
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Modeling Security and Privacy Requirements: a Use Case-Driven Approach

Phu X. Maia, Arda Goknil⁎,a, Lwin Khin Sharc, Fabrizio Pastorea, Lionel C. Brianda,
Shaban Shaameb

a SnT Centre for Security, Reliability and Trust, University of Luxembourg, Luxembourg
b EverdreamSoft (EDS), Switzerland
c School of Computer Science and Engineering, Nanyang Technological University, Singapore

A B S T R A C T

Context: Modern internet-based services, ranging from food-delivery to home-caring, leverage the availability of
multiple programmable devices to provide handy services tailored to end-user needs. These services are deliv-
ered through an ecosystem of device-specific software components and interfaces (e.g., mobile and wearable
device applications). Since they often handle private information (e.g., location and health status), their security
and privacy requirements are of crucial importance. Defining and analyzing those requirements is a significant
challenge due to the multiple types of software components and devices integrated into software ecosystems.
Each software component presents peculiarities that often depend on the context and the devices the component
interact with, and that must be considered when dealing with security and privacy requirements. Objective: In
this paper, we propose, apply, and assess a modeling method that supports the specification of security and
privacy requirements in a structured and analyzable form. Our motivation is that, in many contexts, use cases are
common practice for the elicitation of functional requirements and should also be adapted for describing security
requirements. Method: We integrate an existing approach for modeling security and privacy requirements in
terms of security threats, their mitigations, and their relations to use cases in a misuse case diagram. We in-
troduce new security-related templates, i.e., a mitigation template and a misuse case template for specifying
mitigation schemes and misuse case specifications in a structured and analyzable manner. Natural language
processing can then be used to automatically report inconsistencies among artifacts and between the templates
and specifications. Results: We successfully applied our approach to an industrial healthcare project and report
lessons learned and results from structured interviews with engineers. Conclusion: Since our approach supports
the precise specification and analysis of security threats, threat scenarios and their mitigations, it also supports
decision making and the analysis of compliance to standards.

1. Introduction

Modern internet-based services like home-banking [1], music-
streaming [2], food-delivery [3], and personal-training [4] are deliv-
ered through multi-device software ecosystems, i.e., software systems
with components and interfaces that are executed on different types of
devices including Web browsers, desktop applications, mobile appli-
cations, smart-TVs, and wearable devices. Most of the multi-device
software ecosystems process private end-user data collected and stored
by different devices, such as credit balance reported by banking ap-
plications, locations visited by end-users, and health status tracked by
personal training applications. The adoption of multi-device software
ecosystems augments security and privacy risks because of the presence
of multiple attack surfaces (points at which security attacks can be

executed), including malware that steals consumer and corporate data
from smartphones [5] and Web applications that unintentionally ex-
pose confidential data [6]. Therefore, security and privacy have become
a crucial concern in the development of software ecosystems, starting
from requirements analysis to testing.

To identify the security requirements of a multi-device software
ecosystem, it is necessary to take into consideration the characteristics
of the specific service being developed and of the device types on which
the service is going to be deployed. An example requirement of a home-
banking smartphone service is that the user should automatically log off
when the phone screen is locked to prevent phone thieves from acces-
sing the bank account. This requirement is inappropriate for other types
of services, e.g., personal training services which are used by runners
and thus should be accessible without logging in, even after a screen

https://doi.org/10.1016/j.infsof.2018.04.007
Received 9 November 2017; Received in revised form 19 February 2018; Accepted 16 April 2018

⁎ Corresponding author.
E-mail addresses: xuanphu.mai@uni.lu (P.X. Mai), arda.goknil@uni.lu, goknil@svv.lu (A. Goknil), lkshar@ntu.edu.sg (L.K. Shar), fabrizio.pastore@uni.lu (F. Pastore),

lionel.briand@uni.lu (L.C. Briand), shaban@everdreamsoft.com (S. Shaame).

Information and Software Technology 100 (2018) 165–182

Available online 19 April 2018
0950-5849/ © 2018 Elsevier B.V. All rights reserved.

T

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/156903569?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.sciencedirect.com/science/journal/09505849
https://www.elsevier.com/locate/infsof
https://doi.org/10.1016/j.infsof.2018.04.007
https://doi.org/10.1016/j.infsof.2018.04.007
mailto:xuanphu.mai@uni.lu
mailto:arda.goknil@uni.lu
mailto:goknil@svv.lu
mailto:lkshar@ntu.edu.sg
mailto:fabrizio.pastore@uni.lu
mailto:lionel.briand@uni.lu
mailto:shaban@everdreamsoft.com
https://doi.org/10.1016/j.infsof.2018.04.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2018.04.007&domain=pdf

lock (which normally happens while running). Examples of device
specific characteristics that impact on security requirements include
Web applications running on dedicated servers that are always online
and thus prone to brute force attacks via the network. Mobile appli-
cations, instead, are often idle or offline, but they usually run on a
device that is potentially shared with malicious applications inad-
vertently installed by end-users. Such applications can steal private data
if it is not properly protected (e.g., through encryption). Therefore, it is
crucial to precisely model and analyze security and privacy require-
ments of such multi-device software ecosystems early in their devel-
opment.

In this paper, we propose, apply, and assess a use case-driven
modeling method that supports the specification of security and privacy
requirements of multi-device software ecosystems in a structured and
analyzable form. Use cases are one of the most common means adopted
by software engineers to elicit requirements because they ease the
communication between stakeholders [7]. Therefore, to achieve wide-
spread applicability, the need for integrating security requirements
with use case modeling warrants the development of a use case-driven,
security requirements modeling method that is, in our context, tailored
to the development of multi-device software ecosystems.

Considerable research has been devoted to eliciting and analyzing
security requirements using various forms of use cases (e.g., abuse
cases [8,9], security use cases [10], and misuse cases [11–14]). How-
ever, the applicability of these approaches in the context of security and
privacy requirements modeling for multi-device software ecosystems
shows limitations with respect to (1) their support for explicitly speci-
fying various types of security threats (a security threat is a possible
event that exploits a vulnerability of the system to cause harm), (2) the
definition of threat scenarios (a threat scenario is a flow of events
containing interactions between a malicious actor and system to cause
harm), and (3) the specification of mitigations for these threats.

These three features are essential in the type of business context we
target where it is required to explicitly identify the threat scenarios that
may affect important business operations in order to identify appro-
priate mitigation schemes and trade-offs between functional require-
ments and security and privacy concerns. It is also expected that such
security requirements, specified in a structured and analyzable form,
provide support for security testing, for example by helping with the
identification of attack surfaces. In addition to specifying security
threats, a common practice in many environments requires mitigation
schemes to be documented for the stakeholders to demonstrate com-
pliance with applicable security and privacy standards and regulations.
However, existing approaches lack reusable templates to specify such
mitigation schemes.

The goal of this paper is to address the above challenges by pro-
posing a use case-driven, security requirements modeling method called
Restricted Misuse Case Modeling (RMCM), which adapts existing methods
and extends them. In RMCM, we employ misuse case diagrams pro-
posed by Sindre and Opdahl [13] to model security and privacy re-
quirements in terms of use cases. Misuse cases describe attacks that may
compromise use cases; security use cases specify how to mitigate such
attacks. For eliciting security threats and threat scenarios in a struc-
tured and analyzable form, we adopt the Restricted Use Case Modeling
method (RUCM) proposed in [15] to write use case specifications.
RUCM is based on a template and restriction rules, reducing ambi-
guities and incompleteness in use cases. It was previously evaluated
through controlled experiments and has shown to be usable and ben-
eficial with respect to making use cases less ambiguous and more
amenable to precise analysis and design [16–23]. However, since
RUCM was not originally designed for modeling security and privacy
requirements, we extend the RUCM template with new restriction rules
and constructs, targeting the precise modeling of security threats.
Further, we provide a template for mitigation schemes and three mi-
tigation schemes that are pre-specified with standard and secure coding
methods for mitigating common security threats. They can be readily

used and revised as necessary.
In this paper, we focus on one important aspect of privacy: the se-

curity of personal data. More specifically, we support the modeling of
requirements regarding three data protection goals [24]: con-
fidentiality, integrity and availability. The definition of methods to
model other data protection requirements (e.g., unlinkability, trans-
parency, and intervenability) and to target privacy-related activities
other than information processing (e.g., dissemination or collec-
tion [25]) is out of the scope of this paper (related work includes reports
and regulations on data minimization, collection limitation, and pur-
pose specification [26–29]).

Leveraging on the analyzable form of our models, RMCM employs
Natural Language Processing (NLP) to report inconsistencies between a
misuse case diagram and its RMCM specifications, and to analyze the
compliance of such specifications against the provided RMCM tem-
plates. NLP is also used to identify and highlight the control flow
leading to different threat scenarios and the steps in RMCM specifi-
cations that refer to interactions between malicious actors and the
system. The latter provides security testers with information about at-
tack surfaces on which security testing should focus. To summarize, the
contributions of this paper are:

• RMCM, a security requirements modeling method supporting the
precise and analyzable specification of security threats, threat sce-
narios, and their mitigations, in the context of use case driven de-
velopment of multi-device software ecosystems;

• a practical toolchain, available at our tool website [30], including
(1) a component that extends Papyrus [31] to support misuse case
diagrams, (2) a component that extends IBM Doors [32] to support
misuse case specifications and mitigation schemes in the RMCM
templates, and (3) a component relying on NLP to detect incon-
sistencies among these artifacts;

• a case study demonstrating the applicability of RMCM in a realistic
development context involving multiple service and software pro-
viders in the healthcare domain.

This paper is structured as follows. Section 2 introduces the context
of our case study to provide the motivations behind RMCM. Section 3
describes the limitations of state-of-the-art approaches that we identi-
fied by concretely applying these approaches on our industrial case
study. Section 4 discusses the related work. Section 5 provides an
overview of RMCM. Section 6 focuses on the use case extensions in
RMCM. In Section 7, we present our tool support. Section 8 reports on
our industrial case study, from which we draw conclusions on the
benefits and applicability of the proposed approach. Section 9 con-
cludes the paper.

2. Context and motivation

The work presented in this paper is part of a European Union (EU)
project, i.e., EDLAH2 [33], in the healthcare domain. The project
brings academic institutions and software development companies to-
gether in a consortium to enhance the lifestyle of elderly people
through a gamification-based approach. Gamification transforms activ-
ities that we are normally reluctant to do, e.g., exercising regularly, into
a competition [34]. The objective of the EDLAH2 project is to provide a
set of gamification-based services on mobile devices that engage and
challenge clients (elderly people) to improve their physical, mental, and
social activities.

To achieve this objective, the EDLAH2 consortium is developing a
multi-device software ecosystem, i.e., a set of software components that
can run on multiple types of systems and devices, which include mobile
and wearable device applications (services). In EDLAH2, the mobile
applications are used to incentivize elderly people to perform in-
tellectual activities (e.g., solving logic-based games including Sudoku),
while the wearable device applications are used to track physical

P.X. Mai et al. Information and Software Technology 100 (2018) 165–182

166

activities (e.g., tracking heartbeat and footsteps via a bracelet device).
These applications collect data to store in a central data repository in a
server. The EDLAH2 website, i.e., iCare [35], provides access to the
data collected by the applications. It allows the carers of the clients to
create user accounts and to configure the system (e.g., selecting mobile
applications to install on the client’s devices). The EDLAH2 system has
thus a multi-tier and multi-device architecture, in which mobile ap-
plications interact with Web applications (i.e., software applications
running on a Web server), Web applications interact with databases and
third-party software, and mobile applications interact with mobile de-
vice data storage (e.g., SQLite or SD cards). In this paper, we use the
multi-device software ecosystem developed for EDLAH2 as a case study
to motivate, illustrate, and assess RMCM.

The objective of EDLAH2 entails that end-users (i.e., elderly people)
provide access not only to their personal data but also to their daily
activities. Hence, EDLAH2 is representative of contexts where engineers
face the significant challenge of defining and ensuring security and
privacy requirements in systems that process users’ private data which
is produced and shared by multiple components. Ensuring security and
privacy in such contexts is complicated by multiple factors such as the
presence of multiple components, communication over networks, and
complex information flows involving multiple actors (e.g., end-users,
mobile apps, third party software, and Web apps).

Multi-device software ecosystems like EDLAH2 are thus exposed to
numerous security threats such as information disclosure, information
modification, unauthorized access, and denial of service. A security
threat becomes a reality in the presence of vulnerabilities that can be
exploited by an attacker. Vulnerabilities might be introduced because of
different reasons, ranging from the incomplete identification of security
requirements to the adoption of bad programming practices, or the
misconfiguration of software components and libraries. For example,
disclosure of customer information may depend on improper require-
ments analysis, (e.g., the software analyst does not realize that the
system should not expose the e-mail addresses registered on the plat-
form). SQL injection (SQLI) attacks often depend on bad programming
practices (e.g., SQL statements created without relying on standard li-
braries that include sanitization mechanisms). Cross site scripting (XSS)
vulnerabilities may depend on misconfiguration of default Javascript
protection options. To systematically determine countermeasures
which mitigate security threats, it is thus crucial to explicitly model
both the activities that the system should perform to protect itself and
the potential security threats that depend on the type of software
components being developed.

The current development practice in EDLAH2 is use case-driven
and involves UML use case diagrams and use case specifications for
describing functional requirements. Fig. 1 depicts part of the use case
diagram of EDLAH2. Client and Carer are the main actors of the system
while Bracelet, Game App, Browser and Skype are the secondary actors
representing the third-party apps. The use cases describe seven main
functionalities: get fitter, play games, do social activities, get rewards, log
in, create account, and configure system.

A use case specification contains a detailed description of a use case
and usually conforms to a template [36–38]. The Cockburn tem-
plate [36] had been followed so far to document EDLAH2 use case
specifications in EDLAH2. Fig. 2 shows two examples of such specifi-
cations that are part of EDLAH2. Log in describes how the carer logs into
the system via the iCare website. Get Fitter describes how the client
checks his physical activities and condition (e.g., heart beat rate,
number of steps and minutes of walking) as measured by the wearable
device (i.e., bracelet).

The sample use case specifications reflect scenarios in which the
client and the carer use the system as expected. From these scenarios,
one may also observe that the system accesses, processes, propagates,
and stores the user’s private information. As a result, security and
privacy concerns need to be elicited such that stakeholders can take
appropriate actions where needed.

3. Definition of security and privacy requirements of a software
service ecosystem: Practical challenges

Standard use case templates, such as Cockburn’s, are insufficient to
document security and privacy concerns in use case specifica-
tions [13,14]. One state-of-the-art approach for eliciting security con-
cerns, together with functional requirements, provides a misuse case
specification template [11,13] which extends a use case template with
additional notions such as misuse and mitigation point. We applied this
template in the context of the EDLAH2 project and attempted to elicit

iCare Website (web)

Get
Fitter Play

Games

Do Social
ActivitiesGet

Rewards

Create
Account

System

Client

Carer

Bracelet

GameApp

Browser

Skype

Log in

Fig. 1. Part of the use case diagram of EDLAH2.

1 USE CASE Log in
2 Precondition The system displays the login screen.
3 Basic Path
4 1. The carer enters the user name and password in the login form.
5 2. The system checks in the browser if the user name and password are valid.
6 3. The system builds a database query using the user name and password.
7 4. The system evaluates the query in the database.
8 5. The system checks that the query is successful.
9 6. The system displays the welcome message.
10 Postcondition The carer has successfully logged in the system.
11 Alternative Paths
12 2a. The entered user name or password is invalid.
13 2a1. The system displays the wrong user name or password message.
14 5a. The query is unsuccessful.
15 5a1. The system displays the database error message.
16
17 USE CASE Get Fitter
18 Precondition The client has been successfully logged into the system.
19 Basic Path
20 1. The client requests to get current measurement.
21 2. The system receives the heart beat rate data from the bracelet.
22 3. The system checks whether the received heart beat rate data is correct.
23 4. The system stores the received data.
24 5. The system sets one point as a reward for the client.
25 6. The system displays the received heart beat rate data.
26 7. The system displays one point as a reward.
27 Postcondition The heart beat rate data and reward have been stored.
28 Alternative Paths
29 1a. The client requests to get activity data.
30 1a1. The system receives the client’s activity data from the bracelet.
31 1a2. The system checks whether the activity data is correct.
32 1a3. The system stores the activity data.
33 1a4. The system sets two point as a reward for the client.
34 1a5. The system displays the activity data.
35 1a6. The system displays two points as a reward.
36 1a3a. The system displays the error for incorrect activity data.
37 4a. The system displays the error for incorrect heart beat rate measurement.

Fig. 2. Sample use case specifications for part of the EDLAH2 system.

P.X. Mai et al. Information and Software Technology 100 (2018) 165–182

167

some of the security and privacy concerns for the use case specifications
reported in Fig. 2. Some results of our attempt are shown in Fig. 3. The
Get Unauthorized Access and Expose Information from Mobile misuse case
specifications we targeted are similar to the example given in [13]. The
basic and alternative paths in Fig. 3 describe the sequence of actions
that malicious actors go through to cause harm. The mitigation points
document the actions in a path where the misuse case can be mitigated
(Lines 19–20 in Fig. 3).

Based on this attempt, we identified three challenges that need to be
considered when capturing security and privacy requirements in use
case-driven development of multi-device software ecosystems:

Eliciting security threats in an explicit, precise form (Challenge
1). We noticed that although the template we applied supports speci-
fying various threats, it does not support their specification in a precise
and unambiguous manner. This is the same for other related approaches
such as [8,10,11,13]. We identified three main limitations, reported in
the following.

First, existing templates do not provide glossary or keywords for
specifying common security threats. For instance, the Get Unauthorized
Access misuse case in Fig. 3 corresponds to unauthorized access via
SQLI (for categorizing the security threats, we follow the common, well-
known terminology given in OWASP [39,40]). In the specification, the
term “SQL” was not even used. Likewise, the Expose Information from
Mobile misuse case corresponds to information disclosure due to in-
secure data storage.

Second, existing templates do not provide a precise and systematic
way to determine malicious actors in the specification. However, pro-
viding security extensions or keywords for precisely specifying common
security threats, specific to the device type, would be useful. It would
facilitate unambiguous communication among stakeholders and sup-
port various automated analyses, including security testing (e.g.,
identify the attacks that might hit a specific functionality and verify if
its implementation properly prevents the attacks by simulating the at-
tacker behaviour).

Third, existing templates do not explicitly distinguish between
malicious actor-system interactions and other types of interactions. For

instance, the steps in Lines 4–5 in Fig. 3 correspond to the malicious
actor-system interactions, whereas the steps in Lines 6–9 correspond to
the system’s internal state changes. The interactions between malicious
actors and the system contain information about the attack surfaces.
But since the specification provided in Fig. 3 does not make this im-
portant difference, it might be difficult for a security tester to precisely
determine where the attack surface is. In this case, the attack surface
consists of the parameters in the login URL.

Eliciting threat scenarios in a structured and analyzable form
(Challenge 2). The existing templates have two shortcomings in eli-
citing threat scenarios. First, they do not have any explicit control flow
structure. For instance, the Get Unauthorized Access misuse case in Fig. 3
tries a list of user name and password tuples iteratively until the mal-
icious user logs into the system to get privileges. Since we do not have
any explicit loop structure in the template we use for misuse cases in
Fig. 3, we tried to describe the loop condition for the threat in non-
restrictive natural language (‘... until the system checks that...’ in Line
15 in Fig. 3). However, it is not clear where the iteration starts in the
execution flow. Second, this does not allow to discern different types of
scenarios — scenarios that a malicious actor may follow to successfully
harm the system and scenarios that may not result in such harm. For
instance, in the Get Unauthorized Access misuse case in Fig. 3, there are
two alternative paths — the one starting from Line 12 leads to the
scenario where the malicious actor harms the system and the other one
starting from Line 16 leads to the scenario where the malicious actor
fails to harm the system. As a result, it may not be easy for the stake-
holders or an analysis tool to distinguish control flows and conditions
leading to threat scenarios. Therefore, such specifications can be am-
biguous and cannot support automated analyses.

Eliciting mitigation schemes (Challenge 3). After identifying se-
curity threats in threat scenarios, it is crucial to specify mitigation
schemes matching these threats to demonstrate that the software design
complies with applicable security and privacy standards and regula-
tions. Such mitigation schemes provide the developers with guidance
on how to prevent security threats specified in misuse cases. Different
security threats and threat scenarios often share common mitigation
methods and guidance. For instance, the two different security threats
— information disclosure via SQLI and unauthorized access via SQLI —
can both be mitigated by parameterizing the SQL queries. Existing work
only supports specifying the flow of events mitigating each specific
threat scenario (see Section 4). Such flows of events are embedded in
misuse case specifications where one should specify the mitigation
points (Lines 18–20 in Fig. 3). There is no structured way to specify the
guidance for developers to mitigate security threats. In other words,
there is a lack of template support for specifying mitigation schemes
that can be reused and adapted for various security threats.

In this work, we focus on how to best address these three challenges
in a practical manner. Automated test generation for security testing is
one potential application of our method, but we leave it out for future
work.

4. Related work

There are numerous approaches in the literature to model security
and privacy requirements [41–46] [47,48]. In a comprehensive litera-
ture review [42], security requirements engineering methods were
distinguished across six categories: multilateral (e.g., [49–51]), UML-
based (e.g., [13,52,53]), goal-oriented (e.g., [54–60]), problem frame-
based (e.g., [61–66]), risk/threat analysis-based (e.g., [67–72]), and
common criteria-based approaches (e.g., [73–75]). The multilateral ap-
proaches follow the principles of multilateral security [76] and focus on
consolidating and reconciling the views of multiple stakeholders on the
security and privacy requirements. Goal-oriented methods guide en-
gineers towards the refinement of security [54–59] and privacy [54,60]
features from high level requirements and have been applied to check
whether a system meets its security requirements [54,58], to identify

1 MISUSE CASE Get Unauthorized Access
2 Precondition At least one client account has already been created in the

system.
3 Basic Path
4 1. The crook tampers with the values in the login URL.
5 2. The crook submits the tampered URL directly to the system.
6 3. The system builds a query using the values provided in login URL.
7 4. The system evaluates the query in the database.
8 5. The system checks that the query is successful.
9 6. The system displays the welcome message.
10 Postcondition The crook has gained some privileges.
11 Alternative Paths
12 5a. The query is unsuccessful.
13 5a1. The system displays the database error message, revealing some

information about the database structure.
14 5a2. The crook tampers with the values in the login URL again

based on the exposed information.
15 5a3. The crook submits the tampered URL directly to the system

until the system checks that the query is successful.
16 5a3. The crook reaches maximum number of login attempts.
17 5a3a. The system displays the error message for login.
18 Mitigation Points
19 mp1. In Step 3, the system sanitizes the values before building the query.
20 mp2. In Step 5a1, the system does not replay the exact database error message

and instead, it displays only non-confidential information.
21
22 MISUSE CASE Expose Information from Mobile
23 Precondition The mobile device also has a malware installed.
24 Basic Path
25 1. The malware requests access to user data stored in the system.
26 2. The system accepts the request.
27 3. The system sends user data to the malware.
28 Postcondition The malware has obtained user’s private information.
29 Alternative Paths
30 2a. The system rejects the request.

Fig. 3. Sample misuse case specifications for part of the EDLAH2 system.

P.X. Mai et al. Information and Software Technology 100 (2018) 165–182

168

trade-offs between security and other requirements [59], and to iden-
tify the architecture that suits the given goals [60]. The risk/threat
analysis-based approaches consist of the identification of security goals
and threats and focus on the analysis of the effects of these threats
based on system specific information like trust relations among par-
ties [68], likelihood of incidents [67], or data storage locations [77].

The problem frame-based approaches make use of the ideas un-
derlying Jackson’s problem frames [78], and have been adopted to
model both security [61–65] and privacy requirements [66]. The
common criteria-based approaches follow an international standard for
information technology security evaluation [73].

Since our modeling method is based on misuse cases [13] extending
UML use case diagrams, it can be considered a UML-based approach. It
also relies on a form of risk/threat analysis to capture various security
threats, to elicit threat scenarios in a structured form, and to specify
mitigation schemes. In the following, we discuss the previous works in
the literature with respect to the challenges identified in Section 3,
mainly focusing on the UML-based and risk/threat analysis approaches.

Eliciting security threats in an explicit, precise form.Most of the
existing approaches rely on UML diagrams and use case specification
templates to capture security threats. McDermott and Fox [8,9] propose
abuse cases to describe harmful interactions (i.e., security threats) be-
tween a system and malicious actors, but relations between abuse cases
and other types of requirements are not described. Sindre and Op-
dahl [13] extend UML use case diagram with misuse cases and security
use cases to model security threats (i.e., misuse), security-related re-
quirements (i.e., threat mitigation) and other functional requirements.
Alexander discusses automation to support misuse case dia-
grams [79,80] and reports experiences with misuse case diagrams in an
industrial setting [81]. Rosado et al. [82] show how misuse case dia-
grams are employed to model the security requirements of a grid ap-
plication, while Rostad [12] extends misuse case diagrams with the
notion of vulnerability, i.e., a weakness that may be exploited by at-
tackers. Misuse case diagrams can be employed to represent misuse
cases, security use cases and their relations, but not to capture security
threats in misuse cases. To address this problem, Sindre and Op-
dahl [14] adapt a use case specification template for detailed textual
descriptions of threat scenarios. Common criteria-based ap-
proaches [74,75] apply the adapted template with misuse case dia-
grams [13,14] to elicit security threats and requirements. This template
is extended for misuse case generalization [83] and reuse [84]. Deng
et al., [85] employ the misuse case template [14] in their privacy threat
analysis framework to elicit privacy threat scenarios. Omoronyia et al.,
[86] introduce two new fields into the template to highlight contextual
properties of privacy misuse cases. Firesmith [10] proposes a similar
template for security use cases which represent security-related re-
quirements combined with a form of threat scenarios. However, these
templates do not provide any construct or restriction rule to capture
security threats in a precise and analyzable form to support automated
analyses. El-Attar [87,88] proposes an approach to guide the analysts
towards developing consistent misuse case diagrams and specifications.
El-Attar’s specifications can be automatically processed thanks to the
presence of keywords, e.g., misuse case and include, that are used within
the fields present in common use case templates. However, the key-
words introduced by El-Attar do not support capturing security threats
in an explicit form.

Goal-based approaches, such as KAOS [89], Secure Tropos [58], and
attack trees [90], provide templates for specifying threats and common
security goals. For instance, KAOS [89] models threats as fault trees,
also referred to as obstacle trees, in which the root is a negation (anti-
goal) of a security goal. Based on the anti-goals, the approach de-
termines how attackers may harm the system under design. PriS [60] is
a goal-oriented methodology that focusses on privacy requirements. It
includes a set of patterns that describe the processes to put in place in
order to achieve a specific privacy goal, and provides a method to de-
termine the architectural solution that fits the requirements. PriS

mostly focusses on goals, and provides little support to model privacy
threats. CORAS [67], a risk analysis-based approach, rather focuses on
the risks posed by security threats and on guiding the analysts in per-
forming security risk analysis. It supports eliciting security threats using
UML-like diagrams and some security-related notations at a high level.
Rashid et al. [91] employ the grounded theory method [92] and in-
cident fault trees [93] to discover and document emergent security
threats which are implicit within and across a variety of security in-
cidents. Risk-analysis approaches targeting privacy concerns instead
focus on the definition of questionnaires that support analysts in the
identification of privacy risks, but do not provide templates or models
to capture the risks in a structured form [77,94].

Other approaches focus on security policy violations [52,95,96] and
conflicting security objectives [49,51]. SecureUML [52] is a modeling
language for the model-driven development of secure, distributed sys-
tems based on UML, but its modeling support is limited to specifying
policies for access control threats. Breaux et al., [95,96] propose a
methodology which maps privacy requirements in natural language
text to a formal language in description logic to detect conflicting
privacy requirements causing threats. The analysis of conflicting
privacy requirements is limited to the detection of conflicts between
which data is actually processed and which data processing activity is
declared in the policy. Multilateral approaches [49,51] analyze general
security and privacy needs of all the stakeholders of a system-to-be to
consolidate different stakeholders’ views on security threats. These
approaches focus on identifying and resolving conflicts between dif-
ferent security goals of stakeholders. Their artifacts (e.g., UML models
and attack trees) may explicitly capture interactions among security
requirements as well as between security and functional requirements.
Automated analysis of the artifacts to identify conflicts and ambiguities
is also possible with some form of formalization work. However, the
existing multilateral approaches provide rather conceptual frameworks.
For example, SQUARE [51] only recommends to apply existing tech-
niques that best suit the project at hand to model various threats.

In general, all the above-mentioned approaches provide systematic
methods for modeling security threats and requirements in terms of
security goals, anti-goals, attack trees, and/or access control policies at
a high level. However, they do not focus on capturing security threats in
a precise, detailed, and structured form. Therefore, automated analyses
of the artifacts produced by these approaches are often not possible
without incorporating additional formal notations such as temporal
logics or logical formulas, which can be a tedious requirement even for
developers and security analysts. In contrast to these approaches, our
approach focuses on providing well-defined templates, restriction rules,
and keywords to precisely capture various security threats in misuse
case specifications. As our approach only requires knowledge on use
case specification methods, it is relatively easy for stakeholders to
participate and communicate. The templates, restriction rules and
keywords are proposed such that they enable automated analyses (to
identify conflicts and ambiguities) on the generated artifacts (i.e.,
misuse case diagrams and specifications).

Eliciting threat scenarios in a structured and analyzable form.
The templates proposed for misuse cases [14,87,88], security use
cases [10] and abuse cases [9] extend the common use case templates
in the literature to elicit security requirements. But in general they do
not provide any extension or any control flow structure to system-
atically identify and capture various threat scenarios. Some approaches
employ UML models to use the control flow structures of UML in eli-
citing threat scenarios. For instance, Whittle et al. [97] propose the use
of sequence diagrams for the analysis of threat scenarios in misuse
cases, while Sindre et al. [98] incorporate malicious activities and
malicious actors in UML activity diagrams to model potential attacks.
Secure Tropos [58] incorporates security rules in UML sequence dia-
grams. Song et al., [99] propose to use aspect sequence diagrams to
model access control-related security requirements. CORAS [67] em-
ploys UML sequence and activity diagrams to model the behavior of the

P.X. Mai et al. Information and Software Technology 100 (2018) 165–182

169

system under attack. UMLsec [100] combines several UML diagrams
(e.g., statecharts and interaction diagrams) for modeling and analyzing
threat scenarios. It also proposes some UML extensions (i.e., stereo-
types, constraints, tagged values defined in a UML profile) to capture
security concepts.

Attack trees [101] and Microsoft’s threat modeling approach [90],
which can be considered as a special case of goal-based approaches,
represent attacks or security threats against a system in a tree structure.
The root node in the tree structure represents the attacker’s goal while
leaf nodes represent different ways of achieving that goal. A tree re-
flects the sequences of actions that must be carried out (a threat sce-
nario) to realize a threat. However, it does not capture the conditions
that must be met for the attack to happen. Problem frames are also used
to model security threats [61,62,102]. They are basically diagrams re-
presenting the assets to be protected, the malicious subjects, the po-
tential vulnerabilities of the system that the malicious subjects may
exploit, and the environment through which the malicious users in-
teract with the assets. Hatebur et al., [62] equip problem frames, re-
presenting threat scenarios, with preconditions and postconditions.
Preconditions are specified using logical formulas to express what
conditions must be met for a frame to be applicable.

Although the above-mentioned approaches provide diagrams or
formalizations that employ a form of control flow structures in de-
scribing threat scenarios in a structured form, they do not provide any
systematic way to distinguish scenarios that cause harm from those that
do not. In addition, these approaches generally aim to aid the analysts
for modeling threat scenarios using sequence/activity diagrams or
formal methods. It is not clear whether stakeholders, who are not de-
velopers and with different levels of technical competence, can use
these approaches. Since our approach is based on use cases, it allows
different types of stakeholders to participate and communicate. We
extend the RUCM template because it already provides control flow
structures, e.g., ‘do...while’ and ‘if...then...else...’, which can also be used
for modeling threat scenarios. The new extensions we proposed capture
success and failure scenarios in a structured and analyzable form.

Eliciting mitigation schemes. The template proposed by Sindre
and Opdahl [14] supports mitigation points where one can specify the
flow of events mitigating each specific threat scenario. There is, how-
ever, no structured way to specify mitigation schemes, i.e., the guidance
and methods for developers to mitigate security threats. Our approach
is the first that provides template support for specifying mitigation
schemes, which can be reused for mitigating various security threats.
Further, to the best of our knowledge, the current approaches do not
provide a way for stakeholders to demonstrate compliance of their
software design against applicable security standards, which is an im-
portant requirement in many contexts. Using our mitigation and se-
curity use case templates, this compliance-traceability requirement can
be met.

5. Overview of our modeling method

The process in Fig. 4 presents an overview of our modeling method,
RMCM. It is designed to address the challenges stated above in the use
case-driven development context we described for multi-device soft-
ware ecosystems, and builds upon and integrates existing work. The
RMCM output is a misuse case diagram, use case specifications, se-
curity use case specifications, misuse case specifications, and mitigation
schemes.

In Step 1, Elicit requirements as use cases, security use cases and misuse
cases, the analyst elicits functional and security requirements relying on
a misuse case diagram and the extended RUCM template (hereafter
RMCM template), which are detailed in Section 6. Functional require-
ments and security requirements are captured in the misuse case dia-
gram while it is further detailed in use case, security use case and
misuse case specifications (Challenges 1 and 2). While use cases capture
functional requirements, security use cases capture security

countermeasures addressing potential attacks, which are themselves
represented with misuse cases.

In Step 2, Check conformance for diagram and specifications, RMCM-V
(Restricted Misuse Case Modeling - Verifier), the tool we developed for
RMCM, automatically checks the consistency between the misuse case
diagram and specifications, and between the specifications and the
RMCM template. It relies on NLP. If there is any inconsistency, the
analyst updates the diagram or specifications (Step 1). Steps 1 and 2 are
iterative: the specifications and diagram are updated until the specifi-
cations conform to the RMCM template and they are consistent with the
diagram.

In Step 3, Elicit mitigation schemes for misuse cases, mitigation
schemes are elicited for the security threats specified in misuse cases
(Challenge 3). Different from security use cases specifying the flow of
events mitigating a specific threat scenario, mitigation schemes provide
the secure coding methods adopted by the system, guidelines on how to
educate users and other mechanisms to prevent various security threats
in general. In Step 4, Check conformance for mitigation schemes, RMCM-
V automatically checks whether the mitigation schemes conform to the
mitigation template. Steps 3 and 4 are also iterative: the mitigation
schemes are updated until they conform to the template.

Fig. 4. Approach overview.

P.X. Mai et al. Information and Software Technology 100 (2018) 165–182

170

The proposed method enables engineers to capture security threats
and countermeasures. Risk analysis, i.e., ranking and prioritizing of
security threats, is out of our scope. However, in contexts where risk
analysis drives the engineering process (e.g., to prioritize test
cases [103,104]), the proposed approach can be integrated with ex-
isting risk analysis techniques, for example, techniques that rely on
misuse case diagrams [105]. Similarly, the Common Vulnerability
Scoring System (CVSS) [106] can be used to evaluate the risks due to
vulnerabilities affecting the deployed production system.

In the following sections, we provide a detailed description of the
steps of the proposed approach.

6. Capturing security requirements

In this section, we describe the artifacts produced by RMCM. We
discuss how they were extended, compared to what was proposed in
existing work, and illustrate how they address our three challenges with
the running example.

6.1. Use case diagram with misuse case extensions

To capture misuse cases, security use cases, use cases, and their
relationships, RMCM relies on the misuse case extensions proposed by
Sindre and Opdahl [13] for use case diagrams. We made this choice for
RMCM because of the explicit representation of misuse cases, security
use cases, and their relationships (i.e., threaten and mitigate). In the
following, we briefly introduce our extensions. The reader is referred
to [13] for further details. Fig. 5 depicts part of the misuse case diagram
for EDLAH2.

As shown in Fig. 5, misuse cases, i.e., sequence of actions that a
malicious actor can perform to cause harm, are greyed to distinguish
them from use cases. Likewise, malicious actors (e.g., Malicious app)
are distinguished from benign actors (e.g., Carer) and labeled with the
keyword ‘malicious’. The UML stereotype ≪security≫ is used to

distinguish security use cases that are countermeasures against misuse
cases. In addition to the use case relationships (e.g., include and extend),
mitigate is used for specifying the relationships between security use
cases and misuse cases; and threaten is used for specifying the re-
lationships between misuse cases and use cases [13]. For instance, in
Fig. 5, Validate Website Inputs mitigates Get Unauthorized Access via
SQLI, which threatens Log in. Expose Information via Insecure Data Sto-
rage is an abstract misuse case that is extended by some concrete misuse
cases threatening Get Fitter, Play Games, Do Social Activities, and Get
Rewards. For space reasons, we do not show them here. Please refer to
our website [30] for details.

6.2. Misuse case and security use case specifications

Regarding misuse case specifications, to elicit security threats in a
precise form and to elicit threat scenarios in a structured and analyzable
form (Challenges 1 and 2), we propose the RMCM template, an extension
of the RUCM template, shown in Table 1, and new restriction rules,
shown in Table 2. The misuse case specifications are elicited using this
template, further using the new restriction rules in addition to the
original ones. These template and restriction rules are designed to make
(mis)use case specifications explicit, precise, and analyzable by re-
stricting the use of natural language and by using specific keywords.
Our extensions specifically target the modeling of security and privacy
concerns for multi-device software ecosystems.

Fig. 6 shows two simplified misuse case specifications of EDLAH2
written in RMCM, with all the RMCM keywords written in capital let-
ters.

The original RUCM template provides basic and alternative flows
which we adapted as Basic Threat Flow, Specific/Bounded/Global
Alternative Flow and Specific/Bounded/Global Alternative Threat Flow (see
Table 1). Threat flows specify unwanted incidents. Different from a
basic flow in a use case specification, which describes a nominal sce-
nario for an actor to use the system as intended, a basic threat flow

Get Fitter

Play Games

Do Social
Activities

Get
Rewards

Client

iCare Website (on web)

Log in

SystemCarer

Bracelet

Game App

Browser

Skype

<<Security>>
Validate Mobile

Inputs

<<Security>>
Provide Privacy
Control Settings

Expose Information
via Insecure Data

Storage

<mitigate>

<mitigate>

<include>

<include>

<include>

<include>

<<Security>>
Validate Website

Inputs

<include>

<include>

Get Unauthorized
Access via SQLi

Expose
Information via

XSS

<threaten>

<mitigate>

<mitigate>

Malicious
App

Malicious
User

<threaten>

Create
Account

Modify Information
via XSS<threaten>

<mitigate>

<include>

Fig. 5. Part of the misuse use case diagram for EDLAH2.

P.X. Mai et al. Information and Software Technology 100 (2018) 165–182

171

describes a nominal scenario for a malicious actor to harm the system. It
contains misuse case steps and a postcondition (Lines 6–13 and 38–41).
A misuse case step can be one of the following interactions: a malicious
actor initiates a security attack to the system (Lines 7,8,18,19,20, and
39); the system validates a request and/or data (Line 11); the system
replies to a malicious actor with a result (Lines 12,17,27 and 40). A step
can also capture the system altering its internal state (Lines 9 and 10).
In addition, the inclusion of another use case can be specified as a step.

In RMCM, the assets impacted by a threat scenario are specified in
the Assets field of the misuse case specifications. In addition, the assets
should appear also in the postcondition of the basic threat flow or the
specific/bounded/global alternative threat flows (Lines 13,23,30,41
and 47). In RMCM, the purpose of postconditions is to capture the
consequences that the activities of the malicious user/app have on the

assets (Line 13).
In the following, we discuss with examples how the rules in Table 2

(R1-R15) are applied to address Challenge 1:
The step in Line 7 applies R12 to explicitly specify the security

threat in which a malicious actor, tagged with the ‘MALICIOUS’ key-
word (R1), initiates an SQL injection attack through the two user input
fields ‘user name’ and ‘password’ of the login URL. The ‘SQLI’ keyword
(R3) is used to explicitly specify the type of security threat. The step in
Line 8 specifies another threat in which the malicious actor bypasses
the input validation method, possibly implemented on the client side
(browser), and submits the login URL to the login server program di-
rectly (R13). Notice that in place of the ‘SQLI’ keyword as the value of
the parameter ⟨attack⟩ in R12, the keywords ‘XPATHI’, ‘XMLI’, ‘LDAPI’,
‘XSS’, ‘JSONI’, ‘BO’, ‘RCE’ described in R4-R10 can be used to explicitly

Table 1
Restricted misuse case modeling (RMCM) template.

Misuse Case Name The name of the misuse case.
Brief Description Summarizes the misuse case in a short paragraph.
Precondition What should be true before the misuse case is executed.
Primary Actor The actor which initiates the misuse case.
Secondary Actors The actors which interact with the system to accomplish the misuse case.
Dependency Include and extend relationships to other (mis)use cases.
Generalization Generalization relationships to other misuse cases.
Threats Threaten relationships to use cases.
Assets The assets (potentially) impacted by this threat.
Basic Threat Flow Specifies the main sequence of actions that the misuser carries out to harm the system.

Steps(numbered) Flow of events
Postcondition The resulting unwanted condition and the asset(s) impacted after the threat flow

executes.
Specific/Bounded/Global Alternative Threat

Flow
A specific alternative sequence of actions that the misuser carries out to harm the system.

RFS A reference flow step number where flow branches from.
Steps(numbered) Flow of events
Postcondition The resulting unwanted condition and the asset(s) impacted after the threat flow

executes.
Specific/Bounded/Global Alternative Flow A specific alternative sequence of actions that do not result in any harm to the system.

RFS A reference flow step number where flow branches from.
Steps(numbered) Flow of events
Postcondition The resulting condition after the alternative flow executes.

Mitigation Scheme Refers to the name of the mitigation scheme, specified using our mitigation template, to mitigate this misuse case. This
complements security use case(s).

Table 2
RMCM extensions.

Description Explanation

R1 MALICIOUS Referring to a malicious actor to enforce explicitly describing the actions/steps that involve a malicious actor.
R2 DATA Referring to the security-sensitive or privacy data to enforce explicitly describing the actions/steps that access or

modify security-sensitive or privacy data.
R3 SQLI Referring to SQL injection attacks to enforce explicitly describing the type of security threat.
R4 XPATHI Referring to XPath injection attacks to enforce explicitly describing the type of security threat.
R5 XMLI Referring to XML injection attacks to enforce explicitly describing the type of security threat.
R6 LDAPI Referring to LDAP injection attacks to enforce explicitly describing the type of security threat.
R7 XSS Referring to cross site scripting attacks to enforce explicitly describing the type of security threat.
R8 JSONI Referring to JSON injection attacks to enforce explicitly describing the type of security threat.
R9 BO Referring to Buffer overflow attacks to enforce explicitly describing the type of security threat.
R10 RCE Referring to remote code execution attacks to enforce explicitly describing the type of security threat.
R11 GETS ⟨data⟩ FROM ⟨location⟩ Enforcing the explicit description of the security threats that leak data from the system (e.g., the MALICIOUS app GETS

credit card DATA FROM log files).
R12 PROVIDES ⟨attack⟩ VALUES IN ⟨parameter⟩ Enforcing the explicit description of the security threat that exploits injection vulnerabilities. ⟨attack⟩ is the parameter

in which the injection attack type (listed in R3-R10) is to be specified explicitly (e.g., the MALICIOUS user PROVIDES
SQLI VALUES IN name and password).

R13 BYPASSES ⟨service-request⟩ REQUEST TO
⟨server-program⟩

Enforcing the explicit description of the security threats that enable a malicious actor to bypass any direct interaction
with the client program and directly submit service requests to the server program (e.g., the MALICIOUS app
BYPASSES view users REQUEST TO viewInfo program).

R14 EXPLOITS ⟨error-message⟩ Enforcing the explicit description of the security threat that exploits the information exposed in error or exception
messages. The exposed information enables a malicious actor to understand the system better and conduct informed
security attacks (e.g., the MALICIOUS user EXPLOITS exception message from the system).

R15 SENDS PRIVILEGED ⟨permission⟩ REQUEST TO
⟨client-program⟩

Enforcing the explicit description of the security threat that exploits insecure authorization schemes, which allows a
malicious app to request the mobile app to execute privileged functionalities (e.g., the MALICIOUS app SENDS
PRIVILEGED phone call REQUEST TO the main activity program).

P.X. Mai et al. Information and Software Technology 100 (2018) 165–182

172

elicit other types of code injection security threats. The step in Line 18
applies R14 to specify a security threat that exploits the information
exposed in error or exception messages, tagged with the keyword
‘DATA’ (R2). The step in Line 39 applies R11 to specify a security threat
in which a malicious actor attempts to access the user location data,
tagged with the keyword ‘DATA’ (R2), locally stored in the mobile
device (specified by stating the location of the data: ‘log file of the
system’ in the ⟨location⟩ parameter). Note that in the step in Line 12,
the ‘welcome message’ is not tagged with the keyword ‘DATA’ because
it is not security-sensitive and thus, not considered as an information
asset.

Some of the RMCM extensions in Table 2 are based on the mobile
security threats listed in well accepted standards such as CWE [107]
and OWASP [39], and in more general threat modeling approaches
such as STRIDE from Microsoft [108]. For instance, the security ex-
tension in R15 reflects permission re-delegation threats specific to
mobile apps; also local storage problem of mobile apps is covered by the
extension in R11.

In the following, we discuss with examples how Challenge 2 is ad-
dressed:

The ‘VALIDATES THAT’ keyword (Line 11), described in the ori-
ginal RUCM [15], indicates a condition that must be true to take the
next step, otherwise an alternative flow is taken. It is one of the control
flow structures we use for threat scenarios. In Fig. 6, the system pro-
ceeds to Step 6 (Line 12) if the query is successful (Line 11).

In the original RUCM template, there are three types of alternative
flows: specific, bounded and global. In RMCM, we employ these alter-
native flows to describe failure scenarios for security attacks. A specific
alternative flow always refers to and depends on a condition in a spe-
cific step of the basic threat flow. A bounded alternative flow refers to
more than one step in the basic flow (Lines 24–30) while a global al-
ternative flow refers to any step in the basic flow. For specific and
bounded alternative flows, the keyword RFS is used to refer to one or
more reference flow steps (Line 25).

In the RMCM template (Table 1), we introduce Specific/Bounded/
Global alternative threat flows to describe alternative success scenarios
and to distinguish them from failure scenarios for security attacks. For
instance, in the Get Unauthorized Access via SQLI in Fig. 6, the specific
alternative threat flow describes another success threat scenario (Lines
14–23) where the query is not validated by the system in the basic
threat scenario (Line 11). The bounded alternative flow (Lines 24–30)
describes the failure scenario for the attack given in this alternative
threat flow (Lines 14–23).

Bounded and global alternative (threat) flows begin with the ‘IF ...
THEN’ keyword, which is described in the original RUCM template, to
describe the conditions under which alternative (threat) flows are taken
(Line 26). Specific alternative flows do not necessarily begin with ‘IF ...
THEN’ since a guard condition can be indicated in its reference flow
step (Line 12). In addition, to describe threat scenarios, we also use
other control flow structures — ‘DO...UNTIL’ and ‘MEANWHILE’ —
which are described in the original RUCM template. For instance, in the
Get Unauthorized Access via SQLI misuse case in Fig. 6, the malicious
user tries a list of user name and password tuples iteratively in an at-
tempt to log in the system to obtain privileges. By having such explicit
loop structure (Lines 16 and 21), we are able to specify where the
iteration starts and ends in the execution flow of the threat scenario.

In our previous work [16], we introduced the keyword ‘SENDS ...
TO’ as an RUCM extension for the system-actor interactions. The key-
word eases automatic identification of steps for these interactions. For
instance, Step 6 in Fig. 6 (Line 11) indicates a confirmation message
from the system to the malicious user while Step 2 (Line 40) contains
the user location data from the system to the malicious user.

In RMCM, use case specifications are elicited according to the ori-
ginal RUCM template and restriction rules [15]. Following [13], se-
curity use cases in RMCM specify the flow of events performed by the
system to mitigate the attacks described in misuse cases. Differently
from the original RUCM template, RMCM security use cases include two
additional fields, ‘Compliance’ and ‘Mitigate’, to specify the standard
provisions that the security use case should comply with and to specify
the mitigated misuse case specifications (see Fig. 7).

Fig. 7 shows a simplified security use case (only some fields are
shown) for mitigating the threat Get Unauthorized Access via SQLi. It
provides compliance (Line 3) with a clause in the widely-used security
standard — ISO/IEC 27001:2013 Information Security Management
Systems Requirements.

Even though the proposed templates are generic, our current se-
curity extensions (Table 2) focus on the threats specific to multi-device
software ecosystems including mobile and desktop devices, as per the
focus of our paper. For instance, RMCM has some mobile-specific ex-
tensions in Table 2 while other extensions (e.g., SQLI in R3 in Table 2)
are specific to database-centric Web applications. However, our se-
curity requirements modeling method can a priori be adapted to other
types of systems. The proposed RMCM and mitigation templates in
Table 1 and Table 3 are generic enough to apply our security

1 MISUSE CASE Get Unauthorized Access via SQLi
2 Precondition At least one client account has already been created in the

system.
3 Primary Actor MALICIOUS user
4 Threats Log In
5 Assets client DATA
6 Basic Threat Flow
7 1. The MALICIOUS user PROVIDES SQLI VALUES IN the user name and

password fields of the login url.
8 2. The MALICIOUS user BYPASSES the login REQUEST TO the login

server program.
9 3. The system builds a query with the values provided in the login url.
10 4. The system evaluates the query in the database.
11 5. The system VALIDATES THAT the query is successful.
12 6. The system SENDS the welcome message TO the MALICIOUS user.
13 Postcondition The MALICIOUS user accessed the client DATA without

authorization.
14 Specific Alternative Threat Flow
15 RFS 5
16 1. DO
17 2. The system SENDS the database error message DATA TO the MALICIOUS

user.
18 3. The MALICIOUS user EXPLOITS the database error message DATA from

the system.
19 4. The MALICIOUS user PROVIDES SQLI VALUES IN the user name and

password fields of the login url.
20 5. The MALICIOUS user BYPASSES the login REQUEST TO the login

server program.
21 6. UNTIL the query is successful.
22 7. RESUME STEP 6.
23 Postcondition The MALICIOUS user accessed the client DATA without

authorization.
24 Bounded Alternative Flow
25 RFS SATF1 1-6
26 1. IF the maximum number of login attempts is reached THEN
27 2. The system SENDS the invalid login message TO the MALICIOUS user.
28 3. ABORT.
29 4. ENDIF.
30 Postcondition The MALICIOUS user did not access the client DATA.
31 Mitigation Scheme Secure Coding for Server-side Program
32
33 MISUSE CASE Expose Information via Insecure Data Storage
34 Precondition The mobile device, in which the system is installed, also has a

MALICIOUS app installed. The client has already used the system.
35 Primary Actor MALICIOUS app
36 Threats Get Fitter, Play Games, Do Social Activities
37 Assets user location DATA
38 Basic Threat Flow
39 1. The MALICIOUS app GETS the user location DATA FROM the log file

of the system.
40 2. The system SENDS the user location DATA TO the MALICIOUS app.
41 Postcondition The MALICIOUS app obtained the user location DATA.
42 Specific Alternative Flow
43 RFS 2
44 1. IF the user location DATA is encrypted THEN
45 2. ABORT.
46 3. ENDIF.
47 Postcondition The MALICIOUS app did not obtain the user location DATA.
48 Mitigation Scheme Secure Coding for Mobile Program

Fig. 6. Misuse case specifications in RMCM.

P.X. Mai et al. Information and Software Technology 100 (2018) 165–182

173

requirements modeling method to other application domains by in-
troducing further security extensions into Table 2. However, since we
have only evaluated our approach in the context of multi-device soft-
ware ecosystems (see Section 8), we choose to remain conservative in
our conclusions.

6.3. Mitigation schemes

To address Challenge 3, RMCM provides the mitigation template
given in Table 3. The field ‘Mitigation Scheme’ in misuse case specifi-
cations refers to the scheme mitigating misuse cases (Table 1). Miti-
gation schemes themselves are specified in a separate table, according
to the mitigation template, to facilitate reuse. Differently from security
use cases specifying flow of events mitigating a specific threat scenario,
mitigation schemes provide the secure coding methods adopted by the
system, guidelines on how to educate users and other mechanisms to
prevent various security threats in general. As different security threats
can be mitigated by applying standard secure coding methods, such as
those listed in OWASP [39], once a mitigation scheme is specified, it
can be reused or tailored as necessary for various security threats. The
field ‘Mitigated Misuse Cases’ in Table 3 lists such various security
threats mitigated by a given scheme, while the field ‘Compliance’ lists
the standard provisions that the mitigation scheme addresses.

Mitigation schemes have a different purpose than security use cases.
While a security use case describes the sequence of activities that
should be performed to implement an application specific requirement,
mitigation schemes aim to be more general and capture compliance
with standards, regulations and guidelines. Although, in general, miti-
gation schemes complement security use cases, in some situations these
two specifications might be used to address the same security require-
ments. For example, data encryption, in addition to be a mitigation
scheme item (see Task Item 2 of the mitigation scheme in Fig. 8), might
be modelled as a security use case. The decision to model requirements
with mitigation schemes or security use cases is taken by the software
engineer based on the characteristics of the developed system, ac-
cording to common practices. For example, a usual practice is to adopt
use cases to model significant actor-system interactions but not to
model a functionality exposed by third party services or software

component interfaces (e.g., an API). According to this practice, data
encryption is unlikely to be modelled as a security use case in systems
that implement data encryption using standardized APIs.

Since mitigation schemes and security use cases are complementary,
we have introduced the field ‘Compliance’ in both to provide precise
traceability to specific clauses in standard provisions. Together, these
artifacts provide a means for stakeholders to demonstrate compliance
with applicable security and privacy standards and regulations. For
instance, the mitigation scheme in Fig. 8 mitigates two misuse cases —
Expose Information via Insecure Data Storage and Expose Information due
to Insecure Authentication. It also supports compliance with some of the
clauses in ISO/IEC 27001:2013. On our website [30], we give two ad-
ditional mitigation schemes which are used to mitigate various security
threats for EDLAH2.

One may argue that mitigation schemes seem to be no more than
best secure coding practices with repetitions. We remark that the mi-
tigation schemes precisely specify the actual practices adopted by the
system (because not all of the security standards are applicable in
practice for a specific system). Hence, they provide precise traceability
to specific clauses in standard provisions for stakeholders to demon-
strate compliance. In addition, mitigation schemes provide guidelines
on how to educate users. As they are reusable for different security
threats, repetitions would be minimal.

7. Tool support

We have implemented a tool, RMCM-V (Restricted Misuse Case
Modeling-Verifier), for checking the consistency between the misuse case
diagram and the specifications, and the compliance of the specifications
with the RMCM template. RMCM-V reports inconsistencies such as a
misuse case diagram missing a threaten or mitigate relationship in spe-
cifications. Section 7.1 describes the layered architecture of the tool.
Section 7.2 presents the tool features with some screenshots. For more
details and accessing the tool executables, see: https://sites.google.
com/site/rmcmverifier/.

7.1. Tool architecture

Fig. 9 shows the architecture of the tool. It consists of three layers:
(i) the User Interface (UI) layer, (ii) the Application layer, and (iii) the Data
layer.

User Interface (UI) Layer. This layer supports the activities of eli-
citing security and (mis)use cases, and mitigation schemes (see Fig. 4).
We employ IBM Doors [32] for eliciting security and (mis)use case
specifications and mitigation schemes according to the RUCM and
RMCM templates and their restriction rules. We employ Papyrus [31]

1 SECURITY USE CASE Validate Website Inputs
2 Precondition The system has received some inputs.
3 Compliance ISO/IEC 27001:2013 clause A.9.4:System and application access

control.
4 Mitigate Get Unauthorized Access via SQLi, Expose Information via XSS,

Modify Information via XSS.
5 Basic Flow
6 1. The system sanitizes the inputs according to the input specification.
7 2. The system VALIDATES THAT the inputs are valid.
8 Postcondition The system has successfully validated the inputs.
9 Specific Alternative Flow
10 RFS 2
11 1. The system displays an error message.
12 2. ABORT.
13 Postcondition The system has shown the invalid characters in an error

message.

Fig. 7. A security use case specification.

Table 3
Mitigation template.

Scheme Name The name of the mitigation scheme.
Brief Description A short description about the mitigation scheme.
Actors The actors who are responsible for reviewing and/or

implementing the mitigation tasks.
Mitigated Misuse

Cases
Mitigate relationships to the misuse case(s). It specifies the
misuse case(s) mitigated by the mitigation scheme.

Compliance Specifies the standard/applicable provision(s) that this
mitigation scheme provides compliance.

Mitigation Tasks Specifies the mitigation tasks.
Tasks(numbered) Mitigation Tasks

Scheme Name Secure Coding for Mobile Program.

Brief Descrip-
tion

This mitigation scheme mitigates serious and common security
threats for mobile apps.

Actors Software Developer, Security Engineer.

Mitigated
Misuse Cases

Expose Information via Insecure Data Storage, Expose Infor-
mation due to Insecure Authentication.

Compliance ISO/IEC 27001:2013 clause A.6.1.5:Information security in
project management, clause A.9.4:System & application ac-
cess control, clause A.10.1:Cryptographic controls.

Mitigation 1 OBFUSCATE all apk files using an Android apk obfuscator.
Tasks 2 ENCRYPT sensitive data stored in mobile device, such as

SQLite database, cache and log files, and SD card.
3 Apply root detection check. If jailbreak is detected, the

system warns the client of potential privacy data leakage.
4 Periodically clear caching data automatically.
5 Do not grant files world readable or writable permissions.
6 Perform code integrity violation check.
7 Educate users not to download apps from unofficial stores.

Fig. 8. A sample mitigation scheme.

P.X. Mai et al. Information and Software Technology 100 (2018) 165–182

174

https://sites.google.com/site/rmcmverifier/
https://sites.google.com/site/rmcmverifier/

for misuse case diagrams. Sindre and Opdahl [13] proposed a meta-
model of the basic misuse case concepts and their relation to the UML
metamodel. We adopted and implemented their proposed metamodel
as a UML profile in Papyrus so that we can use the Papyrus model editor
for drawing misuse case diagrams.

Application Layer. This layer supports the main activities of our
modeling method in Fig. 4: checking conformance for diagram and spe-
cifications and checking conformance for mitigation schemes. It contains
three main components implemented in Java: Mediator, Diagram-Spe-
cification Consistency Checker, and Specification-Template Conformance
Checker. To access these Application Layer components through the UI
Layer, we implemented an IBM Doors plugin.

The Mediator is a coordinator that manages the other two compo-
nents. The Specification-Template Conformance Checker employs NLP to
check whether the specifications and mitigation schemes comply with
the RUCM and RMCM templates and their restriction rules. NLP is also
used by the Diagram-Specification Consistency Checker to check the
consistency between the misuse case diagram and specifications.

To support NLP, inspired by our previous work in requirements
engineering (i.e., [18,19,109–111]), we employ a regular expression
engine, called JAPE [112], in the GATE workbench [113], an open-
source NLP framework. We implemented the restriction rules in JAPE.
First, the specifications are split into tokens. Second, Part-Of-Speech
(POS) tags (i.e., verb, noun, and pronoun) are assigned to each token. By
using the restriction rules implemented in JAPE, blocks of tokens are
tagged to distinguish RUCM/RMCM steps (e.g., actor to system interac-
tion, malicious actor to system interaction, and internal actions), types of
flows (i.e., threat-specific, alternative, and global), and mitigation scheme
tasks. The NLP output contains the annotated use case steps and miti-
gation scheme tasks. The Diagram-Specification Consistency Checker and
Specification-Template Conformance Checker process these annotations
with the misuse case diagram to generate the list of inconsistencies
among artifacts.

Data Layer. The specifications and the mitigation schemes are stored
as native IBM Doors format. The misuse case diagram is stored using the
UML profile mechanism.

7.2. Tool features

We describe the most important features of our tool: managing
RMCM artifacts, checking the conformance of RMCM specifications with
the RMCM template, checking the consistency of the misuse case diagram
and the RMCM specifications, and checking the conformance of mitigation
schemes with the mitigation template. These features support the steps of
the modeling process given in Fig. 4.

Managing RMCM artifacts. This feature supports Step 1, Elicit
Requirements as Use Cases, Security Use Cases and Misuse Cases, and Step
3, Elicit Mitigation Schemes for Misuse Cases, in Fig. 4. The analyst can
create, update, and delete the misuse case diagram, the corresponding
specifications, and the mitigation schemes by using the selected mod-
eling tools (i.e., IBM Doors and Papyrus) adopted in RMCM-V.

Checking the conformance of RMCM specifications with the
RMCM template. The conformance of use case, misuse case and se-
curity use case specifications with the RMCM template and extensions
needs to be ensured in Step 2, Check Conformance for Diagram and
Specifications, in Fig. 4. Our tool automatically checks (1) if the use case
and security use case specifications conform to the RUCM template [15]
and (2) if the misuse case specifications conform to the RMCM tem-
plate and the security extensions in Table 1 and in Table 2. Table 4
presents some of the conformance rules for misuse case specifications.
For instance, a specific alternative threat flow should have the header
‘Specific Alternative Threat Flow’ followed by the ‘RFS’ keyword which
refers to a misuse case step in the basic threat flow or in another al-
ternative flow. To implement the conformance rules, RMCM-V le-
verages the information provided by the NLP framework; for example,
in the case of the rule ’GETS ⟨data⟩ FROM ⟨location⟩’, NLP enables
RMCM-V to identify the noun phrase that corresponds with the subject
of the sentence appearing in the use case step. NLP is required also to
verify writing rules inherited from RUCM; for example, to foster clarity
in requirements, RUCM requires that only the present tense be used and
that adverbs be avoided. Both verb tenses and adverbs are determined
using NLP.

Fig. 10 shows a sample result of the conformance checking of the
use case and misuse case specifications for EDLAH2 in Section 6. Four
types of inconsistencies are reported in Fig. 10: (i) the ‘REQUEST’

Fig. 9. Layered architecture of RMCM-V.

P.X. Mai et al. Information and Software Technology 100 (2018) 165–182

175

keyword of R13 in Table 2 is missing in the misuse case specification,
(ii) there is no ‘AUTHENTICATE-BYPASS’ keyword which can be used
with the ‘PROVIDES’ keyword of R12, (iii) the ‘MALICIOUS’ keyword is
missing before the ‘GETS’ and ‘FROM’ keywords of R11, and (iv) the
‘ABORT/RESUME’ step is missing in one of specific alternative threat
flows in the misuse case specification. By clicking the links in the user
interface, the user can access the non-conformant parts of the RMCM
specifications (see ‘id’ links in Fig. 10).

Checking the consistency of the misuse case diagram and the
RMCM specifications. The consistency of the misuse case diagram and
the corresponding specifications needs to be ensured as part of Step 2,
Check Conformance for Diagram and Specifications, in Fig. 4. Table 5
presents some of the consistency rules for misuse case diagrams and
RMCM specifications. For instance, for a misuse case threatening a use
case in the misuse case diagram, the corresponding misuse case speci-
fication should have the threaten relation in its ‘Threats’ field (e.g.,
Lines 4 and 36 in Fig. 6). Fig. 11 presents an example output of the
consistency checking of the misuse use case diagram and the corre-
sponding specifications for EDLAH2 in Section 6.

Four types of inconsistencies are reported in Fig. 11: (i) a misuse
case in the specifications does not exist in the misuse case diagram, (ii)
the ‘Threaten’ relationship in the misuse case diagram does not exist in
the specifications, (iii) the ‘Threaten’ relationship in the specifications
does not exist in the misuse case diagram, and (iv) the ‘Mitigate’ re-
lationship in the misuse case diagram does not exist in the specifica-
tions.

Checking the conformance of mitigation schemes with the
mitigation template. The conformance of the mitigation schemes with
the mitigation template needs to be ensured in Step 4, Check
Conformance for Mitigation Schemes, in Fig. 4. To do so, we derived some

conformance checking rules from the mitigation template in Table 3.
RMCM-V provides a conformance checking report identical to Fig. 10.

8. Evaluation

The goal of our evaluation is to assess, in an industrial context and
on a case study, how our proposed modeling method RMCM and our
tool RMCM-V can improve the practice of eliciting and analyzing se-
curity and privacy requirements, and how well they address the chal-
lenges that we identified in Section 3. To this end, we first formulate
four research questions:

• RQ1: Are the RMCM extensions to the RUCM template expressive
enough to precisely and systematically model security threats?

• RQ2: Are the control flow structures of RMCM expressive enough to
elicit the execution flow of threat scenarios in a structured form?

• RQ3: Does RMCM provide a structured way for stakeholders to
specify guidance for mitigating common security threats?

• RQ4: Does RMCM-V provide useful automated assistance to cor-
rectly apply RMCM?

In light of the research questions given above, we evaluate our se-
curity requirements modeling method, RMCM, via reporting on (i) an
industrial case study, i.e., EDLAH2, to demonstrate the feasibility of
RMCM for a representative system (Section 8.1) and (ii) the results of a
questionnaire survey along with discussions with EDLAH2 engineers,
which aim at investigating how the approach is perceived to address the
challenges listed in Section 2 and, furthermore, at gathering qualitative
insights into the benefits and challenges of applying the method in an
industrial setting (Section 8.2).

8.1. Industrial case study

We report our findings about the feasibility of our modeling method
and its tool support in an industrial context. In order to experiment with
RMCM in an industrial project, we applied it to the security and
privacy requirements of the EDLAH2 project, which has been in-
troduced in Section 2.

To model the security and privacy requirements of EDLAH2

Table 4
Some of the conformance checking rules for misuse case specifications.

Modeling Element Conformance Rules

1 A misuse case step in a threat flow should begin with a step head containing an ordinal number and a dot punctuation.
Misuse Case Steps in Threat Flows 2 Each misuse case step should contain a structure given in one of the RMCM extensions rules R11, R12, R13, R14 and R15 in

Table 2 or a structure given in the original RUCM [15].
1 A specific alternative threat flow should have the header ‘Specific Alternative Threat Flow’.

Specific Alternative Threat Flow 2 A specific alternative threat flow should begin with the ‘RFS’ keyword which refers to a misuse case step in the basic threat
flow or in another alternative threat flow.

3 A specific alternative threat flow should have either an ‘ABORT’ step or a ‘RESUME’ step.
4 A specific alternative threat flow should end with a post condition.
1 A bounded alternative threat flow should have the header ‘Bounded Alternative Threat Flow’.

Bounded Alternative Threat Flow 2 A bounded alternative threat flow should begin with the ‘RFS’ keyword which refers to a range of misuse case steps in the
basic threat flow or in another alternative threat flow.

3 The step after the ‘RFS’ step in a bounded alternative threat flow should include the ‘IF...THEN’ keyword.
4 The last step of a bounded alternative threat flow should have the ‘ENDIF’ keyword.
5 The step before the last step of a bounded alternative threat flow should be an ‘ABORT’ step or a ‘RESUME’ step.
6 A bounded alternative threat flow should end with a post condition.

GETS ⟨data⟩ FROM ⟨location⟩ 1 The subject of the sentence should start with the ‘MALICIOUS’ keyword followed by the ‘GETS’ and ‘FROM’ keywords, while
any string can be used to represent ⟨data⟩.

PROVIDES ⟨attack⟩ VALUES IN ⟨parameter⟩ 1 The subject of the sentence should start with ‘MALICIOUS’ keyword followed by the ‘PROVIDES’ and ‘VALUE IN’ keywords,
while any string can be used to represent ⟨attack⟩ and ⟨parameter⟩.

BYPASSES ⟨req.⟩ REQUEST TO ⟨server-
program⟩

1 The subject of the sentence should start with the ‘MALICIOUS’ keyword followed by the ‘BYPASSES’ and ‘REQUEST TO’
keywords, while any string can be used to represent ⟨req.⟩ and ⟨server-program⟩.

Fig. 10. A conformance checking result reported in RMCM-V user interface.

P.X. Mai et al. Information and Software Technology 100 (2018) 165–182

176

according to RMCM, we first examined initial EDLAH2 documentation
consisting of a use case diagram and specifications, provided by the
software engineers involved in the project and augmented with in-
formal textual notes about security and privacy. Based on these arte-
facts, we worked together with EDLAH2 engineers to build and itera-
tively refine our models. EDLAH2 involves three different development
teams for a total of ten software engineers. All the engineers working on
EDLAH2 hold a master degree and some of them have more than ten
years of software development experience. Since every team is re-
sponsible for different software components, the definition and refine-
ment of the models has been performed independently by each team
with the authors of this paper mentoring them to ensure that the

methodology was applied properly. The training activity has been
performed both during face-to-face project meetings and by sharing
documents and tutorials in e-mails and online project meetings. Table 6
provides the size of the resulting RMCM artifacts.

In Table 6, the column ‘No.’ shows the numbers of use cases, se-
curity use cases, mitigation schemes, and misuse cases we modeled. The
column ‘Relations’ shows the numbers of include, mitigate, and threaten
relations among those artifacts. More precisely, in the case of the first
row, the column ’Relations’ indicates the number of security use cases
included by functional use cases, in the case of the second and third
rows, the column ’Relations’ indicates the number of misuse cases mi-
tigated by security use cases and mitigation schemes, while in the case
of the fourth row the column ’Relations’ indicates the number of use
cases threatened by misuse cases. The columns ‘Alt. flows’, ‘Alt. threat
flows’, ‘Steps’, ‘Malicious steps’ show the numbers of alternative flows,
alternative threat flows, steps, and malicious steps, respectively. ‘Mal-
icious steps’ denotes the steps in misuse case specifications that corre-
spond to interactions between malicious actors and the system. ‘NA’
denotes “not applicable”. In the following paragraphs, we rely on the
data reported in Table 6 to respond to the research questions above.

RQ1
To support eliciting security threats in an explicit, precise form,

RMCM includes two main extensions to RUCM, which are the identi-
fication of threaten relationships in misuse case specifications, and the
adoption of specific keywords to capture common security threats.

To respond to RQ1, it is thus necessary to determine whether these
modeling solutions (i.e., capturing threaten relationships and using
security keywords) are useful, in practice, to precisely model security
requirements. As an indirect measure of usefulness, we look at the
number of occurrences of the threaten relationships and the security
keywords in the misuse specifications of EDLAH2.

As shown in Table 6, we elicited 17 misuse cases threatening nine
use cases, with a total of 20 threaten relationships among them. These
numbers show that several threats tend to be relevant for each use case.
This makes security requirements engineering rather complex, espe-
cially when involving many stakeholders, and it is therefore highly
important to be systematic in identifying and specifying security

Table 5
Some of the conformance checking rules for misuse case diagrams and specifications.

Modeling Element Consistency Checking Rules

1 A misuse case specification should have a name.
2 A misuse case in the misuse case diagram should have a name.

Misuse Case Name 3 Each misuse case specification name should match the name of the corresponding misuse case in the misuse case diagram.
4 Each misuse case name in the misuse case diagram should match the name of the corresponding misuse case specification.
1 A misuser should have a name with the ‘MALICIOUS’ keyword in the misuse case diagram and in the misuse case

specifications.
Associations between Misusers and Misuse

Cases
2 A misuser in the misuse case diagram should be described as Primary Actor or Secondary Actor in the corresponding misuse case

specification.
3 In the misuse case diagram, the relation between a misuse case and its misuser should be described using the association

relationship.
4 Each relation of a misuser and a misuse case in the misuse case specification should be given in the misuse case diagram, and

vice versa.
1 For a misuse case specification with the ‘Threats’ field referring to a use case specification, there should be a ‘Threaten’

relationship from the corresponding misuse case to the corresponding use case in the misuse case diagram.
The ‘Threaten’ Relationship 2 For a misuse case with a ‘Threaten’ relationship to a use case in the misuse case diagram, the corresponding missue case

specification should have the ‘Threats’ field referring to the corresponding use case specification.
1 For a security use case specification with the ‘Mitigate’ field referring to a misuse case specification, there should be a

‘Mitigate’ relationship from the corresponding security use case to the corresponding misuse case in the misuse case diagram.
The ‘Mitigate’ Relationship 2 For a security use case with a ‘Mitigate’ relationship to a misuse case in the misuse case diagram, the corresponding security

use case specification should have the ‘Mitigate’ field referring to the corresponding misuse case specification.

Fig. 11. RMCM-V user interface for reporting inconsistencies.

Table 6
The size of the RMCM artifacts in EDLAH2.

No. Relations Alt. flows Alt. threat
flows

Steps Malicious
steps

Use cases 9 15 26 NA 151 NA
Security use

cases
4 28 7 NA 29 NA

Mitigation
schemes

3 20 NA NA NA NA

Misuse cases 17 20 25 9 216 26

Table 7
Number of Occurrences of the RMCM Restrictions in EDLAH2.

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15

142 120 4 0 0 0 9 2 2 2 2 15 1 6 2

P.X. Mai et al. Information and Software Technology 100 (2018) 165–182

177

requirements.
As for restriction rules, instead, we report in Table 7 the number of

times each restriction rule (R1-R15 in Table 2) is applied when eliciting
misuse cases. As shown in Table 7, we applied almost all the proposed
restriction rules to systematically model the security threats of
EDLAH2. Only three restriction rules (R4, R5, R6) were not used since
EDLAH2 uses an SQL database and they correspond to security threats
targeting XML and LDAP databases.

Furthermore, it is interesting to note that some of the keywords
introduced by RMCM to capture common security threats were not
covered in the initial EDLAH2 documentation. For instance, the ex-
tensions helped us model that the misuse case getting unauthorized access
can be performed by means of an SQLI injection attack (R3 and R12)
while the misuse case exposing information from mobile exploits insecure
data storage (R2 and R11), which was not previously documented.
Capturing specific threats is useful since it helps engineers in identi-
fying mitigation mechanisms to adopt.

Finally, RMCM keywords enable the precise identification of mal-
icious steps, i.e., misuse case steps containing information about the
attack surfaces. Typical attack surfaces include parameters, URLs, files,
and programs. In total, we have identified 216 steps belonging to
misuse cases, and among these, we have identified 26 malicious steps.
The identification of malicious steps is important because it enables
engineers to easily identify attack surfaces and the mechanisms to put
in place in order to prevent these attacks.

RQ2
To respond to RQ2, we analyze the frequency of adoption of control

flow structures in the misuse case specifications of EDLAH2. More
precisely, we focus on the presence of alternative threat flows, which
capture the conditions and the flow of events that may still lead to
successful attacks when the attacks specified in the basic threat flows
fail, and alternative flows, which capture the conditions under which a
potential attack does not harm the system. In addition, we report also
on the frequency of the control flow keywords appearing in the speci-
fications.

Table 6 shows that we explicitly captured nine alternative threat
flows (column ‘alt. threat flows’), and 25 alternative flows (column ‘alt.
flows’), thus suggesting that a security threat can materialize through
multiple threat scenarios which all need to be identified and carefully
analyzed. It is therefore important to have a structured and precise
mechanism to express such scenarios.

Table 8 reports the number of occurrences of the RMCM Control
Flow Structures in the EDLAH2 specifications. As shown in Table 8, we
made frequent use of all the RMCM control flow structures in misuse
cases, except the ‘MEANWHILE’ structure for concurrency sentences.
This happens because in EDLAH2 we did not have to model threat
scenarios in which multiple activities are executed in parallel (e.g.,
because the presence of two malicious users is required to put in place a
specific attack). More generally, misuse cases contain the same set of
keywords appearing in use cases, with the exception of the keyword
‘DO...UNTIL’ which appears in misuse cases only. This keyword is ty-
pically used to describe iterative attacks in misuse cases (e.g., malicious
users trying to log into the system by trying a list of available user-
names). In the use case specifications of EDLAH2, instead, we do not
describe iterative behaviors of valid system users.

RQ3
To respond to RQ3, we focus on security use cases and mitigation

schemes. Table 6 shows that we elicited four security use cases and
three mitigation schemes. They typically mitigate more than one misuse
case since there are 28 mitigate relations between security use cases and
misuse cases and 20 mitigate relations between mitigation schemes and
misuse cases (column ‘relations’). These numbers show that both se-
curity use cases and mitigation schemes can be reused across multiple
misuse cases and, therefore, they are useful and reusable artifacts that
should be captured independently from the misuse cases.

RQ4
To respond to RQ4, we applied RMCM-V to check the conformance

of the first version of the EDLAH2 misuse case specifications with the
RMCM template, and to check the consistency of the misuse case dia-
gram and the (mis)use case specifications in EDLAH2. RMCM-V re-
ported 29 warnings matching four non-conformance types when ana-
lyzing the conformance of the EDLAH2 specifications with the RMCM
template (see Table 9).

Two warnings among the twenty nine warnings in the conformance
checking results (2 / 29 = 6%) were related to the wrong use of the
security keywords in the RMCM extensions in Table 2. All other
warnings were about the violation of the rules in the original RUCM
template [15], e.g., more than one action being described in a single
step.

RMCM-V reported 17 inconsistencies between the misuse case
diagram and the (mis)use case specifications (see Table 10). Four of
them (4 / 17 = 23%) are related to the misuse cases. All other in-
consistencies are about missing use cases, missing ‘Include’ relations or
missing actors in use cases.

We, together with EDLAH2 engineers, were able to correct, in one
iteration, all the issues reported in Table 9 and in Table 10. Our main
observation was that it was easy, after some training, for the EDLAH2
engineers to correctly use our security extensions. Additionally, we
manually inspected the specifications and verified that RMCM-V was
able to identify all the inconsistencies and parts of the misuse case
specifications that did not conform with the RMCM template.

8.2. Questionnaire study and discussions with the engineers

The questionnaire study is described and reported according to the
template provided by Oppenheim [114]. To qualitatively evaluate the
RMCM output in light of the four research questions presented at the
beginning of this section, we had semi-structured interviews with four
engineers holding various roles in the EDLAH2 consortium (i.e., project
manager, software engineer, and game architect). All participants have
substantial software development experience, ranging from three to 28
years. All of them had experiences with use case driven development
and modeling. The interview included a presentation illustrating the
RMCM steps, a tool demo, and examples from EDLAH2. The partici-
pants of the questionnaire study were also involved in the case study
reported in Section 8.1. To perform the case study, we, together with
the participants, had multiple face-to-face project meetings. We had
shared the documents and online tutorials with them. To confirm the
misuse case models of EDLAH2, we had many technical meetings with
the EDLAH2 engineers, including the participants of the questionnaire.

To capture the perception of the participants regarding the potential
benefits of RMCM, and assess the extent to which it addresses the tar-
geted challenges, we handed out a questionnaire [115] including
questions to be answered according to a Likert scale [114], along with
open, written comments. The questionnaire was structured for the
participants to assess RMCM in terms of adoption effort, expressive-
ness, and comparison with current practice. Table 11 shows the ques-
tions appearing in the questionnaire (divided by topic), along with the
average of the scores for each answer (column result). NThe Likert scale
answers provided in the questionnaire were ‘strongly agree’, ’agree’,
‘disagree’, and ‘strongly disagree’ for statement sentences in the

Table 8
Number of Occurences of the RMCM Control Flow Structures in EDLAH2.

Misuse Cases Security Use Cases Use Cases Total

DO... UNTIL 10 0 0 10
IF... THEN 15 0 8 23
VALIDATES THAT 18 8 18 44
MEANWHILE 0 0 0 0
RESUME STEP 12 0 11 23
ABORT 21 8 15 44

P.X. Mai et al. Information and Software Technology 100 (2018) 165–182

178

questionnaire (e.g., question one in Table 11) while ‘very probably’,
‘probably’, ‘probably not’, and ‘surely not’ were for interrogative sen-
tences (e.g., question 2). A discussion of the questionnaire results in
light of the four research questions driving the study follows.

RQ1
The answers given to the first six questions in Table 11 indicate that

the RMCM extensions provide enough expressiveness to conveniently
capture security and privacy requirements in EDLAH2. More precisely,
the answers to questions one and four indicate that misuse case dia-
grams and misuse case specifications properly support the commu-
nication between stakeholders. According to the answers to questions
two and five, the participants would adopt misuse case diagrams and
misuse case specifications in their daily practice. The answers to
questions three and six indicate that the notation of misuse case dia-
grams and the use case specification template enable engineers to
properly capture security requirements. The answers to questions 11,
12 and 13 further conclude that RMCM is valuable to capture security
and privacy requirements.

RQ2
In our questionnaire, we did not include questions explicitly refer-

ring to control flow structures because they are perceived by engineers
as a feature of the approach, which has been evaluated as being ex-
pressive enough to conveniently capture security and privacy require-
ments (question six in Table 11).

RQ3
The answers given to questions seven and eight let us respond to

RQ3. The answers given to these two questions are inconsistent, with
two ‘agree’, one ‘disagree’, and one ‘strongly disagree’ for question seven
(average score 2.25), and two ‘probably’ and two ‘probably not’ for
question eight (average score 2.5). Therefore, we cannot draw clear

conclusions from the data. However, we observed that the responses
given by the participants are linked to their software development ex-
pertise, with the less experienced software engineers providing the
more negative answers.

In general, participants find mitigation schemes less useful than
misuse case specifications (the scores of the first six questions are
higher). This may be due to less experienced engineers being more
reluctant to document their development choices (i.e., the mitigation
schemes adopted). In our context, the absence of such documentation
makes it difficult to demonstrate compliance with the security and
privacy standards and regulations.

RQ4
The answers given to question 14 indicate that RMCM-V provides

useful assistance for minimizing inconsistencies in the RMCM artifacts
of EDLAH2.

The questionnaire study had open, written comments under each
section, in which the participants could state their opinions in a few
sentences about how RMCM addresses the challenges reported in
Section 2. Based on the initial comments, we further discussed three
aspects with the participants: industrial adoption of the approach, ad-
ditional extensions in RMCM, and degree of automation.

8.2.1. Industrial adoption of the approach
Given the current practice in EDLAH2, like in many other en-

vironments, there is no systematic way to capture security requirements
in use case models. Even though the effort required to apply our
modeling approach was considered to be reasonable by EDLAH2 en-
gineers (questions nine and ten in Table 11), they stated that it may be a
challenge to convince engineers to engage in this additional modeling
effort. The costs and benefits of such an activity should be further

Table 9
Results from the analysis of non-conformant (mis)use case specifications in EDLAH2.

Non-conformance Type Explanation Example

Unknown Step A flow step does not follow the restricted rules for (mis)use
case steps, i.e. actor-to-actor interactions, wrong keywords,
wrong structures.

- RESUME step 3 (The STEP keyword should be uppercase)
- The system PROVIDES CLIENT-SENSITIVE-INFO IN the parameters sent TO the
game applications (The structure of the sentence should follow the rule R12 in the
RMCM extensions)

Using Adverb in a Step An adverb is used in a flow step. This violates the rule R11
in the original RUCM [15].

IF the user name in the entered account information is already in the system THEN
(The adverb ‘already’ appears in the sentence).

More than One Action in a
Step

There are two actions in a flow step sentence. This violates
the rule R4 in the original RUCM [15].

The system REQUESTS the user name and password FROM the MALICIOUS user
(This sentence should be split in two steps)

Wrong Structure of Specific
Alternative Flows

A specific alternative threat flow uses RFS in a wrong way
at the beginning of the flow, or the last step of the flow is
not a valid Abort or Resume step.

- RFS SAF 2 (It should be written in the format of ‘RFS SAF 1–2’. In this case, SAF 1
points out the first specific alternative flow)
- There are three specific alternative threat flows using the wrong keyword
‘RESUME STEP’.
- There are two specific alternative flows ending without ‘ABORT’ or ‘RESUME
STEP’.

Table 10
Results from the analysis of the inconsistent misuse case diagram and specifications in EDLAH2.

Inconsistency Type Explanation Example

Lack of Security Use Cases A security use case defined in the RMCM specifications does not
exist in the misuse case diagram.

The Security Use Case ‘Validate Mobile Inputs’ is given in the specification, but
it does not appear in the diagram.

Missing ‘Include’ Relations Some ‘Include’ relations between use cases and security use
cases in the misuse case diagram do not exist in the
specifications.

Nine ‘Include’ relations in the misuse case diagram do not appear in the
specifications. For instance, in the misuse case diagram, the use case ‘Get Fitter’
includes the security use case ‘Provide Privacy Control Settings’, but there is no
relation between them in the specifications.

Missing ‘Threaten’
Relations

Some ‘Threaten’ relations between misuse cases and use cases in
the misuse case diagram do not exist in the specifications, and
vice versa.

The ‘Threaten’ relation between the misuse case ‘Get Unauthorized Access via
SQLi’ and the use case ‘Login’ in the misuse case diagram does not exist in the
specifications.

Missing ‘Mitigate’
Relations

Some ‘Mitigate’ relations between security use cases and misuse
cases in the specifications do not exist in the misuse case
diagram.

The ‘Mitigate’ relation between the security use case ‘Provide Privacy Control
Settings’ and the misuse case ‘Leak Privacy Data from Play Games due to
Unintentional Data Flow’ in the specifications does not exist in the misuse case
diagram.

Missing Actor-(Mis)use
Case Relations

Some Actor - (Mis)use case relations in the misuse case diagram
do not exist in the specifications, and vice versa.

The relation between the use case ‘Create Account’ and the actor ‘Manager’ in
the misuse case diagram does not exist in the corresponding specification.

P.X. Mai et al. Information and Software Technology 100 (2018) 165–182

179

evaluated to help with adoption. This is, however, a common and
general challenge when introducing new practices in software devel-
opment. For example, in the case of EDLAH2, the proposed metho-
dology enabled the identification of effective test cases capable of
identifying 14 vulnerabilities in the developed system. The test cases
were derived according to traditional coverage approaches [116] that
aims to generate a test case for each scenario described in the security
use case and misuse case specifications.

8.2.2. Additional extensions in RMCM
The security extensions in RMCM cover various security and privacy

concerns to be captured in use case models. However,
EDLAH2 engineers stated that, due to rapidly changing software and
hardware technology, new types of security threats will likely need to
be covered with further security extensions. In a way, such extensions
can be treated as a knowledge repository of potential vulnerabilities
and their associated mitigation schemes. Such repository has to be
regularly updated and is expected to help creating awareness of security
threats and solutions across an organization.

8.2.3. Degree of automation
RMCM consists of various automated security requirements mod-

eling and specification activities in the context of use case-driven de-
velopment. Though modeling security requirements in misuse case
models is mostly manual, RMCM-V provides automatic consistency
checking for these models and feedback to the analyst to help them
refine and correct the models. EDLAH2 engineers considered the au-
tomated consistency checking of RMCM artifacts to be highly valuable.

8.3. Threats to validity

The main threat to the validity of our evaluation is the general-
izability of the conclusions. To mitigate the threat, we applied RMCM
to a representative system that includes nontrivial use cases in an ap-
plication domain entailing numerous and varied security threats.
Although we had a relatively low number of respondents in our inter-
views, we selected the respondents to hold various roles and with

substantial industry experience. To limit threats to the internal validity
of the case study, we had many meetings with the EDLAH2 engineers to
verify the correctness and completeness of our models.

9. Conclusion

This paper presents a use case-driven security requirements mod-
eling method, called RMCM, for documenting the security and privacy
requirements of multi-device software ecosystems in a structured and
analyzable form. Our main motivation is to enable security and privacy
requirements modeling by relying on commonly used artifacts in use-
case driven development and by adding a limited number of extensions,
thus achieving widespread applicability.

RMCM builds on and integrates existing work and is supported by a
tool employing NLP for checking the consistency of artifacts and com-
pliance to the RMCM templates. The key characteristic of our method is
that it captures threat scenarios and mitigation schemes in an explicit
and structured form, thus enabling both automated analysis of threat
scenarios, e.g., consistency and conformance checking, and reuse of
mitigation schemes. Initial results from structured interviews with ex-
perienced engineers suggest that RMCM is precise and practical to
capture the security and privacy requirements of multi-device software
ecosystems in industrial settings.

In addition to supporting more precise and complete security re-
quirements, RMCM is a first step to achieve a longer-term objective:
automated test generation for requirements-driven security testing. Our
plan for the next stages is to provide an automated technique that
generates security test cases from misuse case models. Our ultimate
objective is to achieve adequate coverage of the specified security and
privacy requirements, with traceability information between security
requirements and generated test cases.

Acknowledgment

This work is supported by the National Research Fund, Luxembourg
FNR/P10/03, INTER/AAL/15/11213850, and INTER/DFG/14/
11092585, and by the European Research Council (ERC) under the

Table 11
Questionnaire for the Evaluation of RMCM with the average of the votes.

Question Result

Misuse Case Diagrams

1. The diagram is simple enough to enable communication between engineers and stakeholders. 2.50
2. If a misuse case diagram like the one we presented were available to you, would you use it to help you capture or understand security threats and mitigations? 3.00
3. The notation provides enough expressiveness to conveniently capture the security threats and mitigations in your projects 3.00

Misuse Case Specifications for Capturing Security Threats.

4. Misuse case specifications are simple enough to enable communication between engineers and stakeholders. 2.75
5. If misuse case specifications like the ones we presented were available to you, would you use those specifications to help you capture or understand security threats? 2.75
6. Security threats captured in the misuse case diagram are adequately reflected in the specifications. 3.50

Mitigation Schemes for Capturing Secure Coding Methods.

7. Mitigation schemes are simple enough to enable communication between analysts and programmers. 2.25
8. If mitigation schemes like the ones we presented were available to you, would you use those schemes to help you capture or understand secure coding methods for

mitigating security threats?
2.50

Restricted Misuse Case Modeling Method for Security and Privacy

9. The steps in our modeling method are easy to follow. 3.50
10. The effort required to learn how to apply our method is reasonable. 2.50
11. Would you see value in adopting the presented method for capturing security threats and mitigations? 2.75
12. Does the presented method provide useful assistance for easing the communication between engineers and stakeholders? 2.25
13. Does the presented method provide useful assistance for capturing and analyzing security threats compared to the current modeling practice in your projects? 2.50
14. Do you think that the presented tool provides useful assistance for minimising the inconsistencies in misuse case diagrams and specifications? 2.75

Score for answers to interrogative questions: 4 - very probably, 3 - probably, 2 - probably not, 1 - surely not. Score for answers to statements: 4 - strongly agree, 3 - agree,
2 - disagree, 1 - strongly disagree.

P.X. Mai et al. Information and Software Technology 100 (2018) 165–182

180

European Union’s Horizon 2020 research and innovation programme
(grant agreement No 694277).

References

[1] USC Credit Union, System providing home-banking. [Online]. Available:https://
member.usccreditunion.org/.

[2] Spotify, System providing music streaming software and services. [Online].
Available: https://www.spotify.com.

[3] DeliveryHero, System providing food delivery software and services, Visited in
2017. [Online]. Available: https://www.deliveryhero.com/.

[4] FitBit, System providing personal training software services, 2017[Online].
Available: https://www.fitbit.com.

[5] A.K. Jain, D. Shanbhag, Addressing security and privacy risks in mobile applica-
tions, IT Professional 14 (5) (2012) 28–33.

[6] A. Bortz, D. Boneh, Exposing private information by timing web applications,
WWW’07, (2007), pp. 621–628.

[7] C. Larman, Applying UML and Patterns:An Introduction to Object-Oriented
Analysis and Design and the Unified Process, Prentice Hall Professional, 2002.

[8] J. McDermott, C. Fox, Using abuse case models for security requirements analysis,
ACSAC’99, (1999).

[9] J. McDermott, Abuse-case-based assurance arguments, ACSAC’01, (2001).
[10] D.G. Firesmith, Security use cases, Journal of Object Technology 2 (3) (2003)

53–64.
[11] A.L. Opdahl, G. Sindre, Experimental comparison of attack trees and misuse cases

for security threat identification, Information and Software Technology 51 (2009)
916–932.

[12] L. Rostad, An extended misuse case notation: Including vulnerabilities and the
insider threat, REFSQ’06, (2006), pp. 33–43.

[13] G. Sindre, A.L. Opdahl, Eliciting security requirements with misuse cases,
Requirements Engineering 10 (2005) 34–44.

[14] G. Sindre, A.L. Opdahl, Templates for misuse case description, REFSQ’01, (2001).
[15] T. Yue, L.C. Briand, Y. Labiche, Facilitating the transition from use case models to

analysis models: Approach and experiments, ACM Transactions on Software
Engineering and Methodology 22 (1) (2013) 1–38.

[16] C. Wang, F. Pastore, A. Goknil, L.C. Briand, M.Z.Z. Iqbal, Automatic generation of
system test cases from use case specifications, ISSTA’15, (2015), pp. 385–396.

[17] C. Wang, F. Pastore, A. Goknil, L.C. Briand, M.Z.Z. Iqbal, UMTG: a toolset to au-
tomatically generate system test cases from use case specifications, ESEC/FSE’15,
(2015), pp. 942–945.

[18] I. Hajri, A. Goknil, L.C. Briand, T. Stephany, Applying product line use case
modeling in an industrial automotive embedded system: Lessons learned and a
refined approach, MODELS’15, (2015), pp. 338–347.

[19] I. Hajri, A. Goknil, L.C. Briand, T. Stephany, Configuring use case models in pro-
duct families, Software and Systems Modeling (2016).

[20] I. Hajri, A. Goknil, L.C. Briand, T. Stephany, PUMConf: a tool to configure product
specific use case and domain models in a product line, FSE’16, (2016), pp.
1008–1012.

[21] I. Hajri, A. Goknil, L.C. Briand, T. Stephany, Incremental reconfiguration of pro-
duct specific use case models for evolving configuration decisions, REFSQ’17,
(2017), pp. 3–21.

[22] I. Hajri, A. Goknil, L.C. Briand, A change management approach in product lines
for use case-driven development and testing, REFSQ Workshops, (2017).

[23] I. Hajri, A. Goknil, L.C. Briand, T. Stephany, Change impact analysis for evolving
configuration decisions in product line use case models, Journal of Systems and
Software (2018).

[24] M. Hansen, M. Jensen, M. Rost, Protection goals for privacy engineering, SPW’15,
(2015), pp. 159–166.

[25] D.J. Solove, A taxanomy of privacy, University of Pennsylvania Law Review 154
(3) (2006) 477–560.

[26] A. Pfitzmann, M. Hansen, A Terminology for Talking about Privacy by Data
Minimization: Anonymity, Unlinkability, Undetectability, Unobservability,
Pseudonymity, and Identity Management, Technical Report, TU Dresden, 2010.

[27] ISO-IEC, ISO/IEC 29100:2011 information technology - security techniques -
privacy framework.

[28] OECD, OECD Guidelines on the Protection of Privacy and Transborder Flows of
Personal Data, Technical Report, Organisation of Economic Co-Operation and
Development, 1980.

[29] US Federal Trade Commission, Privacy online: A report to congress, https://www.
ftc.gov/sites/default/files/documents/reports/privacy-online-report-congress/
priv-23a.pdf.

[30] X.P. Mai, RMCM-V: a tool for checking consistencies between misuse case dia-
gram, specifications, and restricted misuse case modeling templates, 2017,
https://sites.google.com/site/rmcmverifier/.

[31] Papyrus, https://www.eclipse.org/papyrus.
[32] IBM Doors, http://www.ibm.com/software/products/ca/en/ratidoor.
[33] EDLAH2: Active and Assisted Living Programme, http://www.aal-europe.eu/

projects/edlah2/.
[34] S. Deterding, D. Dixon, R. Khaled, L. Nacke, From game design elements to ga-

mefulness: Defining ”gamification”, MindTrek’11, ACM, 2011, pp. 9–15.
[35] iCare, http://www.icare247.eu/edlah2/.
[36] A. Cockburn, Writing effective use cases, Addison-Wesley, 2001.
[37] F. Armour, G. Miller, Advanced Use Case Modeling: Software Systems, Addison-

Wesley, 2001.

[38] D. Kulak, E. Guiney, Use Cases: Requirements in Context, Addison-Wesley, 2003.
[39] OWASP, OWASP Top 10 Mobile Security Risks, https://www.owasp.org/index.

php/Mobile_Top_10_2016-Top_10.
[40] OWASP Top 10 Web Security Risks, https://www.owasp.org/index.php/Top_10_

2013-Top_10.
[41] S. Turpe, The trouble with security requirements, RE’17, (2017), pp. 122–133.
[42] B. Fabian, S. Gurses, M. Heisel, T. Santen, H. Schmidt, A comparison of security

requirements engineering methods, Requirements Engineering 15 (2010) 7–40.
[43] D. Mellado, C. Blanco, L.E. Sanchez, E. Fernandez-Medina, A systematic review of

security requirements engineering, Computer Standards & Interfaces 32 (2010)
153–165.

[44] A. Souag, R. Mazo, C. Salinesi, I. Comny-Wattiau, Reusable knowledge in security
requirements engineering: a systematic mapping study, Requirements Engineering
21 (2016) 251–283.

[45] P. Salini, S. Kanmani, Survey and analysis on security requirements engineering,
Computers and Electrical Engineering 38 (2012) 1785–1797.

[46] I.A. Tondel, M.G. Jaatun, P.H. Meland, Security requirements for the rest of us: A
survey, IEEE Software 25 (1) (2008) 20–27.

[47] P. Anthonysamy, A. Rashid, R. Chitchyan, Privacy requirements: present & future,
ICSE-SEIS’17, (2017), pp. 13–22.

[48] K. Beckers, Comparing privacy requirements engineering approaches, ARES’12,
(2012), pp. 574–581.

[49] S. Gurses, B. Berendt, T. Santen, Multilateral security requirements analysis for
preserving privacy in ubiquitous environments, UKDU’06, (2006).

[50] S. Gurses, T. Santen, Contextualizing security goals—a method for multilateral
security requirements elicitation, Sicherheit’06, (2006), pp. 42–53.

[51] N.R. Mead, E.D. Hough, T.R. Stehney, Security Quality Requirements Engineering
(SQUARE) Methodology, CMU/SEI-2005-TR-009, Carnegie Mellon Software
Engineering Institute, 2005.

[52] T. Lodderstedt, D.A. Basin, J. Doser, SecureUML: A UML-based modeling language
for model-driven security, UML’02, (2002), pp. 426–441.

[53] J. Jürjens, Secure Systems Development with UML, Springer, 2003.
[54] L. Liu, E. Yu, J. Mylopoulos, Security and privacy requirements analysis within a

social setting, RE’03, (2003), pp. 151–161.
[55] G. Elahi, E. Yu, A goal oriented approach for modeling and analyzing security

trade-offs, ER’07, (2007), pp. 375–390.
[56] P. Giorgini, F. Massacci, J. Mylopoulos, N. Zannone, Modeling security require-

ments through ownership, permission and delegation, RE’05, (2005), pp.
167–176.

[57] A. van Lamsweerde, Elaborating security requirements by construction of inten-
tional anti-models, ICSE’04, (2004), pp. 148–157.

[58] H. Mouratidis, P. Giorgini, Secure tropos: a security-oriented extension of the
tropos methodology, International Journal of Software Engineering and
Knowledge Engineering 17 (2) (2007) 285–309.

[59] L. Pasquale, P. Spoletini, M. Salehie, L. Cavallaro, B. Nuseibeh, Automating trade-
off analysis of security requirements, Requirements Engineering 21 (4) (2016)
481–504.

[60] C. Kalloniatis, E. Kavakli, S. Gritzalis, Addressing privacy requirements in system
design: The pris method, Requirements Engineering 13 (3) (2008) 241–255.

[61] L. Lin, B. Nuseibeh, D. Ince, M. Jackson, Using abuse frames to bound the scope of
security problems, RE’04, (2004), pp. 354–355.

[62] D. Hatebur, M. Heisel, H. Schmidt, Security engineering using problem frames,
ETRICS’06, (2006), pp. 238–253.

[63] D. Hatebur, M. Heisel, H. Schmidt, Analysis and component-based realization of
security requirements, AReS’08, (2008), pp. 195–203.

[64] C.B. Haley, R. Laney, J.D. Moffett, B. Nuseibeh, Security requirements en-
gineering: A framework for representation and analysis, IEEE Transactions on
Software Engineering 34 (1) (2008) 133–153.

[65] C.B. Haley, R. Laney, J.D. Moffett, B. Nuseibeh, Picking battles: the impact of trust
assumptions on the elaboration of security requirements, iTrust’04, (2004), pp.
347–354.

[66] K. Thomas, A.K. Bandara, B.A. Price, B. Nuseibeh, Distilling privacy requirements
for mobile applications, ICSE’14, (2014), pp. 871–882.

[67] F. den Braber, I. Hogganvik, M.S. Lund, K. Stolen, F. Vraalsen, Model-based se-
curity analysis in seven steps — a guided tour to the CORAS method, BT
Technology Journal (2007) 101–117.

[68] Y. Asnar, P. Giorgini, F. Massacci, N. Zannone, From trust to dependability
through risk analysis, ARES’07, (2007), pp. 19–26.

[69] A. Cailliau, A. van Lamsweerde, Assessing requirements-related risks through
probabilistic goals and obstacles, Requirements Engineering 18 (2) (2013)
129–146.

[70] A. van Lamsweerde, Requirements Engineering: from System Goals to UML Models
to Software Specifications, John Wiley and Sons, 2009.

[71] Y. Asnar, P. Giorgini, J. Mylopoulos, Goal-driven risk assessment in requirements
engineering, Requirements Engineering 16 (2011) 101–116.

[72] N. Mayer, E. Dubois, A. Rifaut, Requirements engineering for improving business/
it alignment in security risk management methods, Enterprise Interoperability II,
(2007), pp. 15–26.

[73] Common Criteria for Information Technology Securitys Evaluation, 2006, http://
www.commoncriteriaportal.org.

[74] D. Mellado, E. Fernandez-Medina, M. Piattini, A comparison of the Common
Criteria with proposals of information systems security requirements, ARES’06,
(2006), pp. 654–661.

[75] D. Mellado, E. Fernandez-Medina, M. Piattini, Applying a security requirements
engineering process, ESORICS’06, (2006), pp. 192–206.

[76] K. Rannenberg, A. Pfitzmann, G. Müller, IT security and multilateral security,

P.X. Mai et al. Information and Software Technology 100 (2018) 165–182

181

https://member.usccreditunion.org/
https://member.usccreditunion.org/
https://www.spotify.com
https://www.deliveryhero.com/
https://www.fitbit.com
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0001
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0001
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0002
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0002
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0003
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0003
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0004
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0004
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0005
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0006
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0006
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0007
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0007
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0007
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0008
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0008
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0009
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0009
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0010
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0011
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0011
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0011
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0012
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0012
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0013
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0013
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0013
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0014
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0014
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0014
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0015
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0015
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0016
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0016
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0016
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0017
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0017
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0017
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0018
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0018
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0019
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0019
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0019
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0020
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0020
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0021
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0021
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0022
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0022
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0022
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0023
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0023
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0023
https://www.ftc.gov/sites/default/files/documents/reports/privacy-online-report-congress/priv-23a.pdf
https://www.ftc.gov/sites/default/files/documents/reports/privacy-online-report-congress/priv-23a.pdf
https://www.ftc.gov/sites/default/files/documents/reports/privacy-online-report-congress/priv-23a.pdf
https://sites.google.com/site/rmcmverifier/
https://www.eclipse.org/papyrus
http://www.ibm.com/software/products/ca/en/ratidoor
http://www.aal-europe.eu/projects/edlah2/
http://www.aal-europe.eu/projects/edlah2/
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0024
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0024
http://www.icare247.eu/edlah2/
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0025
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0026
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0026
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0027
https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10
https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0028
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0029
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0029
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0030
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0030
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0030
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0031
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0031
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0031
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0032
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0032
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0033
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0033
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0034
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0034
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0035
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0035
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0036
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0036
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0037
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0037
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0038
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0038
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0038
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0039
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0039
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0040
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0041
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0041
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0042
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0042
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0043
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0043
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0043
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0044
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0044
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0045
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0045
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0045
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0046
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0046
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0046
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0047
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0047
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0048
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0048
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0049
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0049
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0050
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0050
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0051
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0051
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0051
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0052
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0052
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0052
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0053
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0053
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0054
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0054
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0054
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0055
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0055
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0056
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0056
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0056
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0057
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0057
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0058
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0058
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0059
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0059
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0059
http://www.commoncriteriaportal.org
http://www.commoncriteriaportal.org
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0060
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0060
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0060
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0061
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0061
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0062

Multilateral Security in Communications–Technology, Infrastructure, Economy
(1999) 21–29.

[77] S. Spiekermann, L.F. Cranor, Engineering privacy, IEEE Transactions on Software
Engineering 35 (1) (2009) 67–82.

[78] M. Jackson, Problem Frames: Analysing and Structuring Software Development
Problems, Addison-Wesley, 2001.

[79] I. Alexander, Misuse cases: Use cases with hostile intent, IEEE Software 20 (1)
(2003) 58–66.

[80] I. Alexander, Misuse cases help to elicit non-functional requirements, Computing &
Control Engineering Journal 14 (1) (2003) 40–45.

[81] I. Alexander, Initial industrial experience of misuse cases in trade-off analysis,
RE’02, (2002), pp. 61–70.

[82] D.G. Rosado, E. Fernandez-Medina, J. Lopez, Applying a UML extension to build
use cases diagrams in a secure mobile grid application, ER’09 Workshops, (2009),
pp. 126–136.

[83] G. Sindre, A.L. Opdahl, G.F. Brevik, Generalization/specialization as a structuring
mechanism for misuse cases, SREIS’02, (2002).

[84] G. Sindre, D.G. Firesmith, A.L. Opdahl, A reuse-based approach to determining
security requirements, REFSQ’03, (2003).

[85] M. Deng, K. Wuyts, R. Scandariato, B. Preneel, W. Joosen, A privacy threat ana-
lysis framework: Supporting the elicitation and fulfillment of privacy require-
ments, Requirements Engineering 16 (1) (2011) 3–32.

[86] I. Omoronyia, M. Salehie, R. Ali, H. Kaiya, B. Nuseibeh, Misuse case techniques for
mobile privacy, PriMo’11, (2011).

[87] M. El-Attar, Towards developing consistent misuse case models, Journal of
Systems and Software 85 (2) (2012) 323–339.

[88] M. El-Attar, Using SMCD to reduce inconsistencies in misuse case models: A
subject-based empirical evaluation, Journal of Systems and Software 87 (2014)
104–118.

[89] A. van Lamsweerde, Elaborating security requirements by construction of inten-
tional anti-models, ICSE’04, (2004), pp. 148–157.

[90] F. Swiderski, W. Snyder, Threat Modeling, Microsoft Press, Redmond, WA, USA,
2004.

[91] A. Rashid, S.A.A. Naqvi, R. Ramdhany, M. Edwards, R. Chitchyan, M.A. Babar,
Discovering unkown known security requirements, ICSE’16, (2016), pp. 866–876.

[92] B. Glaser, A. Strauss, The Discovery of Grounded Theory, Aldine Publishing Co.,
1967.

[93] C. Johnson, A Handbook of Accident and Incident Reporting, Glasgow University
Press, 2003.

[94] J.I. Hong, J.D. Ng, S. Lederer, J.A. Landay, Privacy risk models for designing
privacy-sensitive ubiquitous computing systems, DIS’04, (2004), pp. 91–100.

[95] T.D. Breaux, H. Hibshi, A. Rao, Eddy, a formal language for specifying and ana-
lyzing data flow specifications for conflicting privacy requirements, Requirements

Engineering 19 (3) (2014) 281–307.
[96] T.D. Breaux, A. Rao, Formal analysis of privacy requirements specifications for

multi-tier applications, RE’13, (2013), pp. 14–23.
[97] J. Whittle, D. Wijesekera, M. Hartong, Executable misuse cases for modeling se-

curity concerns, ICSE’08, (2008), pp. 121–130.
[98] G. Sindre, Mal-activity diagrams for capturing attacks on business processes,

REFSQ’07, (2007), pp. 355–366.
[99] E. Song, R. Reddy, R. France, I. Ray, G. Georg, R. Alexander, Verifiable compo-

sition of access control and application features, SACMAT’05, (2005), pp.
120–129.

[100] J. Jürjens, Towards development of secure systems using umlsec, FASE’01, (2001),
pp. 187–200.

[101] B. Schneier, Modelling security threats, Dr. Dobb’s Journal (1999).
[102] L. Lin, B. Nuseibeh, D. Ince, M. Jackson, J. Moffett, Introducing abuse frames for

analysing security requirements, RE’03, (2003), pp. 371–372.
[103] J. Großmann, F. Seehusen, Combining security risk assessment and security testing

based on standards, RISK’15, (2015), pp. 18–33.
[104] Etsi-eg-203-251: Methods for testing & specification; risk-based security assess-

ment and testing methodologies, 2015.
[105] Y.-G. Kim, S. Cha, Threat scenario-based security risk analysis using use case

modeling in information systems, Security and Communication Networks 5 (3)
(2012) 293–300.

[106] CVSS: Common Vulnerability Scoring System, 2018, https://www.first.org/cvss/.
[107] CWE/SANS Top 25 Most Dangerous Software Errors, http://cwe.mitre.org/

top25/.
[108] The STRIDE Threat Model, https://msdn.microsoft.com/en-us/library/

ee823878(v=cs.20).aspx.
[109] C. Arora, M. Sabetzadeh, L.C. Briand, F. Zimmer, Automated checking of con-

formance to requirements templates using natural language processing, IEEE
Transactions on Software Engineering 41 (10) (2015) 944–968.

[110] C. Arora, M. Sabetzadeh, A. Goknil, L.C. Briand, F. Zimmer, Change impact ana-
lysis for natural language requirements: An nlp approach, RE’15, (2015), pp. 6–15.

[111] C. Arora, M. Sabetzadeh, A. Goknil, L.C. Briand, F. Zimmer, NARCIA: an auto-
mated tool for change impact analysis in natural language requirements, ESEC/
FSE’15, (2015), pp. 962–965.

[112] H. Cunningham, et al. Developing language processing components with gate
version 8 (a user guide), http://gate.ac.uk/sale/tao/tao.pdf.

[113] The GATE workbench, http://gate.ac.uk/.
[114] A.N. Oppenheim, Questionnaire Design, Interviewing and Attitude Measurement,

Continuum, 2005.
[115] [Online]. Available: https://goo.gl/forms/OrAZcZLvsVm5tUN13.
[116] I. Jacobson, Object-Oriented Software Engineering: A Use Case Driven Approach,

Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 2004.

P.X. Mai et al. Information and Software Technology 100 (2018) 165–182

182

http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0062
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0062
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0063
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0063
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0064
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0064
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0065
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0065
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0066
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0066
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0067
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0067
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0068
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0068
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0068
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0069
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0069
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0070
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0070
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0071
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0071
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0071
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0072
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0072
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0073
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0073
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0074
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0074
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0074
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0075
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0075
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0076
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0076
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0077
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0077
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0078
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0078
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0079
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0079
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0080
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0080
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0081
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0081
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0081
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0082
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0082
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0083
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0083
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0084
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0084
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0085
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0085
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0085
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0086
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0086
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0087
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0088
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0088
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0089
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0089
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0090
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0090
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0090
https://www.first.org/cvss/
http://cwe.mitre.org/top25/
http://cwe.mitre.org/top25/
https://msdn.microsoft.com/en-us/library/ee823878(v=cs.20).aspx
https://msdn.microsoft.com/en-us/library/ee823878(v=cs.20).aspx
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0091
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0091
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0091
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0092
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0092
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0093
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0093
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0093
http://gate.ac.uk/sale/tao/tao.pdf
http://gate.ac.uk/
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0094
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0094
https://goo.gl/forms/OrAZcZLvsVm5tUN13
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0095
http://refhub.elsevier.com/S0950-5849(18)30070-3/sbref0095

	Modeling Security and Privacy Requirements: a Use Case-Driven Approach
	Introduction
	Context and motivation
	Definition of security and privacy requirements of a software service ecosystem: Practical challenges
	Related work
	Overview of our modeling method
	Capturing security requirements
	Use case diagram with misuse case extensions
	Misuse case and security use case specifications
	Mitigation schemes

	Tool support
	Tool architecture
	Tool features

	Evaluation
	Industrial case study
	Questionnaire study and discussions with the engineers
	Industrial adoption of the approach
	Additional extensions in RMCM
	Degree of automation

	Threats to validity

	Conclusion
	Acknowledgment
	References

