosed with single quotes
(as in <div attr=’input’), an attack could be conducted by providing as input the single
quote character ’ followed by an attack payload (e.g., a payload string like ’ onmouseover=
javascript:alert(), which would inject an additional JavaScript event). Such an attack is
matched by the .∗’.∗ regular expression. A similar threat model is defined for inputs with dou-
ble quotes. If the input is not enclosed by any type of quote, various meta-characters (e.g., =, *,
and ;) may be used to conduct an attack like the one above. This type of attack is matched by
threat models 6, 7, and 16, where the list of meta-characters is specific to the context in which
they can be applied.

Threat models 8–11 and 18–20 are applicable to the input used as attribute value in SQL and
XPath queries. These models reflect the various patterns of tautology attacks discussed in Sec-
tion 2.1.1, which cause the selection clause of an SQL or XPath query to always evaluate to true.
We express them using the parameterized constraint template TAUTCSTR, whose definition is
shown in Figure 2.1. This template has two parameters: input is a string variable represent-
ing the input to be matched against the tautology pattern; ctxDel represents the string delim-
iter used for enclosing the context of input (as shown in threat models 8–10 and 18–19). The
template is defined as a disjunction of two constraints, each of them expressed through a sub-
template: TAUTCSTRNUM, expressing numeric tautology attacks of the form x’ orN1 nrel N2,
whereN1 andN2 are integer variables and nrel ∈ {>,<,≤,≥,=, 6=}; TAUTCSTRSTR, expressing
string tautology attacks of the form x’ or S1 cstr S2, where S1 and S2 are string variables and
cstr ∈ {=, 6=}. Template TAUTCSTRNUM is defined as a disjunction of constraints over nrel ;
each disjunct consists of two conjuncts:

1. The first conjunct generates a pattern against which the user input variable input has to
be matched. The concatenation of string ".*" with the context delimiter ctxDel encloses
the context of input . Afterwards, the actual attack pattern is generated by concatenating
the string " +[Oo][Rr] " with the string representation of N1, together with the string
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Figure 2.2: The system dependence graph (SDG) of the program in Listing 2.1.

representation of nrel , which is then concatenated with the string representation of N2

and the string ".*".

2. The second conjunctN1nrelN2 enforces the numeric constraint defined by nrel onN1 and
N2 to ensure that only satisfiable tautologies are accepted.

TAUTCSTRSTR is defined as a disjunction of constraints over cstr ; each disjunct consists of two
conjuncts, which are structurally similar to those used in the definition of TAUTCSTRNUM. The
main difference is that string variables S1 and S2, when used in a string concatenation, are
always enclosed by a pair of delimited characters represented by the variable d, which ranges
(through the inner disjunction) over the set {’, "}.

2.2 Static Analysis & Program Slicing

Our terminology and definitions regarding static analysis and program slicing are based on
those of Hammer [47]. This section provides definitions for control-flow graphs, program depen-
dence graphs, system dependence graphs, backward program slices, and forward program slices.

Definition 2.2.1 (Control Flow Graph [38]) A Control Flow Graph (CFG) is a directed graph G =
(N,E,Start,End) N is the set of nodes representing statements and predicates and E is the set
of control-flow edges. The control flow graph G is augmented with a unique entry node Start
and a unique exit node End such that each node in the graph has at most two successors. We
assume that nodes with two successors have attributes T (true) and F (false) associated with the
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outgoing edges in the usual way. We further assume that for any node n inN there exists a path
from Start to n and a path from n to End.

Definition 2.2.2 (Interprocedural Control Flow Graph [47]) An Interprocedural Control Flow Graph
(ICFG) G = ((Gp)p∈P ,main,Call,Ret) for a program P consists of a family (Gp)p∈P of CFGs
Gp = (Np, Ep,Startp,Endp) for procedures p ∈ P an entry procedure main, and sets of call and
return edges Call and Ret such that

1. Both (Np)p∈P and (Ep)p∈P are each pairwise disjoint.

2. If (u, v) ∈ Call, then u ∈ Np \ {Startp} and v = Startp′ for some p, p′ ∈ P , and there is a
matching return edge (Endp′ , u′) ∈ Ret such that u′ ∈ Np is the only successor to u in Gp. p
is the caller and p′ the callee for that call edge. We say that u and u′ match each other and
call (u, u′) a call-return edge.

3. Conversely, every return edge in Ret has a matching call edge in Call.

Nodes with outgoing call edges (incoming return edges) are called call nodes (return nodes).

Definition 2.2.3 (Program Dependence Graph [38]) A Program Dependence Graph (PDG) is a
directed graph G = (N,E), where N is the set of nodes representing the statements of a given
procedure in a program, and E is the set of control-dependence and data-dependence edges
that induce a partial order on the nodes in N .

Since a PDG can only represent an individual procedure, slicing on an PDG merely results in
intraprocedural slices. For computing program slices from interprocedural programs, Horwitz
et al. [52] defined system dependence graphs, which are essentially interprocedural program
dependence graphs from which interprocedural program slices can be soundly and efficiently
computed.

Definition 2.2.4 (System Dependence Graph [52]) A System Dependence Graph (SDG) consists of
all the PDGs in the program, which are connected using interprocedural edges that reflect calls
between procedures. This means that each procedure in a program is represented by a PDG.
The PDG is modified to contain formal-in and formal-out nodes for every formal parameter of
the procedure. Each call-site in the PDG is also modified to contain actual-in and actual-out
nodes for each actual parameter. The call node is connected to the entry node of the invoked
procedure via a call edge. The actual-in nodes are connected to their corresponding formal-in
nodes via parameter-in edges, and the actual-out nodes are connected to their corresponding
formal-out nodes via parameter-out edges. Lastly, summary edges are inserted between actual-in
and actual-out nodes of the same call-site to reflect transitive data-dependencies that may occur
in the called procedure.

Since an SDG provides an interprocedural model of a program—capturing interprocedural
data-dependencies, control-dependencies, and call-dependencies—it is the ideal data structure
for program analysis. Furthermore, program slices can be computed from it in a sound and
efficient way in linear time [52, 93]. More specifically, the worst-case complexity of building a
program slice from an SDG of N nodes is O(N); the worst-case complexity of building an SDG
itself is O(N3) [47].
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Figure 2.3: The backward program slice with respect to the sink at Line 18 in Listing 2.1.

Figure 2.2 depicts the SDG of the program in Listing 2.1. The entry points of the methods
allowUser, createUser, encodeForXpath and encodeForXMLAttribute as well as the main en-
try point doPost are represented as SDG nodes (shaded boxes). The other nodes (white boxes),
which represent the expressions of the program in Listing 2.1, are connected with control-
dependence edges (black lines), data-dependence edges (black arrows) and summary edges
(dotted black arrows). Call edges (dashed arrows with black arrowheads) connect call sites
with their respective targets, whereas dashed arrows with white arrowheads denote parameter
edges. Input sources are highlighted with a solid dashed frame, whereas sinks are highlighted
with a blank dashed frame.

Definition 2.2.5 (Backward Program Slice [52]) Given an SDG G = (N,E), let K ⊆ N be the set
of identified sinks. The backward program slice of G with respect to a target criterion k ∈ K,
denoted with bs(k), consists of all the statements that influence k, and is defined as bs(k) = {j ∈
N | j ∗−→ k}, where j ∗−→ k denotes that there exists an interprocedurally-realizable path from j
to k, so that k is reachable through a set of preceding statements (possibly across procedures).
The detailed algorithms for computing interprocedurally-realizable paths and backward slice
are given in [52].

As illustrated in Figure 2.3, the backward program slice with respect to the sink at Line 18
in Listing 2.1 contains all the program statements that influence (both intraprocedurally and
interprocedurally) the operation of the sink.

Definition 2.2.6 (Forward Program Slice [20]) Given an SDG G = (N,E), let I ⊆ N be the source
criterion. The forward program slice of G with respect to I consists of all the nodes that are
influenced by I , and is defined as fs(I) = {j ∈ N | i ∗−→ j ∧ i ∈ I}.

The program in Listing 2.1 contains three input sources at Lines 2–4; Figure 2.4 shows the
forward program slice with respect to the input source account at Line 2.
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Figure 2.4: forward slice with respect to the slicing criterion at Line 2 in Listing 2.1.

Definition 2.2.7 (Program Chop [57, 105]) The program chop of an SDG G = (N,E) with the
source criterion I and the target criterion k is defined as c(I, k) = bs(k) ∩ fs(I).

Note that program chopping is defined as the intersection of backward slicing and forward
slicing. It allows us to identify security-relevant nodes that are on the paths from I to k and,
thus, involved in the propagation of potentially malicious data from input sources to a sink.

For example, Figure 2.5 shows a chop between the input sources getParameter on Lines 2–4
and the sink xpath.evaluate on Line 18.

2.3 Constraints and Constraint Networks

This section provides definitions for constraint and constraint network.

Let Y = y1, . . . , yk, k > 0 be a finite sequence of variables and D1, . . . , Dk a sequence of
domains, with each variable yi ranging over the respective domain Di.

Definition 2.3.1 (Constraint) A constraint c over Y is a relation over Y , i.e., c ⊆ D1 × · · · ×
Dk; Y is also called the scope of the constraint and k is its arity. Informally, a constraint c on
some variables is a subset of the cartesian product over the variables domains that contains the
combination of values that satisfy c.

Definition 2.3.2 (Constraint Network) A constraint network R is a triple (X,D,C), where X is
a finite sequence of variables x1, . . . , xn, each associated with a domain D1, . . . , Dn and C =
{c1, . . . , ct} is a set of constraints; the scope of each constraint ci, denoted with Si, is a subse-
quence of X .

A constraint network R = (X,D,C) can be represented as a hypergraph H = (V, S) where
the set of nodes V corresponds to the set of variables X of the network, and S = Si, . . . , St is
the set of hyperedges that group variables belonging to the same scope.
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Figure 2.5: The chop with the source criterion {2, 3, 4} and the target criterion {18} of the example
program in Listing 2.1.

2.4 Ant Colony Optimization

Ant Colony Optimization (ACO) [37] is a widely used meta-heuristic search technique for solv-
ing combinatorial optimization problems. It has been applied to a wide variety of optimization
problems such as scheduling and routing [25], data-compression [19] or user interface genera-
tion [16].

ACO is inspired by the observation of the behavior of real ants searching for food. Real ants
start seeking food randomly; when they find a source of food, they leave a chemical substance
(called pheromone) along the path that goes from the food source back to the colony. Other
ants of the colony can detect the presence of this substance and are likely to follow the same
path. This path, populated by many ants, is called pheromone trail and serves as a guidance (e.g.,
positive feedback) for the other ants. Notice that the shorter the path, the sooner the pheromone
is deposited along it and the more ants use it. When the source of food is depleted, the path
is no longer populated by ants and the pheromone evaporates: the ants forget this path and
start exploring other search directions. These observations can be translated into the world of
artificial ants, which can cooperate to find a good solution to a given optimization problem.

The optimization problem is translated into the problem of finding the best path on a weight-
ed graph. Artificial pheromone trails are numerical parameters that characterize the graph com-
ponents (i.e., vertices and edges). Artificial pheromone trails can be read/written by ants and
represent the sole means of communication among the ants; these trails encode the “history”
in approaching the problem (and finding its solutions) by the whole ant colony. ACO algo-
rithms also implement a mechanism, inspired by real pheromone evaporation, to modify the
pheromone information over time so that ants can forget the (search) history and start explor-
ing new search directions. The artificial ants build their solutions by moving step-by-step along
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the graph; at each step they make a stochastic decision based on the pheromone trail informa-
tion.

To apply the ACO meta-heuristic to a combinatorial optimization problem, first one has to
define the optimization problem as P = (S,Ω, f), where S is the search space defined over a
finite set of discrete decision variables; Ω is a set of constraints among the variables; f : S → R+

0

is the objective function to minimize. The search space S is defined as follows: given a set of
discrete variables Xi, i = 1 . . . n, with values vji ∈ Di = {v1

i , . . . , v
|Di|
n }, a feasible solution s ∈ S

is a complete assignment in which each variable is assigned a value in its domain such that all
the constraints in Ω are satisfied. A feasible solution s∗ ∈ S is called a global minimum of P if
and only if f(s∗) ≤ f(s) ∀s ∈ S; S∗ is the set of global minima.

This model of an optimization problem can be used to derive a generic pheromone model
for use by ACO. Let us denote with cij a solution component, i.e., an instantiation of a decision
variable Xi with a value vji ∈ Di; solution components are combined by ants to form feasible
solutions. Each solution component cij has an associated pheromone trail parameter Tij . Let
us denote the set of all solution components as C and the set of all pheromone trail parameters
as T . Each pheromone trail Tij has a pheromone value τij , which indicates the desirability of
choosing the corresponding solution component; this pheromone value is read and written by
the ACO algorithm during the search.

Artificial ants build a solution to an optimization problem by traversing the construction
graphGC(V,E), where V is a set of vertices andE is a set of edges. The construction graphGC is
defined by associating the set of solution components C either with V or withE. The ants move
from one vertex to another along the edges of the construction graph, based on the pheromone
values; in this way, they incrementally build a solution. During each move, the ants deposit a
∆τ amount of pheromone either on the vertices or on the edges they traverse; this amount of
pheromone depends on the quality of the solution found. The pseudocode of the ACO meta-
heuristic is shown in Algorithm 2.1. After initializing the parameters and the pheromone trails,
the algorithm loops through three main steps, until the termination conditions are met:

1. ConstructAntSolutions: this step builds solutions from the set of available solution compo-
nents C. Each solution component is selected probabilistically, using a heuristic function
that takes into account the pheromone trail.

2. ApplyLocalSearch: this optional step is used to refine the set of candidate solutions built in
the previous step, to locally optimize them.

3. UpdatePheromones: this step updates the pheromone values of solution components. The
update can increase or decrease (to emulate pheromone evaporation) the pheromone
value, depending on whether the corresponding solution component belongs to a good
or bad solution. The quality of each solution is assessed by means of a fitness function.
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function ACO
initialize parameters and pheromone trails
while termination conditions are not met do

ConstructAntSolutions
ApplyLocalSearch
UpdatePheromones

end while
end function

Algorithm 2.1: Ant Colony Optimization (ACO) meta-heuristic.
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Chapter 3

Security Slicing

The chapter introduces our security slicing approach and is organized as follows: Section 3.1
motivates security slicing; Section 3.2 explains all the security slicing steps; Section 3.3 explains
the implementation of our prototype tool JoanAudit; Section 3.4 reports on the evaluation results;
Section 3.5 concludes this chapter.

3.1 Overview

Software security assurance is an important process in software development that protects the
sensitive data and resources contained in and controlled by the software. Addressing security
vulnerabilities early in the software development stage could decrease the cost of addressing
them in later stages by a factor ranging between 30 and 60 times [84].

Security auditing, i.e., the examination of the source code for the purpose of detecting
vulnerabilities, helps to detect vulnerabilities during the early phases of software develop-
ment. However, without proper automation, this task is laborious, error-prone and not scalable;
hence, security auditors need automated support to facilitate the auditing process.

In order to support security auditors with their tasks, auditing approaches face the following
challenges [131]:

C1 they have to help auditors locate the vulnerabilities quickly in the source code.

C2 they need to scale to the size of realistic Web systems.

C3 they should generate reports that provide control-dependency information to detail how
injection vulnerabilities reach the sink in order to eliminate false alarms quickly.

C4 these reports should only provide information relevant to security.

C5 they need to support various types of vulnerabilities, such as XSS, SQLi, XMLi, XPathi or
LDAPi.
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C6 they need to support security analysis for the Java programming language, one of the
most commonly used technologies for Web development in industrial context [26].

C1 and C2 are addressed by approaches based on taint analysis [78, 60, 138, 98, 137, 53, 71].
However, reports generated by these approaches typically contain data-flow analysis traces
and lack control-dependency information (C3), which is essential for security auditing. Indeed,
conditional statements checks are often used to perform input validation or sanitization tasks;
without analyzing such conditions, feasible and infeasible data-flows cannot be determined,
causing many false warnings.

C3 is addressed by approaches based on symbolic execution [64, 153] which helps to iden-
tify and locate potential vulnerabilities in program code, and thus, could assist the auditor’s
tasks. Though symbolic execution approaches reason with control-dependency information,
they have yet to address scalability issues (C2) due to the path explosion problem [146]. Other
approaches [144] report analysis results without any form of pruning (C1 and C4), thus contain-
ing a significant amount of information not useful to security auditing. As a result, an auditor
might end up checking large chunks of code, which is not practical.

C5 is also not addressed by the majority of the above-mentioned approaches; the only ex-
ception is [98], which explicitly addresses XMLi, XPathi, and LDAPi.

Challenges C2, C4, and C5 are addressed by security testing approaches [5, 58, 10, 69, 129]
and dynamic analysis-based security attack detection approaches [80, 106, 101, 123, 46, 116, 124].
These approaches can be used to detect XSS, SQLi, XMLi, XPathi, and LDAPi vulnerabilities.
However, a security auditor is typically required to locate vulnerabilities in source code (C1),
identify their causes and fix them. Analysis reports from the above-mentioned approaches,
though useful, are not sufficient to support code auditing since they only contain information
derived from observed program behaviors or execution traces; they do not provide information
about the location of the vulnerability in the source code.

C6 is generally addressed by black-box security testing approaches [10, 58, 129] because they
are agnostic with respect to the programming language of the system under test. However, this
is the same reason for which these approaches cannot locate vulnerabilities in the source code
(C1). Some security testing based approaches [69, 46] and static-analysis approaches [98, 53] do
support Java but cannot meet C1 and C3, respectively.

In this chapter, we present security slicing, a technique that facilitates security auditing of
XSS, SQLi, XMLi, XPathi, and LDAPi vulnerabilities in program source code. In this approach
we first apply static analysis to identify the input sources and the sinks; afterwards, we apply
program slicing and code filtering techniques to extract minimal and relevant source code that
contains only statements required for auditing potential vulnerabilities related to each sink,
pruning away other statements that do not require auditing. Security slicing addresses all of the
above-mentioned challenges by generating a vulnerability report that locates the vulnerabilities
in the source code (C1), being scalable to Web systems realistic in size (52 kLOC) (C2), extracting
control- and data-dependency information from the program (C3), generating precise security
slices that do not miss security-relevant information (C4), being readily configured for common
injection vulnerabilities (C5), and targeting Java Web systems (C6).

28



3.2. Approach

1: function SECSLICE(
a program W
Set of irrelevant/known-good library methods M〈IR,KG〉
Set of sources, sinks and declassifiers Λ〈I,K,D〉)

2: SS ← ∅ . Set of security slices and associated path conditions
3: SDG g ← COMPUTESDG(W)
4: g′ ← PRUNE(g,M〈IR,KG〉) . Apply filter 1 and 2
5: 〈I,K〉 ← GETSRC-SNK(g′,Λ〈I,K,D〉)
6: for all k ∈ K do
7: c(I, k)←CHOP(g′, I, k) . Apply filter 3
8: ss(I, k)← IFCANALYSIS(c(I, k)) . Apply filter 4
9: 〈ss(I, k)′,PC 〉 ← CONTEXTANALYSIS(ss(I, k)) . Apply filter 5

10: SS ← SS ∪ {〈ss(I, k)′,PC 〉}
11: end for
12: end function

Algorithm 3.2: Security slicing algorithm.

3.2 Approach

This section illustrates the security slicing approach in detail: Section 3.2.1 presents the security
slicing algorithm, and Section 3.2.2 explains the different security slicing steps; Section 3.2.3
illustrates the application of security slicing on an example Web application.

3.2.1 Algorithm

Our fully-automated approach mainly targets Java-based Web applications, since the type of
vulnerabilities it supports are commonplace in such systems. We emphasize that a specialized
approach is necessary to provide practical support for the security auditing of Web applications
and services developed using a specific technology.

When extracting security slices, we aim to achieve the following objectives:

1. Soundness: A security slice shall contain all the relevant program statements enabling the
auditing of any security violation.

2. Precision: A security slice shall contain only the program statements relevant to minimiz-
ing the auditing effort.

3. Performance: The security slicing algorithm shall handle Web applications of realistic size.

Achieving all these objectives is desirable but in practice there is a trade-off between sound-
ness and precision, depending on the analysis goal. In our context, we prioritize soundness
because finding all the possible security violations is a priority for security auditing; neverthe-
less, we also try to optimize precision to the extent possible.

The pseudocode of the algorithm realizing our security slicing approach is shown in Algo-
rithm 3.2. The algorithm takes as input: the bytecode W of a Java program; a set M〈IR,KG〉 of
methods (custom functions or library API) that are either irrelevant to security analysis of XSS,
SQLi, XMLi, XPathi, and LDAPi, or that may be relevant to security but are known (or assumed)
to be correct or free from security issues; a set Λ〈I,K,D〉 of sources, sinks, and declassifiers (nodes
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in the SDG that represent sanitization procedures). The algorithm returns the set SS of security
slices and associated path conditions extracted from W .

The algorithm works as follows. After initializing SS to the empty set, it constructs the
SDG from the bytecode W of the input program; this step is realized by using the API of
Joana [47]. The resulting SDG is then filtered by pruning nodes that contain methods belonging
to M〈IR,KG〉; the details of this step are described in Section 3.2.2.3. The next step identifies the
set of input sources I and sinks K from the SDG. Afterwards, the algorithm iterates through
the set K; for all sinks k ∈ K, it performs the following steps:

1. Computing the program chop c(I, k), to extract the program slice that contains the state-
ments influenced by the set of input sources I , which lead to sink k through possibly
different program paths. This step is realized using the API of Joana.

2. Performing Information Flow Control (IFC) analysis to identify how insecure the infor-
mation flows along the paths in c(I, k) are. This step, partially supported by Joana, is
described in Section 3.2.2.1.

3. Performing symbolic execution and context analysis to identify the context of sink and
to understand whether input data is used in an insecure way in a sink. This analysis
automatically patches vulnerable sinks with sanitization procedures if it is able to identify
adequate procedures from the extracted path conditions PC . If this is not possible, the
extracted information can still be used to facilitate manual security auditing (e.g., checking
feasible conditions for security attacks). This step is detailed in Section 3.2.2.2.

Each of the last three steps is combined with a filtering procedure, based on the extracted
information flow traces and path conditions; the filtering procedures are explained in Sec-
tion 3.2.2.3. Furthermore, each iteration terminates by computing a security slice ss(I, k) and
its path conditions PC , which are then added to set SS .

3.2.2 Detailed Steps

In the following we are illustrating the 3 main steps of security slicing: Section 3.2.2.1 provides a
detailed explanation about IFC analysis; Section 3.2.2.2 introduces symbolic execution and con-
text analysis, and Section 3.2.2.3 explains the various filtering techniques for extracting minimal
and concise security slices.

3.2.2.1 Information Flow Control Analysis

Information Flow Control Analysis (IFC) analysis is a technique that checks whether a software
system conforms to a security specification. Relying on the work of Hammer [47], we adapt his
generic flow-, context-, and object-sensitive interprocedural IFC analysis framework to suit our
specific information flow problem with respect to XSS, SQLi, XMLi, XPathi, and LDAPi. Our
goal is to trace how information from an input source can reach a sink, and then to analyze
which paths in the chops are secure and which ones may not be secure.

We specify allowed and disallowed information flow based on a lattice called security lattice,
i.e., a partial-ordered set that expresses the relation between different security levels. We use the
standard diamond lattice LLH [88], depicted in Figure 3.1, which expresses the relation between
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HL

HH LL

LH

Figure 3.1: The security lattice used in our information flow control analysis.

four security levels HL, HH , LL, and LH . Every level l = L0L1 contains two components: L0

denotes the confidentiality level while L1 denotes the integrity level. Confidentiality requires that
information is to be prevented from flowing into inappropriate destinations or sinks, whereas
integrity requires that information is to be prevented from flowing from inappropriate input
sources [108]. The element HL represents the most restricted usage, since any data labeled with
it cannot flow to any destination that has a different security label. Data labeled with HH are
confidential and cannot be manipulated by an attacker, whereas data labeled with LH are non-
confidential and also cannot be manipulated by an attacker. The LL label is used for data that
are non-confidential but could be altered by an attacker.

All input sources and sinks are annotated with a security label that enables the detection
of allowed and disallowed information flow. This annotation step is done automatically based
on our predefined sets of input sources and sinks (see Section 2.1.2). Input sources are labeled
with HL because data originating from them are supposed to be confidential but could be ma-
nipulated by an attacker. Sinks are labeled either with LH or with HH . The value of the con-
fidentiality label is either L or H , depending on whether the sink is allowed or not to handle
user confidential data. In any case, the integrity label for sinks is always H , because only high-
integrity data should be allowed to flow into the sinks, to prevent the flow of malicious input
values causing security attacks. More specifically, in our approach we label as HH the sink func-
tions that update or modify databases—since it is common to store highly-confidential data in
back-end databases—as well as the functions that access server environment variables, read
data from configuration files or other sources. Moreover, we label as LH the sink functions
that generate outputs to external environments, such as exception handling functions, as well
as functions that read time and date such as getTime from java.util.Calendar. Finally, an
example of function labeled with LL is a function that monitors mouse-clicks.

Based on these annotations, the IFC analysis traces information flow from one node in the
chop to another and detects disallowed information flow and, therefore, security violations. For
example, a security violation is detected if there exists an information flow from an LL input
source to an HH sink.

Notice that the annotation procedure must also take into account the fact that program
developers might use sanitization procedures to properly validate data from an input source
before using it in a sink. For instance, this is the case for our example in Listing 2.1, where
proper sanitization procedures (Lines 16–17 and Lines 22–23) taken from the OWASP security
library [94] are used between the input sources and a sink. Such cases can be considered secure
and do not need to be reported to an auditor. To support the use of these functions, we rely
on the concept of declassification [109]. In our context, declassifiers are nodes in the SDG that
represent sanitization procedures. The integrity level of such nodes is annotated with an H
label since the sanitization procedure ensures the integrity of data. As we address five different
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vulnerability types, only the declassifiers relevant to the vulnerability type of a sink k are an-
notated with the integrity level H . Other declassifiers in the chop c(I, k) and irrelevant for the
vulnerability type of k are ignored. For example, the declassifier at Lines 16–17 in Listing 2.1 is
relevant for the XPath function xpath.evaluate at Line 18, but is inappropriate for a sink of a
different vulnerability category, e.g., an SQL query operation.

In addition to annotating the integrity level of declassifier nodes with H , we also change
the integrity level of the data that reach these nodes to H . For example, as shown in Figure 2.2,
the input sources account and password (Lines 2–3 in Listing 2.1) are annotated with the label
HL. Since these input values pass through the declassifiers at Lines 16–17 (highlighted in bold
in Figure 2.2), their security labels are changed to HH . When performing IFC analysis, the use
of these variables in the sink node xpath.evaluate at Line 18 will be considered secure, because
the information flow from HH to HH is allowed. Our tool is configured with the declassifiers
(mainly encoding and escaping functions) from two widely-used security libraries—Apache
Common [8] and OWASP [94]. It also recognizes the PreparedStatement function from the
java.sql package as a declassifier corresponding to SQL sinks.

Consider now the same example above, but without sanitization functions. In such a case,
we would have at least two illegal flows (from account and password to the xpath.evaluate
sink) from HL to HH . Hence, their corresponding paths would be determined as potentially
insecure and will be subject to context analysis, explained in the next subsection.

3.2.2.2 Symbolic Execution & Context Analysis

The IFC analysis illustrated in the last section can tell if data from input sources may reach sinks.
However, from a security auditing standpoint it is also necessary to understand the context of a
sink, i.e., how the input data is used in a sink and if it is used in an insecure way.

In this section, we present context analysis, a lightweight technique for identifying the con-
text (within a sink) in which the data of an input source is used. Based on the identified context,
this technique is able to automatically fix a vulnerable input source by applying the most ap-
propriate sanitization function to it.

Table 3.1 lists, for each type of vulnerability that we consider, the possible contexts (in the
form of patterns, where input correspond to the data from an input source). For each context,
we indicate1 the most appropriate security API (provided by OWASP [94]) that should be used
in that specific context to sanitize the input data.

Context analysis is lightweight compared to symbolic evaluation and constraint solving ap-
proaches [64, 153] because it traverses only the paths leading to the sink rather than the whole
program, and does not attempt to precisely reason about the operations performed in the path
(e.g., by performing constraint solving). Instead, the analysis merely collects and examines the
path conditions, i.e., the necessary conditions for the presence of information flow from input
sources I to a sink k via a program path. More specifically, context analysis relies on path condi-
tion analysis to rule out infeasible paths, and to reconstruct the string values in the sink, needed
to identify the context of the input source. The identified context is matched with the context
patterns of Table 3.1. In case of a match, context analysis applies the corresponding fix, by wrap-
ping the input source causing the vulnerability with the proper security API. Otherwise, in case

1Table 3.1 shows the mapping between context patterns and security APIs as configured in our tool. Neverthe-
less, users can provide a different mapping.
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Table 3.1: Mapping between contexts and security APIs for data sanitization.

Vul. Nr. Context Pattern Security API

XSS

1 HTML element content:
ESAPI.encoder().encodeForHTML

<tag>input </tag>

2 HTML attribute value:
ESAPI.encoder().encodeForHTMLAttribute

<div attr=’input’>

3 URL parameter value:
ESAPI.encoder().encodeForURL

<a href="http://...?param=input">

4
JavaScript variable value:

ESAPI.encoder().encodeForJavaScript<script>var a=’input’...</script>
<div onclick="var a=’input’">...</div>

5
CSS property value:

ESAPI.encoder().encodeForCSS<style>selector {property:input;}</style>
<span style="property:input">...</span>

SQLi 6
SQL attribute value:

ESAPI.encoder().encodeForSQLSELECT column From table WHERE
row=’input’

XMLi

7 XML element content:
ESAPI.encoder().encodeForXML

<node>input</node>

8 CDATA content:
ESAPI.encoder().encodeForXML

<![CDATA[input]]>

9 XML attribute value:
ESAPI.encoder().encodeForXMLAttribute

<node attr=’input’/>

XPathi 10 XPath attribute value:
ESAPI.encoder().encodeForXPath

//table[column=’input’]

LDAPi
11 LDAP distinguished name:

ESAPI.encoder().encodeForDN
LdapName dn = new LdapName( input)

12 LDAP search:
ESAPI.encoder().encodeForLDAP

search="(attr=input)"

there is no match and the input source cannot be fixed automatically, the procedure yields the
path conditions, which represent a valuable asset for security analysts to understand the cause
of a vulnerability.

To explain this analysis, we use the code snippet shown in Figure 3.2 and extracted from one
of our test subjects WebGoat/MultiLevelLogin1 (see Section 3.4). The code is vulnerable to XSS
because the input data, which is accessed from a database (source at Line 15) and displayed as
content of an HTML page (sink at Line 30), could be tampered with by an attacker before the
data is stored in the database.

Context analysis uses SSA form [33], a standard intermediate representation used in pro-
gram analysis. In SSA form, every variable in a program is assigned exactly once and every
variable is defined before it is used. For join points, i.e., points in the program where different
control flow paths merge together, a Φ-operation is added to represent the different values that
a variable can take at that point. Figure 3.2b shows the equivalent SSA form for the program
in Figure 3.2a.

The pseudocode of our context analysis function is shown in Algorithm 3.3. It takes as input
a security slice ss in a dependence graph form; it uses two local variables: PC , representing the
set of preconditions analyzed, and PV , representing the set of potentially vulnerable paths.

First, the input security slice ss is transformed by function GENICFG into its equivalent
ICFG form [119], which shows the order of control flow executions across procedures. In this
form, the control flow paths in the slice become explicit and can be easily extracted.

Afterwards, function COLLECTPATHS extracts the control flow paths by traversing the ICFG
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1 String q = "SELECT * FROM msg " +
2 WHERE usr LIKE ?";
3 String out = "<html>";
4 Connection c = DriverManager
5 .getConnection(DB);
6 PreparedStatement s = c
7 .prepareStatement(q);
8 s.setString(1, getUser());
9 ResultSet r = s.executeQuery();

10 int i = 0;
11
12 while (r.next()){
13
14
15 String u = r.getString(1); // SOURCE
16
17 if (!u.isEmpty()) {
18 out += "<p>" + i + " " +
19 u.toUpperCase() + "</p>";
20
21
22
23
24
25 }
26 i++;
27
28 }
29 out += "</html>";
30 println(out); // SINK

(a) A Java program.

1 String q1 = "SELECT * FROM msg " +
2 WHERE usr LIKE ?";
3 String out1 = "<html>";
4 Connection c1 = DriverManager
5 .getConnection(DB);
6 PreparedStatement s1 = c1
7 .prepareStatement(q1);
8 s1.setString(1, getUser());
9 ResultSet r1 = s1.executeQuery();

10 int i1 = 0;
11 boolean t1 = r1.next();
12 while [i2 = Φ(i1, i3) ,
13 out2 = Φ(out1, out8),
14 t2 = Φ(t1, t3)] (t2) {
15 String u1 = r1.getString(1); // SOURCE
16 boolean k1 = u1.isEmpty();
17 if (!k1) {
18 u2 = u1.toUpperCase();
19 out3 = out2 + "<p>";
20 out4 = out3 + i2;
21 out5 = out4 + " ";
22 out6 = out5 + u2;
23 out7 = out6 + "</p>";
24 }
25 out8 = Φ(out2, out7)
26 i3 = i2 + 1;
27 t3 = r1.next();
28 }
29 out8 = out2 + "</html>";
30 println(out8); // SINK

(b) A Java program in SSA form.

Figure 3.2: The Java source code (a) and the equivalent SSA form of a sample program (b).

in a depth-first search manner. For practicability (to avoid path explosion), loops and recur-
sive function calls are traversed only once; both our experience and the evidence gathered
during our experiments confirm that analyzing one iteration of loops and recursive calls is
sufficient to detect vulnerabilities. To illustrate this step, we use the ICFG of the program
from Figure 3.2b, shown in Figure 3.3. Every control flow edge is labeled with a sequence
number; outgoing predicate edges are annotated with TRUE or FALSE. In the figure, three
control flow paths can be observed: {(1, 8), (1, 2, 3, 6, 7, 8), (1, 2, 3, 4, 5, 7, 8)}. However, for this
program, the IFC analysis described in Section 3.2.2.1 would have already pruned the paths
{(1, 8), (1, 2, 3, 6, 7, 8)} from the security slice, since there is no insecure information flow in
those paths. Hence, function COLLECTPATHS will return, in variable PV , only one potentially
vulnerable path: PV = {(1, 2, 3, 4, 5, 7, 8)}.

The next step of the context analysis procedure is a loop that iterates over the set PV . For
each path p ∈ PV , function EVALPATH tries to automatically fix the vulnerability contained in
p, if possible. Function EVALPATH, which takes in input a path p, works as follows. First, the
path conditions pc and the context of the input source ctx of path p are extracted with the EVAL

procedure, described further below. Afterwards, function AUTOFIX identifies the required san-
itization procedure by matching the extracted context ctx against one of the context patterns
shown in Table 3.1. If there is a match for ctx , the security API corresponding to the matched
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1: function CONTEXTANALYSIS(Security Slice ss)
2: PC ← ∅
3: PV ← ∅
4: cfg ← GENICFG(ss)
5: PV ←COLLECTPATHS(cfg)
6: for all p ∈ PV do
7: pc ← EVALPATH(p)
8: if pc 6= null then
9: PC ← PC ∪ pc

10: end if
11: end for
12: return 〈ss,PC 〉
13: end function

14: function EVALPATH(Path p)
15: 〈ctx , pc〉 ← EVAL(p)
16: fix ←AUTOFIX(ctx )
17: if fix then
18: REMOVEPATH(p, ss)
19: return null
20: end if
21: return pc
22: end function

23: function EVAL(Path p)
24: 〈Vmap,Cond〉 ←TRACEBACKWARDS(p)
25: Vmap′ ←RESOLVEVARIABLES(Vmap)
26: 〈srcpar , snkpar〉 ←GETSRCSNKPARAMS(Vmap′)
27: return 〈GETCONTEXT(〈srcpar , snkpar〉),

∧
c∈Cond 〉

28: end function

Algorithm 3.3: Context analysis algorithm.

context pattern is applied to the input source; this automated fixing procedure is further ex-
plained in Section 3.2.2.3. If function AUTOFIX returns a fix, procedure REMOVEPATH is invoked
to prune the fixed path from the security slice ss , and EVALPATH terminates returning null. If
fixing the vulnerability in p is not possible, the EVALPATH function returns the path condition
pc corresponding to path p. The path conditions returned after executing the loop over PV are
available in the set PC , which can be used by security auditors for manual inspection.

The extraction of the path conditions and of the context of a path is done through function
EVAL, which works as follows. It traces, in reverse control-flow order starting from the sink,
all the statements (in the SSA form) on which the sink variable is data- or control-dependent.
Function TRACEBACKWARDS collects all the variables, their assignments and their interdepen-
dencies (stored in the map Vmap), including the conditions Cond imposed on the variables at
predicate statements. Function RESOLVEVARIABLES resolves all variables until a fixed point is
reached; the variables used in the sink are resolved as a concatenation of the program-defined
values and the input variables. The result of the fix-point iteration is stored in the map Vmap′,
which is then used by the GETSRCSNKPARAMS function to determine: 1) the variables that are
associated with the input source srcpar , i.e., the value that is returned by the source operation;
2) the sink parameter snkpar , i.e., the string that is passed to the operation in the sink. With this
information, function GETCONTEXT extracts the context of the input source with respect to the
sink. The context is returned together with the conjoined conditions in Cond to the EVALPATH

procedure and stored in variables ctx and pc.
For example, after applying the EVAL procedure on the path p = (1, 2, 3, 4, 5, 7, 8) in Fig-

ure 3.3, variable out8 at the sink at Line 30 is resolved to:

<html><p>0 u1.toUpperCase()</p></html>

where u1 represents the input variable assigned with the data from the input source at Line 15.
By matching this context against the context patterns of Table 3.1, it is identified as an input
used as the content of an HTML element. The corresponding security API ESAPI.encoder()
.encodeForHTML is then used to patch the input source at Line 15 in Figure 3.2, resulting in
the new statement:

String u = ESAPI.encoder().encodeForHTML(r.getString(1))
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1 String q1 = "SELECT * FROM msg WHERE usr LIKE ?";
2 String out1 = "<html>";
3 Connection c1 = DriverManager.getConnection(DB);
4 PreparedStatement s1 = c1.prepareStatement(q1);
5 s1.setString(1, getUser());
6 ResultSet r1 = s1.executeQuery();
7 int i1 = 0;
8 boolean t1 = r1.next();

1 i2 = Φ(i1, i3) ,
2 out2 = Φ(out1, out8),
3 t2 = Φ(t1, t3)
4 if (t2)

1 String u1 = r1.getString(1); // SOURCE
2 boolean k1 = u1.isEmpty();

1 if (!k1)

1 u2 = u1.toUpperCase();
2 out3 = out2 + "<p>";
3 out4 = out3 + i2;
4 out5 = out4 + " ";
5 out6 = out5 + u2;
6 out7 = out6 + "</p>";

1 out8 = Φ(out2, out7)
2 i3 = i2 + 1;
3 t3 = r1.next();

1 out9 = out2 + "</html>";
2 println(out8); // SINK

FALSE TRUE

FALSE TRUE

2

11

3

4

5

6

7

8

Figure 3.3: The control flow graph of a program in Figure 3.2.

Consider now the case in which the above vulnerable path p = (1, 2, 3, 4, 5, 7, 8) could not
be fixed by function AUTOFIX. The following path condition pc would be reported:

DriverManager.getConnection(DB).prepareStatement("SELECT...")
.executeQuery().next() ∧ ¬u.isEmpty()

Based on this information, a security auditor may easily identify that the path is feasible as
long as there are user data in the database. Hence, she may conclude that a security attack is
feasible since there is no sanitization of the user input.

Note that our approach filters known-good classes (explained in the next subsection) such as
those belonging to database drivers and database queries from the SDG. During SDG construc-
tion, those classes are replaced with stub nodes. Therefore, for the example above, the paths in
the methods called by the DriverManager are not explored in our analysis. The considerable
reduction of the number of analyzed path improves the scalability of our approach, and results
in a simplified path condition, from which an auditor can still assess its feasibility.
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3.2.2.3 Filtering

In this section, we describe the five filtering mechanisms (F1–F5) which are applied to generate
minimal slices for security auditing. For efficiency reasons, the filters are applied at different
stages of our approach (as shown in our security slicing algorithm in Algorithm 3.2). F1 and F2
are applied concurrently during the SDG construction. F3 is applied during program chopping.
F4 and F5 are applied to the program chops in sequence. We mentioned earlier that the goal of
our work is to achieve the highest possible precision while preserving soundness so that security
auditing is scalable.

The original program chops c(I, k) without filters are sound with respect to the types of in-
put sources and sinks we consider, since all the statements related to those sources and sinks are
extracted. It is straightforward to prove that by applying the filtering rules illustrated below,
which remove statements that cannot be relevant to security auditing, we achieve better preci-
sion compared to the original program chops. However, we also need to demonstrate that we
maintain soundness by not removing any statement that might be relevant to security auditing
when filtering rules are applied. Therefore, when defining the filtering rules below, we provide
arguments on how we preserve soundness. Further, we empirically demonstrate the soundness
in Section 3.4.

The five filtering mechanisms used in JoanAudit are:

F1 (Irrelevant) filters functions (custom functions or library APIs) that are irrelevant to the
security analysis of XSS, SQLi, XMLi, XPathi, and LDAPi. Let MIR be the set of irrelevant
functions. During the SDG construction, upon encountering a node that corresponds to
a function f ∈ MIR, a stub node is generated instead of the PDG that represents f . By
doing so, all the nodes and edges that correspond to f are filtered while not affecting the
construction of the SDG. For security auditing purposes, the stub node is annotated with
the name of the function and labeled as irrelevant.

F2 (Known-good) filters functions with known-good security properties. Let MKG be the set
of known-good functions. During the SDG construction, upon encountering a node that
corresponds to a function f ∈ MKG , a stub node is generated instead of the PDG that
represents f . Therefore, like the filter above, all the nodes and edges that correspond to
f are filtered in such a way as not to affect the construction of SDG. For security auditing
purposes, the stub node is annotated with the name of the function and labeled as known-
good.

Basically, the above two filters correspond to 1) functions that are known to be irrelevant
to the auditing of XSS, SQLi, XMLi, XPathi, and LDAPi issues; and 2) functions that may
be relevant to security but are known (or assumed) to be correct or free from security
issues. Hence, it is clear that filtering such functions does not affect the soundness of our
approach.

For example, we observed that Java methods belonging to classes responsible for retriev-
ing the HTTP GET and POST parameters (e.g., those implementing the javax.servlet
.ServletRequest interface) are commonly present in the original program chops; how-
ever — differently from the parameters they retrieve — these methods are irrelevant for
our security analysis purpose because they contain neither input sanitization operations
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nor security-sensitive operations concerning XSS, SQLi, XMLi, XPathi, and LDAPi vul-
nerabilities. Example functions excluded by the known-good filter are the ones provided
by widely-used security libraries, such as Apache [8] and OWASP [94] (e.g., the methods
of the classes implementing the org.owasp.esapi.Encoder interface); these functions are
assumed to be correct and thus do not require auditing.

In our tool, we predefine 12 functions as irrelevant and 50 functions as known-good. Pro-
gram developers or security auditors may need to extend these sets of functions based on
their domain knowledge; these sets can be easily defined in our tool through a configura-
tion file.

F3 (No input) filters sinks that are not influenced by any input source. This filtering is eas-
ily done by performing the program chopping with the source criterion I and the sink
criterion k. The resulting chop c(I, k) would be empty.

The sinks that are not influenced by any input sources cannot cause any security issues;
thus, they are not relevant to security auditing. This implies that the resulting code, after
applying F3, is still sound and yet more precise.

F4 (Declassification) filters out the secure paths from chop c(I, k). Let Dk ⊆ N be the set of
declassifier nodes in SDG that corresponds to the type of sink k. Let P be a set of paths
from input sources I to k. If there is a declassifier node d ∈ Dk on a path p ∈ P , then the
path p is removed from c(I, k).

The presence of a declassifier on a path p in c(I, k), which is adequate for securing the
sink, ensures that values from input sources are properly validated and sanitized before
being used in k, as far as path p is concerned. Hence, the resulting code after filtering such
paths is still sound and yet more precise.

This filter is applied using the IFC analysis discussed in Section 3.2.2.1. We use infor-
mation flow control to filter out— from the set of paths that are returned to the security
auditor—the paths that do not contain any violation according to the LLH lattice.

F5 (Automated fixing) It automatically fixes the paths from input sources I to sink k that can
be identified as definitely vulnerable and that can be properly fixed without user inter-
vention. Let P be the set of remaining paths from chop c(I, k) after applying F4. If a
path p ∈ P identified as vulnerable can be fixed by applying an adequate security API,
then the path p is removed from c(I, k). This filter corresponds to the AUTOFIX procedure
described in Section 3.2.2.2.

Automated fixing is not possible for all cases, especially when an input passes through
complex string operations, like substring and replace, which are not addressed by our
analysis. This is because there might be custom sanitization on the path using opera-
tions like replace and in that case, applying another sanitization procedure on the path
could affect the integrity of the input data and may not fix the security issue as intended.
Therefore, automated fixing is only applied for the inputs directly used in the sink or for
the inputs that only pass through simple string operations like concat, toUpperCase, and
trim, which do not have any (sanitization) effect on the input. For example, as discussed
in Section 3.2.2.2, for the program in Figure 3.2, the fixing is applied to the input at Line 15
because it only passes through the concat and toUpperCase operations before it is used in
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1 protected void doPost(
2 HttpServletRequest req,
3 HttpServletResponse res) {
4 PrinterWriter out = res.getWriter();
5 Document doc = DocumentBuilderFactory
6 .newInstance()
7 .newDocumentBuilder()
8 .parse("./students.xml");
9 XPath xpath=XPathFactory.newInstance()

10 .newXPath();
11 out.println("<html><head><title>"
12 + "Student Services" +
13 + "</title></head><body >...");
14 String op = req.getParameter("option");
15 String sid = req.getParameter("id");
16 int max = Integer.parseInt(req.
17 getParameter("max"));
18 String subj = req.getParameter("subjid");
19 if(!subj.substring(0,2).equals("cd"))
20 subj="*";
21 if(max>20)
22 max=20;

23 if(op.trim()
24 .equalsIgnoreCase("GradeQuery")) {
25 if(sid.length()>max) {
26 //remove chars <,>,/
27 sid=customSanit(sid);
28 out.println("<a href=\"foo.com?id="
29 + sid + "\">Invalid ID: "
30 + sid + "</a>"); //XSS sink
31 // ... other statements
32 } else if(sid.contains("id")){
33 sid=ESAPI.encoder()
34 .encodeForXPath(sid);
35 String query = "//students/grade[sid="
36 + sid + " and subjid=’"
37 + subj +"’]/mark";
38 NodeList nl=(NodeList)xpath
39 .evaluate(query, doc); //XPath sink
40 //... other statements
41 }
42 }
43 }

Listing 3.1: A Java servlet program with two sinks.

the sink. Fixing is also not possible when our analysis cannot determine the appropriate
sanitization procedure to use, for example when it cannot identify the matching context
due to complex code.

Anyway, since we apply the filter only on the paths that can be appropriately fixed, the
resulting report after this filter is still sound and yet more precise for security auditing.

3.2.3 Application to an Example

In this section, we apply security slicing on the program illustrated in Listing 3.1 which contains
the two sinks out.println at Line 30 and xpath.evaluate at Line 39.

Figure 3.4a and Figure 3.4b show the security slices for the sink at Line 30 and the sink
at Line 39 in Listing 3.1, respectively. In both cases, the security slicing procedure filtered out li-
brary code from the Document, HttpServletRequest, HttpServletResponse and PrinterWriter
classes (F1), since they can be considered as irrelevant to security.

Thanks to F3, two of the four program paths leading to the sink in Line 30 can be filtered
out; the two pruned paths correspond to those including the predicate at Line 19 in Listing 3.1,
which does not affect the sink (F3). As a result, the security slice shown in Figure 3.4a contains
only two paths leading to the sink. For Figure 3.4b, F3 pruned the block in Lines 27–30 since it
does not affect the sink in Line 39.

This example shows that thanks to security slicing, large portions of the original program
can be pruned away. Instead of auditing the whole program in Listing 3.1, the security auditor
can focus her attention only on the security slices illustrated in Figure 3.4.

39



3. SECURITY SLICING

1 protected void doPost(
2 HttpServletRequest req,
3 HttpServletResponse res) {
4 PrinterWriter out = res.getWriter();
5
6
7
8
9

10
11 String op = req.getParameter("option");
12 String sid = req.getParameter("id");
13 int max = Integer.parseInt(req.
14 getParameter("max"));
15
16
17
18 if(max>20)
19 max=20;
20 if(op.trim()
21 .equalsIgnoreCase("GradeQuery")) {
22
23 if(sid.length()>max) {
24 //remove chars <,>,/
25 sid=customSanit(sid);
26 out.println("<a href=\"foo.com?id="
27 + sid + "\">Invalid ID: "
28 + sid + "</a>"); //XSS sink
29 }
30 }
31 }
32
33
34 //...

(a) Security slice of the XSS sink in Line 30.

1 protected void doPost(
2 HttpServletRequest req,
3 HttpServletResponse res) {
4
5 Document doc = DocumentBuilderFactory
6 .newInstance()
7 .newDocumentBuilder()
8 .parse("./students.xml");
9 XPath xpath=XPathFactory.newInstance()

10 .newXPath();
11 String op = req.getParameter("option");
12 String sid = req.getParameter("id");
13 int max = Integer.parseInt(req.
14 getParameter("max"));
15 String subj = req.getParameter("subjid");
16 if(!subj.substring(0,2).equals("cd"))
17 subj="*";
18 if(max>20)
19 max=20;
20 if(op.trim()
21 .equalsIgnoreCase("GradeQuery")) {
22 if(sid.length()<=max
23 && sid.contains("id")) {
24 sid=ESAPI.encoder()
25 .encodeForXPath(sid);
26 String query = "//students/grade[sid="
27 + sid + " and subjid=’"
28 + subj +"’]/mark";
29 NodeList nl=(NodeList)xpath
30 .evaluate(query, doc); //XPath sink
31 }
32 }
33 }
34 // ...

(b) Security slice of the XPath sink in Line 39.

Figure 3.4: Security slices for the sink at Line 30 (a) and Line 39 (b) sinks of the program in List-
ing 3.1.
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Figure 3.5: Architecture of JoanAudit.

3.3 Implementation

We have implemented our security slicing approach in a tool called JoanAudit; Figure 3.5 illus-
trates its architecture. The tool takes as input the bytecode of a Java Web application and a
vulnerability catalogue (specified in the configuration file config.json), i.e., a pre-defined set
of input source and sink signatures. For example, an input source could be the getParameter
function from the Java Servlet API for accessing HTTP POST parameters; a possible sink could
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be the evaluate function from the javax.xml package which executes XPath queries on an XML
database.

JoanAudit first constructs an SDG in order to capture inter-procedural data-, control-, and
call-dependencies. The SDG is derived from the Java bytecode by the SDG builder. The latter
also prunes functions that are irrelevant to security (e.g., logging libraries) or functions that are
known or assumed to be free from security issues (e.g., standard security libraries). The list of
irrelevant and known-good functions is predefined but can be configured in the vulnerability
catalogue.

Afterwards, the “Annotator” annotates the SDG with input sources, sinks, and declassifiers.
Based on the annotations in the SDG, the tool generates a program chop for each sink. Each
program chop contains all the program statements that influence a sink, starting from the input
sources, possibly through different program paths. Sinks that are not affected by any input
source are pruned from the SDG.

The block labeled “IFC Analyzer” performs IFC on each chop to determine if there are paths
in the chop that can be considered secure due to the proper usage of sanitization functions and
thus pruned. This step relies on a pre-defined set of declassifiers (standard sanitization proce-
dures for preventing common injection vulnerabilities), which are configured in the vulnerabil-
ity catalogue.

The block labeled “Context Analyzer” performs context analysis on the remaining paths.
As part of this analysis, the block “Autofix Engine” attempts to patch, when feasible, the source
code with the required security API. More specifically, this step uses context analysis to identify
the context in which the data from an input source is used in the sink. Based on the identified
context, this technique is able to automatically fix a vulnerable input source by applying the
appropriate sanitization function to it. This technique is always guaranteed to properly fix a
given vulnerability because it applies a fix only 1) in case of a direct data flow from an input
source to a sink, and 2) if the context of the user input can be determined.

As output, the tool generates a report that guides the security auditor in auditing potentially
vulnerable parts of the program. Figure 3.6 shows the main page of the report generated by
JoanAudit, which gives an overview of all the paths from the security slices that were extracted
by JoanAudit. The report indicates how many potentially vulnerable paths have been detected.
Every row in the overview table represents a single path; it details the location of the sources
and sinks in the source code, i.e., a combination of the scope or class in which the source/sink
was found, and the line number of the source file. Moreover, the report indicates the path size
(in terms of program statements) and vulnerability to which the path may be vulnerable.

After clicking on one of the rows in the overview table, the detailed information for the
respective paths is displayed in an extra window (Figure 3.7), which shows the actual source
code of the analyzed program and highlights the individual program statements belonging to
the selected path. In this view, the source code line numbers are shown on the left; the scope,
i.e., the class where the potential vulnerability has been found, is displayed at the top; source
and sink, respectively, are the first and last highlighted statements in the code snippet. Notice
that only the security-relevant parts are highlighted. This detailed view guides the security
auditors from the input source to the potentially vulnerable sink.

The implementation of JoanAudit comprises approximately 11 kLOC (excluding library code)
and is based on Joana [47, 43] and IBM’s Wala framework [55]; Joana provides APIs for SDG gen-
eration from Java bytecode, program slicing, and IFC analysis.
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Figure 3.6: The overview page of the report generated by JoanAudit shows all potentially vul-
nerable paths found.

Figure 3.7: Security slice containing only the program statements relevant to security (high-
lighted statements).

The tool is configured with the JSON file config.json which contains a list of Java bytecode
signatures for input sources, sinks, and declassifiers. The config.json file also specifies the
list of bytecode signatures for known-good and irrelevant APIs. Note that JoanAudit is highly
customizable: based on their domain knowledge, developers can specify in config.json addi-
tional input sources, sinks, and custom declassifiers used in their applications. Thanks to this
user-defined additional configuration, the tool will not skip analyzing other security-sensitive
operations, and will not falsely report as insecure the paths containing custom declassifiers. The
excerpt shown in Listing 3.2 from the config.json file shows an example configuration for the
sink corresponding to the function evaluate (from the javax.xml package).
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1 "sinks":[{ "name":
2 "javax.xml.xpath.XPath.evaluate(Ljava/lang/String,Ljava/lang/Object;)Ljava/lang/String;",
3 "labels": "1(H)" }]

Listing 3.2: JoanAudit configuration file config.json.

The configuration entry for the sink is a JSON object with a name attribute, i.e., the bytecode
signature of the sink (in bytecode format), and a labels attribute that specifies the index of the
parameter to be tracked and its security level. The security level is important for IFC in order
to detect an actual security violation. In the example configuration, we label the first parameter
of the evaluate function with security label H (high integrity) which requires that data arriving
at the sink should not be tampered with. The configuration for sources and declassifiers is
done similarly; the detailed overview of the configuration is available at https://github.com/
julianthome/joanaudit.

3.4 Evaluation

In this section, we present the evaluation of our security slicling approach: Section 3.4.1 defines
the research questions; Section 3.4.2 presents the benchmark applications, and in Section 3.4.3
we show and discuss the evaluation results.

3.4.1 Research Questions

To evaluate whether our approach achieves precision, soundness and run-time performance
when providing assistance to security auditing, we aim to answer the following research ques-
tions:

RQ1 (Precision) How much reduction can be expected from security slicing in terms of source
code to be inspected? Is the reduction practically significant?

RQ2 (Soundness) Do we extract all the statements that are relevant to auditing XSS, SQLi, XMLi,
XPathi, and LDAPi vulnerabilities?

RQ3 (Performance) Does the tool scale to realistic systems in terms of run-time performance?

3.4.2 Test Subjects

Table 3.2 shows the 9 Web applications/services that we used in our evaluation. WebGoat [96]
is a deliberately in-secured Web application/service for the purpose of teaching security vul-
nerabilities. It contains various realistic vulnerabilities that are commonly found in Java Web
applications. Apache Roller [7] and Pebble [97] are blogging applications that also expose a Web
service APIs. Regain [104] is a search engine that allows users to search for files over a Web
front-end. PSH [100] is the implementation of the open protocol PubSubHubbub for distributed
publish/subscribe communication [45], which is supported by many blogging applications and
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Table 3.2: Test subjects.

Java LOC #Prog. #Sources #Sinks #Declassifiers

XML XPath XSS LDAP SQL others XML XPath XSS LDAP SQL others

WebGoat 5.2 24,608 14 34 1 1 35 0 29 2 0 0 0 0 21 0
Roller 5.1.1 52,433 3 14 10 0 13 0 0 0 8 0 3 0 0 0
Pebble 2.6.4 36,592 3 6 0 0 6 0 0 1 0 0 0 0 0 3
Regain 2.1.0 23,182 1 3 0 0 1 0 0 0 1 0 2 0 0 0
PSH 0.3 1,964 3 3 10 2 0 0 0 0 2 0 0 0 0 0
TPC-App 2,082 6 22 0 0 2 0 7 0 0 0 0 0 11 0
TPC-C 9,184 6 16 0 0 0 0 24 0 0 0 0 0 58 0
TPC-W 2,470 6 6 0 0 0 0 6 0 0 0 0 0 6 0
RAP 442 1 2 0 0 0 4 0 0 0 0 0 0 0 0

Total 152,957 43 106 21 3 57 4 66 3 11 0 5 0 96 3

also used to access newsfeeds on the Internet. RAP [110] is an LDAP-based Web service that
authenticates users against an LDAP directory.

We selected WebGoat, Apache Roller, and Pebble since they are commonly used as bench-
marks for security [78, 138, 77, 142, 137, 85]. The choice of Regain was driven by the fact that
it is used in a production-grade system by dm, one of the biggest drugstore chains in Europe.
TPC-App, TPC-C, and TPC-W are the benchmarks used by Antunes and Vieira [6] for evaluating
vulnerability detection tools for Web services; these benchmarks contain a set of Web services
accepted as representative of real environments by the Transactions processing Performance
Council (http://www.tpc.org). The PSH tool was chosen because it is the most popular Java
project related to the PubSubHubbub protocol in the Google Code archive [42]. Similarly, we
selected RAP because it was one of the first Java projects returned by a query on Github.com
with the search string ldap rest.

Table 3.2 also reports the sizes of the test subjects in terms of LOC, excluding the library code.
The test subjects have an average size of 17 kLOC, and the largest one has 52 kLOC, which is
fairly typical for that type of systems. The third column in Table 3.2 shows the numbers of
Web programs (#Prog.), i.e., Java Server Pages (JSP), Java servlets and classes, contained in each
test subject and analyzed by our tool JoanAudit. The table also reports the numbers of input
sources (#Sources), sinks (#Sinks), and declassifiers (#Declassifiers) that JoanAudit identified. For
sinks and declassifiers, the numbers are shown separately with respect to XSS, SQLi, XMLi,
XPathi, and LDAPi. Some sinks are very general and are exploitable in various ways (e.g., sinks
that allow attackers to load arbitrary classes server-side). Due to their universality, we also
considered them in our evaluation and their number is listed in column others in Table 3.2.

All these test subjects can be obtained from the tool website [127].

3.4.3 Results

We ran our evaluation on a Apple MacBook Pro with an Intel Core i7 (2 GHz) and 8 GB
of RAM, running Mac OS X 10.11, JVM version 25.31-b07, Joana rev. 688, Wala v.1.1.3, and
OWASP ESAPI 2.0.
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3.4.3.1 Precision

To answer RQ1, we compared the size of the slices produced by JoanAudit (hereafter referred
to as “security slices”) with the size of the slices produced by the state-of-the-art chopping
implementation provided by Joana (hereafter referred to as “normal chops”) extended with
source/sink identification capabilities; in terms of size, we considered both the number of nodes
and the number of edges. More specifically, for each sink k, we computed a security slice using
our approach and a normal chop with the criterion (I, k). We used the Wilcoxon signed-rank test
over the slice sizes across Web programs in order to determine whether the differences in sizes
of the two types of slices were statistically significant. We also discuss whether this difference
is of practical significance in terms of auditing effort.

As shown in Table 3.2, we analyzed 43 Web programs from the 9 test subjects. For each
Web program, an SDG was constructed. We computed normal chops and security slices from
each SDG. The results are shown in Table 3.3. Overall, we computed 154 normal chops (#ch)
and 39 security slices (#ss) from 106 sources and 154 sinks. The size (in terms of #nodes and
#edges) of SDGs, normal chops, and security slices are shown in columns SDG, Chopping, and
SecuritySlicing, respectively. Column #ss reports the final output of JoanAudit, i.e., the num-
bers of remaining security slices that require auditing after filtering has been performed. Some
of the computed security slices are completely filtered (i.e., #ss=0) when, for example, all the
paths in a slice are detected to be secured because of the presence of declassifiers. Furthermore,
the last four columns in Table 3.3 show the effectiveness of the five different filters presented
in Section 3.2.2.3, in terms of the number of nodes that are filtered.

To determine the amount of reduction achieved by security slicing when compared to nor-
mal chopping, we computed the relative size reduction of security slices with respect to (un-
filtered) normal chop. The results (in percentage) are given in the columns (N%) and (E%)
in Table 3.3. These results show that our security slices are significantly smaller than their
counterparts obtained through normal chopping, in terms of both the number of nodes and the
number of edges. As shown in the last two rows of the table, our approach achieved mean
and median reductions of 76 % and 100 %, respectively, in terms of the number of nodes, and
79 % and 100 %, respectively, in terms of the number of edges. Note that for 25 out of 43 cases,
no security slices were reported which explains the median reduction of 100%. A reduction of
100% is possible for those cases where security slicing automatically prunes all paths which can
be considered to be properly sanitized (F4) and/or cases where the automated fixing filter is
applicable (F5).

115 chops were completely dropped by the filters, meaning that only 39 out of total 154
chops require manual auditing (see columns #ch and #ss). Hence, one can expect significant
practical benefits by adopting our approach. The Wilcoxon signed-rank tests over 43 obser-
vations (#Prog.) show that the size reductions achieved with security slices are statistically
significant at a 99% level of significance.

From the last four columns in Table 3.3, we can also observe how much each type of filters
contributed. The known-good and irrelevant library-code-filters (F1+F2) significantly reduced the
SDG size for all the test subjects. This can be explained by the fact that applications typically
contain a large chunk of library code. The no input filter (F3) also significantly pruned many
nodes (74 776 nodes in total) since those nodes are not influenced by any input source. The
declassification filter (F4) significantly pruned many nodes from the standard chops (3645 nodes
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1 public AuthResponse authenticatePost(
2 @FormParam("user") String user, // SOURCE
3 @FormParam("pass") String pass
4 ) {
5 // ...
6 LdapAuthentication ldap = getLdap(user);
7 // ...
8 ldap.authenticate(user,pass);
9 // ...

10 }
11
12 private LdapAuthentication getLdap(String user) {
13 // ...
14 String sfilter = Configuration.get(Keys.LDAP_SFILTER);
15 LdapAuthentication ldap = new LdapAuthentication();
16 // ...
17 if (!StringUtils.isEmpty(sfilter))
18 ldap.setSearchFilter(sfilter.replaceAll("{user}", user)); //SINK
19 // ...
20 return ldap;
21 }

Listing 3.3: Security slice from the RAP /LdapAuthService.

in total), for all the test subjects except RAP . The automated fixing filter (F5) was significant for
WebGoat, PSH, and TPC-W (751 nodes were pruned in total).

To conclude, by comparing the security slice sizes and the SDG sizes in Table 3.3, we can
observe that on average security slicing would require the audit of approximately 1% of the
code for all the sinks in a given Web application. Since the security slices computed by our
approach are based on the control-flow paths between sinks and sources, the size reduction of
security slicing achieved with JoanAudit is directly correlated to the reduction of the manual
effort required from security auditors for verifying vulnerable paths in the source code. Hence,
these results answer RQ1 by clearly suggesting that a significant reduction in code inspection
can be expected when using our approach.

We also remark that the above comparison shows the benefit of security slicing over normal
chopping, with the latter performed by using a tool (Joana) that is also not easy to configure and
use for standard engineers. Furthermore, for situations where security auditors have no access
to program chopping tools, our approach can also indicate the percentage of the entire program
code that has to be audited with security slices.

3.4.3.2 Soundness

To answer RQ2, we manually inspected all the security slices (39) returned by JoanAudit and
compared them to their normal chop counterparts, to determine whether our security slic-
ing approach had pruned any information relevant to auditing XSS, SQLi, XMLi, XPathi, and
LDAPi vulnerabilities. To illustrate this manual inspection process, we use the simplified code
excerpt shown in Listing 3.3, which corresponds to a security slice extracted from the RAP /
LdapAuthService program by JoanAudit.

In the code above, function authenticatePost can be called by a user to request authenti-
cation with the RAP web service; its inputs are the username (user, Line 2) and the password
(pass, Line 3). Function getLdap creates an LdapAuthentication object, which manages all
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Table 3.3: Comparison between the size of the slices obtained with normal chopping and the
size of the slices obtained with security slicing (#ch: number of normal chops; N%: reduction
of nodes in percentage; E%: reduction of edges in percentage; #ss: number of security slices;
F1–F5: numbers of nodes filtered by each of the proposed five filters).

SDG Chopping SecuritySlicing Filtering

Program Name Nodes Edges Nodes Edges #ch Nodes (N%) Edges (E%) #ss F1+F2 F3 F4 F5

WebGoat 160,573 923,709 16,359 19,405 68 3,902 76 3,916 80 21 133,389 21,007 1,746 529
1.BackDoors 11,196 63,350 210 229 1 171 19 172 25 1 10,367 658 0 0
2.BlindNumericSqlInjection 9,573 52,262 721 813 6 0 100 0 100 0 7,637 1,600 211 125
3.BlindScript 21,558 140,134 1,072 1,296 3 318 70 322 75 3 20,634 606 0 0
4.BlindStringSqlInjection 9,616 52,580 721 813 6 0 100 0 100 0 7,654 1,626 211 125
5.InsecureLogin 11,998 68,257 2,205 2,630 5 673 69 673 74 2 9,864 1,410 51 0
6.MultiLevelLogin1 13,525 80,281 969 1,341 4 0 100 0 100 0 11,918 1,126 481 0
7.MultiLevelLogin2 12,546 71,773 1,696 2,172 6 670 60 676 69 1 9,263 2,504 109 0
8.SqlAddData 10,565 58,219 1,535 1,756 8 169 89 170 90 2 8,617 1,365 336 78
9.SqlModifyData 10,623 58,350 1,606 1,827 12 233 85 234 87 3 8,549 1,386 343 112

10.SqlNumericInjection 13,576 77,717 1,712 2,028 5 376 78 376 81 2 11,845 1,354 1 0
11.SqlStringInjection 12,155 69,502 2,134 2,479 5 567 73 567 77 3 9,923 1,664 1 0
12.WsSAXInjection 8,075 45,164 833 940 3 352 58 352 63 2 4,448 3,274 1 0
13.WsSqlInjection 9,191 49,232 820 940 3 373 55 374 60 2 7,338 1,479 1 0
14.XPATHInjection 6,376 36,888 125 141 1 0 100 0 100 0 5,332 955 0 89

Roller 16,361 142,811 2,562 3,110 23 353 86 353 89 1 12,614 2,812 582 0
15.CommentDataServlet 11,119 115,398 1,354 1,607 12 353 74 353 78 1 9,242 1,298 226 0
16.AuthorizationServlet 752 3,578 101 120 1 0 100 0 100 0 97 651 4 0
17.OpenSearchServlet 4,490 23,835 1,107 1,383 10 0 100 0 100 0 3,275 863 352 0

Pebble 1,605 7,824 560 717 7 3 99 2 100 1 529 986 87 0
18.ImageCaptchaServlet 829 4,033 536 697 1 0 100 0 100 0 470 293 66 0
19.SecurityUtils 236 1,128 21 18 5 0 100 0 100 0 28 187 21 0
20.XmlRpcController 540 2,663 3 2 1 3 0 2 0 1 31 506 0 0

Regain 43,197 622,748 474 568 1 0 100 0 100 0 28,562 14,458 177 0
21.FileServlet 43,197 622,748 474 568 1 0 100 0 100 0 28,562 14,458 177 0

PubSubHubbub 3,313 17,281 207 208 12 0 100 0 100 0 2,209 899 142 63
22.Discovery 160 726 63 63 2 0 100 0 100 0 0 97 0 63
23.Publisher 1,896 10,097 45 44 5 0 100 0 100 0 1,405 446 45 0
24.Subscriber 1,257 6,458 99 101 5 0 100 0 100 0 804 356 97 0

TPC-App 190,177 1,198,618 1,125 1,309 9 99 91 97 93 2 161,378 28,459 198 43
25.ChangePaymentMethod_Vx0 9,671 56,074 166 179 2 0 100 0 100 0 9,368 165 138 0
26.ChangePaymentMethod_VxA 10,151 58,890 49 48 1 49 0 48 0 1 9,773 329 0 0
27.ProductDetails_Vx0 10,330 59,197 420 506 2 0 100 0 100 0 10,103 183 44 0
28.ProductDetails_VxA 10,554 60,414 434 522 2 50 88 49 91 1 10,316 185 3 0
29.NewProducts_Vx0 74,609 481,203 13 12 1 0 100 0 100 0 60,803 13,793 13 0
30.NewProducts_VxA 74,862 482,840 43 42 1 0 100 0 100 0 61,015 13,804 0 43

TPC-C 92,559 568,680 1,860 1,932 24 1,044 44 1,048 46 10 87,424 3,471 620 0
31.Delivery_Vx0 13,606 81,511 266 276 7 0 100 0 100 0 12,577 775 254 0
32.Delivery_VxA 16,130 97,431 493 503 3 405 18 408 19 3 14,903 822 0 0
33.OrderStatus_Vx0 18,963 120,016 287 301 5 0 100 0 100 0 18,083 614 266 0
34.OrderStatus_VxA 20,395 129,702 476 490 5 455 4 457 7 5 19,287 653 0 0
35.NewStockLevel_Vx0 11,266 67,071 127 139 2 0 100 0 100 0 10,871 295 100 0
36.NewStockLevel_VxA 12,199 72,949 211 223 2 184 13 183 18 2 11,703 312 0 0

TPC-W 63,290 365,728 213 209 6 0 100 0 100 0 60,698 2,383 93 116
37.DoSubjectSearch_Vx0 10,347 59,748 26 25 1 0 100 0 100 0 9,947 374 26 0
38.DoSubjectSearch_VxA 10,549 60,854 40 39 1 0 100 0 100 0 10,132 377 0 40
39.DoAuthorSearch_Vx0 10,541 60,790 49 50 1 0 100 0 100 0 10,118 378 45 0
40.DoAuthorSearch_VxA 10,549 60,854 40 39 1 0 100 0 100 0 10,132 377 0 40
41.GetCustomer_Vx0 10,551 61,187 22 21 1 0 100 0 100 0 10,092 437 22 0
42.GetCustomer_VxA 10,753 62,295 36 35 1 0 100 0 100 0 10,277 440 0 36

RAP 655 2,838 354 378 4 332 6 343 9 4 22 301 0 0
43.LdapAuthService 655 2,838 354 378 4 332 6 343 9 4 22 301 0 0

Total 571,730 3,850,237 23,714 27,836 154 5,773 5,759 39 486,825 74,776 3,645 751
Mean 13,296 89,540 551 647 4 133 76 134 79 1 11,322 1,739 85 17
Median 10,551 60,790 287 301 3 0 100 0 100 0 9,923 651 21 0

the communications with the LDAP backend server and stores configuration attributes that are
important for user authentication (e.g., distinguished name, search filter, LDAP host address,
port). First, the pre-configured search filter is loaded from the configuration file (Line 14); then,
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Table 3.4: Execution time of the individual steps in JoanAudit (in ms).

SDG Source/Sink Chopping Filtering Total
Generation Identification

WebGoat 21,774 201 59,427 42,278 123,680
Roller 5,079 64 16,125 1,241 22,509
Pebble 2,949 21 234 40 3,244
Regain 4,315 20 758 354 5,447
PSH 2,876 41 367 224 3,508
TPC-App 16,297 112 2,157 4,349 22,915
TPC-C 8,089 63 3,931 6,664 18,747
TPC-W 7,590 31 313 3,044 10,978
RAP 945 6 6,220 25,765 32,936

Mean 7,768 62 9,948 9,329 27,107

an LdapAuthentication object is created (Line 15). The pre-configured search filter can contain
placeholders surrounded by curly brackets that are replaced with concrete values. For exam-
ple, given the search filter (&(objectClass=inetOrgPerson)(uid={user})), the placeholder
{user} is replaced with the value provided with parameter user at Line 18, and then the result
is stored in the LdapAuthentication object through the setSearchFilter method.

We started our manual inspection process at the sink (Line 18), to determine the variables
it uses (sfilter in the example above). Then, we tracked back its dependent statements to
identify how the variables were processed. We determined that there was an unsanitized input
at Line 2 on which the sink in Line 18 is data dependent. Hence, a user could alter the semantics
of the search filter sfilter by injecting LDAP filter fragments such as ( ) * & | through the
user variable at Line 2. There was no known LDAPi vulnerability reported before for RAP ; by
using our tool, we detected a new LDAPi vulnerability and reported it to the developers.

In addition to inspecting security slices, we also manually inspected all the normal chops
(154 chops) to determine if our security slicing had incorrectly dropped the whole chop from
being reported (i.e., generating a false negative). Following a similar process, we verified that
our security slicing approach neither missed any information important for security auditing
nor incorrectly dropped any chop: this answers RQ2.

3.4.3.3 Performance

To answer RQ3, we measured the time taken for performing each step in the generation of
security slices and normal chops; the results are shown in Table 3.4. JoanAudit took an average
of 27 s to analyze individual test subjects and required a maximum of 124 s to analyze the largest
one. These results show that JoanAudit exhibits good run-time performance, which makes it
suitable to analyze Java Web applications similar in size to our test subjects, which is the case
for many such systems.

Furthermore, we remark that the sum of the values in the columns “SDG Generation”,
“Source/Sink Identification”, and “Chopping” corresponds to the execution time of the state-of-
the-art chopping implementation provided by Joana extended with source/sink identification
capabilities (i.e., normal chopping). The difference between this approach and ours lies only in
the extra time taken by the filtering step, which on average accounts for 33% of the total time.
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3.4.3.4 Threats to Validity

Our empirical evaluation is subject to threats to validity. The results were obtained from 9
selected Web applications, and hence, they cannot necessarily be generalized to all Web appli-
cations. We minimized this threat by choosing test subjects that vary in sizes and functionalities,
and by picking realistic Java projects, which in many cases represent well-known benchmarks
in the context of security.

We compared our approach, in terms of size reduction and performance, with a state-of-
the-art chopping implementation provided by Joana extended with source/sink identification
capabilities. Note that we expect, however, to achieve similar results when comparing with
other Java program slicing/chopping tools (e.g., Indus [59]) since our approach works on top of
program chopping and is independent from the specific chopping tool we use.

Lastly, since our security slicing approach and tool are targeted towards Java Web appli-
cations, the approach may not produce the same results for Web applications written in other
languages. Nevertheless, the fundamental principles of our approach are not language-specific
and can be adapted to other languages using the corresponding program slicing tools (e.g.,
CodeSurfer [126] for C++).

3.5 Summary

In this chapter, we presented security slicing to assist the security auditing of common injec-
tion vulnerabilities, namely XSS, SQLi, XMLi, XPathi, and LDAPi. For every security-sensitive
operation in the program, we extract a sound and precise slice, along with path conditions, to
help analysts perform security auditing on minimal chunks of source code. This is meant to be
complementary to current vulnerability detection approaches by helping the auditor identify
false positives and negatives. A prototype tool that automates our approach was fully imple-
mented and was used to generate 39 security slices from 43 Web programs. In comparison with
conventional program slices, we observed that our security slices are 76 % smaller on average
while still retaining all the information relevant for verifying common vulnerabilities. We also
made the tool and the test subjects available online so that researchers can validate and build
on our results.

49





Chapter 4

Search-driven String Constraint Solving

The chapter introduces search-driven constraint solving and is organized as follows:
Section 4.1 gives an overview of our string constraint solving algorithm. Section 4.2 dis-

cusses the motivations for this work and provides an example. Section 4.3 illustrates our
search-driven approach for string constraints solving. Section 4.4 illustrates the implementa-
tion of ACO-Solver, i.e., the implementation of our search-driven constraint solving approach;
Section 4.5 presents the evaluation of our approach; Section 4.6 concludes this chapter.

4.1 Overview

State-of-the-art approaches [64, 112, 40, 153] for identifying security vulnerability are based on
symbolic execution and constraint solving. Roughly speaking, these approaches consist of solv-
ing the constraints corresponding to the attack condition, obtained by conjoining the path con-
ditions generated by the symbolic execution with an approprate threat model (see Section 2.1.3).
In case the solver yields SAT, showing the satisfiability of the attack condition, it means that the
attack is feasible and that the analyzed path is vulnerable to the attack. The main strength of
this approach is that vulnerability detection yields a limited number of false positives, since the
concrete inputs determined with constraint solving prove the existence of vulnerabilities.

However, the effectiveness and precision of these approaches are challenged by the degree of
support for (complex) string operations provided by the constraint solver itself. State-of-the-art solvers
such as Kaluza [112], Stranger [149], CVC4 [74], S3 [136], and Z3-str2 [152] support only a limited
number of strings operations, such as concatenation, assignment, and equality; more complex
operations like string replacement or standard sanitization functions are not supported or only
partially-supported. Existing solvers could be extended to provide native support for complex
string operations, but the task is non-trivial and not scalable to the size of a complete string
function library of a modern programming language, or of sanitization libraries like OWASP
ESAPI [94] and Apache Commons Lang [8]; for example, the classes String, StringBuffer,
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StringBuilder from the Java Standard Library, and the classes StringUtils, StringEscape
Utils from the Apache Commons Lang library contain a total of 370 methods.

Alternatively, complex string operations could be transformed into a set of equivalent con-
straints with only operations natively-supported by the solver; however, such a solution would
increase the complexity of the generated constraints, potentially leading to scalability issues [40].
In practice, existing solvers fail (i.e., they crash or return an error) when they encounter an un-
supported operation; in the context of vulnerability detection, this behavior could yield false
negatives (i.e., it misses some vulnerabilities) when the attack conditions are actually feasible.

The goal of the approach presented in this chapter is to address the challenge of supporting
complex operations in string constraint solvers by proposing a search-driven constraint solving
technique that complements them. We intentionally target a solution that does not rely on any
assumption regarding the selected constraint solver and that can therefore be widely used in
the future.

The idea is to solve the constraints (in an attack condition) through a two-stage process. In
the first stage we take any constraint solver and use it to solve the constraints that contain only
operations supported by the solver itself. The remaining unsolved constraints, which contain
operations not supported by the solver, are handled in the second stage, by means of a hybrid
constraint solving procedure.

We treat the solver in the first stage as a black-box, and only assume that it terminates its
execution either by failing (when it encounters a constraint containing an operation that it does
not support) or by returning an answer (which can be either UNSAT or SAT and a solution).
The hybrid solving procedure in the second stage is executed only when the solver in the first
stage fails. In the second stage we solve the constraints containing unsupported operations by
means of a hybrid search-driven procedure that leverages the ACO meta-heuristic [36]. This pro-
cedure searches for a solution that satisfies the constraints involving unsupported operations;
the search is driven by different fitness functions, depending on the type of the constraints. We
call this procedure hybrid because we reduce its search space before running the search itself, to
make the latter scalable. We perform the search space reduction by restricting the domains of
the string variables involved in the constraints to solve. To do so, in our current strategy and
given the state of the art, we rely on an automata-based string constraint solver (Sushi [40]).

4.2 Motivating Example

In this section we present a motivating example that highlights the need to handle complex
string constraints in the context of vulnerability detection based on constraint solving. Al-
though we crafted this example for illustrative purposes, it can be considered realistic since
it contains typical operations that are commonly found in modern Web applications.

The program, shown in Listing 3.1, contains two sinks. The first sink is at Line 30 and
corresponds to an XSS vulnerability within an HTML output operation; the second one is at
Line 39 and corresponds to an XPathi vulnerability within an XPath query.

The sink at Line 39 is vulnerable to XPathi because the variable sid, containing a user input,
is not sanitized properly before using it in the XPath query. Indeed, the standard sanitization
procedure ESAPI.encoder().encodeForXPath from OWASP [94] applied to variable sid only
escapes meta-characters such as ’ and ”. Assuming that the element sid is defined as a numeric
data type in the schema of the document students.xml (the same presented in Section 2.1.1),
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one could still perform a successful attack without using those meta-characters, for example us-
ing the input 1 or 0<1. This example shows that sanitization, even when achieved by applying
widely used and well-tested sanitization libraries, does not always work. Indeed, sanitization
libraries often provide operations that filter user input only based on a certain context (an XPath
attribute in the example above), without necessarily considering all possible cases.

The XPathi vulnerability in the example can be discovered by using symbolic execution and
constraint solving, combined in a three-step procedure:

1. Path conditions generation through symbolic execution. For example, one of the path condi-
tions generated by symbolically

executing a path condition leading to the execution of the XPath sink at Line 39 is:

PC0 ≡ SUBJ.substring(0,2).equals("cd") ∧
Integer.parseInt(MAX ) = 20 ∧
OP.trim().equalsIgnoreCase("GradeQuery") ∧
SID.length() ≤ 20 ∧
SID.contains("id")

where OP ,SID ,MAX ,SUBJ are symbolic values for the variables initialized with the
Web request inputs (lines Lines 14–18).

2. Definition of the attack condition. In this step, usually performed by a security expert1, the
attack condition is defined in a way that properly characterizes security threats. It can be
done by writing attacks that match any of the attack patterns described in Section 2.1.3.

For PC0 the security attack matches(".* or 1=1 .*") describes a tautology attack pat-
tern (an instance of threat model #20 in Table 2.1). The resulting attack condition can be
described as follows:

ATTK0 ≡ESAPI.encoder().encodeForXPath(SID)

.matches(".* or 1=1 .*")

where ESAPI.encodeForXPath(SID) is the symbolic expression over the symbolic value
SID representing the values of variable sid at the sink.

3. Constraint solving. The third step requires to solve the attack condition, defined as the con-
straint obtained by conjoining the path condition with the attack specification; this step
is performed using a constraint solver. If the solver yields SAT, showing the satisfiability
of the constraint, it means that the attack is feasible and that the analyzed path is vulner-
able to the attack. In the example, the constraint SEC0 ≡ PC0 ∧ ATTK0 is satisfiable,
confirming the presence of XSS and XPath vulnerabilities, respectively.

This procedure assumes that the constraint solver is able to handle string operations like
trim, toLowerCase, parseInt, equalsIgnoreCase, length and encodeForXPath. However,

1This step needs to be done once for each type of vulnerability, and possibly refined over time if needed.
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state-of-the-art solvers such as Kaluza [112], CVC4 [74], S3 [136], and Z3-str2 [152] do not sup-
port at least one of these complex operations. From a more general standpoint, the major chal-
lenge faced when adopting a vulnerability detection procedure based on constraint solving is
the degree of support for (complex) string operations provided by the constraint solver itself.

One way to face this challenge is to modify or enhance an existing solver in order to provide
native support for complex string operations. However, this task is non-trivial and requires a
deep understanding of string manipulating functions and constraint solving; moreover, it is not
scalable to the size of a sanitization library like OWASP ESAPI or of a complete string function
library of a modern programming language. Alternatively, instead of modifying the solver,
one could re-express complex operations with their equivalent set of basic constraints that can
be solved by the solver. Although relatively easier, this alternative still requires significant
effort and expertise, and usually results in complex constraints that may still lead to scalability
issues for constraint solvers [40]. For example, consider one of the constraints in the above path
condition: OP.trim().equalsIgnoreCase("GradeQuery"); assuming the solver handles only
length, charAt, equals, and substring, one could re-express this constraint as:

∃c1, c2, 0 ≤ c1 ≤ c2 ≤ OP.length(), such that
(OP.substring(c1,c2).equals("gradequery")

∨ · · · ∨ . . . equals("gRadeQueRy") . . . ∨ · · · ∨
OP.substring(c1,c2).equals("GRADEQUERY"))

∧ ∀i, 0 ≤ i < c1,OP.charAt(i) = ‘ ’

∧ ∀j, c2 < j ≤ OP.length(),OP.charAt(j) = ‘ ’

which uses equivalent constraints for equalsIgnoreCase and trim. Notice how the operation
equalsIgnoreCase is expanded into a disjunction of constraints with the equals operation,
which cover all the possible combinations of the characters denoting a case-insensitive repre-
sentation of the string “GradeQuery”; also, modeling the trim operation requires to add several
auxiliary variables and predicates.

To work around this issue, the current solution in practice is to have the constraint solver fail
(i.e., it crashes or returns an error) when it encounters an unsupported operation. Our experi-
ments show that this is the case for state-of-the-art solvers like CVC4 and Z3-str2. However, in
the context of vulnerability detection, such a behavior could yield false negatives (i.e., it misses
some vulnerabilities) when the attack conditions are actually feasible.

Hence, the challenge discussed above shows that, in the context of vulnerability detection,
there is a need for scalable and precise techniques for constraint solving that can handle con-
straints with complex string operations.

4.3 Approach

We address the challenge of supporting complex operations in string constraint solvers — in the
context of vulnerability detection — by proposing a search-driven constraint solving technique
that complements their support for complex string operations.

The idea, illustrated in Figure 4.1, is to solve the constraints corresponding to an attack con-
dition AC through a two-stage process. In the first stage we take any existing constraint solver
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Figure 4.1: Two-stage approach for string constraint solving.

1: function CSTRSOLVE(AttackCondition AC )
2: Set of Solution Sol ← ∅
3: Boolean externalSolved ← false
4: Set of Set of Constraint H ← GETDEPENDENTSETSOFCSTRS(AC )
5: for all Hi ∈ H do
6: 〈externalSolved ,Sol〉 ← EXTERNALSOLVE(Hi)
7: if ¬externalSolved then
8: 〈H′i,Sol〉 ← AUTOMATASOLVE(Hi)
9: if H′i 6= ∅ then

10: Sol ← SEARCHSOLVE(H′i,Sol)
11: if Sol = ∅ then
12: return TIMEOUT
13: end if
14: end if
15: end if
16: end for
17: return 〈SAT,Sol〉
18: end function

Algorithm 4.4: Search-based constraint solving algorithm.

and use it to solve the conjuncts in AC that contain only operations supported by the solver
itself. The remaining conjuncts in AC , which contain unsupported operations, are solved in the
second stage, by means of a hybrid constraint solving procedure that combines an automata-
based solver with a search-driven solving procedure based on the ACO meta-heuristic.

The meta-heuristic search in the second stage tries to find solutions for the variables in-
volved in conjuncts of AC that contain operations that neither the solver in the first stage nor
the automata-based solver in the first step of the second stage supports. Nevertheless, we in-
voke the automata-based solver before the meta-heuristic search in order to reduce the search
space of the latter. We specifically use an automata-based (vs. bit-vector-based or word-based)
constraint solver because it returns, when successful, a solution automaton for each variable
occurring in the constraints it could solve, based on the operations it supports. This automa-
ton accepts the language corresponding to the set of values (for the variable) that satisfy the
constraints involving the operations that the solver supports. In this way, we are able to reduce
(possibly in a significant way) the size of the domains of the variables involved in the constraint;
this is expected to make the search more scalable and effective.

The search-based constraint solving algorithm is illustrated in Section 4.3.1, and Section 4.3.2
explains how ACO is applied for solving constraints that involve unsupported operations.
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4.3.1 Algorithm

The pseudocode of our string constraint solving algorithm is shown in Algorithm 4.4. It takes
in input an attack condition AC (expressed as a conjunction of constraints) and returns whether
it is satisfiable, unsatisfiable, or whether it timed out; when it returns satisfiable, it also returns
the set of solutions found.

First, it decomposes (Line 4) the attack condition AC into the set H of sets of dependent
constraints. More specifically, function GETDEPENDENTSETSOFCSTRS identifies the connected
sub-hypergraphs (i.e., the maximal connected components) of the hypergraph equivalent to the
constraint network [107, 103] representing the attack condition; each set Hi ∈ H corresponds
to a sub-hypergraph. For the attack condition AC = SEC0 in our example, we have H =
{H1, H2, H3, H4} with H1 = {cstr1}, H2 = {cstr2}, H3 = {cstr3}, H4 = {cstr4, cstr5, cstr6}
where:

cstr1 ≡SUBJ.substring(0,2).equals("cd")

cstr2 ≡Integer.parseInt(MAX ) = 20

cstr3 ≡OP.trim().equalsIgnoreCase("GradeQuery")

cstr4 ≡SID.length() ≤ 20

cstr5 ≡SID.contains("id")

cstr6 ≡ESAPI.encoder().encodeForXPath(SID)

.matches(".* or 1=1 .*")

Next, the algorithm iterates through the sets of constraints Hi in H , performing the follow-
ing steps (Lines 5–16).

First, it calls function EXTERNALSOLVE (Line 6), which invokes the external solver and re-
turns a tuple 〈externalSolved ,Sol〉. If the external solver supports all the operations used in the
constraints contained in Hi, it will return a true value for the flag externalSolved and the set Sol
will contain a solution for each variable involved in the constraints inHi; the algorithm can then
proceed to the next iteration of the loop, to process the set Hi+i. Otherwise, in case the external
solver does not support an operation used in a constraint inHi, it will fail and EXTERNALSOLVE

will set the flag externalSolved to false and Sol to the empty set.
When the flag externalSolved is false, the algorithm enters the second stage of our approach.

It calls function AUTOMATASOLVE (Line 8), which internally invokes the automata-based string
constraint solver Sushi [40] to solve the constraints in Hi that use operations it supports (i.e.,
concat, contains, equals, trim, substring, replace, replaceAll, and matches). If a con-
straint is satisfiable, Sushi yields a solution automaton for each string variable involved in the
constraint. Function AUTOMATASOLVE returns a tuple 〈H ′i,Sol〉. The set H ′i ⊆ Hi contains the
constraints in Hi that could not be solved by Sushi because they use unsupported operations.
The set Sol contains the solution automata for the variables involved in the constraints in Hi:
if a variable was involved only in constraints with unsupported operations, its corresponding
solution automaton is the default one, accepting any string (i.e., the automaton accepting the
regular language .*); otherwise, the solution automaton is the one determined by Sushi. No-
tice that both EXTERNALSOLVE and AUTOMATASOLVE internally terminate the entire constraint
solving procedure and return UNSAT, without proceeding to the following steps, when they
detect unsatisfiable constraints.
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Subsequently, if the set H ′i is not empty (meaning that there are unsolved constraints in
Hi using unsupported operations), the algorithm invokes the SEARCHSOLVE function, which
implements a meta-heuristic search algorithm (detailed in the next subsection) to solve the con-
straints in H ′i and returns an updated set of solutions Sol (Line 10). If the set Sol is not empty, it
means that the set of constraints Hi has been solved and the algorithm can proceed to process
the set Hi+i; otherwise, it means that the SEARCHSOLVE function timed out and thus the algo-
rithm returns TIMEOUT, terminating the entire constraint solving procedure. A time-out can
indicate either that a solution exists for the constraint but the solver could not find it, or that
the constraint is actually unsatisfiable; the security analyst then has to decide (possibly based
on empirical studies) how to treat it.

The algorithm returns SAT and the set of solutions Sol (Line 17) only when the loop over H
has been completely executed, meaning that all the constraints in the sets in H are satisfiable,
which is equivalent to say that the attack condition AC in input is satisfiable.

For our example attack condition SEC0 , the call to H1 will return 〈true, {SUBJ = “cd”}〉,
meaning that the external solver was able to solve the constraint, determining the solution “cd”
for variable SUBJ . However, the call to EXTERNALSOLVE with input H2 and H3 will return
〈false, ∅〉 because the external solver cannot handle some of the operations used in the con-
straints in H2 and H3 (e.g., the operations parseInt, equalsIgnoreCase). This means that
the constraints in H2 and H3 will be processed in the second stage. In particular, the calls to
AUTOMATASOLVE will behave as follows. AUTOMATASOLVE(H2) = 〈{cstr2}, {MMAX }〉, with
MMAX = .*, meaning that cstr2 could not be solved by Sushi (because it contains an unsup-
ported operation). The same is true for cstr3 with AUTOMATASOLVE(H3) = 〈{cstr3}, {MOP}〉,
with MOP = .* and AUTOMATASOLVE(H4) = 〈{cstr4, cstr5, cstr6}, {MSID}〉, where MSID =
.*id.*, meaning that Sushi could only solve cstr5 and determine a solution automaton for vari-
able SID .

4.3.2 Solving Constraints using Meta-heuristic Search

We use the ACO meta-heuristic search for solving constraints that involve unsupported oper-
ations. We chose ACO over other well-known meta-heuristic search techniques (such as hill
climbing, simulated annealing, and genetic algorithms [48]) because:

• It is typically used for finding good solutions (i.e., paths that return good fitness values)
in graphs [36]. Hence, it can be easily adapted to our problem where the search space is
defined in a graph form, i.e., an automaton.

• Differently from other search algorithms, in ACO, defining a new candidate solution is
straightforward, since it only requires having an ant exploring a new path in the solution
automaton.

• It has inherent parallelism in which multiple candidate solutions can be searched in par-
allel for efficiency.

• It is stochastic in nature, which prevents the search from getting stuck in local optima.

Several algorithms that implement the ACO meta-heuristic have been proposed in the liter-
ature. In this work we will useMAX−MIN Ant System [122] with 2-opt local search [31], in
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which the pheromone values are bounded by maximum and minimum values, which are dy-
namically computed after every search iteration. We use this algorithm because the bounding
of the pheromone values prevents their relative difference from becoming too extreme during
the run of the algorithm and, therefore, mitigates the search stagnation problem in which ants
traverse the same trails and construct the same solutions over and over again.

Below, we first present the fitness functions (Section 4.3.2.1) used within the algorithm and
then the algorithm (Section 4.3.2.2) itself.

4.3.2.1 Fitness Functions

Any search-based procedure requires defining one or more fitness functions to assess the quality
of the potential solutions, i.e., their distance from the best solution. A low(er) value for the
fitness of a solution implies a high(er) quality for the solution itself. Since in the context of this
work we deal with both integer and string constraints, we use fitness functions specific to these
domains.

For integer constraints we use the Korel function [66], which is a standard fitness function
for this domain. We consider constraints of the form C ≡ E1 ./ E2, where ./ ∈ {=, <,≤, >
,≥} and E1, E2 are integer expressions that can be integer variables, integer constants, or any
other expression whose evaluation results in an integer value (e.g., the length operation for
strings); notice that we treat boolean expressions also as integer expressions. Let s = [s1, . . . , sn]
be the vector of candidate solutions for the integer variables x1, . . . , xn in C, and a(s), b(s) be
the integer values resulting from the evaluations of E1 and E2 respectively, after replacing the
variables in them with the corresponding solutions in s. The fitness of s is defined as:

f(s) =

{
0, a(s) ./ b(s) is true;
|a(s)− b(s)|+ k, a(s) ./ b(s) is false;

(4.3.1)

where k = 0 when ./ ∈ {=,≤,≥} and k = 1 otherwise.
For string constraints we use two different functions, depending on the operations in which

string variables are involved: the Levenshtein (edit) distance function [89] and the equality
cost function for regular expression matching [4]; both functions have been shown to be use-
ful for search-based generation of string values [4]. The Levenshtein distance between two
strings a and b is defined as the minimum number of insert, delete, and substitute operations
(of characters) needed to convert a into b. The regular expression matching function between a
string a and a regular expression b is defined as the minimum Levenshtein distance among
a and the strings belonging to the regular language defined by b. We consider string con-
straints of the form C ≡ E1 ./ E2, where ./ is a string operation returning a boolean result,
and E1, E2 are string expressions that can be string variables, string literals, or any other ex-
pression whose evaluation results in a string value (e.g., the concat operation for two strings).
Let s = [s1, . . . , sn] be the vector of candidate solutions for the string variables x1, . . . , xn in C,
and a(s), b(s) be the string values resulting from the evaluations of E1 and E2 respectively, after
replacing the variables in them with the corresponding solutions in s. The fitness of s is defined
as:

f(s) =

{
0, a(s) ./ b(s) is true;
ψ (a(s), b(s)) , a(s) ./ b(s) is false;

(4.3.2)

where ψ is:
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• the equality cost function for regular expression matching, when ./ is a regular expression-
based string matching operation (e.g., the matches operation for strings in Java);

• the Levenshtein distance, in all other cases for ./.

We assume to have a list of operations classified as regular expression-based string matching op-
erations; if there is an unknown regular expression-based matching operation, it will be treated
as a generic case, using the Levenshtein distance function. For both types of constraints, the
fitness of a candidate solution is set to an arbitrarily selected large value (such as 1000) when
the solution leads to an exception during the evaluation of the expressions in which it is used.

We now show the application of these fitness functions in the context of solving the con-
straints used in the attack condition SEC0 from our example (see Section 4.2). SEC0 contains
two integer constraints:

cstr2 ≡Integer.parseInt(MAX ) = 20

cstr4 ≡SID.length() ≤ 20

one string constraint with a regular expression-based string matching operation:

cstr6 ≡ESAPI.encoder().encodeForXPath(SID)

.matches(".* or 1=1 .*")

and two constraint with generic string operation:

cstr3 ≡OP.trim().equalsIgnoreCase("GradeQuery")

cstr5 ≡SID.contains("id")

Note that cstr1 is omitted here because it has been already solved as SAT by the external
constraint solver (see Section 4.3.1).

Let us consider the case in which the search algorithm has returned the following candidate
solutions for the variables involved in SEC0 : MAX := 20, OP := Grade and SID := 123id or1,
the fitness function for these solutions is computed as follows.

For constraint cstr2 and cstr4, we apply Eq. 4.3.1; since the evaluation of the constraint cstr2

after replacing the variable with the candidate solutions are true. For example in the case of
cstr2, we get f(MAX := 20) = |20− 20| = 0.

For constraint cstr6 , we apply Eq. 4.3.2; since the evaluation of the constraint after replacing
the variable with the candidate solution is false (because the string 123id or1 does not match
the regular expression ".* or 1=1 .*"), we get:

f(SID := 123id or1) =

ψ(123id or1, ".* or 1=1 .*") = 4

In this case, ψ is the equality cost function for regular expression matching; a fitness value
equal to 4 means that at least four character operations are needed to convert the candidate
solution to a string belonging to the regular language defined by the given regular expression.
Following a similar process, the fitness of the candidate solution for OP in the constraint cstr3

is computed as f(OP := Grade) = ψ(Grade, GradeQuery) = 5, where ψ is the Levenshtein
distance function. For constraint cstr5, we get f(SID := 123id or1) = 0 because the solution
for SID satisfies the constraint.
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1: function SEARCHSOLVE(
Hypergraph H ,
Set of Solution Sol)

2: Set of Solution-automaton K ←
GETSOLAUTOMATA(Sol)

3: Tuning-parameters 〈α, β, ρ, ξmax , ξmin 〉 ←
SETTUNINGPARAMS()

4: Population-size A← SETNUMBERANTS()
5: Set of Desirability-value ∆← SETDESIRABILITYVAL(K)
6: Set of Pheromone Ξ← SETPHEROMONES(K)
7: Set of Solution-component TBest ← ∅
8: Fitness FBest ← 1; Fitness FpBest ← 1
9: Array of Fitness tempF ← ∅

10: Array of Set of Solution-component tempT ← ∅
11: repeat
12: loop A times
13: Set of Solution-component T ←

CONSTRUCTSOLUTIONS(K,∆,Ξ)

14: Fitness F ← COMPUTEFITNESS(T,H)
15: tempF ← APPEND(tempF , F )
16: tempT ← APPEND(tempT , T )
17: end loop
18: 〈FBest , TBest 〉 ← BESTSOLUTION(tempF , tempT )

19: if FBest < FpBest then
20: 〈FBest , TBest 〉 ← 2OPTLOCALSEARCH(K,TBest )
21: end if
22: UPDATEPHEROMONES(K,Ξ, FBest , TBest )
23: FpBest ← FBest

24: until FBest = 0 or timeout
25: if timeout then
26: return ∅
27: end if
28: Sol ← UPDATESOL(TBest )
29: return Sol
30: end function

31: function CONSTRUCTSOLUTIONS(
Set of Solution-automaton K,
Set of Desirability-value ∆,
Set of Pheromone Ξ)

32: Set of Solution-component S ← ∅
33: repeat
34: Automaton k ← RANDOMSELECT(K)
35: FSMState v ← GETSTARTSTATE(k)
36: repeat
37: Set of FSMTransition E ←

GETOUTTRANSITIONS(v)
38: FSMTransition e←

SELECTTRANSITION(E,∆,Ξ)

39: S ← S ∪ {e}
40: v ← GETNEXTSTATE(e)
41: until ISACCEPTSTATE(v)
42: MARKASVISITED(k,K)
43: until all the automata in K have been traversed
44: return S
45: end function

46: function COMPUTEFITNESS(
Hypergraph H ,
Set of Solution-component T )

47: Set of Constraint Θ← GETCONSTRAINTS(H)
48: i← 0
49: for all Constraint θ in Θ do
50: i← i+ 1
51: Fitness fi ← EVALUATE(θ, T )

52: Fitness f̂i ← NORMALIZE(fi)
53: end for
54: return Fitness F ← AVERAGE(f̂1, f̂2, . . . , f̂i)
55: end function

Algorithm 4.5: Ant colony search for string constraint solving.

4.3.2.2 Search Algorithm

The ACO meta-heuristic for solving constraints containing unsupported operations is imple-
mented in function SEARCHSOLVE, whose pseudocode is shown in Algorithm 4.5. The function
takes as input a hypergraph H and a set of solutions Sol .

First, the function retrieves from Sol the set of solution automataK for the string input vari-
ables (Line 2); notice that auxiliary string variables are excluded because the search procedure
needs to find solutions only for the input variables. The next steps of function SEARCHSOLVE

(Lines 3–6) initialize the tuning and search parameters as follows (the initialization value is
indicated next to each parameter):

• Tuning parameters: α = 1 and β = 1 determine the relative importance of the pheromone
trail and the heuristic-based desirability information; ρ = 0.01 is the evaporation rate used
to prevent the pheromone values from piling up; ξmax = 5 and ξmin = 0 determine the
bounds of pheromone values.

• Search parameters: the number of ants A = 20; the set ∆ of desirability values δe = 1 for
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each transition e of each automaton in K ; the set Ξ of pheromone values ξe = ξmax for
each transition e of each automaton in K .

In ACO, these parameters have to be defined specifically for the target problem; we chose them
based on the guidelines provided in [122] and on our own preliminary experiments. Notice
that for each transition e, the parameter ξe is initialized to the value ξmax ; as discussed in [122],
this allows for diverse explorations of the solutions during the first iterations of the algorithm,
because of the small, relative differences between the pheromone values of the explored transi-
tions and of the ones not-yet explored.

The algorithm then loops through the three main steps (construction of candidate solutions,
application of local search, update of pheromone values) until the termination conditions are
met (Lines 11–24). We illustrate these steps through the example shown in Figure 4.2. In
this example, the variable V is involved in three constraints (shown in Figure 4.2): cstr1 ≡
V .matches("ab*|ca") contains one supported operation; cstr2 ≡ V.length() ≤ 3 contains
two supported operations length and ≤; cstr3 ≡ custom(V ).equals("bba") contains one
supported operation equals and one unsupported operation custom.

Construction of candidate solutions. This step (Lines 12–18) consists of three sub-steps:

1. Building the set of solution components. This step is represented by the call to function CON-
STRUCTSOLUTIONS, which takes as input the set of solution automata K, the set of desir-
ability values ∆, and the set of pheromones values Ξ. It outputs a set of solution com-
ponents; a solution component is a sequence of transitions in a solution automaton as
traversed by the procedure.
This function goes through (Lines 33–43) the set of automata K, and at each iteration it
randomly selects an automaton k ∈ K. Starting from the start state of k, it traverses the
outgoing transitions of the states in k2.
Upon reaching a state where there are multiple outgoing transitions, it selects (Line 38)

one of them (say transition e) based on the probability Pe = ξαe δ
β
e∑

t∈E ξ
α
t δ
β
t

, computed using

the pheromone value ξe and the desirability δe of the transition.
The selected transition is added to the local set of solution components S (Line 39) and
its reaching state is retrieved (Line 40). The traversal/selection of the transitions of an
automaton is repeated until the final state is found3, which means that a solution for the
variable associated with the current automaton k has been found. In this case the outer
loop moves to explore the next automaton in K, and continues until all automata in K
have been traversed. At the end, the function returns a set of solution components, with
one candidate solution for each string variable.
Let us execute this step through the example shown in Figure 4.2, by assuming that the
automaton k extracted at Line 34 is the one shown in Figure 4.2b. This is the solution au-
tomaton of the input variable V , as determined after solving the first two constraints with

2In our automaton representation, a transition reflects a Unicode character; each transition is updated with a new
pheromone value during the search iterations to reflect the fitness of the solution that contains the corresponding
character.

3Internally we represent solution automata as generalized non-deterministic finite automata, which have only
one final state.
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V .matches("ab*|ca")

∧V .length() ≤ 3

∧ custom(V ).equals("bba")

(a) Three constraints in which variable V
is involved.

s0start

s1 s2 s3

s4 s5 s6

a

b b

c

a

ε ε
ε

ε

(b) The solution automaton of V for the first two constraints,
representing the regular language (ab∗|ca) ∩ .{0, 3}

Figure 4.2: Example to illustrate the search algorithm.

the procedure described in Section 5.3.3.1; each transition is associated with a character
or the empty string ε. We assume that the transition (s0, s1) has the pheromone value
ξ(s0,s1) = 2, while the other transitions have the pheromone value ξ = 1; also recall that
the desirability value for all the transitions is set to a fixed value of δ = 1.
To construct a solution, the procedure starts from the initial state s0 and then selects one
of its outgoing transitions based on the probability Pe. In this case, the probability of
selecting transition (s0, s4) is P(s0,s4) = (1 ∗ 1)/(1 + 2) = 0.33; the probability of select-
ing transition (s0, s1) is P(s0,s1) = (2 ∗ 1)/(1 + 2) = 0.67. Let us assume that the tran-
sition (s0, s1) is selected and traversed: the procedure reaches state s1. It then traverses
one of the two outgoing transitions of s1; the probability of selecting transition (s1, s6)
is 0.5 and the probability of selecting transition (s1, s2) is 0.5. Assuming that the proce-
dure selects (s1, s2), it reaches state s2. Afterwards, assuming that the procedure selects
transition (s2, s6), it reaches the final state s6. This generates the sequence of transitions
{(s0, s1), (s1, s2), (s2, s6)}, which represents the candidate solution V ="ab".

2. Determining the fitness of solution components. This step computes the fitness for the solution
components identified in the previous step. Function COMPUTEFITNESS (Line 14) takes as
input the hypersubgraph H and the set of solution components T , which contains a can-
didate solution for each input variable in H . It first obtains the set of constraints Θ rep-
resented by H . Then, for each constraint θ in Θ it invokes4 function EVALUATE (Line 51),
which evaluates the expressions in θ with the solutions given in T . More specifically, each
unsupported operation in θ is invoked with parameters that are retrieved from T ; the re-
turn value is then used to compute the fitness f , using one of the aforementioned fitness

4 To invoke unsupported operations, we assume that the corresponding bytecode is accessible through the class-
path; we use the Java reflection methods to load and execute the code of the unsupported operation. Notice that this
execution is subject to the timeout defined in function CSTRSOLVE.
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functions (Eq. 4.3.1 or Eq. 4.3.2) depending on the type of constraint, as explained in Sec-
tion 4.3.2.1. To ensure that the search process is not biased towards solving the constraints
with larger-scale fitness values, each fitness value f is normalized (Line 52) using the nor-
malization function proposed in [12], resulting in a normalized fitness value f̂ = f /(f +1).
We use this normalization function since it has been proven to be useful in the similar do-
main of search-based test input generation of string data types [82]. After computing the
fitness for all the constraints in H , the overall fitness F of T is computed by taking the
average of individual, normalized fitness values f̂ (Line 54).
The execution of this step through the example in Figure 4.2 works as follows. Recall that
the solution identified in the previous step is V = "ab". For each constraint, the corre-
sponding expression is evaluated and the fitness of the solution is computed accordingly.
For cstr1, we apply Eq. 4.3.2 with the equality cost function for regular expression match-
ing; since the evaluation of the constraint after replacing the variable with the candidate
solution is true, we get fcstr1 = 0. For cstr2, we apply the Korel function (Eq. 4.3.1); since
the evaluation of the constraint after replacing the variable with the candidate solution is
true, we get fcstr2 = 0. For constraint cstr3, let us assume that the resulting value after
executing the operation custom with the input V = "ab" is "ba"; the fitness, computed by
applying the Levenshtein (edit) distance function, is fcstr3 = 15. By applying the normal-
ization we get:

f̂cstr1 = fcstr1/(fcstr1 + 1) = 0

f̂cstr2 = fcstr2/(fcstr2 + 1) = 0

f̂cstr3 = fcstr3/(fcstr3 + 1) = 1/(1 + 1) = 0.5

Finally, the overall fitness F of the solution V ="ab" is computed as:

F = avg(f̂cstr1 , f̂cstr2 , f̂cstr3) = 0.16

3. Selecting the best solution components. The two steps above are repeated A times, with the
values computed at each iteration stored as elements of the auxiliary variables tempT , an
array containing sets of solution components, and tempF , an array containing the fitness
values for the corresponding elements in tempT . Function BESTSOLUTION determines
among them the solution components that have the minimum (i.e., best) fitness, and as-
sign them to variable TBest , representing the best solution of the current iteration of the
outer loop.

Application of local search. This step (Lines 19–21) is used to refine the set of candidate solu-
tions built in the step above, to locally optimize them. More precisely, if the best solution
of the current iteration (TBest ) is better than (i.e., its fitness is lower than the fitness of) the
best solution of the previous iteration, we perform a local search procedure to see whether
further improvements can be made with other solutions that are in the neighborhood of
TBest . The local search is performed using the 2-opt local search algorithm [76], which

5This means that the insertion, modification, or deletion of one character is required in order to satisfy this
constraint (see Section 4.3.2.1).
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finds in each automaton in K other paths (or sequence of transitions) that reach the fi-
nal state. This algorithm replaces at most two transitions of the current path with one or
more transitions; if it finds a set of solution components with a better fitness value, this
set becomes the new TBest .

To illustrate this step through the example in Figure 4.2, let us assume that the current best
solution TBest is the sequence of transitions {(s0, s1), (s1, s2), (s2, s6)}, which represents
the solution V ="ab". The application of 2-opt local search algorithm might result in
replacing the second transition (s1, s2) with a different transition (s1, s6). This produces a
new sequence of transitions {(s0, s1), (s1, s6)}, which represents a new candidate solution
V ="a". The fitness of this new solution is lower than the one of the current best solution
and, hence, the current TBest is not changed. This example shows that a local search
procedure may not always find a better solution; nevertheless it is useful when there is a
better solution in the neighborhood of the current search space.

Update of pheromone values. This step (Line 22) updates the pheromone values ξe ∈ Ξ, for
each transition e of each automaton in K. It first computes ξmax = 1

1−ρ
1

FBest
and ξmin =

ξmax

2n , where n denotes the cumulative total number of states of all the automata inK; then,
it sets ξe = (1 − ρ)ξe +4ξe , where 4ξe = 1

FBest
if the transition e is part of the solution

components in TBest , 0 otherwise. If ξe > ξmax , then it sets ξe = ξmax ; dually, if ξe < ξmin ,
then it sets ξe = ξmin .

In the case of the example in Figure 4.2, recall that the current best solution TBest is the se-
quence of transitions {(s0, s1), (s1, s2), (s2, s6)}, with FBest = 0.16. The pheromone values
of the transitions of the solution automaton are updated as follows:

ξmax =
1

1− ρ
1

FBest
=

1

1− 0.01

1

0.16
= 6.31

ξmin =
ξmax

2n
= 6.31/(2 ∗ 7) = 0.45

ξ(s0 ,s1 ) = (1− ρ)ξ(s0 ,s1 ) +4ξ(s0 ,s1 )

= (1− 0.01) ∗ 2 + 1/0.16 = 8.23→ 6.31

ξ(s1 ,s2 ) = (1− 0.01) ∗ 1 + 1/0.16 = 7.24→ 6.31

ξ(s2 ,s6 ) = (1− 0.01) ∗ 1 + 1/0.16 = 7.24→ 6.31

ξ(s0 ,s4 ) = (1− 0.01) ∗ 1 + 0 = 0.99

ξ(s4 ,s5 ) = (1− 0.01) ∗ 1 + 0 = 0.99

ξ(s5 ,s6 ) = (1− 0.01) ∗ 1 + 0 = 0.99

ξ(s1 ,s6 ) = (1− 0.01) ∗ 1 + 0 = 0.99

ξ(s2 ,s3 ) = (1− 0.01) ∗ 1 + 0 = 0.99

ξ(s3 ,s6 ) = (1− 0.01) ∗ 1 + 0 = 0.99

Regarding the transitions (s0, s1), (s1, s2), and (s2, s6), their pheromones values are set
to ξmax since their originally computed values are larger than ξmax . Note that, for the
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transitions (s0, s4), (s4, s5), (s5, s6), (s1, s6), (s2, s3), (s3, s6), 4ξ = 0 since these transitions
are not part of TBest .

The termination conditions of the loop at Line 24 in Algorithm 4.5 correspond either to a
time-out or to the finding of a solution that satisfies all the constraints inH , for which the fitness
FBest is zero. If there is a timeout, the function returns an empty set of solutions. Otherwise, it
updates Sol with TBest (Line 28); i.e., the solution automata in Sol are replaced with the solutions
represented by TBest for the corresponding variables, and it returns Sol .

4.4 Implementation

We have implemented our search-driven string constraint solving approach for vulnerability
detection in the ACO-Solver tool [128]. The tool is implemented in Java, uses Sushi as automata-
based constraint solver in the second stage, and has a plugin architecture to support different
solvers in the first stage; we have developed plugins for CVC4 and Z3-str2.

4.5 Evaluation

In this section we report on the evaluation of ACO-Solver in the context of vulnerability de-
tection for Java Web applications. We assess the benefits and costs of combining the proposed
string constraint solving approach with two state-of-the-art solvers, by answering the following
research questions:

RQ1 How does the proposed approach improve the effectiveness of state-of-the-art solvers for
solving constraints related to vulnerability detection? (Section 4.5.2)

RQ2 Is the cost (in terms of execution time overhead) of using our technique affordable in
practice? (Section 4.5.2)

RQ3 Does the automata-based solver in the first step of the second stage of our approach con-
tribute to the effectiveness of the search-based procedure? (Section 4.5.3)

4.5.1 Benchmark and Evaluation Settings

To evaluate our approach in terms of vulnerability detection capability, we use the same bench-
mark as presented in Section 3.4 composed of nine realistic, open source Java Web application-
s/services, with known XSS, XML, XPath, LDAP, and SQL injection vulnerabilities.

This benchmark contains in total 104 paths to sinks: 64 vulnerable paths and 40 non-vul-
nerable ones. We generated the corresponding 104 attack conditions using our security slicing
approach presented in Chapter 3. For each attack condition, we established the ground truth
(i.e., whether it is vulnerable or not) via manual inspection and consultation of the vulnerability
report of the corresponding application in the National Vulnerability Database (NVD) [91].

We conducted our evaluation on a machine equipped with an Intel Core i7 2.4 GHz pro-
cessor, 8 GB memory, running Apple Mac OS X 10.11 and Sushi v2.0. We set the time-out for
solving each attack condition to 30 s.
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Table 4.1: Comparison of vulnerability detection effectiveness and execution time between stan-
dalone solvers (Z3-str2 and CVC4) and the same solvers combined with ACO-Solver (Z3-str2 +
ACO-Solver and CVC4 + ACO-Solver).

App Paths Z3-str2 Z3-str2 + ACO-Solver CVC4 CVC4 + ACO-Solver

vp nvp t(s) X X tp tn fp fn pd t(s) � X ∆ tp tn fp fn ∇ pd t(s) X X tp tn fp fn pd t(s) � X ∆ tp tn fp fn ∇ pd

WebGoat 11 4 0.1 11 4 0 4 0 11 0 22.2 0 15 11 11 4 0 0 11 100.0 1.4 1 14 10 4 0 1 90.9 10.9 0 15 1 11 4 0 0 1 100
Roller 3 10 0.0 13 0 0 10 0 3 0 334.0 10 3 3 3 10 0 0 3 100.0 0.5 10 3 3 10 0 0 100.0 307.2 10 3 0 3 10 0 0 0 100
Pebble 6 7 0.0 12 1 0 7 0 6 0 199.3 5 8 7 6 7 0 0 6 100.0 0.0 12 1 0 7 0 6 0.0 205.1 5 8 7 6 7 0 0 6 100
Regain 3 3 86.7 0 6 3 3 0 0 100 84.1 0 6 0 3 3 0 0 0 100.0 0.6 0 6 3 3 0 0 100.0 1.5 0 6 0 3 3 0 0 0 100
PSH 1 3 13.3 4 0 0 3 0 1 0 61.6 2 2 2 1 3 0 0 1 100.0 0.0 4 0 0 3 0 1 0.0 61.3 2 2 2 1 3 0 0 1 100
RAP 1 0 0.0 1 0 0 0 0 1 0 0.4 0 1 1 1 0 0 0 1 100.0 0.0 1 0 0 0 0 1 0.0 0.9 0 1 1 1 0 0 0 1 100
TPC-APP 6 6 0.0 10 2 0 6 0 6 0 217.8 7 5 3 2 6 0 4 2 33.3 0.6 3 9 6 6 0 0 100.0 93.2 3 9 0 6 6 0 0 0 100
TPC-C 30 4 0.1 31 3 0 4 0 30 0 596.4 15 19 16 16 4 0 14 16 53.3 1.5 1 33 30 4 0 0 100.0 47.1 1 33 0 30 4 0 0 0 100
TPC-W 3 3 0.0 3 3 0 3 0 3 0 2.4 0 6 3 3 3 0 0 3 100.0 0.3 0 6 3 3 0 0 100.0 1.2 0 6 0 3 3 0 0 0 100

Total 64 40 100.3 85 19 3 40 0 61 5 1,518.3 39 65 46 46 40 0 18 43 71.9 5.0 32 72 55 40 0 9 85.9 728.6 21 83 11 64 40 0 0 9 100

4.5.2 Effectiveness and Cost of Vulnerability Detection

We assess the benefits and costs of combining the proposed approach with two state-of-the-art
string constraint solvers: CVC4 (version 1.4) and Z3-str2 (from the repository head, commit
2e52601). For each of these solvers, we run our benchmark first through the standalone solver
and then through the solver combined with ACO-Solver.

The evaluation results are shown in Table 4.1. Columns vp and nvp indicate, respectively,
the number of vulnerable and non-vulnerable paths per application. Column t indicates the
cumulative time taken to solve all the attack conditions of each application. ColumnX indicates
the number of failing cases, i.e., the number of attack conditions that the solver failed to solve,
due to an error or crashing; we omit this column for Z3-str2 + ACO-Solver and CVC4 + ACO-
Solver since they did not fail. Column � indicates the number of cases in which the solver
timed out; we omit this column for Z3-str2 and CVC4 since they did not time out. Column
X indicates the number of non-failing cases. Column ∆ indicates the number of cases, out
of the failing cases of Z3-str2 or CVC4, that ACO-Solver helped solve. Columns tp, tn , fp, fn ,
and ∇ denote, respectively, true positives (number of vulnerable cases correctly identified),
true negatives (number of non-vulnerable cases correctly identified), false positives (number of
non-vulnerable cases reported as vulnerable), false negatives (number of vulnerable cases not
detected), number of additional vulnerable cases uncovered by ACO-Solver. Column pd reports
the recall, i.e., the percentage of vulnerable cases detected among the total vulnerable cases, and
is computed as pd = tp/(tp + fn) ∗ 100. Notice that, in the context of vulnerability detection,
when a solver fails or times out to solve an attack condition, it neither detects a vulnerability nor
produces a false alarm. Hence, a failing (or time-out) case may result either in a false negative
or in a true negative, depending on whether the attack condition is actually vulnerable.

We answer RQ1 by examining the number of failing and time-out cases and the recall in
Table 4.1, first when using a solver standalone, and then when combined with ACO-Solver.

When used standalone, Z3-str2 and CVC4 could not solve, respectively, 85 and 32 cases.
We manually inspected these failing cases and observed they are due to unsupported opera-
tions contained in the attack conditions. For example, both Z3-str2 and CVC4 do not handle
some string operations (e.g., toLowerCase, toUpperCase, equalsIgnoreCase) and the sanitiza-
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tion operations of the standard Apache security library [8]. Also, Z3-str2 was not able to handle
Integer.parseInt, and String.valueOf conversions and many of the regular expressions that
reflect security threats in our attack conditions. Z3-str2 missed 61 vulnerable cases (out of 85
failing cases), resulting in a low recall of 4.7%. CVC4 missed 9 vulnerable cases (out of 32 failing
cases), resulting in a recall of 85.9%.

Z3-str2 + ACO-Solver helped solve 46 out of the 85 failing cases of Z3-str2, revealing 43
additional vulnerabilities. It timed out on 39 cases; however, 21 out of these 39 time-out cases
are non-vulnerable cases (i.e., the corresponding attack condition is UNSAT) and thus the search
is obviously expected to time out. CVC4 + ACO-Solver solved 11 failing cases of CVC4, revealing
9 additional vulnerabilities. It timed out on 21 cases; however, all of them are actually non-
vulnerable ones. Z3-str2 + ACO-Solver improved the recall of Z3-str2 from 4.7% to 71.9%. CVC4
+ ACO-Solver improved the one of CVC4 from 85.9% to 100.0%, detecting all vulnerabilities.

We remark that, while most of these vulnerabilities had already been reported to NVD [91],
we also discovered two new XSS vulnerabilities (one in Regain and one in Pebble) while per-
forming this evaluation; we reported them to NVD and also to the corresponding developers.
The vulnerability in Regain was detected by both Z3-str2 and CVC4, used standalone; the one
in Pebble was detected when both solvers were combined with ACO-Solver. Though not shown
in Table 4.1, we also remark that both solvers achieved 100% precision (i.e., they reported no
false positive).

The answer to RQ1 is that the proposed approach, when combined with a state-of-the-art
solver, significantly improves the recall (from 4.7% to 71.9% for Z3-str2, from 85.9% to 100.0%
for CVC4), and solves several cases on which the solvers failed when used stand-alone (46 more
solved cases for Z3-str2, and 11 more for CVC4). Hence, combining a state-of-the-art solver with
our approach proved to be very effective to vulnerability detection. Since time-outs with CVC4
+ ACO-Solver are all unsatisfiable/non-vulnerable cases, if such results were to be confirmed
by additional benchmarks, then one could conclude that the most cost-effective and realistic
decision strategy for the security analyst would be to treat time-outs as non-vulnerable cases.

To answer RQ2, we compare the execution time (t) for running the standalone solvers to the
one for running the solvers combined with ACO-Solver. The total execution of Z3-str2 took less
than two minutes and solved 19 cases; Z3-str2 + ACO-Solver took about 25 minutes and solved
65 cases; the execution of CVC4 took about five seconds and solved 72 cases; CVC4 + ACO-Solver
took about 12 minutes and solved 83 cases. Despite the increase in terms of absolute values,
the total execution time of our approach is still affordable, considering that 1) it can handle
many cases that would otherwise fail, and thus can detect more vulnerabilities; 2) vulnerability
detection is typically an offline activity, with no real-time requirements. Hence, we answer RQ2
positively.

4.5.3 The Role of the Automata-based Solver

To address RQ3 and thus investigate the role played by the automata-based solver in reducing
the search space explored by the meta-heuristic search, we used a modified implementation of
our approach. We switched off the automata-based solver in the first step of the second stage,
meaning that the search-based algorithm is executed using a set of solution automata that accept
any string and thus has a much larger search space.
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We run our benchmark through both solvers, combined with this modified version of ACO-
Solver, which does not call Sushi internally. We present only the results of running CVC4 com-
bined with this modified ACO-Solver; the results for Z3-str2 are similar.

When executed with 30 s time-out, CVC4 + modified ACO-Solver timed out on 31 cases, with
a recall of 87.5% and an overall execution time of 15.5 min. Therefore, the version of ACO-Solver
without Sushi helped solve only 1 more case, whereas the unmodified ACO-Solver helped solve
11 more cases. Since in this scenario we expected the search to explore a larger search space, we
also ran the solver with an increased time-out of 300 s; however, we obtained the same results
as above in terms of solved cases and recall, but the execution time increased to almost three
hours.

From the above results, we answer RQ3 by saying that the automata-based solver plays a
fundamental role in achieving a higher effectiveness, since it contributes to reducing the number
of failing cases and increasing the recall.

4.5.4 Verifiability and Threats to Validity

Verifiability

The applications composing the benchmark, the related attack conditions, the instructions and
scripts to obtain the ACO-Solver tool and run the benchmark, and the detailed evaluation results
are available on our website [128].

Threats to Validity

Our results are based on solving the constraints corresponding to attack conditions extracted
from a specific benchmark; hence, they cannot necessarily be generalized to all types of con-
straints. We minimized this threat by choosing applications that vary in functionality and by
sampling realistic projects, which in many cases represent well-known benchmarks in the con-
text of vulnerability detection. There are other benchmarks (e.g., the one used in [62] and the
Kaluza suite [112]) that are widely-used for comparing constraint solvers. However, they are
not specific to the security domain (e.g., they are not annotated with vulnerability information),
and thus the constraints they contain cannot be used to assess the effectiveness of a solver in
terms of vulnerability detection. Furthermore, we remark that our results should be interpreted
in the specific context of vulnerability detection, and cannot (and do not aim to) be extrapolated to
the more general case of string constraint solving.

As shown in Section 4.5.3, the role of an automata-based solver is essential for our approach
in order to reduce the input domains and scale the meta-heuristic search process. Instead of
Sushi, which supports only basic operations, we could use other, more powerful automata-
based solvers like Stranger [149] and JST [41], which support more operations. Nevertheless,
Sushi was available from the authors, fully functional, and yielded a significant reduction in
search space that was sufficient to make the approach practical. By using an automata-based
solver with support for a larger set of operations, we expect a reduction of the time taken by the
meta-heuristic search, since it will have to explore a smaller search domain. Hence, our results
should be interpreted as the lowest bound for our search-driven constraint solving approach.

68



4.6. Summary

4.6 Summary

This chapter addresses the issue of adding support for (complex) string operations in existing
string constraint solvers in the context of vulnerability detection. We have proposed a search-
driven constraint solving technique that complements the support for complex string operations
provided by any existing string constraint solver. This technique uses a hybrid constraint solv-
ing procedure based on the ACO meta-heuristic.

We have evaluated the proposed technique in the context of injection and XSS vulnerability
detection for Java Web applications. More specifically, we have assessed the benefits and costs
of combining the proposed technique with two state-of-the-art string constraint solvers (Z3-str2
and CVC4), on a benchmark with 104 constraints derived from nine realistic Web applications.
The experimental results show that the proposed approach, when combined with a state-of-the-
art solver, significantly improves the number of detected vulnerabilities (from 4.7% to 71.9% for
Z3-str2, from 85.9% to 100.0% for CVC4), and solves several cases on which the solver fails
when used stand-alone (46 more solved cases for Z3-str2, and 11 more for CVC4); both benefits
can be obtained while still keeping the execution time reasonable in practice, in the order of
minutes. Furthermore, we have also assessed the role played by the automata-based solver in
the search space reduction step that precedes the meta-heuristic search: the results confirm that
it contributes to increasing the number of solved cases.
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Chapter 5

An Integrated Approach for Injection
Vulnerability Analysis

The chapter introduces our integrated approach for injection vulnerability analysis and is orga-
nized as follows:

Section 5.1 provides an overview of the approach; Section 5.2 discusses the motivations for
this work. Section 5.3 explains the approach in detail; Section 5.4 discusses the implementation
Section 5.5 presents the evaluation of the JOACO tool; Section 5.6 concludes this chapter.

5.1 Overview

In this chapter, we propose a new analysis technique for injection vulnerabilities, which lever-
ages the synergistic combination of security slicing with hybrid constraint solving.

We leverage our previous work on security slicing (see Chapter 3) to mitigate the path ex-
plosion problem, by generating during the symbolic execution only the constraints that charac-
terize the security slices of the program under analysis. This step allows us to identify paths and
statements in the program where vulnerabilities can be exploited; this renders the remainder of
the approach scalable. The generated constraints are then preprocessed in order to simplify the
following step.

The next step uses a hybrid approach that orchestrates a constraint solving procedure for
string/mixed and integer constraints with a search-based constraint solving procedure. The
idea behind this hybrid solving strategy is to solve a constraint through a two-stage process:

1. First, our solving procedure solves all the constraints with supported operations, by lever-
aging automata-based solving for solving string and mixed constraints, and linear inter-
val arithmetic for solving integer constraints. In both cases, constraint solving rules are
expressed using recipes that model the semantics of the operations. In particular, we pro-
vide recipes for many string/mixed operations, including 16 input sanitization operations
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from widely used security libraries [8, 94], and commonly used integer operations. In this
way, the constraints involving supported operations can be efficiently solved, without
transforming them into a set of primitive functions.

2. In the second stage, we use the search-driven solving procedure presented in Chapter 4.
This procedure leverages the ACO meta-heuristic to solve the remaining constraints which
contain unsupported operations. The search space of this procedure is represented by the
input domains as determined in the first stage; the search is driven by different fitness
functions, depending on the type of the constraints.

The solver in the first stage is used to reduce (possibly in a significant way) the search space,
i.e., the domains of the string and integer variables, for the search-driven solving procedure;
hence, it makes the search in the second stage more scalable and effective.

This chapter extends the search-driven constraint solving approach presented in Chapter 4
along the following lines:

Hybrid constraint solving technique. The hybrid constraint solving technique described in this
chapter and implemented in JOACO is a revised and improved version of the one de-
scribed in Chapter 4 (and implemented in ACO-Solver) along the following lines:

• Constraint pre-processing. JOACO includes a pre-processing step that applies:

a) derived constraint generation, which adds additional constraints to reduce the in-
put domain and solve the constraints more efficiently;

b) constraint refinement, to simplify the constraint network, detect trivially inconsis-
tent constraints, and avoid unnecessary and expensive constraint solving.

• No dependency on an external solver. ACO-Solver, since it implemented a fallback mech-
anism, first invoked an external solver (i.e., the solver for which the fallback mech-
anism was provided) to attempt to solve the input constraint. When this invoca-
tion failed (e.g., because the external solver could not solve a constraint with an un-
supported operation), ACO-Solver had to restart the constraint solving from scratch,
since it could not reuse or benefit from any intermediate result determined by the ex-
ternal solver before the failure. In this work, JOACO does not depend on any external
solver, since it orchestrates the two-stage process sketched above.

• Built-in support for a larger set of string operations. ACO-Solver relied on the Sushi [40]
constraint solver to compute solution automata for string constraints, before call-
ing the search-based solving procedure. However, Sushi supports very few string
operations (concat, contains, equals, trim, substring, replace, replaceAll, and
matches). For JOACO, we built our automata-based and interval constraint solver
on top of Sushi and extended it with support for 38 new operations, including 16 in-
put sanitization operations from the Apache Commons Lang 3 [8] and OWASP [94]
standard security libraries. By supporting more operations in our built-in automata-
based and interval constraint solver, we are able to minimize the number of invoca-
tions to the search-based constraint solving procedure.

Empirical evaluation. This chapter includes a much larger and diverse empirical evaluation.
First, we assess the vulnerability detection capability of JOACO when analyzing the source
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code of Web applications and compare it with state-of-the-art vulnerability detection tools
for Java Web applications; this analysis is completely new. Second, we assess the con-
straint solving capability of our approach by running an experimental study which ex-
tends the one presented in Chapter 4 by comparing with different string constraint solvers
and by using a larger benchmark collection, which includes four additional benchmarks,
used in previous studies, as well as an extended version of our home-grown benchmark.

5.2 Motivation

In this section we highlight the challenges in adopting an approach based on symbolic execution
and constraint solving in the context of vulnerability detection. In Section 4.2, we introduced
the following three-step procedure for vulnerability detection:

Step 1 Path conditions generation through symbolic execution.

Step 2 Definition of the attack condition.

Step 3 Constraint solving.

However, the execution of this procedure faces two main challenges:

CHL1 Integrated approach. Performing the three steps illustrated above requires the integration
of program analysis techniques (to identify input sources and sinks, to analyze paths
between input sources and sinks, etc.), symbolic execution, definition of security threat
models, and constraint solving. This integration is not trivial since it has to be real-
ized keeping in mind that the output of each step has to become the input of the next
step. This often requires to pre-process the output of each step, before feeding it to the
next one. For example, to avoid the path explosion problem, the symbolic execution
step should not explore all the paths of the program, but only those traversing security-
sensitive locations (i.e., sources and sinks). Therefore, symbolic execution has to be com-
plemented by techniques such as security slicing. Similarly, the attack conditions could
benefit from a simplification step, to speed-up the constraint solving phase.
Furthermore, the majority of existing approaches focus only on one of these steps. For
instance, CVC4 and Z3-str3 only focus on constraint solving and assume that constraints
(including those corresponding to attack specifications) are already available; vulner-
ability detection approaches such as Andromeda [137], Taj [138], and SFlow [53] only
perform static analysis, and do not apply symbolic execution and constraint solving.

CHL2 Support for complex string operations. The execution of the first step above assumes that
symbolic execution uses a constraint solver that is able to handle string operations like
trim, toLowerCase, indexOf, parseInt, equalsIgnoreCase, and length. However, state-
of-the-art solvers such as Hampi [63], Kaluza [112], CVC4 [74], Z3-str2 [152] and Z3-
str3 [21] do not support at least one of these non-basic, complex operations. When a
string operation is not supported by the solver, symbolic execution typically has to ana-
lyze the implementation of the operation, to transform it into an equivalent set of basic
constraints containing only primitive operations, i.e., operations supported by the solver.

73



5. AN INTEGRATED APPROACH FOR INJECTION VULNERABILITY ANALYSIS

This approach may lead to the path explosion problem and, more generally, scalability
issues [24, 117], especially when the implementations of unsupported operations contain
many paths.

As explained in Section 4.2, one could modify or enhance an existing solver in order
to provide native support for complex operations which is not trivial, or, alternatively,
re-express complex operations with their equivalent set of basic constraints that can be
solved by the solver which may lead to scalability issues [24, 117].

Another approach [64] to deal with complex string operations relies on dynamic sym-
bolic (concolic) execution [115], and treats complex operations by replacing symbolic
values of the inputs involved in those operations with concrete values. However, this
approach reduces precision since it can only reason about the paths that are exercised by
the concrete values.

To work around this issue, the current solution in practice is to have the constraint solver
fail (i.e., it crashes or returns an error) when it encounters an unsupported operation.
Our experiments show that this is the case for state-of-the-art solvers like CVC4 [74] and
Z3-str3 [21]. However, in the context of vulnerability analysis, such a behavior could
yield false negatives (i.e., it misses some vulnerabilities) when the attack conditions are
actually feasible.

To recap, the two challenges discussed above show that in order to use symbolic execution
and constraint solving as effective and scalable techniques for vulnerability detection, there
is a need for an end-to-end approach that seamlessly incorporates scalable program analysis
techniques, modeling of security threats, and complex (string) constraints solving techniques.

5.3 Approach

Our approach is outlined in Figure 5.1, where dotted rounded rectangles correspond to global
inputs/outputs, solid rounded rectangles correspond to intermediate inputs/outputs, solid
rectangles correspond to operations, and dashed rectangles correspond to macro-steps.

The approach takes as input the bytecode of a Web application written in Java, a catalogue
of vulnerabilities, and a list of threat models; it yields a vulnerability report. The catalogue of
vulnerabilities contains a characterization of the criteria for identifying input sources and sinks
related to specific vulnerabilities. The vulnerability report lists the vulnerabilities found in the
Web application, and for each of them indicates the type and the corresponding sink. Our
approach is composed of two macro-steps:

1. Security slicing & Attack conditions generation. This step first performs security slicing which
is explained in Chapter 3. For each sink it computes the path condition leading to it and
the associated context information. The path condition and the context information of
each sink are then used, together with the list of threat models, to generate attack condi-
tions, i.e., conditions that could trigger a security attack over a security slice. This step is
explained in Section 5.3.1.

2. Constraint solving. This step takes as input the attack conditions generated in the previous
macro-step, in the form of a constraint. This constraint is first pre-processed to simplify
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Figure 5.1: Overview of the integrated approach.

it through the constraint pre-processing step (detailed in Section 5.3.2). The resulting con-
straint, represented as a constraint network, is then given as input to a hybrid constraint
solver, which orchestrates a constraint solving procedure for string and integer constraints
with our search-based constraint solving procedure (see Chapter 4); more details of this
step are presented in Section 5.3.3. The results yielded by the hybrid constraint solver are
used to create the vulnerability report.

5.3.1 Security Slicing and Attack Conditions Generation

In Chapter 3 we have explained security slicing, which is a technique that extracts all the pro-
gram statements required for auditing the security of a given sink. A security slice is a concise
and minimal sequence of program statements necessary to determine the vulnerability of a sink.

To identify sources and sinks in the Web application under test, security slicing relies on a
vulnerability catalogue, i.e., a predefined set of sink and source signatures, which can be easily
extended by adding new signatures. We preconfigured a default vulnerability catalogue that
contains a rich set of commonly used API signatures.

Security slicing performs symbolic execution on each path in a security slice to extract the
path condition(s) characterizing the path. However, from a security auditing standpoint it is
also necessary to understand the context of a sink, i.e., how the input data is used in a sink. Ex-
amples of possible contexts are the content or an attribute of an HTML tag, as well as a quoted
value of an SQL query. This information can be computed through context analysis (see Sec-
tion 3.2.2.2) which identifies the context (within a sink) in which the data of an input source is
used. More specifically, context analysis traces the values of the variables used in the sink along
the path, to reconstruct the query (e.g., SQL/XPath/LDAP query) or the document part (e.g.,
HTML/XML fragment) that is being generated at the sink. Context information is computed by
matching the reconstructed query or document part against some predefined patterns (shown
in the “Context” column of Table 2.1).

We give a bird’s eye view of attack condition generation through the running example
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in Listing 3.1. Besides the XPath vulnerability that we used as an example in Section 4.2, the
program is also vulnerable to XSS. The sink at Line 30 is vulnerable to XSS because of the
inadequate sanitization procedure applied to variable sid, which contains a user input. More
specifically, it is sanitized by applying a custom function customSanit (Line 27), which removes
the meta-characters <, >, and / from the input string variable sid. string replacement operation.
However, in this operation variable sid is used in two different contexts: as an URL parame-
ter value (...com?id=sid) and as the content of an HTML element <a href>...sid</a>. The
sanitization procedure used is appropriate for the second context since it prevents the injection
of additional HTML tags like <script>. However, it is not appropriate for the first one, which
would have required URL encoding (also called percent-encoding).

Figure 3.4a shows the corresponding security slice for the (XSS) sink at Line 30 in Listing 3.1.
The security slice shown in Figure 3.4a contains only two paths leading to the sink. The first
path is characterized by path condition PC1, which corresponds to the path that follows the true
branch of the selection statement at Line 18 in Figure 3.4a and leads to the execution of the sink;
this path condition is:

PC1 ≡ Integer.parseInt(MAX ) > 20 ∧
OP.trim().equalsIgnoreCase("GradeQuery")

∧ SID.length() > 20

The second path is characterized by path condition PC2, which corresponds to the path that
follows the false branch of the selection statement at Line 18 in Figure 3.4a and leads to the
execution of the sink; this path condition is:

PC2 ≡ ¬(Integer.parseInt(MAX ) > 20) ∧
OP.trim().equalsIgnoreCase("GradeQuery")

∧ SID.length() > Integer.parseInt(MAX )

For both paths, our context analysis procedure (see Chapter 3) identifies the following two con-
texts: CTX1, in which the symbolic expression customSanit(SID) is used as a URL parameter
value in an XSS sink; CTX2, in which the symbolic expression customSanit(SID) is used as an
element content in an XSS sink. Note that the symbolic expression customSanit(SID) repre-
sents the values of variable sid used at the sink.

The output of security slicing—path conditions and context information—is used to gener-
ate attack conditions, represented as constraints. A new constraint is generated for each context
identified for each path, based on the threat model characterizing the security threat in that
specific context. The Attack Condition Generation (ACG) process follows three steps:

ACG1 Since different contexts require different threat models, the procedure determines the
appropriate threat model for a given context by looking up the list of threat models
provided as input. The identification of the threat model is a fully automated proce-
dure that matches the context returned by security slicing with one of the entries in
the threat models list. The predefined version of this list is presented in Section 2.1.3;
though not showed in Table 2.1, the predefined list also contains catch-all entries1 for

1The catch-all entries for threat models are more generic and might lead to false positives in terms of vulnera-
bility detection.
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each type of vulnerability, which are used as fallback mechanism when there is no
context matching pattern. Furthermore, the structure of the list guarantees that there
is always only one applicable threat model for a given context. For example, the threat
model for context CTX1 is #7 in Table 2.1; likewise, the threat model for CTX2 is #1.

ACG2 In the constraint corresponding to each identified threat model, the symbol input is
replaced with the actual symbolic expression of the input. This results in a constraint
that checks if an input used at the sink contains a security attack. For example, the
constraint input.matches(".*[’\"=<>/,;+-&\*\[\] ].*") —corresponding to threat
model #7 (see Table 2.1)— results in the following constraint ATTK1, related to context
CTX1:

ATTK1 ≡ customSanit(SID)

.matches(".*[’\"=<>/,;+-&\*\[\] ].*")

Likewise, the constraint ATTK2 related to CTX2 is:

ATTK2 ≡ customSanit(SID).matches(".*[<>/].*")

ACG3 For each constraint generated in the previous step and a given path condition, the
attack conditions are generated by simply conjoining the path condition with the con-
straint. For example, the attack condition SEC1 is the constraint conjoining PC1 and
ATTK1:

SEC1 ≡ Integer.parseInt(MAX ) > 20 ∧
OP.trim().equalsIgnoreCase("GradeQuery") ∧
SID.length() > 20 ∧
customSanit(SID)

.matches(".*[’\"=<>/,;+-&\*\[\] ].*")

Likewise, attack condition SEC4 conjoins PC2 and ATTK2:

SEC4 ≡ ¬(Integer.parseInt(MAX ) > 20) ∧
OP.trim().equalsIgnoreCase("GradeQuery") ∧
SID.length() > Integer.parseInt(MAX ) ∧
customSanit(SID).matches(".*[<>/].*")

Similar attack conditions (omitted for space reasons) are computed by conjoining PC1
and ATTK2, as well as PC2 and ATTK1.

More details on security slicing and context analysis are available in Section 3.2.2.2.

5.3.2 Constraint Preprocessing

Constraints corresponding to attack conditions generated from the previous steps are repre-
sented as constraint networks, which are a common representation of instances of a constraint
satisfaction problem [70].
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Figure 5.2: Constraint network equivalent to the attack condition SEC1

We build the hypergraph of the constraint network representing an attack condition simi-
larly to how string graphs are constructed in [103]. The nodes of the graphs are either constant
values or string/integer variables appearing in the constraints of the network. Each operation
(e.g., method calls like trim or comparison operators like >) in an attack condition corresponds
to exactly one hyperedge in the constraint network graph. Notice that boolean operators are
represented as hyperedges labeled with the operator itself. Transformational operations (which
return a value of type different from boolean) require to add a node to the graph, representing
an auxiliary variable that corresponds to the result of the operation; the transformational opera-
tion is then added as a hyperedge that connects the nodes of the initial constants/variables and
the new auxiliary variable. The latter is denoted with a name ending with a prime (′) symbol,
except when the transformational operation is length, in which case we use a name of the form
lVAR, where VAR is the original variable.

For example, the constraint network corresponding to attack condition SEC1 is shown
in Figure 5.2. Rounded nodes represent variables, squared nodes represent constant values,
hyperedges are denoted by lines that meet at a black dot. A hyperedge is labeled with the name
of the corresponding operation and with numbers that indicate the role of its component nodes
in the corresponding operation (i.e., order of function arguments, return variable). For instance,
the node labeled MAX′ corresponds to the auxiliary variable resulting from the application of
the transformational operation parseInt to variable MAX; the node labeled lSID is the auxiliary
variable that represents the length of variable SID. Notice that, to keep the figures readable, we
omit the representation of hyperedges labeled with a boolean AND.

Once a constraint network is constructed, we preprocess it to apply some rules that simplify
the solving procedure; these rules are captured by two preprocessing procedures:

1. derived constraint generation and

2. constraint refinement,

executed in this order and applied through a work-list algorithm. Both procedures have been
already described in [103]; here we propose new derived constraints and new rules to deal
with additional operations. We remark that these two procedures preserve the integrity of the
original constraint; in other words, the original and modified versions of the constraint network
are equi-satisfiable.

Note that when some of the variables or the constraints of a constraint network are indepen-
dent, the underlying hypergraph is disconnected; in such a case, we apply the preprocessing
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Table 5.1: String/mixed operations and their corresponding derived constraints (X and Y are
string variables, X ′ is an auxiliary string variable, i and j are integer variables, I ′ is an auxiliary
integer variable, lT represents the length of string T ).

String/mixed operation Derived constraint(s) Source

X.contains(Y ) lX ≥ lY [103]
X.startsWith(Y ) lX ≥ lY [103]
X.endsWith(Y ) lX ≥ lY [103]
X.isEmpty() lX = 0 ?

X.concat(Y )
lX′ = lX + lY

[41, 103]
X + Y [41, 103]
X.append(Y ) ?

X.equals(Y )
lX = lY

[41, 103]
X.equalsIgnoreCase(Y ) ?
X.contentEquals(Y ) ?

String.copyValueOf(X)
lX = lX′

?
valueOf(X) ?
X.toString() ?

X.trim() lX ≥ lX′ [41, 103]
X.length() lX ≥ 0 [41, 103]
X.indexOf(Y ) (I′ ≥ 0 → ¬(X.substring(0, I′).contains(Y )) ∧

X.substring(I′,lX).startsWith(Y ) ∧ lX ≥ lY ) ∧
(I′ < 0→ ¬(X.contains(Y )))

?

X.lastIndexOf(Y ) (I′ ≥ 0 → ¬(X.substring(I′ + 1, lX).contains(Y )) ∧
X.substring(I′,lX).startsWith(Y ) ∧ lX ≥ lY ) ∧
(I′ < 0→ ¬(X.contains(Y )))

?

X.charAt(i) lX′ = 1 ∧X.contains(X′) ?
X.toLowerCase() lX = lX′ ?
X.toUpperCase() lX = lX′ ?
X.isEmpty() lX = 0 ?
X.substring(i) 0 ≤ i < lX ∧ lX′ = lX − i ∧X.contains(X′) ?
X.substring(i,j) 0 ≤ i < lX ∧ i ≤ j ≤ lX ∧ lX′ = j − i ∧X.contains(X′) ?
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Figure 5.3: The constraint network in Figure 5.2 augmented with the derived constraints.

procedures to each of the maximal connected components (i.e., hypersubgraphs) of the hyper-
graph. For example, in Figure 5.2, there are three hypersubgraphs, enclosed in dashed rectan-
gles and denoted as H1, H2, and H3.
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Table 5.2: Patterns for the refinement of integer constraints used in rule 3 of Table 5.3.

pattern equivalent constraint

X ≥ Y ∧X > Y X > Y
X ≥ Y ∧X = Y X = Y
X ≥ Y ∧X 6= Y X > Y
X ≤ Y ∧X < Y X < Y
X ≤ Y ∧X = Y X = Y
X ≤ Y ∧X 6= Y X < Y
X ≤ Y ∧X ≥ Y X = Y

5.3.2.1 Derived Constraint Generation

For some operations, additional constraints are derived to reduce the input domain or to solve
the constraints more efficiently. For example, given the constraint X.contains(Y ), one can
generate the derived constraint lX ≥ lY on the length ofX and Y . The addition of these derived
constraints reduces the size of the variable domains and may lead to unsatisfiability results
faster, since some of the new derived constraints may be easier to solve (e.g., because they use
a smaller number of variables).

Table 5.1 shows the derived constraints corresponding to string/mixed operations; the de-
rived constraints marked with a star are introduced for the first time in this work, while the
others have been taken from [41, 103]. Notice that some operations in Table 5.1 may return
a specific value to indicate an error: for example, indexOf returns a negative value when the
search string is not found; we model this semantics using logical implications.

The derived constraints are then included in the constraint network accordingly. For exam-
ple, Figure 5.3 shows the constraint network obtained after generating the derived constraints
for the network in Figure 5.2; the new constraints are derived from the trim, equalsIgnoreCase,
and length operations.

5.3.2.2 Constraint Refinement

In this step, some rules are used to simplify the constraint network and to detect trivially in-
consistent constraints, to avoid unnecessary and expensive constraint solving. For example, if
there is a constraint of the form X.equals(Y ), the hyperedge corresponding to the equality
constraint and one of the nodes (either X or Y ) can be removed, and its connected hyperedges
can be redirected to the remaining node.
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Table 5.3: Hyperedges and their corresponding refinement rules. (X , Y , X1, XK , Y1, YK are
variables, X ′ and Y ′ are auxiliary variables, c1, . . . cK , 1 ≤ i ≤ K and c are constants)

ID Hyperedge(s) Refinement Rule Source

1

TransOp(c1, . . . ,cK) where TransOp is any
transformational operation that involves only
constants.

c1

ci

cK

TransOp

X ′
1

i

K

K + 1

The operation TransOp is executed to determine its re-
sult c. The node corresponding to the auxiliary variable
is replaced with the constant c. The hyperedge and the
component nodes ci, 1 ≤ i ≤ K, not connected to any
other hyperedge, are removed from the hypergraph.

ci c
[87]

2

RelOp(c1, . . . ,cK), where RelOp is any rela-
tional or boolean operation that involves only
constants.

c1

ci

cK

RelOp

1

i

K

If the operation RelOp returns true, the hyperedge and
the component nodes ci, 1 ≤ i ≤ K, not connected to
any other hyperedge, are removed from the hypergraph.
Otherwise, constraint unsatisfiability is detected. (The
figure below corresponds to the case in which RelOp re-
turns true).

ci

[87]

3

A pair of hyperedges corresponding to a pair of
integer constraints that matches one of the pat-
terns shown in the left column of Table 5.2.

NumOp0

NumOp1

X Y

The two hyperedges are replaced by the hyperedge rep-
resenting the equivalent constraint NumOpE indicated in
the right column of Table 5.2.

NumOpE
X Y

[44]

4

X.equals(Y ), X = Y .
=

X Y

The hyperedge and one of the component nodes (X or
Y ) are removed. The hyperedges that were connected to
the removed node are reconnected to the other.

X [103]

5

X.equals(c), X = c.
=

X c

Same as above, except that the variable X , not the con-
stant c, is removed.

c [103]

6

A pair of hyperedges corresponding to inconsis-
tent constraints between the same nodes, e.g.,
X.contains(Y ) and ¬X.contains(Y ).

RelOp

¬RelOp
X Y

Constraint unsatisfiability is detected. [103]

continues on next page
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Table 5.3 – continues from previous page

7

A pair of hyperedges that are labeled with the
same operation and whose parameters are con-
nected through equality constraints.

Y1

YK

Y ′ X1

XK X ′
Op

Op ==

==

1

K

K + 1

1

K K + 1

The two hyperedges are merged into a single hyperedge
and the component nodes are processed according to
rules 4 and 5.

Y1

YK

Y′
Op

1

K

K + 1

[81]

Table 5.3 shows the constraint refinement rules for specific types of hyperedges (or pair of
hyperedges), as well as a pictorial representation of them; the rules marked with a star are
proposed for the first time in this work, while the others have been taken from [103, 81].

Rule 1 corresponds to the evaluation of a transformational operation involving only con-
stants. The operation is actually executed to determine its result; the node corresponding to the
auxiliary variable is replaced by a single constant node corresponding to the computed result.
The hyperedge labeled with the transformational operation is removed from the hypergraph,
and also its associated constant nodes, if they are not connected to any other hyperedge.

Rule 2 is similar to the previous; it corresponds to the case in which a hyperedge is labeled
with a relational or boolean operation involving only constants. The operation is evaluated;
either it evaluates to true, and thus the hyperedge is removed from the hypergraph, or to false,
and thus it determines the unsatisfiability of entire constraint network.

Rule 3 corresponds to the case in which there is a pair of hyperedges representing integer
constraints, which matches one of the patterns shown in the left column of Table 5.2. This pair
is replaced by a hyperedge representing the equivalent constraint, as indicated in the right side
of Table 5.2. This table is based on well-known equivalences between numeric constraints. For
example, the pair of hyperedges equivalent to a constraint of the form X ≥ Y ∧ X = Y , is
replaced by one hyperedge corresponding to the constraint X = Y .

Rules 4 and 5 are applicable to a hyperedge that corresponds to an equality constraint be-
tween two variables and, respectively, to an equality constraint between a variable and a con-
stant. In both cases, the hyperedge corresponding to the equality constraint is removed, as well
as one of the component nodes (the node corresponding to the variable in rule 5); the hyper-
edges that were connected to the removed node are reconnected to the other.

Rule 6 captures pairs of hyperdeges corresponding to inconsistent constraints (imposed on
the same variables) of the form RelOp(v1, . . . ,vK) ∧ ¬RelOp(v1, . . . ,vK); this rule determines
the unsatisfiability of the entire constraint network.

Rule 7 is applicable to pairs of hyperedges that are labeled with the same operation and
whose parameters are connected through equality constraints; this means that the two hyper-
edges are semantically equivalent. They are merged into a single hyperedge and the component
nodes are processed according to rules 4 and 5.

Rules 4–7 use the theory of Equality of Uninterpreted Functions (EUF) [81], a widely used
theory in constraint solving, to identify and merge semantically equivalent nodes and hyper-
edges.

As an example, the constraint network in Figure 5.3 is refined into the constraint network
shown in Figure 5.4. More specifically, since the constraint 10 ≥ 0 in H2 trivially evaluates to
true, according to rule 2 the hyperedge labeled with ≥ and the constant node 0 are removed
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Figure 5.4: Constraint network resulting from the application of the constraint refinement rules
to the network in Figure 5.3.

from the network; also, according to rule 5, in H2 the hyperedge corresponding to constraint
lOP ′ = 10 as well as the variable node for lOP ′ are removed and the hyperedges that were
connected to the latter are now connected to the node for constant 10; since one of the resulting
hyperedges corresponds to the constraint 10 ≥ 0, rule 2 can be applied again as above, to
remove the hyperedge.

5.3.3 Hybrid Constraint Solving

The constraint network resulting from the previous pre-processing step is then solved by our
hybrid constraint solver. Our solver is hybrid because it orchestrates a constraint solving proce-
dure for string/mixed and integer constraints with our search-based constraint solving proce-
dure presented in Chapter 4.

The idea behind this hybrid solving strategy is to solve a constraint network through a
two-stage process: in the first stage, our solving procedure solves all the constraints with sup-
ported operations, providing a unified treatment for string and integer constraints. In the sec-
ond stage, we use our search-driven solving procedure based on the Ant Colony Optimization
meta-heuristic to solve the remaining constraints which contain unsupported operations. The
solver in the first stage is used to reduce (possibly in a significant way) the search space, i.e., the
domains of the string and integer variables, for the search-driven solving procedure; hence, it
makes the search in the second stage more scalable and effective.

The pseudocode of our string constraint solving algorithm CSTRSOLVE is shown in Algo-
rithm 5.6. It takes as input a hypergraph H corresponding to the constraint network to solve
and returns whether it is satisfiable, unsatisfiable, or whether it timed out; when it returns satis-
fiable, it also returns the set of solutions found, which are used to build the vulnerability report.

First, it computes (line 4) the set HS of connected hypersubgraphs ofH by means of function
GETMCHYPERSUBGRAPHS. Then, it iterates through all the elements Hi ∈ HS to perform the
following steps (lines 5–13).

Function SOLVESUPPORTEDOPS (line 6) solves the constraints in Hi containing supported
operations and returns the set Sol , which contains the solutions for all the string and integer
variables in Hi; the details of SOLVESUPPORTEDOPS are presented in Section 5.3.3.1.

Subsequently, if Hi contains any constraints containing unsupported operations, the algo-
rithm invokes the SEARCHSOLVE function, which implements a meta-heuristic search algorithm
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1: function CSTRSOLVE(Hypergraph H)
2: Boolean solved ← false
3: Set of Solution Sol ← ∅
4: Set of Hypergraph HS ← GETMCHYPERSUBGRAPHS(H)
5: for all Hi ∈ HS do
6: Sol ← SOLVESUPPORTEOPS(Hi,Sol)
7: if CONTAINSUNSUPPORTEDOPS(Hi) then
8: 〈solved ,Sol〉 ← SEARCHSOLVE(Hi,Sol)
9: if ¬solved then

10: return TIMEOUT
11: end if
12: end if
13: end for
14: return 〈SAT ,Sol〉
15: end function

16: function SOLVESUPPORTEDOPS(Hypergraph H , Set of So-
lution Sol)

17: Sol ← INITIALIZE(Sol)
18: Set of Hyperedge Worg ← W ← GETSUPPORTED-

EDGES(H)
19: repeat
20: Hyperedge e← SELECTEDGE(W )
21: Set of Solution newSol ← APPLYRECIPE(e,Sol)
22: Sol ← UPDATE(newSol ,Sol)
23: W ← UPDATEWORKLIST(newSol ,Worg ,W )
24: W ←W \ {e}
25: until ISEMPTY(W )
26: return Sol
27: end function

Algorithm 5.6: Hybrid Constraint solving algorithm.

(detailed in Section 4.3.2). SEARCHSOLVE tries to find a solution for the constraints which could
not be solved by SOLVESUPPORTEDOPS due to the presence of unsupported string or integer
operations and, thus, provides a general mechanism for solving them. SEARCHSOLVE returns a
flag solved and an updated set of solutions Sol (line 8). If the flag solved is true, it means that the
constraints inHi have been solved and the algorithm can proceed to process the hypersubgraph
Hi+1; otherwise, it means that the SEARCHSOLVE function timed out and, thus, the algorithm
returns TIMEOUT, terminating the entire constraint solving procedure. A time-out can indicate
either that a solution exists for the constraint but the solver could not find it, or that the con-
straint is actually unsatisfiable. The algorithm returns SAT and the set of solutions Sol (Line 14)
only when the loop over H has been completely executed, meaning that the attack condition
corresponding to the constraint network given as input is satisfiable.

Representation of the solutions. The search-based constraint solving step requires every vari-
able domain to be represented in the form of a solution automaton. A solution automaton is
an FSM accepting the language determined by the constraints imposed on the variable; in our
case, a solution automaton for a variable accepts only the language corresponding to the set of
values (for the variable) that satisfy the constraints the solver has solved so far. Hence, the set Sol
computed at Line 6 and Line 8 contains solution automata. Notice that we provide a unified
treatment of integer and string constraints by converting integer ranges into their automaton
representation. For example, the solution automaton for a string variable s involved in a con-
straint s.matches("abc*") would be "abc*"; the solution automaton for an integer variable i
involved in the constraint i > 2 is [3-9] | [1-9] [0-9]+, corresponding to the range [3,∞). For a
variable involved only in constraints with unsupported operations, its corresponding solution
automaton is the default one, accepting any value (i.e., the automaton accepting the regular
language 0| (−? [1-9] [0-9]∗) for an integer variable and .∗ for a string variable).
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5.3.3.1 Solving supported Operations

Our solving procedure leverages automata-based solving for solving string/mixed constraints,
and linear interval arithmetic for solving integer constraints2. In both cases, constraint solving
rules are expressed using recipes that model the semantics of the operations.

We specifically use automata-based solving and linear interval arithmetic (vs. bit-vector-
based or word-based methods) because both methods return, when successful, a solution range
for each variable occurring in the constraints they could solve, based on the operations they
support.

The pseudocode of our SOLVESUPPORTEDOPS algorithm for solving constraints with sup-
ported operations is shown in Algorithm 5.6; it takes as input a hypergraph H and set of so-
lutions Sol . First, the algorithm initializes each variable in set Sol with a default solution au-
tomaton, which is .∗ for string variables and 0| (−? [1-9] [0-9]∗) for integer variables (Line 17),
and extracts from H the set of hyperedges W (and its copy Worg) labeled with supported op-
erations (Line 18). Next, the constraints are solved using a worklist procedure (Lines 19–25).
First, a hyperedge e is selected from W (Line 20). Then the APPLYRECIPE procedure (Line 21)
processes the domains of the variables in the component nodes of e according to the recipe that
models the semantics of the operation labeling e. We provide recipes (see Table 5.4 and Ta-
ble 5.5) for both string and integer variables: string/mixed constraints are solved by means of
automaton-operations (such as union, intersection, concatenation), and integer constraints are
solved through linear interval arithmetic (where integer domains are represented by intervals).

As a result, SOLVESUPPORTEDOPS returns the set newSol (Line 21), in which the solution
automata of the variables in the component nodes of e accept the languages corresponding to
the sets of values that satisfy the string/mixed or integer constraints represented by e. The
set Sol is then updated with the solutions in newSol (Line 22). If the solution automaton of
a variable v is affected by this update, it needs to be checked for satisfiability with other con-
straints that involve v; in this case, the function UPDATEWORKLIST puts back into W all the
previously-removed hyperedges (determined from the original list Worg) which are connected
to the node for variable v (Line 23). Finally, the algorithm removes the hyperedge e from the
set W . This worklist procedure is repeated until the set W is empty, i.e., until all the constraints
with supported operations have been successfully solved. Notice that when a recipe results in
an automaton that accepts the empty language, meaning that there is no solution to satisfy a
constraint, the entire constraint solving procedure terminates internally and returns UNSAT.

The above worklist procedure implements the fixpoint iteration based on an arc-consistency
algorithm [68]. A hyperedge is added back to the worklist (through the UPDATEWORKLIST

operation) only if the domains of its variables could be further restricted through the application
of a recipe. Since all the recipes in Table 5.4 and Table 5.5 are of the form A := A ∩ B, i.e., they
only restrict the domains of the involved variables, the worklist procedure is guaranteed to
converge and to terminate with two possible results: (1) one variable domain becomes empty
or (2) the constraint network stabilizes because none of the variable domains can be further
restricted.

In the following subsections, we discuss the constraints that are supported by our automata-
based+linear interval arithmetic solver and illustrate the worklist procedure with an application

2 Integer constraints that cannot be solved with linear interval arithmetic are treated as constraints with unsup-
ported operations.
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to the running example.

Supported String and Mixed Constraints Our automata-based solver supports many opera-
tions from the java.lang.String class, except methods like format and hashCode that cannot
be expressed in terms of FSMs. The solver also supports the matches, parseInt, parseLong,
toString, valueOf, append, and length operations from other Java classes that are commonly
found in Java applications [102]. In addition, the solver supports 16 input sanitization opera-
tions from the Apache Commons Lang 3 [8] and OWASP [94] standard security libraries; we
remark that in the context of security analysis it is important to support such operations for
achieving precise and efficient analysis.

Table 5.4 shows a subset of operations supported by our automata-based solver and the cor-
responding recipes3; the operations marked with a star are proposed for the first time in this
work, while the others have been taken from [103, 40]. In the table we adopt the following nota-
tion: MX denotes the automaton accepting the language LX = {X}, containing only the string
X ; Mε denotes the automaton that accepts the empty string; .i denotes the automaton that ac-
cepts i number of any characters; ∗ denotes the Kleene-star operator; ¬ denotes the complement
operation;⊕ denotes concatenation;MX∩ :=MY is a short-hand forMX := MX∩MY ; [c0c1. . .cn]
is a short-hand for c0 ∪ c1 ∪ . . . cn where c stands for a character or a character range. In addi-
tion, we use a number of auxiliary operations that work on automata: Prefix (M) and Suffix (M)
return the prefixes and suffixes of the words accepted by M , respectively; Substring(M) returns
an automaton that accepts the substrings of the words accepted by M ; Substring(M, i) returns
an automaton that accepts the substrings starting from the index i of the words accepted by M ;
Trim(M) returns an automaton that accepts all words ofM without leading and trailing blanks;
CharAt(M, i) returns an automaton that accepts the characters at the index i of the words ac-
cepted by M ; LowerCase(M) and UpperCase(M) return an automaton that accepts the low-
ercase (respectively, uppercase) words of the words accepted by M ; Replace(MX , c1, c2,MX′),
ReplaceFirst(MX , c1, c2,MX′), and ReplaceAll(MX , c1, c2,MX′) are functions defined in [27, 40]
modeling the homonymous replacement string operations, which return a tuple of solution au-
tomata MX and MX′ , where MX′ accepts the words resulting from the semantics of the corre-
sponding replacement operation; ApacheSanitizeHTML3 (MX ,MX′) returns a tuple of solution
automata MX and MX′ where MX′ accepts the words resulting after replacing all occurrences
of HTML meta-characters in the words accepted by MX with their corresponding escape char-
acters. The latter models the semantics of a standard sanitization function from Apache [8],
through a series of Replace functions for 〈meta-character, escape character〉 pairs; we model the
remaining 15 standard sanitization functions we support in a similar way.

Table 5.4: Automata operations (recipes) corresponding to string/mixed operations. (X and Y
are string variables, X ′ is an auxiliary variable, c, c1 and c2 are string constants, i, i1 and i2 are
numeric constants)

Operation Recipe Source

X.charAt(i)
MX ∩ := .i ⊕MX′ ⊕ .∗
MX′ ∩ := CharAt(MX , i)

[103]

continues on next page

3The full list of supported operation is available online [128].
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Table 5.4 – continues from previous page

X.concat(Y )
X.append(Y )
X+Y

MX ∩ := Prefix(MX′ )
MY ∩ := Suffix(MX′ )
MX′ ∩ :=MX ⊕MY

[103]
[103]
?

X.contains(Y )
MX ∩ := .∗ ⊕MY ⊕ .∗
MY ∩ := Substring(MX)

[103]

copyValueOfX)
valueOf(X)
X.toString()

MX ∩ :=MX′

MX′ ∩ :=MX
?

X.endsWith(Y )
MX ∩ := .∗ ⊕MY

MY ∩ := Suffix(MX)
[103]

X.equals(Y )
X.contentEquals(Y )

MX ∩ :=MY

MY ∩ :=MX
[103]

X.equalsIgnoreCase(Y )
MX ∩ := LowerCase(MY ) ∪UpperCase(MY )
MY ∩ := LowerCase(MX) ∪UpperCase(MX)

?

escapeHtml3(X) 〈MX ,MX′ 〉 := ApacheSanitizeHTML3 (MX ,MX′ ) ?

X.indexOf(Y )
MX ∩ := {.i ∩ ¬MY } ⊕MY ⊕ .∗
MY ∩ := Substring(MX , i)

[103]

X.isEmpty() MX ∩ :=Mε ?

X.lastIndexOf(Y )
MX ∩ := (.∗ ⊕MY ⊕ .∗) ∩ {.i+1 ⊕ (.∗ ∩ ¬MY )}
MY ∩ := Substring(MX , i)

[103]

X.length()

MX ∩ := .{i1, i2}
where i1 and i2 are equal to the lower limit and the upper limit, respec-
tively, of the length of X . If the upper limit is∞, i2 is removed from the
expression, i.e., .{i1, }. If X has a fixed length, the expression is .{i1}.

?

X.matches(c) MX ∩ :=Mc [40]

parseInt(X)
parseLong(X)

MX ∩ :=MX′ ∩ (0 ∪ (-{0, 1}[1-9][0-9]∗)) ?

X.replace(c1, c2) 〈MX ,MX′ 〉 := Replace(MX , c1, c2,MX′ ) [40]

X.replaceAll(c1, c2) 〈MX ,MX′ 〉 := ReplaceAll(MX , c1, c2,MX′ ) [40]

X.replaceFirst(c1, c2) 〈MX ,MX′ 〉 := ReplaceFirst(MX , c1, c2,MX′ ) [40]

X.startsWith(Y )
MX ∩ :=MY ⊕ .∗
MY ∩ := Prefix(MX)

[103]

X.substring(i)
MX ∩ := .i−1 ⊕MX′

MX′ ∩ := Substring(MX , i)
[103, 40]

X.substring(i1, i2)
MX ∩ := .i1 ⊕MX′ ⊕ .∗
MX′ ∩ := Substring(MX , i1, i2)

[103, 40]

X.toLowerCase()
MX′ ∩ := LowerCase(MX)
MX ∩ :=MX′ ∪UpperCase(MX′ )

?

X.toUpperCase()
MX′ ∩ := UpperCase(MX)
MX ∩ :=MX′ ∪ LowerCase(MX′ )

?

X.trim()
MX ∩ := [ ]∗ ⊕MX′ ⊕ [ ]∗

MX′ ∩ := Trim(MX)
[103]

Supported Integer Constraints Integer constraints are solved by means of linear interval
arithmetic. When successful, this method returns a range of solutions for each integer variable
involved in the constraints.

Our solver supports basic operations of the form I op K, where I,K are integer variables
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Table 5.5: Interval operations (recipes) corresponding to integer constraints (L, N and K are
integer variables, IV stands for the interval of variable V with IV := [vmin, vmax] where vmin and
vmax denote lower and upper bounds, respectively).

Operation Recipe Source

K = N
IK ∩ := IN
IN ∩ := IK

[86, 151]

K > N

I>N := [nmin + 1,∞) is the interval that captures all numbers greater
than nmin

I<K := (−∞, kmax − 1] is the interval that captures all numbers smaller
than kmax

IN ∩ := I<K
IK ∩ := I>N

[151]

K ≥ N

I≥N := [nmin,∞) is the interval that captures all numbers greater than
or equals to nmin

I≤K := (−∞, kmax] is the interval that captures all numbers smaller
than or equals to kmax

IN ∩ := I≤K
IK ∩ := I≥N

[151]

L = K +N
IL ∩ := [kmin + nmin, kmax + nmax]
IK ∩ := [lmin − nmax, lmax − nmin]
IN ∩ := [lmin − kmax, lmax − kmin]

[86, 151, 50]

L = K −N
IL ∩ := [kmin − nmax, kmax − nmin]
IK ∩ := [lmin + nmin, lmax + nmax]
IN ∩ := [kmin − lmax, kmax − lmin]

[86, 151, 50]

and op ∈ {=, >,<,≥,≤,+,−}. From our experience with the test subjects in our experiments4

this set of supported operations is enough, since most of the constraints encountered when
analyzing the injection vulnerabilities of Web applications are linear integer constraints; more
details are provided in Section 5.5.

Table 5.5 shows the recipes for various integer operators op; in this case, a recipe is a se-
quence of operations that are executed to compute a range of solutions for each integer variable
according to the semantics of op. These recipes have been taken from the sources ([86, 151, 50])
indicated in the last column of Table 5.5. In the table, we adopt the following notation: IV
denotes the interval of variable V with vmin and vmax being its lower and upper bounds, re-
spectively; IK ∩ := IN is a short-hand for IK := IK ∩ IN , i.e., the intersection of the two intervals
IK and IN .

As discussed above, we convert integer ranges into their automaton representation. More
specifically, for each integer variable V , we generate an automaton representing its interval IV
with IV := [vmin, vmax], i.e., the automaton that accepts only the string representation of num-
bers within IV . We convert intervals by intersecting the automata for [vmin,∞) and (−∞, vmax].
For example, the integer interval IV = [3, 45] can be represented as [3-9] | [1-9] [0-9]+ ∩ 0| −
[1-9] [0-9]∗ |4 [0-5] | [1-3] [0-9] | [0-9].

4All of the numeric constraints that appeared in our test subjects could be solved by means of the recipes listed
in Table 5.5.
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5.3.3.2 Application to the Running Example

We now show an example of the execution of SOLVESUPPORTEDOPS when solving the hyper-
subgraph H3 in Figure 5.4, which contains string/mixed, and integer constraints. The solution
automata for the two string variables SID and SID ′ are initialized with .∗; the solution automa-
ton for the integer variable lSID is initialized with 0| (−? [1-9] [0-9]∗). First, the procedure GET-
SUPPORTEDEDGES returns W (further assigned also to Worg ), which contains four hyperedges,
labeled with >, ≥, length and matches.

Let us assume that in the first iteration of the worklist loop, function SELECTEDGE selects the
hyperedge labeled with≥. This hyperedge has two component nodes: the integer variable node
lSID and the constant node 0. The solution for lSID is solved by applying the recipe given in row
4 of Table 5.5, which yields lSID := [0,∞). The hyperedge ≥ is then removed from the worklist
W and the worklist loop will continue to the next iteration; let us assume that the hyperedge
labeled with > is selected in the latter. Similarly to the previous iteration, the new solution for
lSID is obtained by applying the recipe given in row 3 of Table 5.5, which yields lSID := [21,∞).
Since this results in a change to the existing solution automaton of lSID in Sol , the previously-
removed edge ≥, which is connected to the variable node lSID , is put back into the worklist W ;
the hyperedge > is also removed from W . Let us assume that the hyperedge labeled with ≥
is selected in the next iteration; by applying the recipe given in row 4 of Table 5.5, the solution
for lSID is lSID := [21,∞) which is converted to the automaton 2 [1-9] | [3-9] [0-9]+. Since this
results in no change to any existing solution automaton in Sol , no previously-removed edge is
put back into W ; the hyperedge ≥ is then removed from W . Subsequently, let us assume that
the hyperedge labeled with matches is selected. This hyperedge has two component nodes:
the string variable node SID ′ and the constant node ".*[’\"=<>/,;+-&\*\[\] ].*", which is
equivalent to the regular expression .∗[’"=<>/,;+-&*[] ].∗. The solution automaton MSID ′ for
the variable SID ′ is computed according to the recipe for the operation matches in Table 5.4:

MSID ′ :=MSID ′ ∩ .∗[’"=<>/,;+-&*[] ].∗ ↔
MSID ′ :=.∗ ∩ .∗[’"=<>/,;+-&*[] ].∗ ↔
MSID ′ :=.∗[’"=<>/,;+-&*[] ].∗

This means that the language accepted by MSID ′ is now restricted to the values matching the
regular expression .∗[’"=<>/,;+-&*[] ].∗. This results in a change to the existing solution au-
tomaton of SID ′ in Sol (recall that it was initialized with .∗). The procedure is supposed to put
back any previously-removed hyperedge that is connected to node SID ′; however, in this case
there is no such edge. The hyperedge matches is then removed from W and the worklist loop
continues to the next iteration, in which the remaining hyperedge length is selected. The solu-
tion automaton MSID is then updated according to the recipe for operation length in Table 5.4,
with i1 = 21, i2 =∞:

MSID :=MSID ∩ .{21, } ↔ MSID := .∗ ∩ .{21, } ↔
MSID :=.{21, }

This means that the language accepted by MSID is now restricted to the strings with a length
greater than or equal to 21. This results in a change to the existing solution automaton of MSID

in Sol . Again, there is no previously-removed hyperedge connected to MSID that has to be

89



5. AN INTEGRATED APPROACH FOR INJECTION VULNERABILITY ANALYSIS

[Iteration #100]

TBest = {SID := aRXxQ1zCVmaetowbnZv0t}
fcstr1

= 0

fcstr2
= ψ(aRXxQ1zCVmaetowbnZv0t , .∗[’"=<>/,;+-&*[] ].∗) = 1

f̂cstr1
= 0; f̂cstr2

= 0.5

FBest = avg(f̂cstr1
, f̂cstr2

) = 0.25

[Iteration #1000]

TBest = {SID := $Qaa.&@erp!t’TmoopEn=}
fcstr1

= 0

fcstr2
= ψ($Qaa.&@erp!t’TmoopEn= , .∗[’"=<>/,;+-&*[] ].∗) = 0

f̂cstr1
= 0; f̂cstr2

= 0

FBest = avg(f̂cstr1 , f̂cstr2) = 0

Figure 5.5: Results after 100 and 1000 iterations of the SEARCHSOLVE procedure.

put back in W . After this iteration, the worklist is empty and the algorithm returns the set
Sol = {lSID ,MSID ,MSID ′}, where lSID := 2 [1-9] | [3-9] [0-9]+, MSID := .{21, }, and MSID ′ :=
.∗[’"=<>/,;+-&*[] ].∗

Notice that the hyperedge labeled with customSanit is not in the worklist since it reflects
an unsupported operation.

5.3.3.3 Solving unsupported Operations

The searchSolve method used in JOACO is the same as the one explained in Section 4.3.2. Here,
we only show the application of SEARCHSOLVE to our example attack condition SEC1 . We
recall that hypersubgraph H3 in Figure 5.4 was only partially solved through the application
of function SOLVESUPPORTEDOPS in Section 5.3.3.2 since it contains an unsupported operation
customSanit.

Procedure SEARCHSOLVE will attempt to find a value from the solution automata MSID :=
.{21, } (determined by the automata-based solver) for the string variable SID that satisfies the
two constraints cstr1 ≡ SID.length() > 20; cstr2 ≡ customSanit(SID).matches(".*[’\"-
=<>/,;+-&\*\[\] ].*")) in H3. Figure 5.5 shows the best results (TBest , f , f̂ , and FBest ) ob-
tained after 100 and 1000 iterations; fcstr1 is computed by evaluating the constraint cstr1 with
the value in TBest and by using the Korel function; fcstr2 is computed by evaluating the con-
straint cstr2 with the value in TBest and by using the equality cost function for regular expres-
sion matching. At iteration 1000, the search converges towards the desired solution for SID ,
which satisfies the constraints in H3.
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5.4 Implementation

We have implemented our approach in a tool called JOACO (available online [128]). It consists
of two major components, the security slicer and the constraint solver; both are implemented in
JAVA, comprising approximately 34 kLOC excluding library code, spaces and comments.

The security slicer is derived from JoanAudit (see Section 3.3) which is built on top of Wala [55]
and Joana [47], which provide interprocedural program slicing and static analysis of paths in
the slice, respectively. Given the bytecode of a Web program, the security slicer first extracts
a security slice for each sink. It then explores the paths in the slice that lead to the sink in a
depth-first manner, extracting the path conditions and the context information. The latter is
used to generate the attack condition, by conjoining the path condition with the appropriate
threat model. For scalability reasons, when encountering loops and recursive function calls, the
slices iterates through them only once.

The constraint solver comprises three modules: constraint preprocessor, an automata-based
and interval constraint solver and a search-based constraint solver. The constraint preprocessor
makes use of the JGraphT library [90], a Java class library that provides mathematical graph-
theory objects and algorithms, in order to generate a constraint network from the attack condi-
tion, as explained in Section 5.3.2. The constraint network is then passed to the constraint solver
to prove the presence/absence of a vulnerability.

Our automata-based and interval constraint solver handles string and integer constraints
with supported operations, as described in Section 5.3.3.1. It is built on top of JSA [27] and
Sushi [40]. JSA models a set of Java string/mixed operations using finite state automata; Sushi
adds supports for string replacement and regular expression replacement operations using fi-
nite state automaton and transducer operations. In this component, we also defined the recipes
for additional string operations (see Table 5.4), such as the security APIs provided by two pop-
ular security libraries (OWASP [94] and Apache [8]). The search-driven constraint solver is
invoked when a constraint contains unsupported operations, as described in Section 4.3.2.

5.5 Evaluation

In this section we report on the evaluation of JOACO, in terms of

1. vulnerability detection capability when analyzing the source code of a Web application;

2. capability of solving string constraints derived from potential vulnerabilities in realistic
systems.

The first task corresponds to the normal usage scenario of JOACO for detecting vulnerabil-
ities in Web applications. We also included the second usage scenario because many research
efforts (see related work in Chapter 6) focus (only) on string constraint solving, as a means to en-
able vulnerability detection; indeed, in such a context, JOACO can be also used as a stand-alone
string constraint solver (we call it JOACO-CS when used in this mode).

We assess the effectiveness of JOACO in performing these two tasks by answering the fol-
lowing research questions:
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RQ1 What is the effectiveness of JOACO in detecting XSS, SQLi, XMLi, XPathi, and LDAPi
vulnerabilities and how does it compare with state-of-the-art vulnerability detection tools,
including our previous work (see Chapter 3 and Chapter 4)? (Section 5.5.2.1)

RQ2 What is the effectiveness of JOACO-CS in solving string constraints characterizing poten-
tial vulnerabilities in representative and widely used systems and benchmarks and how
does it compare with state-of-the-art, general-purpose string constraint solvers, including
our previous work (see Chapter 4)? (Section 5.5.2.2)

RQ3 How does the constraint preprocessing described in Section 5.3.2 affect the execution time
of JOACO? (Section 5.5.2.3)

5.5.1 Benchmarks and Evaluation Settings

We use five different benchmarks, obtained from different sources, to evaluate JOACO: JOACO-
Suite, Pisa-Suite, AppScan-Suite, Kausler-Suite, and Cashew-Suite.

JOACO-Suite is our homegrown benchmark, composed of 11 open-source Java Web appli-
cations/services, with known XSS, XMLi, XPathi, LDAPi, and SQLi vulnerabilities. It is an
extended version of the benchmark used in Section 4.5, enriched with two new applications:
Bodgeit and openmrs-module-legacyui. Bodgeit [18] is a deliberately insecure Web application
developed for the purpose of teaching security vulnerabilities in Web applications. openmrs-
module-legacyui (shortened as OMRS-LUI) [29] is the user interface package of OpenMRS [30], a
widely used, open-source medical record system that manages highly sensitive medical data.

Pisa-Suite contains 12 constraints generated from sanitizers detected by PISA [125]; these
constraints have been used in the experimental evaluation reported in [152].

AppScan-Suite contains 8 constraints derived from the security warnings emitted by IBM
Security AppScan [54], a commercial vulnerability scanner tool, when executing on a set of
popular websites. The generated warnings contain traces of program statements that reflect
potentially vulnerable information flows. Also these constraints have been used in the experi-
mental evaluation reported in [152].

Kausler-Suite contains 120 constraints obtained from eight Java programs via dynamic sym-
bolic execution. A superset of this benchmark (with 175 constraints) has been used for evalu-
ating four string constraint solvers in the context of symbolic execution [62]; the subset used in
this work contains the constraints that were successfully translated into the SMT-LIB format by
the tool provided in the replication package of [62].

Cashew-Suite contains 394 distinct constraints obtained through the normalization of the con-
straints of the SMC/Kaluza benchmark by means of the Cashew tool [23]. The SMC/Kaluza
benchmark [79] contains the 18896 satisfiable 5 constraints of the Kaluza benchmark, converted
to the input format of the SMC solver [79]; the Kaluza benchmark contains constraints corre-
sponding to path conditions generated from a set of JavaScript programs by a symbolic execu-
tion engine [112]. Although the Kaluza benchmark has been widely used for evaluating string
constraint solvers in the past, its high degree of redundancy (high number of constraints equiva-
lent in terms of satisfiability, as highlighted by the recent work on constraint normalization [23])

5Notice that the SMC paper [79] reports a total of 18901 satisfiable constraints, but the evaluation artifacts include
only 18896 constraints.
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led us to rely on Cashew-Suite instead. This was meant to prevent biasing the overall results with
an extremely large and redundant benchmark, without any loss of information.

Since JOACO-Suite is the only benchmark containing the source code of Java Web applica-
tions, it was the only one used for answering RQ1. All five benchmarks were however used
for answering RQ2 and RQ3. Notice that JOACO-Suite, Pisa-Suite, and AppScan-Suite contain
constraints derived from potentially vulnerable Web applications, whereas Kausler-Suite and
Cashew-Suite have been used to evaluate string constraint solvers from a general standpoint
(not necessarily related to security analysis).

We established the ground truth (i.e., whether a path is vulnerable or not) of the constraints
in JOACO-Suite in the following way. WebGoat and Bodgeit are deliberately in-secured applica-
tions for teaching security vulnerabilities and, hence, they already provided the ground truth.
However, as explained in Section 5.5.2.1, JOACO was able to detect four previously unknown
vulnerabilities in Bodgeit. Since TPC-APP, TPC-C and TPC-W are standard benchmarks for test-
ing vulnerability detection tools for Web services, their ground truth was available. Although
Pebble and Roller have been already used as benchmarks for vulnerability detection, no ground
truth was available; therefore, we consulted the US NVD [91] and confirmed the reported vul-
nerabilities, by exploiting them in the deployed applications and by locating their correspond-
ing paths in the source code. RAP, PSH, Regain and OMRS-LUI did not have any recent entries
in NVD; therefore, we established the ground truth by manually inspecting their source code
and verified potential vulnerabilities by exploiting them in the deployed applications.

The ground truth of Pisa-Suite and AppScan-Suite was established in [152]. As for Kausler-
Suite, its constraints are all satisfiable since they were generated by dynamic symbolic execution.
The ground truth of Cashew-Suite was established by running Cashew [23], which counts the
number of models for every constraint: a model count greater zero indicates satisfiability.

We ran the experiments on a machine equipped with an Intel i7 2.4 GHz processor, 8 GB
memory, running Apple Mac OS X 10.13.

The applications and the constraints included in the benchmark used for the evaluation are
available on the tool web site [128].

5.5.2 Experimental Results

5.5.2.1 Effectiveness of Vulnerability Detection

To answer RQ1, we executed JOACO on the JOACO-Suite benchmark and compared it with
two state-of-the-art vulnerability detection tools for Java Web applications: LAPSE+ [98] and
SFlow [53]6. Similarly to JOACO, LAPSE+ and SFlow provide an end-to-end solution to detect
vulnerabilities, since they take as input the source code of an application and produce a vulner-
ability report. Both tools are based on taint analysis and thus require to specify sources, sinks,
and sanitization procedures. More specifically, LAPSE+ requires users to specify (similarly to
JOACO) the bytecode signatures of sources, sinks, and sanitization functions in a library file;
SFlow requires users to manually annotate the functions in code corresponding to sources and
sinks7. Hence, before executing these tools on the JOACO-Suite benchmark, we specified/anno-

6SFlow has been shown [53] to perform better than Andromeda [137], a commercial product from IBM.
7In the case of SFlow, we could not annotate sanitization operations because, different from what is reported in

the corresponding paper [53], the implementation of SFlow does not support “untaint” annotations for sanitization
functions.
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Table 5.6: Vulnerable and non-vulnerable paths in the applications contained in the JOACO-
Suite benchmark. A vulnerable path corresponds to a single vulnerability.

Application LOC # Paths Vulnerable Non-Vulnerable

XML XPATH XSS LDAP SQL XML XPATH XSS LDAP SQL

WebGoat 24,608 15 1 2 0 0 8 0 1 0 0 3
Roller 52,433 13 0 0 3 0 0 7 0 3 0 0
Pebble 36,592 13 2 0 4 0 0 1 0 6 0 0
Regain 23,182 6 0 0 3 0 0 0 0 3 0 0
PSH 1,964 4 1 0 0 0 0 1 0 2 0 0
TPC-APP 2,082 12 0 0 0 0 6 0 0 0 0 6
TPC-C 9,184 34 0 0 0 0 30 0 0 0 0 4
TPC-W 2,470 6 0 0 0 0 3 0 0 0 0 3
RAP 442 1 0 0 0 1 0 0 0 0 0 0
Bodgeit 3,376 21 0 0 9 0 9 0 0 2 0 1
OMRS-LUI 34,074 4 0 0 4 0 0 0 0 0 0 0

4 2 23 1 56 9 1 16 0 17

Total 190,407 129 86 43

Table 5.7: Comparison of the effectiveness in vulnerability detection on the JOACO-Suite bench-
mark among LAPSE+, SFlow, and JOACO (tp: true positives, tn : true negatives, fp: false posi-
tives, fn : false negatives, pd : recall, pr : precision, E: failing cases, �: timeout cases, t(s): execu-
tion time with constraint preprocessing switched on (+Opt) and switched off (−Opt).

App LAPSE+ SFlow JoanAudit+CVC4+ACO-Solver JOACO

tp tn fp fn pd pr E t(s) tp tn fp fn pd pr E t(s) tp tn fp fn pd pr E � t(s) tp tn fp fn pd pr E� t(s)

−Opt +Opt

WebGoat 5 3 1 6 45 83 6 7.4 9 4 0 2 82 100 0 26.4 11 4 0 0 100 100 0 0 224.0 11 4 0 0 100 100 0 0 389.9 362.2
Roller 0 10 0 3 0 – 7 4.9 1 3 7 2 33 13 0 8.3 3 10 0 0 100 100 0 10 1228.1 3 10 0 0 100 100 0 0 244.0 210.7
Pebble 1 6 1 5 17 50 8 13.9 6 1 6 0 100 50 0 4.8 6 7 0 0 100 100 0 5 660.1 6 7 0 0 100 100 0 5 708.1 689.6
Regain 0 3 0 3 0 – 6 0.8 0 3 0 3 0 – 0 7.5 3 3 0 0 100 100 0 0 14.6 3 3 0 0 100 100 0 0 87.5 74.3
PSH 0 3 0 1 0 – 4 0.4 0 3 0 1 0 – 0 2.5 1 3 0 0 100 100 0 2 264.4 1 3 0 0 100 100 0 2 288.7 286.4
TPC-APP 2 6 0 4 33 100 7 4.2 5 5 1 1 83 83 0 7.7 5 6 0 1 83 100 0 3 327.0 5 6 0 1 83 100 0 0 171.7 151.9
TPC-C 0 4 0 30 0 – 0 8.8 0 4 0 30 0 – 0 7.9 30 4 0 0 100 100 0 1 152.5 30 4 0 0 100 100 0 0 661.9 566.4
TPC-W 0 3 0 3 0 – 1 2.8 3 3 0 0 100 100 0 4.8 3 3 0 0 100 100 0 0 12.7 3 3 0 0 100 100 0 0 27.3 71.9
RAP 0 0 0 1 0 – 1 0.2 0 0 0 1 0 – 0 1.3 1 0 0 0 100 100 0 0 37.7 1 0 0 0 100 100 0 0 36.8 51.2
Bodgeit 14 0 3 4 78 82 0 14.8 0 3 0 18 0 – 21 7.4 14 3 0 4 78 100 0 3 446.6 17 3 0 1 94 100 0 0 337.3 297.5
OMRS-LUI 0 0 0 4 0 – 0 4.8 0 0 0 4 0 – 4 1.4 4 0 0 0 100 100 0 0 23.3 4 0 0 0 100 100 0 0 42.1 36.6

Total 22 38 5 64 26 81 40 62.9 24 29 14 62 28 63 25 80.0 81 43 0 5 94 100 0 24 3391.0 84 43 0 2 98 100 0 7 2995.4 2798.7

tated all the functions of the applications in the benchmark so that all the tools were configured
to consider the same source/sink and sanitization signatures. The input for all tools was the
complete source code of all the (Web) applications contained in the JOACO-Suite benchmark.

We also compared JOACO with our previous work JoanAudit+CVC4+ACO-Solver, i.e., the
combination of our security slicing tool JoanAudit (see Chapter 3) with CVC4+ACO-Solver. CVC4-
+ACO-Solver is the combination of the CVC4 solver with ACO-Solver, which was shown to be
the best performing constraint solver (in the context of vulnerability detection) when compared
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with CVC4, Z3-str2, and Z3-str2+ACO-Solver (see Chapter 4). ACO-Solver can be seen as the
predecessor of JOACO-CS: it does not include any constraint preprocessing and its automata-
based solving module supports a limited set of string operations; furthermore, unlike JOACO-
CS, ACO-Solver relies on an external constraint solver. We set the time-out for ACO-Solver in
CVC4+ACO-Solver and for JOACO-CS in JOACO to 120 s.

Table 5.7 shows the evaluation results. Columns tp, tn , fp, and fn denote, respectively,
true positives (number of vulnerable cases correctly identified), true negatives (number of non-
vulnerable cases correctly identified), false positives (number of non-vulnerable cases reported
as vulnerable), false negatives (number of vulnerable cases not detected). Column pd reports
the recall, i.e., the percentage of vulnerable cases detected among the total vulnerable cases, and
is computed as pd = tp/(tp + fn) ∗ 100. Column pr reports the precision, i.e., the percentage
of correctly identified vulnerable cases among the total, reported vulnerable cases, and is com-
puted as pr = tp/(tp + fp)∗100. Column E indicates the number of failing cases, i.e., the number
of paths for which the analysis resulted in a run-time error, and column� indicates the number
of time-out cases, i.e., the number of cases that took longer than 120 s to analyze.

Notice that, in the context of vulnerability detection, when there is a failing or time-out case,
the tool neither detects a vulnerability nor produces a false alarm. Hence, failing and time-out
cases may result either in a false negative or in a true negative, depending on whether the path
is actually vulnerable.

We answer RQ1 by examining the recall, the precision, and the number of failing cases in Ta-
ble 5.7. LAPSE+ detected 22 vulnerabilities (true positives) and did not detect (i.e., produced
false negatives for) 64 vulnerabilities; SFlow detected 24 vulnerabilities and did not detect 62
vulnerabilities. These values translate into a recall value of 26% for LAPSE+ and 28% for SFlow.
Upon manual inspection we noticed that the false-negative cases were mainly due to improper
input propagation across functions. SFlow also failed to analyze all web programs included in
Bodgeit and OMRS-LUI because of compilation errors. JoanAudit+CVC4+ACO-Solver detected
81 vulnerabilities and missed 5 vulnerable cases, achieving a recall of 94%. JOACO achieved a
high recall of 98%, detecting 84 vulnerabilities and missing only 2 vulnerable cases in TPC-APP
and Bodgeit. JOACO missed one vulnerability for TPC-APP because it was unable to generate
the attack condition due to the presence of constraints on Java collections, which are not sup-
ported in the current version of JOACO. For Bodgeit, JOACO did not report an SQL injection
because the threat model 11 of Table 2.1 does not consider as vulnerable a user input sanitized
through the parseInt method.

In terms of precision, LAPSE+ reported 5 false positives and failed to analyze 40 cases, re-
sulting in a precision of 81%; SFlow reported 14 false positives and failed in 25 cases, resulting
in a precision of 63%. In both cases, the false positives were mainly due to the lack of constraint
solving capabilities in these tools. JoanAudit+CVC4+ACO-Solver achieved a precision of 100%,
with no false positives and failing cases; however, it timed-out in 24 cases, out of which 21 were
non-vulnerable and 3 were vulnerable.

JOACO achieved 100% precision, with no failing cases and only 7 time-out cases, which
are all UNSAT cases and hence could not be solved by the search-based solver. Compared to
JoanAudit+CVC4+ACO-Solver, JOACO could handle 17 more cases without running into time-
outs.

We remark that JOACO-Suite is an extended version of the benchmark used in Section 4.5.
For the two new applications added to the benchmark (Bodgeit and OMRS-LUI), JOACO was
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Table 5.8: Comparison of the effectiveness in constraint solving among JOACO-CS (with con-
straint preprocessing switched on and off), Z3-str3, CVC4 and CVC4+ACO-Solver (X: correct
answers, X : incorrect answers, ?: unknown cases, E: failing cases, �: time-outs, S: search-based
solver invocation).

Suite Z3-str3 CVC4 CVC4+ACO-Solver JOACO-CS

SAT UNSAT TOTAL ? E � SAT UNSAT TOTAL ? E � SAT UNSAT TOTAL ? E � S SAT UNSAT TOTAL ? E � S

X X X X X X X X X X X X X X X X X X X X X X X X

JOACO 0 14 0 20 0 34 52 35 8 1 72 1 20 2 92 0 35 0 1 81 1 22 2 103 0 0 24 33 0 85 0 37 0 122 0 0 7 7
Pisa 0 8 0 4 0 12 0 0 0 0 6 0 0 0 6 0 0 6 0 6 0 0 0 6 0 0 6 0 0 8 0 4 0 12 0 0 0 0
AppScan 0 8 0 0 0 8 0 0 0 0 3 0 0 0 3 0 0 5 0 3 0 0 0 3 0 0 5 0 0 8 0 0 0 8 0 0 0 0
Kausler 0 118 0 0 0 118 1 1 0 0 117 0 0 0 117 0 0 3 0 117 0 0 0 117 0 0 3 0 0 120 0 0 0 120 0 0 0 0
Cashew 0 381 0 12 0 393 0 1 0 0 381 0 12 0 393 1 0 0 0 382 0 12 0 394 0 0 0 0 0 382 0 12 0 394 0 0 0 0

Total 0 529 0 36 0 565 53 37 8 1 579 1 32 2 611 1 35 14 1 589 1 34 2 623 0 0 38 33 0 603 0 53 0 656 0 0 7 7

able to detect 4 previously unknown vulnerabilities (1 XSS and 3 SQLi vulnerabilities) for
Bodgeit and 4 previously unknown XSS vulnerabilities for OMRS-LUI. LAPSE+ detected only
3 of the new vulnerabilities for Bodgeit and could not detect any of the new vulnerabilities for
OMRS-LUI; as mentioned above, SFlow could not analyze any program included in Bodgeit and
OMRS-LUI. The new vulnerabilities found in Bodgeit have been reported on the project web
site8; the new vulnerabilities for OMRS-LUI have been reported and confirmed by the Open-
MRS developers.

We also compared the four tools in terms of execution time; the detailed results are shown in
columns t(s) of Table 5.7. LAPSE+ took 62.9 s; SFlow took 80.0 s; JoanAudit+CVC4+ACO-Solver
took 3391.0 s; JOACO, with constraint preprocessing enabled (+Opt), took 2798.7 s. The execu-
tion time of JOACO is much larger than that of LAPSE+ and SFlow, since it includes several steps
such as security slicing and constraint solving; nevertheless, such a large time is not practically
relevant for the purpose of vulnerability detection since such analysis is performed when new
code is committed and is not required to provide immediate feedback. Furthermore, JOACO is
about 17.5% faster than JoanAudit+CVC4+ACO-Solver.

The answer to RQ1 is that the proposed approach implemented in JOACO is highly effective
(achieving 98% recall, 100% precision) in detecting injection vulnerabilities; it performs much
better than state-of-the-art vulnerability detection tools, yielding a higher recall (+70%–72%)
and precision (+19%–37%), with no failing cases. This high effectiveness in vulnerability de-
tection comes at the cost of a higher execution time, which is however practically acceptable.
Compared with our previous work JoanAudit+CVC4+ACO-Solver, JOACO detected more vul-
nerabilities, had much less time-out cases, and was faster.

5.5.2.2 Effectiveness of String Constraint Solving

To answer RQ2, we compared the constraint solving capabilities of JOACO when used in the
stand-alone solver mode (dubbed JOACO-CS) with three state-of-the-art constraint solvers:

8Issues #17–#20 on https://github.com/psiinon/bodgeit/.
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CVC4 (version 1.4) [74], Z3-str3 (version 4.6.0) [21], and our previous work CVC4+ACO-Solver
presented in Chapter 4.

For the comparison, we used the constraints contained in all five benchmark suites, for a
total of 663 constraints. We set the time-out for solving each constraint to 600 s.

Table 5.8 shows the evaluation results. For each solver, we indicate the number of correct
(column X) and incorrect (columnX) answers returned by the tool, grouped by the cases “SAT”
and “UNSAT”, as well as the total; column ? indicates the number of cases for which the solver
returned “UNKNOWN”; column E indicates the number of cases for which the solver execution
failed, due to a run-time error or crash; column � indicates the number of cases in which the
solver timed out; column S indicates the number of constraints for which the search-based
solver had to be invoked.

We answer RQ2 by examining the number of correct and incorrect results, and the number
of unknown/failing/time-out cases in Table 5.8.

For JOACO-Suite, JOACO-CS was the most effective solver, with 122 correct results (out of
129) and no unknown/failing cases. The 7 time-out cases are the ones discussed above for the
same benchmark in the answer to RQ1: they are UNSAT cases and therefore, the search-based
solver could not find satisfying solutions for them. By contrast, Z3-str3 yielded 34 correct with
52 unknown cases, 35 failing cases, and 8 time-outs; CVC4 yielded 92 correct results and 2 in-
correct ones, with 35 failing cases; CVC4+ACO-Solver yielded 103 correct results and 2 incorrect
ones, with 24 time-out cases. The failing cases of CVC4 and Z3-str3 were due to unsupported
operations.
For Pisa-Suite, Z3-str3 and JOACO-CS were the most effective solvers, solving all constraints
correctly; by contrast, both CVC4 and CVC4+ACO-Solver had six timeouts.
AppScan-Suite could be correctly solved by both JOACO-CS and Z3-str3, whereas both CVC4
and CVC4+ACO-Solver had 5 timeouts.
For Kausler-Suite, JOACO-CS was the most effective solver as well, solving all the 120 constraints
correctly. On the other hand, CVC4 and CVC4+ACO-Solver yielded 117 correct results and 3
time-out cases; Z3-str3 yielded 118 correct results, one unknown and one failing case.
For Cashew-Suite, CVC4+ACO-Solver and JOACO-CS solved all the constraints correctly. CVC4
reported one unknown case; Z3-str3 had one failing case.

To sum up, even if we disregard our own benchmark JOACO-Suite (which is the only one
with constraints with unsupported operations) and consider only the other four benchmarks
(which contain only supported operations), CVC4 correctly solved 519 constraints and had 14
time-outs (and also one unknown case); Z3-str3 correctly solved 531 constraints and had one
unknown and two failing cases. Instead, JOACO-CS correctly solved 534 constraints with no
time-outs. Also, our previous work CVC4+ACO-Solver solved less constraints (and had more
time-outs) than JOACO-CS.

We also compared the constraint solving time of the four tools; the results are shown in Ta-
ble 5.9, together with the number of constraints in each benchmark. In total, Z3-str3 took 5961 s
(≈1.5 h) and correctly solved 565 cases; CVC4 took 9125 s (≈2.5 h) and correctly solved 611 cases;
CVC4+ACO-Solver took 30 797 s (≈8.5 h) and correctly solved 623 cases; JOACO-CS took 16 716 s
(≈4.5 h) with constraint preprocessing enabled (+Opt) and correctly solved 656 cases. The aver-
age execution time for solving one constraint (computed as Total time

#constraints ) is 9.0 s for Z3-str3, 13.8 s
for CVC4, 46.5 s for CVC4+ACO-Solver, 25.2 s for JOACO-CS (+Opt). On average, our approach
is 1.8× slower than the most effective state-of-the-art solver (CVC4), and about 2.8× slower
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Table 5.9: Execution time (in seconds) for Z3-str3, CVC4, CVC4+ACO-Solver and JOACO-CS
with constraint preprocessing switched off (−Opt) and constraint preprocessing switched on
(+Opt)

Suite #Constraints Z3-str3 CVC4 CVC4+ACO-Solver JOACO-CS (−Opt) JOACO-CS (+Opt)

JOACO 129 4949.0 69.1 14505.4 5999.4 5707.9
Pisa 12 4.5 3964.8 4006.8 212.9 178.3
AppScan 8 10.5 3002.2 3026.4 168.2 144.0
Kausler 120 945.8 2043.5 8804.3 6079.7 5031.3
Cashew 394 51.4 45.6 454.5 6827.9 5654.9

Total 663 5961.1 9125.1 30797.4 19288.2 16716.4
Avg. Time 9.0 13.8 46.5 29.1 25.2

than Z3-str3. JOACO-CS is about 1.8× faster than our previous work CVC4+ACO-Solver; this
is due to the larger number of string operations supported by JOACO-CS, which reduces the
number of constraints (from 33 to 7) for which it is necessary to invoke the search-based solver.
Nevertheless, JOACO-CS could solve the highest number of constraints in our benchmarks.

The answer to RQ2 is that the proposed constraint solving approach implemented by JOACO-
CS is highly effective in string constraint solving and performs similarly to or better (+7%–14%
more correctly solved cases) than state-of-the-art string constraint solvers, including our previ-
ous work, depending on the benchmark considered. In terms of execution time, JOACO-CS is
1.8× slower than the fastest, state-of-the-art constraint solver. However, since JOACO-CS can
solve more cases and constraint solving is typically an offline activity, with no stringent time
requirements, we consider this slowdown as practically acceptable.

5.5.2.3 The Role of Constraint Preprocessing

To answer RQ3, we re-ran all the experiments conducted for answering RQ1 and RQ2 by using
JOACO and JOACO-CS with preprocessing disabled (denoted by −Opt); we then compared the
resulting values for the execution time with the ones obtained with the preprocessing enabled
(denoted by +Opt).

For the use case of vulnerability detection, columns −Opt and +Opt in Table 5.7 show that
enabling the constraint preprocessing led to reduction of about 200 s in execution time (from
2995.4 s down to 2798.7 s) corresponding to a relative reduction of about 7%. For the use case of
string constraint solving, columns JOACO-CS (−Opt) and JOACO-CS (+Opt) in Table 5.9 show
that JOACO-CS with constraint preprocessing disabled took 19 288.2 s, whereas it took only
16 716.4 s with constraint preprocessing enabled, corresponding to an execution time reduction
of about 15%.

Since constraint preprocessing only impacts the efficiency of constraint solving, it has a
higher impact on the execution time of JOACO-CS for string constraint solving (see Table 5.9)
than for the case of vulnerability detection with JOACO, which also includes the security slicing
step (see Table 5.7).

The answer to RQ3 is that constraint preprocessing has a positive impact on the execution
time of our approach, with reductions ranging between 7% and 15% depending on the use case.
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5.6 Summary

In this chapter, we presented an integrated analysis technique for injection vulnerabilities, which
leverages the synergistic combination of security slicing with hybrid constraint solving.

This work addresses the challenge of analyzing the source code of a Java Web application
for detecting injection vulnerabilities in a scalable and effective way. We have proposed an in-
tegrated approach that seamlessly combines static analysis-based security slicing with hybrid
constraint solving, that is constraint solving based on a combination of automata-based solving
and meta-heuristic search (Ant Colony Optimization). We use static analysis to extract minimal
program slices from Web programs relevant to security and to generate the attack conditions,
i.e., conditions necessary for the slices to be vulnerable. We then apply a hybrid constraint solv-
ing procedure to determine the satisfiability of attack conditions and thus detect vulnerabilities.

The experimental results, using a benchmark comprising 11 diverse and representative Web
applications, show that our approach (implemented in the JOACO tool) is significantly more
effective at detecting injection vulnerabilities than state-of-the-art approaches, achieving 98%
recall and does so without producing any false alarm. We also compared the constraint solv-
ing module of our approach with state-of-the-art constraint solvers, using five different bench-
marks; our approach correctly solved the highest number of constraints (656 out of 663), without
producing any incorrect result, and was the one with the least time-outs and failing cases. In
both scenarios, the execution time was practically acceptable, given the offline nature of vulner-
ability detection.
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Chapter 6

Related Work

This chapter explains the related work and is organized as follows: Section 6.1 highlights the
related work for security slicing (presented in Chapter 3); Section 6.2 illustrates the related
work to search-driven constraint solving (presented in Chapter 4) and the integrated approach
for vulnerability detection (presented in Chapter 5).

6.1 Security Slicing and Auditing

Related work that deal with the security auditing of XSS, SQLi, XMLi, XPathi, and LDAPi vul-
nerabilities can be broadly categorized into two areas: static taint analysis and program slicing
approaches.

6.1.1 Static Taint analysis

Static taint analysis approaches label data from input sources as tainted data and then detect
vulnerabilities if the tainted data flows into sinks — which may be exploited by tainted data —
without passing through any sanitization function (declassifier). Implementations of static taint
analysis are available for Java Web systems [3, 78, 98, 138, 137, 53], for PHP Web systems [60,
143, 141, 92, 83], and for Android systems [13].

In general, there are three key differences between static taint analysis approaches and our
security slicing approach. First, static taint analysis approaches tend to focus on data-flow based
tainting only, and do not consider control-dependency information. This information is often
essential for correctly identifying vulnerabilities or auditing the correctness of input sanitiza-
tion procedures, since selection statements are often used to check user inputs. For example,
consider the code snippet below, corresponding to a sampled, simplified slice, extracted from
WebGoat:
1 String employeeId = req.getParameter(’id’); // SOURCE
2 if(Integer.parseInt(employeeId) == EMPLOYEE_ID))
3 results = stmt.executeQuery("SELECT * FROM employee WHERE userid =" + employeeId); // SINK
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In the above example, a taint analysis approach would falsely report a vulnerability. More
specifically, it would detect a data-flow from the input source at line 1 to the sink at line 3, with-
out considering that the sanitization achieved through the call to parseInt at line 2 would have
an impact on the value of employeeId itself. By contrast, our approach correctly identifies the
path from line 1 to line 3 as secure due to the presence of the parseInt declassifier; hence, it
does not report a vulnerability. In general, lack of support for control-flow dependencies can
be the source of many false positive results: Jovanovic et al.’s taint analysis tool [60] reported
five false positives; Tripp et al. [137] reported 40% false positives on analyzing WebGoat; Shar
and Tan [118] also reported that Livshits and Lam’s taint analysis approach [78] yielded 20%
false positives due to missing control-dependency information. Although there are some taint
analysis approaches [28, 65, 114, 61, 154] that analyze control-dependency information, but they
support programming languages different from Java and/or do not address injection vulnera-
bilities (with the exception of Dytan [28], which addresses SQLi in the context of dynamic taint
analysis for x86 code).

Second, declassification is the only form of filtering provided by taint analysis approaches
(e.g., as in [92]) whereas our approach additionally filters irrelevant and known-good library
functions and also fixes some of the vulnerabilities automatically.

Last, our approach specifically targets XSS, SQLi, XMLi, XPathi, and LDAPi vulnerabili-
ties. Current taint analysis-based approaches address only SQLi and/or XSS. To the best of our
knowledge, only Pérez et al. [98] readily address XMLi, XPathi, and LDAPi for Java Web sys-
tems. However, since Pérez et al.’s work is not evaluated, it is difficult to verify its effectiveness.
Medeiros et al. [83] readily address XPathi and LDAPi but for PHP Web systems. It is possible
to adapt existing approaches to support XMLi, XPathi, and LDAPi and even equip them with
our proposed filtering mechanisms. However, since developers are often not security experts,
these tasks may not be trivial. By contrast, our tool is already configured with an extensive
library of input sources, sinks, and declassifiers specific to these vulnerabilities and thus, it can
be used out-of-the-box.

6.1.2 Program slicing

Krinke [67] proposes barrier slicing approaches that could allow auditors to filter specific parts
of the program that are known to be correct. Our approach makes use of this idea to prune Java
libraries that are irrelevant to our security auditing purposes.

Despite the various slicing approaches proposed in the literature, in practice there are only
two slicers that can handle all Java features: Indus [59] and Joana [47]. Indus is built on top
of Soot [139], a Java bytecode analysis framework, and is less precise than Joana, since it does
not fully support interprocedural slicing [47]. As discussed in Section 3.1, Joana provides a
sound and precise approach for computing slices and chops. As our approach and tool are
built on top of Joana, we have the same advantages. However, Joana only generates slices for
generic tasks like checking information flow and debugging. By contrast, we provide additional
techniques for pruning statements in the slices produced by Joana and target security auditing
of vulnerabilities. Therefore, Joana represents our baseline for comparison.

Shar and Tan [118] propose a program slicing-based approach for auditing the implemented
defense features to prevent XSS. The approach of Yamaguchi et al. [144, 145] extracts abstract
syntax trees and program dependence graphs relevant to auditing buffer overflow vulnerabili-
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ties in C/C++ code. The key difference between these approaches and ours is that they do not
focus on minimizing the size of the extracted code, because their main objective is to extract all
the possible defense features. By contrast, we extract all the features relevant for security au-
diting and yet, we also minimize the size of the extracted code by filtering irrelevant or secure
code, making security auditing scalable and practical.

Backes et al. [15] present a program slicing-based approach for auditing privacy data leak-
age issues in Android code. Similarly to our approach, they also reduce SDG size by filtering
known-good and irrelevant library code. But unlike our approach, they do not consider de-
classification and automated fixing. Further, as our objectives are different, the specifications of
sources, sinks, and library APIs are also different. Hassanshahi et al. [49] propose an approach
for detecting Web-to-App Injection (W2AI) attacks, an attack type where an adversary can ex-
ploit a vulnerable app through the bridge that enables interaction between the browser and
apps installed on Android phones. Like our approach, they also make use of program slicing
based on the ICFG in conjunction with a pre-defined set of sources and sinks. However, the
main objective of their work is the detection of 0-day W2AI vulnerabilities rather than helping
security analysts to audit source code for finding and fixing vulnerabilites of various kind.

6.2 Hybrid Analysis Framwork

Our proposed approach is related to work done in the areas of code-based security analysis,
penetration testing, (string) constraint solving, constraint solving through heuristic search, and
search-based test input generation for string data types.

Code-based security analysis. This category includes two types of approaches: taint analysis
and symbolic execution. Approaches bases on taint analysis (such as [78, 60, 46, 138, 137, 53])
check whether application inputs are used in sinks without passing through known sanitiza-
tion functions. However, these approaches tend to generate many false alarms [17, 6] since they
cannot reason about the implementation of sanitization functions. Some approaches [140, 141]
incorporate string analysis into taint analysis, improving the precision in the analysis of SQLi
and XSS vulnerabilities. Other approaches [17, 150, 148] reason about the adequacy of input
sanitization code by combining taint analysis and string constraint solving using finite state au-
tomata operations.
Approaches based on symbolic execution [64, 112, 153] perform (dynamic) symbolic execution
on programs and generate path conditions. They then use a constraint solver to check these
conditions and determine whether inputs used in sinks may contain security attack values.
These approaches, which rely on (string) constraint solving, exhibit the same limitations (e.g.,
limited support for complex string operations) of constraint solvers, which are discussed fur-
ther below. In addition, these approaches switch to dynamic symbolic execution for scalability
when encountering the path explosion problem; however, such a strategy may lead to omit to
analyze certain parts of the program and thus, miss vulnerabilities. By contrast, our approach
applies security slicing to extract only program parts relevant to security; this greatly improves
scalability without sacrificing vulnerability detection effectiveness.

Penetration testing. Penetration testing tools like Acunetix [2], BurpSuite [99], and App-
Scan [54] are useful for detecting the presence of vulnerabilities in Web programs. Antunes
and Vieira [6] evaluated these tools and observed that penetration testing approaches miss vul-
nerabilities and are in generally less accurate than taint analysis approaches. More specifically,
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penetration testing cannot detect vulnerabilities that require to craft the corresponding attack
values in order to exploit the weaknesses of input sanitization functions. On the other hand,
our approach, being based on constraint solving, returns a concrete attack value for the input
(i.e., a solution) when it identifies a vulnerability.

(String) constraint solving. There are many constraint solvers that provide, to a certain degree,
support for strings: bit-vector-based solvers like Hampi [63], Kaluza [112], and Utopia [11];
automata-based solvers like Violist [72], Stranger [147, 149], ABC [14], StrSolve [51], Pass [73],
StringGraph [103], and JST [41]; word-based solvers like Norn [1], S3 [136], and the aforemen-
tioned Sushi, CVC4, Z3-str2 and Z3-str3. Among them, Stranger, JST, StringGraph, S3, CVC4,
Z3-str2 and Z3-str3 support the largest number of string operations (e.g., startsWith, endsWith,
replace, replaceAll, length, and matches) that are essential in the context of vulnerability de-
tection; they also support numeric constraints. Although Hampi and Kaluza have been widely
used as benchmarks for evaluating other solvers (see [74, 152, 136, 1]), they actually support
only a smaller set of string operations than the solvers listed above; also, Hampi does not sup-
port numeric constraints. Support for regular expressions (which are usually used in attack
specifications) is only provided — often in a limited form — by Sushi, Stranger, ABC, Kaluza,
S3, Z3-str2, Z3-str3 and CVC4. Nevertheless, none of them provides full support for a com-
plete string function library of a modern programming language or for sanitization libraries like
OWASP ESAPI and Apache Commons Lang. This means that they fail when they encounter an
unsupported operation in an input constraint; in turn, this may lead to missing vulnerabili-
ties. By contrast, in our approach we use a search-based meta-heuristic algorithm to handle
unsupported operations.

Constraint solving through heuristic search. Heuristic search has been already proposed [34] for
solving non-linear arithmetic constraints with operations from unsupported numeric libraries;
the heuristics is optimized to explore an n-dimensional space over real numbers. In our ap-
proach we focus on solving constraints with string/mixed and integer operations; the search
heuristics is optimized, in terms of search strategy and fitness functions, for these kinds of con-
straints. Further, the approach in [34] is evaluated in terms of coverage of test generators, while
we evaluated our approach in the context of vulnerability detection.

Search-based test input generation for string data types. There are a few proposals [4, 82, 39]
that apply a search-based approach (typically genetic algorithms) for generating test cases in
the form of string input values, in the context of satisfaction of branch coverage criteria. Their
goal is to improve coverage by driving the search for string values, either with useful seed
values [4, 82] or by hybridizing global search and local search [39]. In our case, attack conditions
(which include full path conditions and attack specifications) are much more complex than
branch conditions and thus we need to reduce the search space. Since we rely on automata-
based solvers for search space reduction, our search algorithm works on automata and, as a
result, we had to devise a search strategy that is effective on graph representations. This was
the main reason to select Ant Colony Optimization, which resulted in a significantly different
search strategy than the ones proposed in the above-mentioned approaches.

Automated Mitigation. There are approaches that automatically mitigate code injection prob-
lems by sanitizing potentially malicious user inputs [113, 111] or by inserting runtime mecha-
nisms that check against security policies [22, 121]. CSAS [111] automatically inserts sanitization
routines into the code generated through Web templating frameworks, which ensure untrusted
user inputs are properly sanitized. ScriptGuard [113] learns which sanitizers to use for certain
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program paths during a training phase, infers incorrect sanitizations, and fixes them by apply-
ing the correct sequences of sanitizers. Synode [121] statically computes templates of the values
passed to the (Node.js) APIs and synthesizes a security policy from these templates, which is
used to detect potential attacks at runtime. XSS-Guard [22] learns legitimate scripts a Web ap-
plication may create by observing normal operation behaviors and removes any anomalous
script at runtime.

Similar to these approaches, JOACO also applies a light-weight automatic sanitization dur-
ing the security slicing step. However, by contrast, our approach does not involve dynamic
analysis or runtime checks; we designed our approach based on static analyses such that it
can be used by developers during software development. Furthermore, these approaches focus
on XSS issues only whereas ours work on common injection issues (XSS, SQLi, XMLi, XPathi,
LDAPi).
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Chapter 7

Conclusions & Future Work

7.1 Conclusions

The goal of this thesis is to provide a scalable approach, based on symbolic execution and con-
straint solving, which aims to effectively find injection vulnerabilities in the server-side code of
Java Web applications and which generates no or few false alarms, minimizes false negatives,
overcomes the path explosion problem and enables the solving of complex constraints.

We have tackled the path explosion problem and the challenge of solving complex con-
straints by proposing an integrated hybrid vulnerability analysis framework for injection vul-
nerabilities in Web applications, which leverages the synergistic combination of security slicing
and hybrid constraint solving.

Security slicing mitigates the path explosion problem by generating only the constraints that
characterize the security slices of the program under analysis. This step allows us to identify
paths and statements in the program where vulnerabilities can be exploited; this renders the
remainder of the approach scalable, including symbolic execution.

The second step takes as input the attack conditions generated in the previous step, in the
form of a constraint. The resulting constraint is then given as input to a hybrid constraint solver
which orchestrates a constraint solving procedure for string/mixed and integer constraints with
our search-based constraint solving procedure. The results yielded by the hybrid constraint
solver are used to create the vulnerability report.

This remainder of this chapter is organized as follows: Section 7.2 summarizes the contribu-
tions; Section 7.3 provides directions for future work.

7.2 Contributions

In this thesis we have made the following contributions:

I Sound and scalable security auditing. We define a specific security slicing approach for the
auditing of security vulnerabilities in the server-side code of Web applications.
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II Search-driven constraint solving. A search-driven technique for solving string constraints
with complex string operations in the context of vulnerability detection.

III Integrated Approach. An integrated analysis technique for injection vulnerabilities, which
leverages the synergistic combination of security slicing with hybrid constraint solving.

IV Specialized Security Analysis. The application of the above-mentioned techniques to detect
the five most common types of injection vulnerabilities (XSS, SQLi, XMLi, XPathi, LDAPi)
in the context of Java Web applications.

V Tool support. The implementation of the proposed techniques in prototype tools: JoanAudit,
i.e., the tool which implements our security slicing approach, ACO-Solver and JOACO-CS,
i.e., the tools that implement hybrid constraint solving, and JOACO, i.e., the implementa-
tion of the integrated approach for vulnerability detection.

VI Extensive empirical evaluation. An extensive empirical evaluation of the approaches men-
tioned above.

The experimental results show that our approach (implemented in the JOACO tool) is sig-
nificantly more effective at detecting injection vulnerabilities than state-of-the-art approaches
and does so without producing any false alarm.

We also compared the constraint solving module JOACO-CS of our approach with state-
of-the-art constraint solvers, using five different benchmarks; our approach correctly solved
the highest number of constraints without producing any incorrect result, and was the one
with the least time-outs and failing cases. In both scenarios, the execution time was practically
acceptable, given the offline nature of vulnerability detection.

7.3 Future Work

As part of future work, we will adapt our integrated vulnerability detection approach to widely-
used Java Web frameworks such as Spring [120] or Play Framework [75], and we plan to integrate
our approach into build management tools like Maven [9] or Gradle [35]. Furthermore, we will
conduct a user study to assess the usefulness of our tool in industrial settings.
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