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Abstract:  

Study Objective: To determine the influence of anticholinergic medications on transitions in cognitive 

diagnosis of older adults in primary care. 

 

Design: This observational cohort study was conducted over a mean follow-up of 3.2 years. 

Anticholinergic exposure was defined by pharmacy dispensing and claims records. Cognitive diagnosis 

was performed by an expert panel at baseline and annually up to four years.  

 

Data Source: Medication exposure and other clinical data were extracted from the Indiana Network for 

Patient Care (INPC), while the cognitive diagnosis was derived from a cognitive screening and diagnosis 

study. 

 

Participants: Three hundred fifty adults aged 65 years and older without dementia and receiving primary 

care in a safety-net healthcare system. 
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Measurement and Main Results: Cognitive diagnosis followed a two-phase screening and consensus-

based neuropsychiatric examination to determine a baseline diagnosis as normal cognition, mild 

cognitive impairment (MCI), or dementia, with a follow-up neuropsychiatric examination and consensus-

based diagnosis repeated annually. The Anticholinergic Cognitive Burden scale was used to identify 

anticholinergics dispensed up to 10 years prior to enrollment and annually throughout the study. A total 

standard daily dose of anticholinergics was calculated by using pharmacy dispensing data from the INPC. 

Among 350 participants, a total of 978 diagnostic assessments were completed over a mean follow-up 

of 3.2 years. Compared with stable cognition, increasing use of strong anticholinergics calculated by 

total standard daily dose increased the odds of transition from normal cognition to MCI (odds ratio [OR] 

1.15; 95% confidence interval [CI] 1.01-1.31; p=0.0342). Compared with stable MCI, strong 

anticholinergics did not influence the reversion of MCI to normal cognition (OR 0.95; 95% CI 0.86-1.05; 

p=0.3266). 

 

Conclusion: De-prescribing interventions in older adults with normal cognition should test 

anticholinergics as potentially modifiable risk factors for cognitive impairment. 

 

Medications with anticholinergic adverse effects are used by approximately 25% of older adults living in 

the community to manage symptoms such as incontinence, seasonal allergies, depression, and 

insomnia.1, 2 Governing bodies such as the American Geriatrics Society and the Center for Medicare and 

Medicaid Services recommend against using these medications in older adults as the risks of peripheral 

and central adverse events outweigh the therapeutic benefits.3, 4  Despite these recommendations, and 

availability of alternative treatments, population-based studies show no decrease in volume of 

prescription anticholinergic medications in older adults.5, 6  
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 Cholinergic neurons are widely distributed throughout the basal forebrain with projections to 

the hippocampus, cortex, and medial temporal lobe, supporting learning, memory, organization, and 

attention.7, 8 Anticholinergic drugs characteristically block cholinergic receptors, and have been shown in 

mouse models to increase beta-amyloid plaques and neurofibrillary tau proteins, hallmarks of 

Alzheimer’s dementia (AD).9-17 Interruption of cholinergic neurotransmission has been correlated with 

cell death and memory deficits that mimic AD.9, 15, 17 A recent study showed that anticholinergic users 

had smaller tissue volume in the cortex and temporal lobes, also correlating with worse performance in 

domains of memory, processing speed, and executive function compared with non-users.18 

 Several epidemiologic studies have identified the relationship between anticholinergic exposure 

and the diagnosis of cognitive impairment, including international studies conducted in the United 

Kingdom, France, Australia, and the United States.2, 19-26 More recently, the quality of observational 

studies improved with the use of prescription records as a measure of medication exposure, as well as 

consensus-based diagnosis serving as the outcome. Two recent studies used pharmacy dispensing or 

claims data to show higher odds of cognitive impairment with increasing measures of anticholinergic 

exposure.23,27    

 Prior work has predominantly shown relationships between anticholinergic exposure and 

dementia, while few studies have included mild cognitive impairment (MCI) as an outcome. MCI is a 

potentially reversible stage of cognitive decline between normal cognition and dementia.28 Two 

observational studies report relationships between anticholinergics and MCI,21, 22 however no prior 

studies have used dispensing data to evaluate the relationship between anticholinergic exposure and 

transitions between normal and impaired cognition.  

 Understanding the transition between cognitive states may improve our understanding of the 

reversibility of the adverse cognitive effects of anticholinergics. One randomized trial found no 
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difference in a memory test in a nursing home population after reducing anticholinergic exposure by 

50% over 8 weeks;29 however, the authors report improvement in a small group who discontinued all 

anticholinergics. Epidemiologic studies suggest that interventions to reduce anticholinergic use would 

have a more significant impact on populations with mild or no cognitive impairment as a preventative 

intervention.30  

To address the question of reversibility, we conducted a secondary data analysis to model the 

reversibility of the adverse cognitive effects of anticholinergics by merging data from a longitudinal 

study in older adults in primary care containing multiple cognitive assessments with prescription 

dispensing records. Our hypothesis was that anticholinergic exposure would increase the transition from 

normal cognition to mild cognitive impairment and decrease the transition from mild cognitive 

impairment to normal cognition.  

 

Methods 

Study Population 

This prospective observational study was conducted in older adults receiving primary care from Eskenazi 

Health (formerly known as Wishard Health) in Indianapolis, IN. Eskenazi Health is a large safety net 

health care system and is responsible for the care of the indigent, uninsured, or under-insured 

population in Indianapolis. Primary care was provided through nine primary care centers located 

throughout the city. Potentially eligible patients were screened if they were age 65 years or older, had 

more than 2 primary care visits in the prior 12 months with a future visit scheduled, and no medical 

record diagnosis of dementia. Potentially eligible primary care patients were screened with the Mini 

Mental Status Exam (MMSE) or the Telephone Interview for Cognitive Status (TICS). Patients scoring 14 
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or greater on the MMSE or 22 or greater on the TICS, and who had an informant available, were eligible 

for enrollment into the diagnostic assessment.  

This study was reviewed and approved by the institutional review board of the Indiana 

University-Purdue University of Indianapolis.  

 

Cognitive Diagnosis 

An expert-based consensus panel adjudicated cognitive diagnoses at each assessment, which included 

the baseline and re-assessment every 12 months up to 48 months (see Figure 1). Participants completed 

a self-report of health history, depression by the Geriatric Depression Scale, and cognitive assessment 

with Wechsler Memory Scale-R Logical Memory, Wechsler Memory Scale-R Visual Reproduction, 

Consortium to Establish A Registry for Alzheimer’s Disease (CERAD) Word List Learning task, Boston 

Naming, Animal Fluency, Wechsler Adult Intelligence Scale-Revised (WAIS-R) Block Design, and Trail 

Making Tests A & B. Informants were asked about the range, onset, and progression of cognitive 

symptoms, functional status with the Functional Assessment Questionnaire, and psychiatric status with 

the Neuropsychiatric Inventory. A neurologic and physical exam and medication review completed the 

medical assessment. The consensus diagnosis conference included geriatric, psychiatric, neurologic, and 

neuropsychiatric experts along with standard criteria to attribute diagnoses of normal cognitive, MCI, 

and dementia for each participant at each wave. Participants with a diagnosis of normal cognition or 

MCI were included in the study, while those with a diagnosis of dementia were excluded. 

 

Measure of Medication Exposure 

Medication data was retrieved from the Indiana Network for Patient Care (INPC), which captures 

pharmacy dispensing data from outpatient pharmacies located within the Eskenazi Health network as 

well as dispensed prescriptions from retail pharmacies through Surescripts claims data.31 The Pharmacy 
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module within the INPC contains dispensed drug name, strength, quantity dispensed, number of days’ 

supplied, and date dispensed for each prescription record. Prescription records were extracted from the 

10 years prior to the initial cognitive assessment through to the final cognitive assessment completed by 

each participant to create two anticholinergic exposure variables used in the analysis. The time-varying 

exposure variable included anticholinergic prescription records between 12-month cognitive 

assessments (Figure 1); a historical exposure variable was defined using records for the 10 years of 

exposure prior to the baseline assessment.  

Anticholinergics were defined according to the Anticholinergic Cognitive Burden (ACB) scale, 

which has been previously validated in similar populations.2, 22, 27, 32, 33 According to the ACB scale, 

medications with mild anticholinergic effects were attributed a score of 1 and defined as those with 

serum anticholinergic activity or in vitro affinity to muscarinic receptors but with no known clinically 

relevant adverse cognitive effects. Medications with clinically relevant anticholinergic properties were 

attributed a score of 2 or 3 based on the presence of peripheral anticholinergic side effects only (score 

of 2) or the presence of both peripheral and central anticholinergic side effects (score of 3).  

We defined the total standard daily dose (TSDD) as a cumulative measure of anticholinergic 

exposure for all anticholinergics identified in the ACB scale (scores 1, 2, and 3) as well as for strong 

anticholinergics only. When calculating the TSDD, a standard daily dose (SDD) was derived by multiplying 

the number of medication units (tablets or capsules) dispensed by the strength (milligrams) and then 

dividing by the minimum effective geriatric dose (MEGD).  MEGD was defined by a geriatric medication 

reference34 which has been previously used for similar adjustments.23, 35 The SDD for all anticholinergics 

also included a multiplier to weight each drug as defined in the ACB scale (score of 1, 2, or 3). For 

analyses using the SDD from strong anticholinergics only (score 2 & 3), no weighting was applied. Figure 

2 shows that the time-varying anticholinergic exposure variable was defined as a cumulative total SDD 

(TSDD) by summing each of the SDDs for anticholinergic prescriptions for each subject. TSDD for the 
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time-varying anticholinergic exposure variable was further adjusted to accommodate clinical 

interpretation by dividing TSDD for all ACB medications by 2000 and TSDD for strong anticholinergics by 

365.  

 

Demographics and Other Variables 

Demographics and comorbidities were collected through a combination of participant self-report and 

medical record review of diagnoses. Hypertension was defined as systolic blood pressure greater than 

140 mmHg or diastolic blood pressure greater than 90 mmHg. Diabetes was defined as glucose greater 

than 126 mg/dL fasting or 160 mg/dL random, or glycosylated hemoglobin A1c greater than 10. The 

definition of coronary artery disease included myocardial infarction, angioplasty, coronary artery bypass 

graft, and stent placement. Congestive heart failure (CHF) included a diagnosis of CHF, cardiomyopathy, 

or left ventricular hypertrophy. Cancer included history of breast, prostate, lymphoma, colon, or lung 

cancers.  

 

Statistical Analysis 

T-tests and Fisher’s exact tests were used to compare the baseline characteristics between participants 

with normal cognition and MCI as well as comparisons between those whose diagnosis transitioned and 

remained stable. We used logistic regression models with generalized estimating equations (GEE) with 

the outcomes defined as transition in cognitive diagnosis versus stable diagnosis at 12-month intervals. 

Transition from MCI to normal was compared with stable MCI; transition from normal to MCI was 

compared with stable normal cognition. Each participant could contribute up to four repeated 

transitional outcomes for each 12-month segment depending on the duration of participation in the 

study and the repeated outcomes from the same individuals were adjusted using the GEE approach. 

Anticholinergic exposure variables were independent variables in each model and were collected during 
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the 12-month period between diagnoses as time-dependent variables. A historical anticholinergic 

exposure variable was also defined using prescription records from the 10 years prior to the baseline 

cognitive assessment. Because prior studies suggest that only highest exposure over time adversely 

affects cognition,23 we defined historical anticholinergic exposure as a categorical variable of the highest 

tertile of anticholinergic exposure. Adjusted models included age, race, gender, education, stroke, CHF, 

and historical anticholinergic medication exposure. Covariates not included in the models were not 

significantly related to the model outcomes. 

Missing dispensed amount fields occurred in 33% of all anticholinergic records; we addressed 

missing dispensed amount fields by substituting number of days supplied if available, or 60 days as the 

most common number of days supplied among all prescription records. Missing prescription strength 

fields occurred in 21% of all anticholinergic records and was addressed by substituting minimum 

effective geriatric doses.  A sensitivity analysis excluding missing records was also conducted. 

 

 

Results 

Among 350 participants, the mean age at baseline was 71.2 (±5.1) years, 79.1% were female and 62.0% 

were African-American (Table 1). Those diagnosed with MCI at baseline were more likely to be non-

African-American, have lower education, have more comorbidity, and have used any anticholinergic 

than those diagnosed as cognitively normal. Mean follow up was 3.2 years (standard deviation 0.8 years, 

range 0.9-4.3 years).  

A total of 978 consecutive diagnostic assessments were completed among 350 participants: 229 

(22.7%) with initial MCI diagnoses remained as MCI at the subsequent evaluations; 135 (13.8%) with 

initial MCI diagnoses reverted to normal cognition; 7 (0.7%) with MCI that transitioned to dementia; 511 

(52.2%) with initial normal cognition that remained normal at the subsequent evaluation; and 103 
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(10.5%) with normal cognition that transitioned to MCI. For the purpose of this analysis, the seven 

transitions from MCI to dementia (0.7% of all transitions) were included in the stable MCI group. Table 2 

presents demographic and clinical characteristics between those who transitioned in cognitive diagnosis 

and those that remained stable stratified by initial diagnosis.  

Among the total study population, 70.6% were exposed to any ACB medication at baseline and 

30.6% were exposed to at least one strong ACB, with higher exposure in those diagnosed with MCI 

(Table 1). Table 3 presents the anticholinergics used in any period after the baseline assessment.  

Among participants with an initial diagnosis of normal cognition, use of strong anticholinergics 

as measured by the TSDD significantly increased the likelihood of transition from normal cognition to 

MCI compared with stable normal cognition after adjusting for age, gender, race, education, stroke, 

CHF, and high prior exposure to strong anticholinergics (odds ratio [OR] 1.15; 95% confidence interval 

[CI]: 1.01-1.31; p= 0.0342) (Table 4). Age also significantly increased the transition from normal cognition 

to MCI (OR 1.07, 95% CI 1.01-1.12; p=0.0117); whereas education reduced the likelihood of transition 

from normal cognition to MCI (OR 0.78, 95% CI 0.69-0.88), p<0.001). All other covariates, including 

stroke, gender, race, CHF, and high 10-year exposure to strong anticholinergics did not influence the 

transition from normal cognition to MCI. Apolipoprotein E (APOE) e4 did not significantly influence the 

results, however when included in the model with TSDD of strong anticholinergics as the independent 

variable and transition from normal cognition to MCI as the dependent variable, the OR was 1.13 with a 

95% CI of 1.00-1.28 (p=0.0573). Notably, the TSDD of all anticholinergics was not significantly associated 

with the transition from normal cognition to MCI. A sensitivity analysis excluding missing data for days’ 

supply and strength from pharmacy fields also showed a significant relationship between increasing 

exposure to strong anticholinergics and transition from normal cognition to MCI (OR 1.17, 95% CI 1.01-

1.34; p=0.0304). 
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Among participants with a diagnosis of MCI, the odds ratio estimates for the reversion to normal 

cognition were less than one for both measures of anticholinergic exposure suggesting a decreased 

likelihood of reversion from MCI to normal among anticholinergic users. However, the relationship was 

not statistically significant. A history of stroke and being male significantly reduced the likelihood of 

reversion from MCI to normal cognition (OR for stroke: 0.43, 95% CI 0.23-0.81, p=0.0088; OR for male: 

0.51, 95% CI 0.28-0.94; p=0.0310). 

 

 

Discussion 

This analysis provides further evidence of the adverse cognitive effects of anticholinergics by showing 

higher odds of cognitive decline in community-dwelling older adults without dementia. Specifically, we 

demonstrate that cumulative exposure to strong anticholinergics, as defined by the TSDD, increased the 

odds of transitioning from normal cognition to MCI; whereas cumulative exposure to strong 

anticholinergics did not significantly influence the reversion from MCI to normal cognition. Our results 

show a 15% higher odds of transitioning from normal cognition to MCI among those using a minimally 

effective dose of a strong anticholinergic every day for one year, such as paroxetine 10 milligrams once 

daily. Increasing the dose or adding low-dose anticholinergics multiplied the odds – a 20 mg dose of 

paroxetine daily for one year resulted in 30% higher odds of transitioning to MCI.  

A recent study described a higher odds of dementia among the highest users of strong 

anticholinergics over 10 years when using the TSDD to quantify cumulative anticholinergic exposure.23 

We also recently reported an increasing odds of dementia and MCI with cumulative anticholinergic 

exposure based on ACB score and duration of use.27 Other studies using anticholinergic drug scales to 

calculate exposure have employed categorical variables (exposed vs. unexposed) and sum of ACB scores 
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(0, 1, 2, or 3). Our results support the biological gradient (cumulative exposure) condition of causality in 

epidemiologic studies36 for the relationship between strong anticholinergics and MCI.  

The hypothesis that anticholinergics increase beta-amyloid and tau proteins to worsen cognition 

is supported by the findings of higher odds of transition from normal cognition to MCI. This hypothesis 

would also suggest it is unlikely that de-prescribing (or discontinuing) anticholinergics among current 

users would be expected to immediately improve cognition. Our results failed to show a statistically 

significant reduction in the odds of reversion from MCI to normal cognition with increasing exposure to 

anticholinergics, with one explanation being that the cholinergic pathway has little influence on 

cognition among older adults in primary care with a diagnosis of MCI. Another explanation from this 

analysis suggests other factors such as stroke and gender are more likely to influence this transition.  To 

date, no study has demonstrated a reversible effect on cognition by de-prescribing anticholinergics; 

however, this area of research has not been widely pursued. Only one prospective intervention reducing 

anticholinergic burden has been published, and showed that despite a 50% reduction in anticholinergic 

drug score, no improvement in memory or global cognition was reported after 8 weeks.29 Nearly 70% of 

participants in the study had at least mild dementia at baseline, and the target for anticholinergic 

reduction was not restricted to strong anticholinergics. Despite this, the authors reported an 

improvement in memory scores among a sub-group (n=5) who discontinued all anticholinergics. Beyond 

this study, no de-prescribing interventions have been conducted in older adults with MCI or in a primary 

care population at risk of cognitive impairment. De-prescribing interventions are needed to determine 

whether anticholinergic exposure is permanent or reversible. 

  Opportunities to prevent or delay dementia can have a significant impact on medical, social, and 

financial outcomes.37 Delaying the onset of dementia by one year is projected to prevent 9.2 million 

cases of dementia by 2050.38 Therefore, interventions focused on improving cognition or preventing 

decline are of great interest in the National Alzheimer’s Project Act.39 
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Strengths of this analysis are the objective measures of medication data and consensus-based 

diagnosis as the outcome. However, some limitations to the study should be noted. First, use of 

pharmacy dispensing and claims data does not include use of non-prescription (over-the-counter [OTC]) 

anticholinergics, such as diphenhydramine and chlorpheniramine. Participants in this study were 

incentivized to use Eskenazi pharmacies, which recorded use of OTC medications in the dispensing 

database and improved but not assured the capture of OTC medications. Second, use of pharmacy 

dispensing and claims data as a measure of exposure assumes medications are consumed by 

participants.  Third, unmeasured variables or severity of disease may have influenced our results, a 

potential source of bias in any observational study. We were, however, able to merge self-report with 

medical records to capture the presence or absence of diseases that are important in cognitive 

evaluation including depression, heart disease, and stroke. However, we note the lack of specific 

diagnoses such as incontinence and insomnia, which have been associated with dementia in this analysis 

and therefore cannot rule out indication bias. Lastly, the limited sample size prevented other 

approaches to modelling reversibility of anticholinergic adverse effects, such as comparing diagnostic 

transitions among stoppers and starters of strong anticholinergics. Thus, replication of our analysis in 

larger and more diverse populations would be of interest.  

 

 

Conclusions 

Our results demonstrate that cumulative exposure to strong anticholinergics increased the transition 

from normal cognition to MCI in community-dwelling older adults without dementia. Strong 

anticholinergics did not have a statistically significant influence on the reversion from MCI to normal 

cognition. Interventions preventing or de-prescribing anticholinergic use in community-dwelling older 
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adults without dementia should be tested for potential impact on safety, as well as the ability to prevent 

or delay the onset of cognitive impairment. 
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Figure 1. Timeline for collection of cognitive outcome and exposure variables. 
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Figure 2: Calculation of Total Standard Daily Dose for strong anticholinergic exposure 

 

 

 

 

 

 

*Anticholinergic exposure using all anticholinergics (mild, possible, and strong with scores 1, 2, and 3, 

respectively) included a multiplier corresponding to the score for each medication in the numerator 
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Table 1. Baseline Demographic Characteristics of Study Population  

 All participants 

N=350 

Normal 

cognition 

N=206 

MCI 

N=144 

p valuea 

Age, mean (SD) 71.2 (5.1) 71.3 (5.0) 71.2 (5.2) 0.8304 

Race, n (%) 

    African-American  

    Non-African-Americanb 

 

217 (62.0) 

133 (38.0) 

 

149 (72.3) 

57 (27.7) 

 

68 (47.2) 

76 (52.8) 

<0.0001 

Female, n (%)  

277 (79.1) 

 

168 (81.6) 

 

109 (75.7) 

 

0.2288 

Years of Education, mean 

(SD) 

11.6 (2.2) 11.9 (2.0) 11.2 (2.4) 0.0023 

APOE e4 carrier, n (%)c 101 (29.7) 64 (32.2) 37 (26.2) 0.2786 

Stroke/TIA, n (%) 58 (16.6) 25 (12.1) 33 (22.9) 0.0087 

CAD, n (%) 55 (15.7) 26 (12.6) 29 (20.1) 0.0728 

CHF, n (%) 69 (19.7) 27 (13.1) 42 (29.2) 0.0003 

Hypertension, n (%) 308 (88.0) 177 (85.9) 131 (91.0) 0.1821 

Diabetes, n (%) 166 (47.6) 92 (44.7) 74 (51.7) 0.2306 

Cancer, n (%) 64 (18.3) 38 (18.4) 26 (18.1) 1.0000 

Depression, n (%) 112 (32.0) 53 (25.7) 59 (41.0) 0.0035 

Number of non-ACB meds, 

mean (SD) 

5.2 (3.6) 5.0 (3.5) 5.5 (3.7) 0.1928 

Any ACB 1 yr prior to 

baseline, n (%) 

247 (70.6) 135 (65.5) 112 (77.8) 0.0169 

TSDD Any ACB 10 yrs prior, 

mean (SD) 

6466 (9103) 5388 (7969) 8007 (10,350) 0.0113 

Strong ACB 1 yr prior to 

baseline, n (%) 

107 (30.6%) 51 (24.8%) 56 (38.9%) 0.0066 

TSDD strong ACB 10 yrs prior, 

mean (SD) 

908 (2601) 647 (2165) 1279 (3091) 0.0355 

Cancer (non-skin): breast, prostate, lymphoma, colon, or lung. 
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Disease states identified by ICD-9 codes, chart review, or patient report of diagnosis. 

ACB = anticholinergic cognitive burden; APOE = apolipoprotein E; CAD = coronary artery disease (defined as history of: 

myocardial infarction, angioplasty, coronary artery bypass grafting, stent); CHF = congestive heart failure (defined as history of: 

CHF, cardiomyopathy, left ventricular hypertrophy); MCI = mild cognitive impairment, not dementia; SD = standard deviation; 

TIA = transient ischemic attack; TSDD = total standard daily dose. 

ap value for difference between MCI and normal cognition groups. 

bNon-African Americans included 129 Caucasians, 2 biracial, 1 American Indian, and 1 participant indicating ‘other’ as their race.  

cDue to missing data, sample size for APOE e4 is 340 for total population, 199 in normal cognition, and 141 for MCI. 

 

 

Table 2. Participant Characteristics by Outcomes of Successive Transitions (n=number of transitions in 

each group) 

Initial Diagnosis Normal  MCI  

Follow-up Diagnosis Normal 

n=511* 

MCI 

n=103* 

p value Normal 

n=135* 

MCI 

n=229* 

p value 

Age, mean (SD) 70.8 (4.8) 72.5 (4.9) 0.0015 70.7 (4.3) 72.4 (5.7) 0.0044 

Race, n (%) 

   African-American,  

   Non-African-

American 

 

355 (69.5) 

156 (30.5) 

 

64 (62.1) 

39 (37.9) 

0.9392  

67 (49.6) 

68 (50.4) 

 

126 (55.0) 

103 (45.0) 

0.5486 

Gender, n (%) 

   Female  

 

421 (82.4) 

 

84 (81.6) 

0.8498  

107 (79.3) 

 

166 (72.5) 

0.2493 

Education in years,     

mean (SD) 

 

12.2 (1.9) 

 

11.1 (2.1) 

<0.0001  

11.3 (2.4) 

 

10.9 (2.3) 

0.1057 

APOE e4 carrier, n 

(%)~ 

153 (31.0) 33 (32.7) 0.6991 38 (28.6) 73 (32.3) 0.5124 

Stroke/TIA, n (%) 56 (11.0) 15 (14.6) 0.3203 18 (13.3) 56 (24.5) 0.0100 

CAD, n(%) 60 (11.7) 16 (15.5) 0.2715 26 (19.3) 45 (19.7) 0.8826 

CHF, n (%) 71 (13.9) 25 (24.3) 0.0195 39 (28.9) 68 (29.7) 0.7615 

Hypertension, n (%) 459 (89.8) 92 (89.3) 0.8170 121 (89.6) 197 (86.0) 0.2046 

Diabetes, n (%) 251 (49.1) 45 (43.7) 0.3062 67 (49.6) 97 (42.4) 0.2229 
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Cancer, n (%) 110 (21.5) 15 (14.6) 0.1602 22 (16.3) 30 (13.1) 0.4685 

Depression, n (%) 151 (29.5) 42 (40.8) 0.3951 54 (40.0) 108 (47.2) 0.4583 

Number of non-AC 

meds during 

transition, Mean (SD)  

6.3 (3.6) 7.1 (3.6) 0.0430 6.7 (3.9) 6.9 (3.8) 0.6989 

N (%) exposed to any 

ACB in transition 

387 (75.7) 84 (81.6) 0.2965 106 (78.5) 187 (81.7) 0.3710 

N (%) exposed to 

strong ACB in 

transition 

150 (29.4) 42 (40.8) 0.0166 51 (37.8) 96 (41.9) 0.3211 

Cancer (non-skin) defined as: breast, prostate, lymphoma, colon, or lung. 

Disease states identified by ICD-9 codes, chart review, or patient report of diagnosis. 

*sample size defined by number of transitions rather than number of participants. 

AC = anticholinergic; ACB = anticholinergic cognitive burden; APOE = apolipoprotein E; CAD = coronary artery disease(defined as 

history of: myocardial infarction, angioplasty, coronary artery bypass grafting, stent); CHF = congestive heart failure (defined as 

history of: CHF, cardiomyopathy, left ventricular hypertrophy); MCI = mild cognitive impairment, not dementia; TIA = transient 

ischemic attack; SD = standard deviation.  

 

 

Table 3. Report of Anticholinergic Exposure at Any Wave Following Baseline 

ACB Score 1 Proportion 

 Exposed* 

ACB Score 2 Proportion 

 Exposed* 

ACB Score 3 Proportion 

 Exposed* 

Alprazolam 2.0% Carbamazepine 1.4% Amitriptyline 7.4% 

Aripiprazole 0.3% Cyclobenzaprine 12.0% Atropine 0.6% 

Atenolol 10.9% Oxcarbazepine 0.3% Chlorcyclyzine 0.9% 

Bupropion 6.6%   Chlorpheniramine 0.3% 

Captopril 0.3% Clemastine 0.3% 

Cetirizine 2.6% Dicyclomine 2.0% 

Chlorthalidone 0.6% Diphenhydramine 1.1% 

Codeine 10.6% Diphenoxylate-

Atropine 

0.6% 

Colchicine 4.3% Doxepin 1.1% 
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Diazepam 4.0% Hydroxyzine 12.9% 

Digoxin 4.3% Meclizine 8.0% 

Fentanyl 2.6% Nortriptyline 1.7% 

Furosemide 24.6% Olanzapine 0.9% 

Haloperidol 0.3% Oxybutynin 10.0% 

Hydralazine 11.1% Paroxetine 3.1% 

Isosorbide 10.6% Promethazine 7.7% 

Levocetirizine 0.3% Propantheline 0.3% 

Loperamide 1.1% Quetiapine 1.7% 

Loratadine 1.4% Scopolamine 0.3% 

Metoprolol 42.0% Solifenacin 0.3% 

Morphine 3.1% Tolterodine 2.6% 

Nifedipine 0.6% Trifluoperazine 0.3% 

Prednisone 18.3% Trihexyphenidyl 0.3% 

Ranitidine 17.4%   

Risperidone 1.7% 

Theophylline 1.1% 

Trazodone 17.1% 

Triamterene-

Hydrochlorothiazide 
10.6% 

Venlafaxine 1.4% 

Warfarin 13.7% 

ACB = anticholinergic cognitive burden. 

*Medication use reported as proportion of all participants who used the medication at any point after 

baseline.  Denominator for the proportion was 350.  
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Table 4. Results of Logistic Regression Models of the Transition in Cognitive Diagnosis Compared With 

Stable Diagnosis 

 

Outcomes 

Unadjusted odds ratio Adjusted odds 

ratio 

Adjusted p 

valuea 

Normal to MCI vs Normal to Normal 

 

     TSDD: All ACB 

 

     TSDD: Strong ACB 

 

 

 

1.18 (0.99-1.42) 

 

1.16 (1.04-1.29) 

 

 

1.12 (0.93-1.36) 

 

1.15 (1.01-1.31) 

 

 

0.2290 

 

0.0342 

MCI to Normal vs MCI to MCI  

        

     TSDD: All ACB 

 

     TSDD: Strong ACB 

 

 

 

0.93 (0.82-1.05) 

 

0.96 (0.87-1.06)  

 

 

0.92 (0.81-1.05) 

 

0.95 (0.86-1.05)  

 

 

0.2121 

 

0.3266 

ACB = anticholinergic cognitive burden; MCI = mild cognitive impairment; TSDD = total standard daily dose.  

aAdjusted p-value includes: age, gender, race, education, history of stroke, history of congestive heart failure, and highest tertile 

of 10-year TSDD for strong anticholinergics. 

 

 

 

 

 

 

 

 




