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Abstract

In Distributed Simultaneous Localization and Map-
ping (SLAM), multiple agents generate a global
map of the environment while each performing its
local SLAM operation. One of the main challenges
is to identify overlapping maps, especially when
agents do not know their relative starting positions.
In this paper we are introducing a distributed frame-
work which uses an appearance based method to
identify map overlaps. Our framework generates a
global semi-dense map using multiple monocular
visual SLAM agents, each localizing itself in this
map.

1 Introduction

In Simultaneous Localization and Mapping (SLAM), an
agent creates a map of an unknown environment, at the same
time localizing itself in it. These two tasks, cannot be solved
independent to each other. An accurate estimation of the pose
is required, to build a map. At the same time, a good map is
required for agent localization.

In certain applications such as indoor tracking, there could
be multiple agents moving in a given environment. The
agents (cameras for our purposes in this paper) can enter and
exit the environment at any time. The environment may be
unknown. If there is a map of the environment, the agents
can utilize it to localize themselves in it. If an agent moves in
a part of the environment that is not mapped, it can start build-
ing the map and localize itself in it as part of the SLAM pro-
cess. Each agent can do this independently, however, when
they are operating in a common environment, it makes sense
to use their locally built maps to complement each other and
complete and/or improve the global map and, therefore, help
each other in their respective tasks.

One can use a camera as the only input device to perform
Visual SLAM. Ubiquitous cameras (e.g., on mobile devices)
make visual SLAM a more popular choice. However, cam-
eras impose an additional challenge since they provide bear-
ing only data. In recent work, both feature based and feature-
less direct methods are used in visual SLAM. Direct methods
like [Engel et al., 2014] generate denser maps. Dense maps
can be more attractive in certain applications, such as aug-
mented reality, in which a user is interacting with the envi-
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ronment and virtual objects in the environment. It is desirable
that this interaction be realistic and seamless. A dense map
of the environment makes this interaction possible.

Additionally, using multiple agents to perform SLAM in-
creases the robustness of SLAM process and makes it more
fault tolerant and less vulnerable for catastrophic failures.
One of the main challenges in distributed SLAM is to com-
pute map overlaps, especially when agents have no prior
knowledge of their relative starting positions. Usually agents
also have limited bandwidth to communicate with each other.

In this paper we introduce a distributed framework for
monocular visual SLAM agents with no initial knowledge of
their relative positions.

2 Related Work
2.1 Visual SLAM

Building a 3D map of the environment from motion has been
studied in computer vision under the name of structure from
motion [Faugeras and Lustman, 1988; Sturm and Triggs,
1996]. However, this 3D scene structure estimated from mo-
tion does not necessarily mean that the result is a coherent
global map. In SLAM this is accomplished by “loop closure”
in which features or structures already seen before are used
to refine the map as well as correct the camera’s path and,
therefore, the localization.

Davison et al. introduced a visual SLAM method of cap-
turing the path of a freely moving camera (6 Degrees of Free-
dom — DoF), while generating a sparse map [Davison et
al., 2007]. The method was called Monocular visual SLAM
(MonoSLAM). MonoSLAM is limited to work in a room-
sized environment. A more robust method called Parallel
Tracking and Mapping (PTAM) was introduced by Klein et
al. in [Klein and Murray, 2007]. It focused on accurate and
fast mapping in a similar environment to MonoSLAM.

In contrast to feature based methods, recent Monocular
SLAM work, DTAM by Newcombe et al. in [Newcombe
et al., 2011] and LSD-SLAM by Engel et al. [Engel et al.,
2014], utilize image pixel intensities directly, and generate
dense or semi-dense maps of the environment. These maps
describe the environment better. And, generally, they are
more robust to blur.
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2.2 Distributed SLAM

Multiple agents in a distributed SLAM system could be han-
dled using a naive brute-force method, where nodes com-
municate all sensor observations and map updates with each
other in a complete graph topology. However, the communi-
cation bandwidth and computational resources available for
an agent are typically limited and the distributed network is
subject to failures of nodes and links. So it is necessary to
come up with an intelligent approach to cope with these chal-
lenges.

A unique, globally consistent map can be easily generated,
if the agents know either their relative locations or map over-
laps. For example, in [Nettleton ef al., 2006] relative loca-
tions of the agents are found by global positioning sensors
(GPS). It is also relatively easier to determine map overlaps
if all relative initial poses of agents are known. For example,
Paull et al. in [Paull et al., 2015] initialize agents with known
GPS location information.

The problem becomes more difficult if the relative loca-
tions of the agents are unknown. In some contributions,
agents continue building local sub maps until the agents meet
each other. Howard et al. [Howard et al., 2006] propose a
method where each agent could detect the other agents. The
agents use these coincidental encounters to find their relative
locations. Dieter Fox et al. in [Fox et al., 2006] present a
method where each agent is actively seeking the other agents
in the environment to find relative locations between them.

We used our experimental framework for distributed
SLAM [Gamage and Tuceryan, 2016] for the development
of the methods in this paper.

3 Methodology

The distributed computing framework is implemented as
computing nodes that communicate with each other over a
network. The nodes have different computing tasks depend-
ing on what their function is.

3.1 The distributed SLAM framework

We have two types of nodes in our distributed framework, ex-
ploring nodes and monitoring nodes. Nodes are physically
located in different computers. They communicate with each
other using the underlying computer network. At any given
time, there is one monitoring node and multiple exploring
nodes. Each node has a unique identifier. The exploring
nodes are linked to the monitoring node and exploring nodes
may be linked to each other if their maps overlap resulting in
a network of nodes as shown in Figure 1.

The exploring nodes perform monocular visual SLAM.
Each node receives images from a single camera. Also these
nodes receive data and commands from the monitoring node.
They exchange data between each other and they send data
to the monitoring node. Our framework adapted the monoc-
ular visual SLAM work by [Engel er al., 2014] in exploring
nodes. The details of the exploring nodes are described in
section 3.3.

The monitoring node continuously receives data from ex-
ploring nodes. By looking at the maps of exploring nodes, it
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Figure 1: The network of nodes, all exploring nodes (E) are
connected to the monitoring node (M). Some exploring nodes
are also connected to each other

detects map overlaps and loop closures. Accordingly, it is-
sues commands to relevant exploring nodes. The details of
the monitoring nodes are described in section 3.2.

The Robot Operating System

We use the ROS infrastructure [Quigley et al., 2009] to im-
plement the distributed SLAM framework. A ROS node is re-
sponsible of performing computations. ROS also provides a
message passing communication framework between nodes.
Nodes in our framework are implemented as ROS nodes.

In its communication framework, ROS provides named
communication buses called topics. Multiple nodes can pub-
lish messages to a topic while multiple subscribed nodes
could receive them. Based on the requirement, ROS could
either use UDP or TCP for message passing. In our frame-
work data and commands are communicated between nodes
as ROS messages.

ROS has a master server to list all available topics of a sys-
tem. After identifying providers and subscribers of a topic by
communicating with master server, ROS nodes can commu-
nicate with each other, peer-to-pear via topics.

The Map
In our framework, a map is represented using a set of
keyframes in a pose graph.

The i** keyframe, KC; consists of an absolute pose €y;, an
image I;, an inverse depth map D;, an inverse depth variance

map V;, and a list of features fi("). Each keyframe gets a
globally unique 32 bit identifier as shown in Algorithm 1.

Algorithm 1 Unique identifier for a keyframe

1: procedure GETUNIQUEID (key frame_id, node_id)

id < SHIFTLEFT(node_id, 20)

id < id + key frame_id

return id > A globally unique identifier
end procedure

2
3
4.
5:

The pose graph contains edges, € ;;, having similarity trans-
formation §;; € R” and corresponding covariance matrix
3 i, between " and j** key frames as shown in Figure 2.
The relative pose between the two nodes is encoded with
three components of the translation and the four components
of the quaternion.

3.2 Monitoring nodes

The monitoring node contains a feature store to collect all the
SURF [Bay et al., 2008] features (and SIFT [Lowe, 2004]
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Figure 2: Keyframes and pose graph representing the map.

descriptors) received from the exploring nodes. It also main-
tains a fusion graph of exploring nodes to keep track of map
overlaps.

Map overlap detection

All features found in incoming the key frames are compared
against features in the feature store. If there are more than N
matching features with a key frame of a different node, it is
concluded that those two nodes have overlapping maps. The
threshold NV is determined empirically.

Exploring nodes are represented as vertices in the fusion
graph. All identified map overlaps are represented as edges
in the fusion graph. The weight corresponds to the number of
matching features found across multiple key frames.

Loop closure detection

Similar to map overlap detection, if there are matching fea-
tures between two key frames of the same node and there is
no edge between those key frames in the map, then it is con-
sidered a loop closure. Loop closures that connect temporally
far apart key frames, corresponds to the event where agent re-
visit a location after a while. These large loop closures help to
reduce accumulated pose drift, and improve the accuracy of
the entire map. Similarly, small loop closures, which connect
key frames that are temporally closer, improve sub regions of
the map.

Rigid transformation between key frames

In both map overlap detection and loop closure detection, the
relative rigid transformation between key frames are com-
puted using a least-square method [Sorkine-Hornung and Ra-
binovich, 2017]. RANSAC algorithm [Fischler and Bolles,
1981] is used to get rid of outliers.

3.3 Exploring nodes

The functional modules and the architecture of an exploring
node are shown in Figure 3 which consist of the input stream,
tracking, mapping, and optimization modules. All these mod-
ules run in separate threads.

The input stream module accepts incoming frames from
the camera as well as commands and data from other nodes.
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The tracking module accepts a new frame from the input
stream module, and tracks it against the current key frame. If
the current key frame no longer can track the frame, i.e. when
the frame has significantly deviated from the key frame, a new
key frame is created.

The old key frame is added to the map by the mapping
module. The new key frame is also sent to the monitoring
node and to all other exploring nodes subscribed (linked) to
the current exploring node.

The optimization module continuously optimizes the pose
graph in the background. After each optimization the pose
graph is sent to the monitoring node and to the subscribed
exploring nodes.

Map merging process
The Figure 4 shows the sequence of operations that take place
in the map merging process.

Consider the case in which the exploring node A receives a
merge command from the monitoring node. The input stream
module puts the command into a command buffer. The track-
ing module contains multiple state submodules, including
one for map merging. The map merging state submodule,
processes the command from the buffer and changes its state,
to waiting for a map from the other exploring node B. Fur-
thermore, it sends its own map to B. Once the map of B is
received, all new key frames and the new pose graph is added
into the A’s map, and the state is changed to the default state,
where node A is waiting for new merge commands.

Figure 5 shows a resultant map after map merging process.

Multiple instances of the same ROS node
In our distributed framework, we implemented exploring
node as a ROS node. Given there are multiple instances of
exploring node in the network, we have to configure these
instances, so that we can uniquely identify each exploring
node’s topics. For this we use ROS topic remapping. For ex-
ample, say we have two exploring node instances, namely A
and B, then exploring node’s /dvslam/graph topic could be
remapped to /A/dvslam/graph and /B/dvslam/graph.
In this way, node A could listen to topic /B/dvslam/graph
and node B could listen to topic /A/dvslam/graph.

The following simplified scripts in Listing 1 and Listing 2
show how an exploring node was configured for remapping.

Listing 1: Setting up environment variables

export ROS_IP=10.1.2.3

export ROS_MASTER_URI=http://10.1.2.2:11311
export EXP_NODE=2

roslaunch exploring_node.launch

Listing 2: ROS node launch script

<launch>

<node pkg="exploring_node"
type="live_slam"
name="node_$ (env EXP_NODE)"
args="image:=/image_raw
camera_info:=/camera_info"
output="screen">

<remap from="/dvslam/graph"

to="/$ (env EXP_NODE) /dvslam/graph"/>
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Figure 3: The distributed SLAM framework. Returning dashed arrows represent communication between two exploring nodes.

<remap from="/dvslam/keyframes"
to="/$ (env EXP_NODE) /dvslam/keyframes"/>
</node>
</launch>

3.4 Communication between nodes

Nodes use ROS topics and messages to issue commands and
to exchange data. Four topics named, keyframes, graph, com-
mand and map are used in the framework. These topics are
fully-qualified using the namespace /dvslam/.

ROS topics used in the framework are shown in Table 1.
The publisher node writes data and subscriber nodes receive
the data via the topic.

Network statistics

A distributed SLAM could easily reach the bandwidth limi-
tations of a network, especially, when dense maps are trans-
ferred between nodes. In our distributed framework we could
generate statistics by using ROS Topic Statistics.

The measurement of traffic volume in bytes of every con-
nection between nodes helps us to identify bandwidth uti-
lization. Furthermore, measurements like number of dropped
messages between nodes is a good indication of reaching the
bandwidth limit. Other statistics such as mean & standard
deviation of the age of messages, and period of messages of
all nodes can also be used to investigate the communication
between nodes.

4 Experimental Results

4.1 The experimental setup

Our experimental setup is designed to precisely define the
ground truth against which the estimated camera positions
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along the motion path can be measured. To test our frame-
work we mounted a global shutter camera, Point Grey Fire-
fly MV, on a Computer Numeric Control (CNC) machine as
shown in Figure 6. We then prepared a 1m x 1.5m table
surface containing wooden objects. We then moved the cam-
era above the wooden objects, roughly 4 minutes each time,
along known paths and captured both the image stream and
the ground truth from the CNC controller. The CNC machine
has 0.2mm accuracy in all 3 axes. The camera operated in
640 x 480 pixel resolution. To capture ground truth from the
tiny CNC controller, we wrote an open source ROS node in
[Egodagamage, 2017].

4.2 Running experiments

We defined two different 3D paths with 10% overlap, Path 4
and Pathp with two different known starting points A and
B respectively. Next, we collected four datasets, with two
different camera orientations for each path. We created two
experiments. In the first experiment, we selected two datasets
having parallel camera optical axes. In the second experiment
we used remaining two datasets, where the optical axes is
40° to each other. Each dataset is used to deploy an exploring
node.

In each experiment, two exploring nodes and one monitor-
ing node are used. These nodes are deployed in three different
computers. Once the framework detected map overlaps, we
recorded the relative transformation between the maps of ex-
ploring nodes. Each experiment is repeated 100 times. The
average transformation for each experiment is then compared
against the ground truth to compute errors in rotation and
translation.

In both experiments, resultant rotation errors in translation
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Figure 4: Important components of the map merging process

Table 2: Summary of the experimental results.

and rotation were less than 3cm and 6° respectively as shown

in Table 2.

5 Conclusion & Future Work

Topic Publisher Subscriber Description
keyframes | Exploring node Monitoring node Monitoring nodes always receive key frames from all exploring
Exploring node nodes. After merging maps, exploring nodes exchange key frames
between each other.
graph Exploring node Monitoring node Monitoring nodes always receive pose graph from all exploring
Exploring node nodes. After merging maps, exploring nodes exchange pose graphs
between each other.
command | Monitoring node Exploring node All exploring nodes process commands addressed to them and dis-
card others. Commands like map merging, loop closure is received
via this topic.
map Exploring node Exploring node During the merge process, relevant exploring nodes subscribe each
others’ map topic and unsubscribe once done.
Table 1: ROS topics used to communicate between nodes
Experiment | Rotation Error | Translation Error ods to recover random node failures. Moreover, we will be
Experiment 1 3.799° 1.959cm conducting more experiments on network bandwidth utiliza-
: - tion.
Experiment 2 5.330° 2.754cm
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