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ABSTRACT  

This study was designed to identify mechanisms responsible for coronary vasodilation in 

response to progressive decreases in hematocrit. Isovolemic hemodilution was produced in open-

chest, anesthetized swine via concurrent removal of 500 ml of arterial blood and the addition of 

500 ml of 37°C saline or synthetic plasma expander (Hespan, 6% hetastarch in 0.9% sodium 

chloride). Progressive hemodilution with Hespan resulted in an increase in coronary flow from 

0.39 ± 0.05 to 1.63 ± 0.16 ml/min/g (P < 0.001) as hematocrit was reduced from 32 ± 1% to 10 ± 

1% (P < 0.001). Overall, coronary flow corresponded with the level of myocardial oxygen 

consumption, was dependent on arterial pressures ≥ ~60 mmHg, and occurred with little/no 

change in coronary venous PO2. Anemic coronary vasodilation was unaffected by the inhibition 

of nitric oxide synthase (L-NAME: 25 mg/kg iv; P = 0.92) or voltage-dependent K+ (KV) channels 

(4-aminopyridine: 0.3 mg/kg iv; P = 0.52). However, administration of the KATP channel antagonist 

(glibenclamide: 3.6 mg/kg iv) resulted in an ~40% decrease in coronary blood flow (P < 0.001) as 

hematocrit was reduced to ~10%. These reductions in coronary blood flow corresponded with 

significant reductions in myocardial oxygen delivery at baseline and throughout isovolemic 

anemia (P < 0.001). These data indicate that vasodilator factors produced in response to 

isovolemic hemodilution converge on vascular smooth muscle glibenclamide-sensitive (KATP) 

channels to maintain myocardial oxygen delivery and that this response is not dependent on 

endothelial-derived nitric oxide production or pathways that mediate dilation via KV channels. 
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INTRODUCTION 

The coronary circulation is tightly regulated in order to ensure adequate matching between 

myocardial oxygen delivery and metabolism. This control of coronary blood flow is essential as 

the myocardium extracts ~70-80 percent of the oxygen delivered while at rest [18, 19, 40, 50]. 

Thus, any physiologic perturbation that alters the overall balance between oxygen delivery and 

myocardial oxygen consumption (MVO2) requires the subsequent modulation of coronary 

microvascular resistance to ensure oxygen supply/demand balance. As such, the coronary 

circulation has a remarkable ability to increase blood flow upwards of 10-fold (from ~0.5 ml/min/g 

at rest to ≥ 5.0 ml/min/g with maximal dilation) [63]. Although this intricate coupling has been 

recognized for many years, our understanding of the underlying mechanisms remains rather 

limited.  

Prior studies to examine the balance between coronary blood flow and MVO2 have 

established that coronary blood flow increases exponentially (>4-fold) with ~70% reductions in 

arterial oxygen content in response to hemodilution (anemia), hypoxemia, and carbon monoxide 

poisoning [9, 29, 36, 37, 39, 43, 54, 64, 66, 71]. This progressive augmentation of coronary flow 

maintains overall myocardial oxygen delivery and occurs with a ~2-fold increase in MVO2 and 

little/no change in myocardial oxygen extraction [10, 19, 34, 35, 47, 64, 67, 68]. However, 

evidence of enhanced myocardial lactate release and impairments to both sub-endocardial blood 

flow and cardiac contractile function have been reported with more severe reductions in 

hematocrit (≤ 10%) [1, 3, 37, 45, 64]. Earlier studies have suggested a role for reduced blood 

viscosity in the coronary response to anemia [5, 31, 33, 46, 62]. However, data demonstrating 

diminished vasodilator reserve to hemodilution in the presence of a critical coronary stenosis or 

in response to a brief coronary occlusion (i.e. reactive hyperemia) directly implicate that 

progressive reductions in hematocrit lead to the activation of vasodilator pathways [7, 9, 22, 31, 

37, 67]. Nonetheless, elucidation of the mechanisms responsible for anemic coronary vasodilation 

has proven challenging. In particular, circulating catecholamine concentrations are not 
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significantly altered by reductions in hematocrit to ~9% [64] and consequently, increases in 

coronary blood flow observed during β-adrenoceptor blockade are sufficient to sustain myocardial 

oxygen delivery thereby reducing the likelihood that these effects are sympathetically mediated 

[11]. Inhibition of nitric oxide production with NG-nitro-L-arginine methyl ester (L-NAME) was also 

found to have little/no effect of the coronary blood flow in response to acute, euvolemic reductions 

in hematocrit from 40% to 20% [8]. However, whether nitric oxide contributes to the coronary 

dilator response as hematocrit is reduced below 20% has not been determined. Alternatively, 

end-effector K+ channels in vascular smooth muscle are regulated by a variety of influences 

including endogenous endothelial and metabolic factors [25], cellular energy status (ATP/ADP 

ratio) [13, 25, 48], redox-dependent signaling [53], and the overall degree of oxygenation [21, 28]. 

Yet, whether these channels contribute to the balance between myocardial oxygen delivery and 

metabolism in response to progressive hemodilution has not been determined. 

The purpose of this study was to identify mechanisms responsible for coronary 

vasodilation and the maintenance of myocardial oxygen delivery in response to moderate and 

severe reductions in hematocrit. Experiments were designed to test the hypothesis that the 

contributions of nitric oxide, voltage-dependent (KV), and/or ATP-sensitive (KATP) K+ channels 

progressively increase in response to acute isovolemic hemodilution in open-chest, anesthetized 

domestic swine. Our findings provide novel insight into the end-effector channels required for 

anemic coronary vasodilation. 
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METHODS 

All experiments involving animals were approved by an Institutional Animal Care and Use 

Committee and performed in accordance with the Guide for the Care and Use of Laboratory 

Animals (NIH Publication No. 85-23, Revised 2011). Lean adult male domestic swine (n = 29) 

were sedated with telazol, xylazine, and ketamine (5, 2.5, and 2.5 mg/kg) prior to anesthesia with 

morphine (0.5 mg/kg) and intravenous α-chloralose (60 mg/kg).  

 

Experimental preparation  

Anesthetized swine were intubated and ventilated with O2-supplemented room air. 

Femoral cut downs were performed and catheters placed in the femoral artery and vein for 

continuous measurement of systemic blood pressure and heart rate and for administration of 

anesthetic and antagonists, respectively. Succinylcholine (0.5 mg/kg) was administered prior to a 

thoracotomy in the left 5th intercostal space. The left anterior descending (LAD) coronary artery 

was isolated and a perivascular flow probe (Transonic Systems Inc.) placed around the artery. A 

catheter was placed in the interventricular vein to sample coronary venous blood. Systemic 

heparin (500 units/kg) was administered to prevent clotting in the coronary venous catheter. 

Following a ~15 min stabilization period, data were continuously recorded on IOX data acquisition 

software from EMKA Technologies (Falls Church, VA). 

 

Acute isovolemic anemia protocol  

Pigs were randomly assigned to one of the following six groups: 1) Control with saline 

replacement; 2) Control with Hespan (hydroxyethyl starch) replacement; 3) nitric oxide synthesis 

inhibition with nitro-L-arginine methyl ester (L-NAME, 25 mg/kg iv with Hespan replacement); 4) 

KV channel inhibition with 4-aminopyridine (4-AP, 0.3 mg/kg iv with Hespan replacement); 5) KATP 

channel inhibition glibenclamide (3.6 mg/kg with Hespan replacement); 6) glibenclamide vehicle 

(equal parts 95% ethanol, 1N NaOH, propylene glycol). Following administration of drugs (for 
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groups 3-6) and the ~15 min stabilization period of the animal, arterial and coronary venous blood 

samples were obtained at baseline and at stepwise serial reductions in hematocrit. Progressive 

isovolemic anemia was produced by withdrawing 500 ml of arterial blood that was simultaneously 

replaced by intravenous administration of 500 ml of saline or Hespan, which were warmed to 37°C 

prior to infusion. Following completion of experimental protocols, hearts were fibrillated and 

excised as recommended by the American Veterinary Medical Association Guide on Euthanasia.  

 

Blood gas analyses  

Arterial and coronary venous blood samples were collected, immediately sealed and 

placed on ice. The samples were analyzed for pH, PCO2, PO2, glucose, lactate, and oxygen 

content with an Instrumentation Laboratories automatic blood gas analyzer (GEM Premier 3000) 

and CO-oximeter (682) system. Hematocrit was determined by centrifugation of capillary tubes 

containing blood collected at each replacement on a StatSpin micro-hematocrit centrifuge 

(CritSpin M961-22). LAD perfusion territory was estimated to be 30% of total heart weight, as 

previously described by Feigl [20]. MVO2 was calculated by multiplying coronary blood flow by 

the arterial coronary venous difference in oxygen content.  

 

Statistical analysis  

Data are presented as mean ± SE. Statistical comparisons for data presented in Tables 

1 and 2 were made by a two-way analysis of variance (ANOVA; Factor A: drug treatment; Factor 

B: level of hematocrit). Experimental variables were averaged within and between animals relative 

to the following hematocrit levels: (≥ 28.0) → (27.9 – 22.0) → (21.9 – 17.0) → (16.9 – 11.0) → (≤ 

10.9). Differences were considered statistically significant when P < 0.05. If significance with 

ANOVA was detected, a Student–Newman–Keuls multiple comparison test was performed. The 

relationship between coronary blood flow and hematocrit was fit to an inverse, second-order 

equation for each animal and a statistical comparison (t-test) of the predicted coronary flow based 
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on the fit equation was performed at hematocrits of 10%, 20% and 30% to establish differences 

in relationships between treatments. Multiple linear regression analysis was used to compare 

slopes of response variables (oxygen delivery, coronary venous PO2) plotted vs. hematocrit or 

MVO2. If the slopes of the regression lines were not significantly different, an analysis of 

covariance (ANCOVA) was used to adjust response variables for linear dependence on 

hematocrit or MVO2. Statistical analyses were performed with Sigma Plot 11.0 software (Systat 

Software Inc., San Jose, CA, USA), ANCOVA analyses were performed with VassarStats 

(Arlington, New York, USA). 
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RESULTS 

Control responses to isovolemic hemodilution  

Hemodynamic and coronary responses to graded reductions in hematocrit in untreated 

control swine that received volume replacement with saline or the synthetic colloid Hespan 

(hydroxyethyl starch) are shown in Figure 1. Saline based isovolemic hemodilution produced 

significant decreases in blood pressure (from 74 ± 6 mmHg to 26 ± 2 mmHg; Figure 1A; P < 0.01) 

and MVO2 (from 61 ± 4 to 27 ± 4 ml O2/min/g; Figure 1B; P < 0.01). These reductions were 

associated with minimal change in coronary blood flow (0.49 ± 0.02 to 0.40 ± 0.06 ml/min/g; 

Figure 1C; P = 0.63) and marked decreases in myocardial oxygen delivery (78 ± 4 to 36 ± 6 ml 

O2/min/g; Figure 1D; P < 0.001) as hematocrit was reduced from ~35% to ~15%. In contrast, 

aortic blood pressure (Figure 1A) and MVO2 (Figure 1B) were not significantly altered by 

hemodilution in swine that received Hespan (Table 1). With the relative maintenance of blood 

pressure and MVO2, coronary blood flow increased ~4-fold as hematocrit was reduced to ≤10% 

(Figure 1C and Table 1). This increase in coronary blood flow was sufficient to maintain 

myocardial oxygen delivery at ~53 ± 5 µl O2/min/g (Figure 1D). However, examination of 

electrocardiograms revealed evidence of sub-endocardial ischemia (ST segment depression and 

T wave inversion) under these conditions (Figure 2). 

 Examination of coronary responses relative to changes in aortic pressure (i.e. coronary 

perfusion pressure), heart rate, and MVO2 are provided in Figure 3. These relationships 

demonstrate that coronary blood flow (Figure 3A) remained relatively constant over a wide range 

of blood pressures, down to ~40 mmHg, in swine that received saline replacement. However, 

myocardial oxygen delivery progressively decreased as aortic pressure fell with hemodilution in 

these animals (Figure 3B). In contrast, coronary vasodilation in response to isovolemic 

hemodilution in Hespan infused animals was not influenced by underlying changes in aortic 

pressure (Figure 3A) but was directly related to increases in heart rate (Figure 3C) and MVO2 

(Figure 3D). Interestingly, coronary venous PO2 remained unchanged with reductions in 
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hematocrit (Figure 3E; P = 0.97) and was unaffected by underlying differences in MVO2 in swine 

that received Hespan (Figure 3F; P = 0.90). In contrast, coronary venous PO2 decreased as 

MVO2 increased in swine that received saline replacement (Figure 3F; P < 0.01).  

 

Role of nitric oxide in anemic coronary vasodilation 

Inhibition of nitric oxide synthase with L-NAME resulted in a significant increase in mean 

arterial pressure from 92 ± 4 to 124 ± 6 mmHg (Table 1; P < 0.001) at baseline. This was 

associated with a significant increase in MVO2, from 41 ± 4 to 50 ± 5 µl O2/min/g (Table 1; P = 

0.013) at baseline. These effects of nitric oxide inhibition were evident throughout the isovolemic 

anemia protocol. Despite these hemodynamic effects, inhibition of nitric oxide did not affect 

coronary blood flow (Figure 4A; P = 0.36), myocardial oxygen delivery (Figure 4B; P = 0.92), or 

heart rate (Table 1; P = 0.521) as hematocrit was decreased from 32 ± 2% to 9 ± 1%. However, 

administration of L-NAME diminished coronary venous PO2 (Table 1; P = 0.002), primarily at 

higher hematocrits (Figure 4C; P < 0.01) and levels of MVO2 (Figure 4D; P = 0.03). 

 

Role of KV and KATP channels in anemic coronary vasodilation 

Blockade of KV channels with 4-AP did not significantly affect blood pressure (P = 0.097), 

heart rate (P = 0.195), or MVO2 (P = 0.38) as hematocrit was reduced from 33 ± 1% to 8 ± 1% 

(Table 1). Inhibition of KV channels also did not significantly alter coronary blood flow (Figure 5A; 

P = 0.21) or myocardial oxygen delivery (Figure 5B; P = 0.63) at baseline or in response to 

isovolemic anemia. In contrast, 4-AP significantly decreased coronary venous PO2 (Table 1; P < 

0.001) irrespective of underlying hematocrit (Figure 5C; P < 0.001) or MVO2 (Figure 5D; P < 

0.001). 

Inhibition of KATP channels with glibenclamide had no effect on blood pressure (P = 0.541) 

or heart rate (P = 0.139), however, MVO2 decreased ~35% relative to vehicle-control swine, 
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irrespective of underlying hematocrit (Table 2; P < 0.001). Administration of glibenclamide 

induced significant decreases in coronary blood flow (Table 2; P < 0.001) as hematocrit was 

reduced from 32 ± 1% to 9 ± 1% (Figure 6A; P < 0.001). These reductions in coronary blood flow 

corresponded with significant reductions in myocardial oxygen delivery at baseline and throughout 

isovolemic anemia (Figure 6B; P < 0.001). Glibenclamide also significantly decreased coronary 

venous PO2, (Table 2; Figure 6C; P = 0.003) but did not significantly alter the relationship 

between coronary venous PO2 and MVO2 (Figure 6D; P = 0.36). 
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DISCUSSION  

This investigation was designed to identify mechanisms responsible for coronary 

vasodilation and the maintenance of myocardial oxygen delivery in response to moderate and 

severe reductions in hematocrit. Experiments tested the hypothesis that the contribution of nitric 

oxide, KV, and/or KATP channels increase in response to acute isovolemic hemodilution in open-

chest, anesthetized domestic swine. Our findings are consistent with prior studies which have 

demonstrated that progressive augmentation of coronary blood flow in response to anemia is 

sufficient to maintain overall myocardial oxygen delivery, although subendocardial ischemia is 

apparent as hematocrit falls to ≤ 10% [1, 3, 37, 45, 64]. Overall, coronary blood flow corresponds 

with MVO2, is dependent on arterial driving pressures ≥ 60 mmHg, and occurs with little/no change 

in myocardial oxygen extraction (coronary venous PO2) [10, 19, 34, 35, 47, 64, 67, 68]. The major 

novel findings of this study are that inhibition of KATP channels with glibenclamide significantly 

attenuates anemic coronary vasodilation and that this response occurs independent of alterations 

in endothelial nitric oxide production or the activation of KV channels. These data are the first to 

implicate that vasodilator factors produced in response to graded reductions in hematocrit (arterial 

oxygen content) converge on vascular smooth muscle glibenclamide-sensitive KATP channels to 

mediate increases in coronary blood flow and maintain myocardial oxygen delivery.  

 

Myocardial Oxygen Supply/Demand Balance During Acute Isovolemic Anemia 

It is well established that reductions in hematocrit lead to marked hemodynamic responses 

including increases in cardiac output, heart rate, contractility, and MVO2 [8, 30, 37, 64], all of 

which are important determinants of coronary blood flow [25]. In the present study, we noted 

significant differences in the coronary response to hemodilution in swine that received volume 

replacement with saline vs Hespan. We propose that the lack of a change in coronary blood flow 

to progressive anemia in the saline group (Figure 1C) is most likely due to marked reductions in 

arterial pressure which fell beyond the normal autoregulatory range at relatively high (~30%) 
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hematocrits (Figure 1A; Figure 3A). These findings support that adequate coronary perfusion 

pressure (≥ 60 mmHg) is required to ensure the maintenance of myocardial oxygen delivery in 

response to progressive reductions in hematocrit. Importantly, when arterial pressure is 

maintained by volume replacement with Hespan, increases in coronary blood flow are directly 

related to the degree of hemodilution (Figure 1) and reductions in coronary vascular resistance. 

The central question surrounding this phenomenon is “how” changes in hematocrit induce 

increases in coronary blood flow precisely to the degree necessary to preserve myocardial oxygen 

delivery. 

The simplest explanation for reductions in coronary vascular resistance in response to 

anemia is a reduction of blood viscosity. While analysis of vascular hindrance 

(resistance/viscosity) supports a role for viscosity at hematocrits ranging from ~60% to 20% [33], 

studies which have documented diminished vasodilator reserve to hemodilution in the presence 

of a critical coronary stenosis or in response to a brief coronary occlusion (i.e. reactive hyperemia) 

directly demonstrate that progressive reductions in hematocrit lead to the activation of vasodilator 

pathways [7, 9, 22, 31, 37, 67]. We propose that the discrepant coronary responses to volume 

replacement with saline are not related to differences in the viscosity as the lower dynamic 

viscosity of saline vs. Hespan would be predicted to augment the overall degree of anemic 

coronary vasodilation. However, reductions in arterial pressure in swine that received saline 

confound interpretation of the role of viscosity.  

Although it is apparent that coronary vasodilation occurs in response to anemia, the 

mechanisms responsible for anemic coronary dilation have remained elusive. More specifically, 

how changes in hematocrit are sensed is simply not understood. Classically, changes in 

myocardial tissue PO2, which are indexed by changes in coronary venous PO2, are proposed to 

invoke the production of vasodilator factors that act to increase coronary blood flow and restore 

tissue PO2 to normal levels via negative feedback loop [25]. However, the consistency of coronary 

venous PO2 (myocardial oxygen extraction) as hematocrit is lowered to < 10% (Figure 3) has 
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been found in rats [69], dogs [7, 12, 37, 61], pigs [64], baboons [68], and humans [24] and directly 

argues against this traditional paradigm. How and why coronary venous PO2 remains unchanged, 

even during severe hemodilution when ischemia is evident, is still yet another mystery. Proposed 

mechanisms for this paradoxical response include the flow-limited diffusion of oxygen, alterations 

in oxygen binding properties of blood due to altered plasma protein and buffer content, and the 

diminished release of oxygen by erythrocytes due to reduced intracellular convection [37, 67]. 

 

Role for Nitric Oxide in Anemic Coronary Vasodilation 

 Nitric oxide is an endothelial-derived vasodilating factor whose release is stimulated by 

pharmacological agonists (e.g. acetylcholine and bradykinin) and mechanical stimulation of the 

endothelium via shear stress, pulsatile flow, and/or axial strain [4, 38, 58, 59]. Prior studies also 

indicate that nitric oxide is scavenged and transported by hemoglobin in the form of S-

nitrosohemoglobin [41, 57]. To examine the role of nitric oxide in the regulation of coronary blood 

flow during progressive reductions in hematocrit, we performed isovolemic hemodilution 

experiments in the absence and presence of the nitric oxide synthase blocker L-NAME. While the 

inhibition of nitric oxide production resulted in significant (> 25 mmHg) increases in blood pressure 

(Table 1) and increased myocardial oxygen extraction at higher hematocrits (>20%) (Figure 4C), 

L-NAME had essentially no effect on coronary blood flow (Figure 4A) or myocardial oxygen 

delivery (Figure 4B) at hematocrits ranging from ~30% to ~10%. These data are consistent with 

the prior studies by Crystal et al. in dogs which documented no effect of intracoronary L-NAME 

on anemic coronary vasodilation down to hematocrits of ~20% [8]. Importantly, the use of 

intracoronary L-NAME prevented changes in systemic blood pressure and thus argue against 

hypertension as a confounding influence in the present study. The lack of effect of either systemic 

or intracoronary L-NAME demonstrates that alterations in nitric oxide bioavailability or endothelial 

shear stress do not play a significant role in modulating coronary blood flow in response to 

progressive isovolemic hemodilution.  
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Role for K+ Channels in Anemic Coronary Vasodilation 

 K+ channels dominate membrane conductance of coronary vascular smooth muscle and 

serve as important end-effector mechanisms of endogenous and exogenous vasodilator 

compounds [17, 25]. In particular, KV channels have been shown to contribute to the control of 

coronary blood flow at rest, during increases in MVO2, and following a brief coronary artery 

occlusion [2, 16, 26, 27, 49, 53]. To test the hypothesis that anemic coronary vasodilation is 

mediated by endogenous factors that converge on KV channels, we performed isovolemic 

hemodilution experiments in the absence and presence of the non-selective KV channel inhibitor 

4-AP [51-53]. Similar to our results with L-NAME, we found that 4-AP diminished coronary venous 

PO2 primarily at higher hematocrits (≥ 20%) (Table 1; Figure 5C). However, inhibition of KV 

channels did not significantly influence anemic coronary vasodilation as 4-AP had no effect on 

coronary blood flow (Figure 5A), myocardial oxygen delivery (Figure 5B) in response to 

progressive hemodilution. Prior studies from our laboratory have documented that the 0.3 mg/kg 

dose used in this investigation is sufficient to significantly impair coronary vasodilation and the 

balance between myocardial oxygen delivery and metabolism in response to increases in MVO2 

and to a brief coronary artery occlusion [2, 16, 53]. These findings importantly demonstrate that 

4-AP significantly reduces coronary blood flow, under specific physiological conditions, and 

indicate that the vasodilator “metabolites” produced in response to progressive anemia are 

different than those produced in response to exercise or acute myocardial ischemia. While we 

cannot rule out potential effects of 4-AP on cardiomyocytes or other K+ channel subtypes, it is 

noteworthy that 4-AP did not produce any changes in the ECG or MVO2 (Table 1) and that similar 

doses of 4-AP do not significantly influence coronary vasodilation in response to the KATP channel 

agonist pinacidil [16]. Taken together, our findings do not support a requisite role for KV channels, 

or the pathways that converge on these channels, in mediating coronary vasodilation in response 

to hemodilution.  
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 KATP channels are highly expressed in coronary vascular smooth muscle and are known 

to be activated by cellular energetic state (ATP/ADP ratio), intracellular pH, and by 

pathophysiologic conditions such as hypoxia and ischemia [14, 17]. However, whether isovolemic 

hemodilution mediates coronary vasodilation via activation of KATP channels has not been 

previously investigated. Data from this study are the first to demonstrate that the inhibition of KATP 

channels with glibenclamide markedly diminishes increases in coronary blood flow (Figure 6A) 

and myocardial oxygen delivery (Figure 6B) in response to progressive reductions in hematocrit. 

It is important to point out that glibenclamide significantly decreased MVO2 by ~45-50% at all 

levels of hematocrit (Table 2) and that such reductions in MVO2 could result in decreases in 

coronary blood flow, possibly via effects on mitochondrial KATP channels [25]. However, we 

propose that this is likely not the case as the progressive reduction of the coronary blood flow 

response to decreases in hematocrit in glibenclamide treated swine (Figure 6A) does not 

correspond with augmented decreases in MVO2 (Table 2). Furthermore, the Bache laboratory 

previously documented that glibenclamide-mediated reductions in MVO2 are restored to normal 

levels by increasing coronary blood flow with intracoronary sodium nitroprusside [32]. This finding 

combined with additional evidence that the mitochondrial KATP channel antagonist 5-

hydroxydecanoate (5-HD) has no effect on MVO2 supports that glibenclamide-mediated 

decreases in MVO2 are the result of coronary vasoconstriction (limitation of myocardial oxygen 

delivery) rather than primary reductions in mitochondrial respiration per se [6]. However, we 

acknowledge that we cannot definitively rule out effects of glibenclamide on sarcolemmal or 

mitochondrial channels in cardiomyocytes and/or the potential for glibenclamide to antagonize 

other K+ channel subtypes (e.g. IK1 and KV1) [56, 70]. Despite the potential for these confounding 

influences, findings from this investigation directly support that anemia results in the production 

of factors that mediate coronary dilation via pathways that converge on glibenclamide-sensitive 

(KATP) channels.  
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The mechanisms responsible for the activation of KATP channels during hemodilution are 

yet to be determined. While prior studies indicate that hypoxia-induced hyperpolarization of 

vascular smooth muscle and vasodilation is diminished by glibenclamide [21], data from the 

Gutterman laboratory indicate that the direct vasodilator effect of hypoxia on isolated coronary 

arterioles occurs over a time period of 10-15 min [44]; i.e. development of smooth muscle hypoxia 

is unlikely to contribute to anemic coronary vasodilation. Evidence of overt myocardial ischemia 

(ST segment depression, T wave inversion, myocardial lactate release) and contractile 

dysfunction following more severe reductions in hematocrit (≤ 10%) implicates the activation of 

ischemic vasodilator pathways such as adenosine could be involved. This hypothesis is supported 

by earlier studies which have established that myocardial adenosine release increases 

exponentially with the severity of hypoxia [15, 29, 60, 65] and that the inhibition of adenosine 

receptors reduces hypoxic coronary vasodilation by ~20-25% [23, 42, 43, 55]. We propose that 

studies to examine the role of adenosine in response to progressive anemia should include 

inhibition of not only specific adenosine receptor subtypes (A1, A2A, A2B, and A3 receptors), but 

also involve experiments to interrogate the potential effects of other purine nucleotides (AMP, 

ADP), purinergic receptors (various P2Y subtypes), and potentially cyclooxygenase products. 

Furthermore, based on previous studies we hypothesize that unidentified factors (other than 

purinergic metabolites) are responsible for the majority (~75-80%) of anemic coronary 

vasodilation. 

 

IMPLICATIONS AND CONCLUSIONS 

 Data from this study highlight many unanswered questions that remain central to the field 

of coronary physiology. Namely, how alterations in myocardial oxygen supply and/or MVO2 are 

ultimately sensed and regulated. With regard to the coronary response to anemia, it is particularly 

intriguing that coronary blood flow increases precisely to the degree necessary to maintain oxygen 

delivery, and that this preservation occurs without a decrease in coronary venous PO2 (increase 
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in myocardial oxygen extraction). These findings indicate that reductions in myocardial tissue PO2 

are not required for maintaining myocardial oxygen supply/demand balance and suggest that 

other “oxygen sensing” mechanisms could be at play. While the present data do not provide 

evidence to support how progressive reductions in hematocrit are sensed, they do directly 

implicate a significant role for glibenclamide-sensitive (KATP) channels in the response. Whether 

the involvement of these channels occurs directly via changes in the energy status of vascular 

smooth muscle and/or through the production of vasoactive factors that converge on these 

channels remains to be determined. Importantly, our findings also demonstrate that the anemic 

coronary vasodilation is not dependent on endothelial-derived nitric oxide production or involve 

pathways that converge on smooth muscle KV channels. 
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  Hematocrit (%) 32 ± 1 26 ± 1 21 ± 1 16 ± 1 10 ± 1

  Sample size n = 6 n = 6 n = 5 n = 6 n = 6
  Arterial oxygen content (ml O2/dl) 14.7 ± 0.4 11.6 ± 0.2* 9.1 ± 0.2* 7.0 ± 0.1* 4.7 ± 0.1* N/A P < 0.001 N/A
  Coronary blood flow (ml/min/g) 0.39 ± 0.05 0.54 ± 0.06 0.79 ± 0.10* 1.02 ± 0.12* 1.63 ± 0.16* N/A P < 0.001 N/A
  Mean blood pressure (mmHg) 92 ± 3 89 ± 4 87 ± 4 84 ± 4 81 ± 5 N/A P = 0.400 N/A
  Heart rate (bpm) 64 ± 6 68 ± 7 82 ± 11 81 ± 7 93 ± 7 N/A P = 0.070 N/A
  Arterial pH 7.47 ± 0.03 7.51 ± 0.02 7.50 ± 0.02 7.51 ± 0.02 7.49 ± 0.01 N/A P = 0.563 N/A
  Coronary venous pH 7.40 ± 0.03 7.44 ± 0.02 7.44 ± 0.02 7.42 ± 0.04 7.44 ± 0.02 N/A P = 0.825 N/A
  Arterial pO2 (mmHg) 173 ± 23 177 ± 22 175 ± 25 173 ± 23 173 ± 24 N/A P = 1.000 N/A
  Coronary venous pO2 (mmHg) 19.4 ± 1.8 20.5 ± 1.4 19.5 ± 1.3 18.7 ± 1.7 19.2 ± 1.7 N/A P = 0.952 N/A
  MVO2 (μl O2/min/g) 41 ± 4 42 ± 5 50 ± 6 50 ± 5 55 ± 6 N/A P = 0.293 N/A

  Hematocrit (%) 32 ± 2 24 ± 1 19 ± 1 14 ± 1 9 ± 1

  Sample size n = 5 n = 5 n = 5 n = 4 n = 5
  Arterial oxygen content (ml O2/dl) 15.3 ± 0.3 11.2 ± 0.3* 8.9 ± 0.4* 6.7 ± 0.2* 4.9 ± 0.1* P = 0.851 P < 0.001 P = 0.326
  Coronary blood flow (ml/min/g) 0.42 ± 0.03 0.47 ± 0.02 0.72 ± 0.04* 1.10 ± 0.12* 1.63 ± 0.24* P = 0.921 P < 0.001 P = 0.958
  Mean blood pressure (mmHg) 124 ± 6† 130 ± 3† 122 ± 7† 117 ± 8† 116 ± 9† P < 0.001 P = 0.206 P = 0.925
  Heart rate (bpm) 65 ± 5 63 ± 7 75 ± 7 85 ± 6 84 ± 7 P = 0.521 P = 0.005 P = 0.900
  Arterial pH 7.52 ± 0.01 7.54 ± 0.03 7.49 ± 0.02 7.46 ± 0.02 7.44 ± 0.03 P = 0.702 P = 0.157 P = 0.079
  Coronary venous pH 7.45 ± 0.02 7.43 ± 0.01 7.42 ± 0.02 7.37 ± 0.03 7.37 ± 0.04 P = 0.230 P = 0.643 P = 0.250
  Arterial pO2 (mmHg) 195 ± 13 194 ± 15 190 ± 14 186 ± 21 185 ± 16 P = 0.241 P = 0.998 P = 0.999
  Coronary venous pO2 (mmHg) 16.8 ± 2.4 14.5 ± 2.7† 14.5 ± 1.7 14.7 ± 0.9 18.0 ± 0.7 P = 0.002 P = 0.831 P = 0.681
  MVO2 (μl O2/min/g) 50 ± 5 48 ± 4 56 ± 7 68 ± 8 66 ± 10 P = 0.013 P = 0.036 P = 0.868

  Hematocrit (%) 33 ± 1 25 ± 1 20 ± 1 14 ± 2 8 ± 1

  Sample size n = 5 n = 5 n = 4 n = 4 n = 5
  Arterial oxygen content (ml O2/dl) 15.1 ± 0.3 11.7 ± 0.4* 9.1 ± 0.3* 7.0 ± 0.3* 4.8 ± 0.2* P = 0.541 P < 0.001 P = 0.900
  Coronary blood flow (ml/min/g) 0.37 ± 0.05 0.52 ± 0.06 0.76 ± 0.08 0.98 ± 0.14* 1.52 ± 0.19* P = 0.524 P < 0.001 P = 0.993
  Mean blood pressure (mmHg) 90 ± 7 93 ± 7 89 ± 5 98 ± 6 91 ± 5 P = 0.097 P = 0.753 P = 0.546
  Heart rate (bpm) 68 ± 8 67 ± 5 71 ± 6 73 ± 6 77 ± 5 P = 0.195 P = 0.055 P = 0.625
  Arterial pH 7.55 ± 0.02† 7.53 ± 0.03 7.55 ± 0.01 7.51 ± 0.03 7.51 ± 0.03 P = 0.018 P = 0.847 P = 0.363
  Coronary venous pH 7.48 ± 0.03† 7.48 ± 0.02 7.47 ± 0.01 7.47 ± 0.01 7.46 ± 0.01 P = 0.022 P = 0.966 P = 0.785
  Arterial pO2 (mmHg) 176 ± 17 178 ± 15 183 ± 12 206 ± 14 205 ± 9 P = 0.267 P = 0.934 P = 0.899
  Coronary venous pO2 (mmHg) 15.7 ± 1.2 14.3 ± 1.5† 13.3 ± 2.0† 15.5 ± 1.8 16.0 ± 1.5 P < 0.001 P = 0.962 P = 0.815
  MVO2 (μl O2/min/g) 39 ± 3 47 ± 4 53 ± 3 56 ± 8 60 ± 13 P = 0.380 P = 0.049 P = 0.947

Drug Hematocrit Interaction

Control

L-NAME

Drug Hematocrit Interaction

4-AP

Drug Hematocrit Interaction

Table 1. Hemodynamic and coronary responses to graded reductions in hematocrit (Hespan 
replacement) in untreated control, L-NAME, and 4-AP treated swine. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
* = P < 0.05 vs. baseline hematocrit, same treatment. † = P < 0.05 vs. control, same level of 
hematocrit. 
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  Hematocrit (%) 29 ± 1 23 ± 1 18 ± 1 12 ± 1 8 ± 1

  Sample size n = 4 n = 3 n = 4 n = 3 n = 4
  Arterial oxygen content (ml O2/dl) 14.8 ± 0.5 11.4 ± 0.2* 8.7 ± 0.2* 6.4 ± 0.2* 4.6 ± 0.2* P = 0.176 P < 0.001 P = 0.755
  Coronary blood flow (ml/min/g) 0.53 ± 0.07 0.66 ± 0.07 1.01 ± 0.09* 1.45 ± 0.13*† 2.00 ± 0.17* P < 0.001 P < 0.001 P = 0.522
  Mean blood pressure (mmHg) 100 ± 4 98 ± 5 96 ± 5 100 ± 6† 98 ± 5† P < 0.001 P = 0.977 P = 0.799
  Heart rate (bpm) 69 ± 11 64 ± 2 75 ± 10 75 ± 6 83 ± 2 P = 0.419 P = 0.040 P = 0.911
  Arterial pH 7.47 ± 0.04 7.44 ± 0.04 7.44 ± 0.03 7.42 ± 0.02† 7.41 ± 0.01† P < 0.001 P = 0.673 P = 0.345
  Coronary venous pH 7.40 ± 0.04 7.38 ± 0.03 7.38 ± 0.02 7.37 ± 0.02 7.37 ± 0.02 P = 0.012 P = 0.931 P = 0.741
  Arterial pO2 (mmHg) 165 ± 29 159 ± 26 181 ± 20 127 ± 28 167 ± 14 P = 0.366 P = 0.623 P = 0.881
  Coronary venous pO2 (mmHg) 15.3 ± 1.7 14.8 ± 0.9† 15.8 ± 0.8 16.3 ± 0.9 19.9 ± 0.5* P = 0.003 P = 0.028 P = 0.293
  MVO2 (μl O2/min/g) 66 ± 6† 66 ± 5† 76 ± 8† 80 ± 5† 73 ± 3† P < 0.001 P = 0.433 P = 0.847

  Hematocrit (%) 32 ± 1 25 ± 1 19 ± 1 14 ± 1 9 ± 1

  Sample size n = 5 n = 5 n = 5 n = 5 n = 5
  Arterial oxygen content (ml O2/dl) 14.9 ± 0.4 11.7 ± 0.3* 9.0 ± 0.3* 7.0 ± 0.2* 4.6 ± 0.1* P = 0.217 P < 0.001 P = 0.932
  Coronary blood flow (ml/min/g) 0.30 ± 0.03‡ 0.40 ± 0.04‡ 0.57 ± 0.04*‡ 0.79 ± 0.05*‡ 1.12 ± 0.08*‡ P < 0.001 P < 0.001 P < 0.001
  Mean blood pressure (mmHg) 107 ± 7 102 ± 12 104 ± 10 102 ± 10 94 ± 10 P = 0.541 P = 0.933 P = 0.951
  Heart rate (bpm) 56 ± 7 61 ± 9 64 ± 6 70 ± 7 78 ± 7 P = 0.139 P = 0.101 P = 0.960
  Arterial pH 7.46 ± 0.04 7.40 ± 0.04 7.39 ± 0.03 7.39 ± 0.03 7.39 ± 0.03 P = 0.213 P = 0.419 P = 0.975
  Coronary venous pH 7.37 ± 0.04 7.33 ± 0.04 7.33 ± 0.04 7.33 ± 0.03 7.33 ± 0.03 P = 0.044 P = 0.782 P = 0.993
  Arterial pO2 (mmHg) 200 ± 31 209 ± 31 211 ± 30 218 ± 25‡ 224 ± 21 P = 0.005 P = 0.908 P = 0.832
  Coronary venous pO2 (mmHg) 10.8 ± 1.7‡ 12.2 ± 1.4 14.0 ± 1.5 15.0 ± 1.0 17.0 ± 1.1* P = 0.003 P = 0.002 P = 0.838
  MVO2 (μl O2/min/g) 42 ± 4‡ 43 ± 4‡ 45 ± 2‡ 50 ± 4‡ 44 ± 4‡ P < 0.001 P = 0.237 P = 0.913

Drug Hematocrit Interaction

Glibenclamide Vehicle

Glibenclamide

Drug Hematocrit Interaction

Table 2. Hemodynamic and coronary responses to graded reductions in hematocrit (Hespan 
replacement) in vehicle and glibenclamide treated swine. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
* = P < 0.05 vs. baseline hematocrit, same treatment. † = P < 0.05 vs. control, same level of 
hematocrit. ‡ = P < 0.05 vs. vehicle, same level of hematocrit. 
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Figure 1. Relationship between aortic blood pressure (A), myocardial oxygen consumption (B), 
coronary blood flow (C) and myocardial oxygen delivery (D) vs. hematocrit for control swine that 
received volume replacement with saline and Hespan.  
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Figure 2. Representative tracing of the effects of decreasing hematocrit on ECG and coronary 
blood flow over time in untreated control swine that received volume replacement with Hespan.  
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Figure 3. Relationship between coronary blood flow (A) and myocardial oxygen delivery (B) vs. 
aortic pressure, coronary blood flow vs heart rate (C) and myocardial oxygen consumption (D), 
and coronary venous oxygen partial pressure vs. hematocrit (E) and myocardial oxygen 
consumption (F) for control swine that received volume replacement with saline and Hespan. 
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Figure 4. Relationship between coronary blood flow (A), myocardial oxygen delivery (B), and 
coronary venous oxygen tension (C) vs. hematocrit and coronary venous oxygen tension vs. 
myocardial oxygen consumption (D) for control and L-NAME treated swine that received volume 
replacement with Hespan. 
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Figure 5. Relationship between coronary blood flow (A), myocardial oxygen delivery (B), and 
coronary venous oxygen tension (C) vs. hematocrit and coronary venous oxygen tension vs. 
myocardial oxygen consumption (D) for control and 4-AP treated swine that received volume 
replacement with Hespan. 
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Figure 6. Relationship between coronary blood flow (A), myocardial oxygen delivery (B), and 
coronary venous oxygen tension (C) vs. hematocrit and coronary venous oxygen tension vs. 
myocardial oxygen consumption (D) for vehicle and glibenclamide treated swine that received 
volume replacement with Hespan. 
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