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Abstract 

Alcohol use disorders (AUD) are pervasive societal problems, marked by high levels of alcohol 

intake and recidivism. Despite these common disease traits, individuals diagnosed with AUD 

display a range of disordered drinking and alcohol-related behaviors. The diversity in disease 

presentation, as well as the established polygenic nature of the disorder and complex 

neurocircuitry, speak to the variety in neurochemical changes resulting from alcohol intake that 

may differentially regulate alcohol-related behaviors. Investigations into the molecular 

adaptations responsible for maladaptive alcohol-related behavioral outcomes require an ever-

evolving set of molecular tools to elucidate with increasing precision how alcohol alters behavior 

through neurochemical changes. This review highlights recent advances in molecular 

methodology, addressing how incorporation of these cutting-edge techniques not only may 

enhance current knowledge of the molecular bases of AUD, but also may facilitate identification 

of improved treatment targets that may be therapeutic in specific subpopulations of AUD 

individuals.  
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Introduction 

Alcohol use disorder (AUD) is a chronic condition characterized by loss of control over 

alcohol intake and high levels of relapse in spite of individuals’ desire to maintain sobriety. The 

progressive and pervasive nature of this disorder, with escalation of alcohol intake over time 

and chronic recidivism, suggests alcohol consumption generates neuroadaptations that promote 

high alcohol drinking and persist long after the cessation of alcohol intake. AUD is a complex 

mental illness encompassing multiple disease phenotypes (Salvatore, Gottesman, & Dick, 2015) 

and genotypes (Hart & Kranzler, 2015) under a common diagnosis, with low penetrance of 

individual mutations across the AUD population. The polygenic nature of AUD not only 

contributes to behavioral variation within the diagnosis, but also likely restricts the efficacy of 

any individual pharmacological target to treat all AUD individuals. Together, these features 

implicate a variety of molecular neuroadaptations that may support divergent patterns of alcohol 

abuse and relapse. Systematic elucidation of the molecular changes resulting from alcohol 

consumption, as well as determination of their functional relevance, is crucial not only to provide 

greater knowledge about mechanisms underlying disordered alcohol use, but also to identify 

novel medication targets with the greatest potential to treat subsets of AUD patients. For 

treatments to succeed, however, understanding the specificity of individual molecular changes 

at the neuronal, brain region and circuit levels, as well as their functional impact on behavior, is 

essential. This review addresses the evolution of methods to investigate and manipulate the 

molecular composition of neurons with increasing precision, with a focus on how recent 

advances in molecular tools may enhance our current state of understanding of the molecular 

bases of AUD. 

 

Ribosome-directed technologies for profiling alcoho l’s molecular impact on neurons 

Identifying the vast number of molecular adaptations triggered by different patterns of 

alcohol consumption is crucial for complete understanding of the biochemical bases of AUD, 
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which may yield novel directions for treatment development. As the template for new protein 

translation, mRNA expression has long been a primary measure of molecular neuroadaptation 

to alcohol exposure. Over the two decades since its development significantly improved the 

quantitative precision of mRNA measurement, real-time quantitative polymerase chain reaction 

(qPCR) (Heid, Stevens, Livak, & Williams, 1996) has greatly enhanced our understanding of 

alcohol’s impact on brain neurochemistry. Specifically, qPCR analysis of total mRNA content in 

microdissected brain tissue has allowed precise determination of brain region-specific changes 

in transcript expression for neuropeptides and receptor systems pharmacologically implicated in 

the regulation of alcohol drinking, as well as identifying novel factors involved in controlling 

alcohol intake. One pharmacologically identified neuropeptide system validated by qPCR as 

altered by excessive alcohol exposure was the corticotropin-releasing factor (CRF)/urocortin 

system. Repeated bouts of alcohol intoxication via chronic intermittent vapor exposure or binge-

like drinking conferred sensitivity to CRF type 1 receptor (CRF1) antagonist regulation of 

drinking (Funk, O'Dell, Crawford, & Koob, 2006; Valdez et al., 2002). This enhanced antagonist 

sensitivity likely resulted from CRF system upregulation, since both receptor (Crhr1) and ligand 

(Crh) mRNA levels were increased in the central amygdala (CeA), as were the alternate ligand, 

urocortin-1 (Ucn1), in the centrally-projecting Edinger Westphal nucleus (Giardino et al., 2017; 

Lack, Floyd, & McCool, 2005; Roberto et al., 2010; Sommer et al., 2008). In contrast to these 

neuroadaptations promoting alcohol drinking, brain region-specific analysis of total mRNA by 

qPCR also has identified genes acutely upregulated by alcohol to protect against the 

development of disordered alcohol drinking. These include brain-derived neurotrophic factor 

(Bdnf), increased in the dorsal striatum after alcohol injection, moderate intake (McGough et al., 

2004), or even a single bout of drinking (Logrip, Janak, & Ron, 2009), and glial-derived 

neurotrophic factor (Gdnf), elevated in the ventral tegmental area (VTA) and nucleus 

accumbens (NAc) after moderate alcohol exposure (Ahmadiantehrani, Barak, & Ron, 2014; 

Barak et al., 2015). These are but a few examples of the myriad molecular systems contributing 
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to the regulation of alcohol intake whose total mRNA expression levels were quantified via 

qPCR with brain region-specific precision.  

 

Polysomal mRNA purification 

Despite its quantitative advantage over mRNA abundance assessment by traditional 

PCR, qPCR analysis of total mRNA expression suffers from several drawbacks addressed by 

recent technological advances to improve measurement of behaviorally relevant gene 

expression. First, although up- or down-regulation of mRNA transcription is customarily the first 

step toward altering the protein composition of the neuron, changes in total mRNA expression 

do not uniformly align with modifications in protein levels (Y. Liu, Beyer, & Aebersold, 2016). 

This mRNA-protein mismatch may result from posttranscriptional events affecting mRNA 

translation, such as microRNA inhibition of translation of newly transcribed mRNA sequences 

into protein products (Smith & Kenny, 2017). Conversely, changes in mRNA abundance that are 

cell type- or neuronal compartment-specific may go undetected in the mixed-cell, whole-neuron 

mRNA preparations used for traditional qPCR analyses. Addressing the issue of 

transcription/translation mismatch requires the quantification of mRNA sequences definitively 

targeted for translation based on their association with ribosomes. Isolation of polyribosome-

associated mRNA (polysomes), purified by differential centrifugation (Lou, Baser, Klussmann, & 

Martin-Villalba, 2014), provides one mechanism for restricting mRNA quantification to those 

sequences bound for translation. Analysis of NAc polysomal mRNA from mice or rats with a 

history of binge-like alcohol drinking identified two novel alcohol-regulated gene targets: Crmp2 

(collapsin response mediator protein-2) and Prosapip1 (Laguesse et al., 2017; F. Liu et al., 

2017). Both novel targets are downstream of mammalian target of rapamycin (mTOR) signaling, 

which is also activated by alcohol (Neasta, Ben Hamida, Yowell, Carnicella, & Ron, 2010). 

Importantly, neither effector differed in expression at the total mRNA level, demonstrating the 
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importance of considering ribosome-associated mRNA as a more accurate measure of nascent 

protein production. 

 

Ribosome purification via protein tagging: TRAP 

While these studies highlight the need to consider the relevance of observed mRNA 

changes to neuronal function, since the composition of total and translation-targeted mRNA 

populations may differ, sucrose gradient purification of polysomes is labor intensive and lacks 

the capacity to restrict analyses by cell type or subcellular compartment. To enhance specificity 

in translational profiling, Translating Ribosome Affinity Purification (TRAP) was developed as a 

means for efficient sequestration of ribosomes and their affiliated mRNA sequences (Doyle et 

al., 2008; Heiman, Kulicke, Fenster, Greengard, & Heintz, 2014) (Figure 1). TRAP relies on the 

expression of a labeled ribosomal subunit, with the ribosome tag serving as an immunogen for 

immobilization of ribosomes on magnetic beads via immunoprecipitation. Two varieties of 

labeled are currently in use: ribosomal protein L10a bearing an EGFP tag (L10aEGFP) (Doyle et 

al., 2008; Heiman et al., 2008) and HA-tagged ribosomal protein 22 (Rpl22HA, also known as 

RiboTag) (Sanz et al., 2009). TRAP isolation of ribosome-associated mRNA provides significant 

benefits over not only total mRNA isolation but also polysomal mRNA, as the TRAP technology 

can be tailored to isolate specific cellular subpopulations, thereby allowing for cell type-specific 

mRNA expression profiling. Initial development of TRAP mice employed the GENSAT bacterial 

artificial chromosome (BAC) transgenic mice with known cell type-specificity of BAC expression, 

yielding multiple bacTRAP mouse lines with L10aEGFP expression restricted to specific cell 

subpopulations in each line (Doyle et al., 2008). Developed in parallel, the RiboTag mouse was 

the first to utilize Cre recombinase-driven incorporation of labeled Rpl22HA ribosomal proteins 

(Sanz et al., 2009). Cre/loxP expression systems modify gene expression in a targeted manner 

via the incorporation of loxP sites flanking a sequence of interest. In the presence of Cre 

recombinase, loxP sites recombine to excise or invert a loxP-flanked sequence, depending on 
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loxP orientation in the transgene (Brault, Besson, Magnol, Duchon, & Herault, 2007), which 

Sanz and colleagues (2009) employed to replace the endogenous exon 4 of Rpl22 with an HA-

tagged version of the exon. A similar approach was subsequently applied to produce Cre-driven 

L10aEGFP expression (J. Liu et al., 2014). As Cre recombinase is required for loxP-driven 

excision/inversion events to occur, restriction of Cre expression according to brain region, cell 

type or temporal expression profile provides a mechanism for controlling specificity of transgene 

expression. This technology is poised to greatly refine our understanding of alcohol’s 

neuromodulatory effects, allowing for cell type- or circuit-specific expression of TRAP markers. 

Elucidation of subpopulation differences in gene expression profiling has the potential to 

elucidate sources of failure for treatments designed to combat molecular adaptations identified 

in mixed neuronal populations. For example, our understanding of transcriptional changes in 

striatal subdivisions would be enhanced not only by comparison of total to translation-targeted 

mRNA, but in particular by parallel assessment of alcohol remodeling of dopamine D1 vs. D2 

receptor-expressing striatal subpopulations. As previously demonstrated in the NAc for cocaine-

regulated targets (Chandra et al., 2017; Chandra et al., 2015), alcohol might generate opposing 

adaptations of the same gene in D1- vs. D2-expressing neurons. This possibility raises 

significant questions about whether targets previously deemed alcohol-nonresponsive in total 

mRNA analyses of mixed cell populations must be reassessed at the single cell type level.  

One challenge for widespread use of TRAP technology has been the necessity for 

ribosomal tag expression to enable ribosomal capture, as this has largely limited investigations 

to transgenic mice (Doyle et al., 2008; Sanz et al., 2009). However, as TRAP methodology has 

evolved, procedural refinements have expanded the use of TRAP in some very exciting 

directions. Viral TRAP constructs have been generated for use in Cre-expressing neuron 

populations (Nectow et al., 2017), providing researchers a means for applying TRAP technology 

to existing rodent lines expressing Cre in a cell type-restricted fashion without needing to breed 

new bi-transgenic Cre-TRAP mouse lines for each desired cell type. Expanding translation-
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targeted mRNA analysis to the circuit level, several methods have been developed to restrict 

ribosomal tagging by projection target. The first approach employed tagging of ribosomal protein 

L10a with anti-GFP nanobodies that can bind retrogradely-transported GFP (Ekstrand et al., 

2014). This technology was subsequently expanded for adeno-associated viral delivery of Cre-

regulated L10a nanobody expression in combination with retrograde GFP virus co-infusion 

(Nectow, Ekstrand, & Friedman, 2015), an advance allowing not only projection-specific but also 

cell type-specific expression profiling, based on restriction of Cre expression. Further refinement 

of retrograde delivery technology using pseudorabies virus for GFP delivery now allows trans-

synaptic ribosomal tagging, such that mRNA expression may be profiled across two or more 

synapses retrograde to the site of GFP infusion, provided the neurons express Cre recombinase 

and L10a with anti-GFP nanobodies (Pomeranz et al., 2017). Alternatively, for anterograde 

circuit assessments, viral TRAP may be combined with retroviral Cre delivery in a defined 

projection target to measure ribosome-associated mRNA isolated within a specific efferent 

circuit (Tervo et al., 2016). In addition to refining methods for Cre-mediated TRAP expression, 

the technology has been modified to remove the requirement for Cre-directed expression, with 

the development and in vivo validation of viral expression constructs that can generate 

functional, labeled ribosomes in the absence of Cre (Cook-Snyder, Jones, & Reijmers, 2015). 

Thus circuit-level mRNA expression profiling can be performed either in transgenic rodents 

expressing Cre in a cell type-restricted fashion or in outbred rodents without Cre-directed cell 

specificity. 

As detailed above, a key advantage of TRAP technology is the ability to narrow down 

transcriptional investigation to circumscribed populations or regions, including neuronal sub-

compartments. Given sufficient physical distance between TRAP-labeled cell bodies and the 

termini of their axonal projections, axonal ribosome-associated mRNA expression can be 

quantified through a procedure termed Axon-TRAP (Shigeoka et al., 2016). This allows for 

comparative profiling of mRNA adaptation across a TRAP-labeled brain region’s various 
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terminal fields. Conversely, combining TRAP with synaptosomal fractionation, a procedure 

termed SynapTRAP, allows researchers to profile ribosome-associated mRNA localized near 

the postsynaptic density (Ouwenga et al., 2017), likely sources of new proteins for the synaptic 

remodeling that underlies synaptic plasticity (Bramham, 2008). Together these studies 

demonstrate the power of TRAP as a means of profiling cell-specific and neuronal 

compartment-restricted changes in mRNA expression in a translationally relevant milieu, which 

can refine our assessment of both known and currently unknown alcohol-induced 

neuroadaptations. Despite the potential for improved precision in molecular investigations 

afforded by TRAP technology, such analyses only provide snapshots of the molecular state of 

neurons at the point of tissue collection, showing association but not causation between 

adaptations and alcohol exposure history. Determining the functional involvement of identified 

alcohol-responsive targets to regulate alcohol intake requires implementation of methods to 

manipulate gene expression. 

 

Viral regulation of neuronal effector expression: R NAi, FLEX and CRISPR 

Quantitative profiling of mRNA or protein content provides essential knowledge about 

alcohol-induced changes in brain neurochemistry. Elucidation of the role specific genes and 

their protein products play in shaping alcohol-related behaviors, i.e. the functionality of the 

observed neuroadaptations, is a crucial component of novel treatment discovery. Demonstration 

of causality requires in vivo manipulations of gene/protein expression, a central facet of 

molecular research in the alcohol field since the advent of transgenic technology and its use to 

generate genetically altered mice (Gordon & Ruddle, 1981; Gordon, Scangos, Plotkin, Barbosa, 

& Ruddle, 1980; Jaenisch, 1976). Transgenic mouse models have provided a means to 

ascertain the necessity of specific molecular targets for alcohol-related behaviors over several 

decades. However, conventional transgenic models lack temporal, regional and cell type 

specificity, and thus may produce behavioral effects via developmental adaptations, rather than 
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through acute effects of the protein’s absence, or conversely may fail to alter behavior due to 

developmental compensation or contrasting effects of the mutation in different cell types. While 

refinement of transgenic techniques have improved on some of these shortcomings, particularly 

through the introduction of Cre-mediated gene deletion (Gu, Zou, & Rajewsky, 1993; Schwenk, 

Baron, & Rajewsky, 1995) which can provide temporal control of transgene expression (St-

Onge, Furth, & Gruss, 1996), approaches for genome editing that circumvent constitutive gene 

deletion have increased the precision of genetic manipulations in the decades since the 

generation of the first transgenic mouse.  

 

RNA interference 

To restrict neuroadaptations both spatially and temporally, viral vectors can be employed 

to deliver RNA interference (RNAi) or overexpression constructs to neurons. RNAi employs 

short complementary RNA sequences that, upon binding the desired mRNA, target it for 

degradation (Paddison, Caudy, Bernstein, Hannon, & Conklin, 2002; Paddison, Caudy, & 

Hannon, 2002). Virus-mediated RNAi has exposed critical involvement of various 

neuropeptides, signaling systems and receptors in circumscribed brain regions to regulate 

alcohol intake and related behaviors.  

Viral RNAi has been employed in the alcohol field to study the contribution of alcohol-

induced targets to the regulation of alcohol intake, with focus largely on factors expressed in 

striatal subdivisions and their afferent regions. Viral RNAi confirmed the crucial functions of 

GDNF in the ventral tegmental area (VTA) (Ahmadiantehrani et al., 2014) and nucleus 

accumbens (NAc) (Barak et al., 2015) and BDNF in the dorsal striatum(Jeanblanc et al., 2009), 

to promote moderate drinking, including pinpointing BDNF’s effects to the dorsolateral 

subdivision of the striatum (DLS). RNAi and overexpression constructs also have demonstrated 

negative regulation of BDNF expression by microRNA 124a in the DLS (Bahi & Dreyer, 2013) 

and prefrontal cortex (Darcq et al., 2015), making microRNA124a a stimulator of alcohol intake. 
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Viral knockdown has extended our understanding of receptor subunits important for alcohol 

drinking as well. Quinine-resistant drinking required expression of the N-methyl-D-aspartate 

(NMDA) receptor subunit 2C in the NAc core (Seif et al., 2013), while manipulation of signaling 

pathways increasing NMDA receptor subunit 2B activity in the dorsomedial striatum (DMS) 

promoted excessive drinking (Ben Hamida et al., 2013; Darcq et al., 2014). Specific gamma-

aminobutyric acid type A (GABAA) receptor subunits also modulate alcohol consumption, as 

RNAi-mediated reduction in GABAA α2 levels in the CeA (J. Liu et al., 2011) or GABAA α 4 or 

GABAA δ levels in the medial NAc shell (Nie, Rewal, Gill, Ron, & Janak, 2011; Rewal et al., 

2012; Rewal et al., 2009) all reduced alcohol intake. RNAi knockdown of mu opioid receptor 

expression in the VTA also reduced drinking, whereas inhibition of a midbrain trophic factor 

called midkine elevated alcohol intake (H. Chen, He, & Lasek, 2017; Lasek, Janak, He, 

Whistler, & Heberlein, 2007). Together these data highlight multiple receptors involved in 

promoting alcohol drinking and trophic factors working to limit alcohol consumption whose 

behavioral functions were confirmed by virus-mediated RNAi. However, conventional RNAi can 

be labor-intensive in its design and optimization, and it lacks cell type specificity – both 

challenges that technological advances to regulate gene expression in vivo have addressed. 

 

Cre-mediated regulation of gene expression using Flip-Excision (FLEX) constructs 

Similar to cellular restriction mechanisms detailed above for TRAP, confining RNAi 

expression to specific types is necessary to understand differential functions of gene products in 

defined neuronal populations. While some level of cellular selectivity may be conferred by 

choice of promoters, achieving true cell type selectivity via viral expression of genetic constructs 

under cell-specific promoters has proved challenging (Nathanson et al., 2009). One reliable 

means for restriction of viral gene expression to specific neuronal populations employs a Cre-

driven system containing a Flip-Excision, or FLEX, cassette (Schnutgen et al., 2003), also 

known as Double-floxed Inverse Orientation, or DIO. Prior to Cre recombination, FLEX 
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cassettes contain the RNAi or overexpression sequence and GFP promoter in an inverted 

orientation, such that they cannot be expressed, flanked by two pairs of loxP sites. Cre 

recombinase catalyzes the recombination of the loxP sites, thereby reverting the intervening 

sequence to the correct orientation to drive expression of both the RNAi or overexpression 

construct and EGFP. FLEX cassettes provide an important advance in the design of RNAi or 

other transgene expression, allowing for cellular specificity based on Cre expression patterns, 

since the FLEX cassette will not express in the absence of Cre recombinase. This technology 

was recently employed to demonstrate that Fyn, a tyrosine kinase that phosphorylates the 

NMDA receptor subunit 2B in the DMS upon alcohol exposure to facilitate NMDA receptor 

activity and promote alcohol drinking (Darcq et al., 2014; Gibb, Hamida, Lanfranco, & Ron, 

2011; Wang et al., 2007; Wang et al., 2010), acts specifically in neurons expressing the 

dopamine D1, but not D2, receptor (Phamluong, Darcq, Wu, Sakhai, & Ron, 2017). This 

technology also was used in the viral TRAP expression constructs discussed above (Nectow et 

al., 2015; Nectow et al., 2017). Taken together, these findings demonstrate the power of FLEX 

to enhance our functional understanding of neuroadaptations regulating alcohol drinking at the 

cellular level. 

In addition to neuronal population specificity in mice and rats with Cre expression under 

cell type-specific promoters, viral technology also provides the capacity to restrict FLEX gene 

expression within a defined circuit. Retrograde viral delivery of Cre recombinase in one brain 

region and viral FLEX infusion in a distinct but synaptically connected cell population will restrict 

transgene expression to neurons with somas located in the viral FLEX-infused brain region and 

axon terminals in the retroviral Cre-infused region (Hnasko et al., 2006; Senn et al., 2014). The 

capacity to activate FLEX-regulated gene expression in a circuit-specific manner via retroviral 

Cre expression has been demonstrated previously for both optogenetics and chemogenetics 

(Cheng et al., 2017; Gremel et al., 2016). The ability to elucidate how individual gene products 

function at the circuit level will greatly enhance our discovery of the exact contribution of 
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individual molecular targets to the regulation of neuronal communication driving alcohol-related 

behaviors. 

 

Bacterial DNA Editing Technologies: CRISPR/Cas9, TALENs and ZNFs 

A final frontier for elucidating the involvement of alcohol-regulated proteins in promoting 

alcohol consumption and related behaviors is the ability to permanently remove target 

expression through genome editing in terminally differentiated adult neurons. Recent advances 

in genetic editing have identified three families of bacteria-derived enzymes that have shown 

promise as tools for manipulating the molecular composition of both pre-mitotic and post-mitotic 

cells: CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-

associated nuclease), TALEN (transcription activator-like effector nucleases) and ZFN (zinc 

finger nucleases) (Heidenreich & Zhang, 2016). All three techniques irreversibly modify DNA by 

targeted DNA cleavage. These mutation strategies provide an advantage over traditional 

transgenic animals by circumventing developmental anomalies or compensatory changes that 

may obscure the true function of the deleted gene product. Of these technologies, CRISPR/Cas 

has been most widely adopted due to the simplicity of the target-specific engineering required: a 

single guide RNA sequence to direct Cas to the appropriate location in the genome (Staahl et 

al., 2017). CRISPR/Cas has been utilized to successfully generate knockout mouse and rat 

lines (Li et al., 2013), including to insert a mutation specific to the alcohol interaction site on the 

GABAA ρ1 receptor subunit (Blednov et al., 2017). This minor genetic change produced faster 

recovery of motor coordination and greater functional tolerance to alcohol in the absence of 

altered receptor expression levels. CRISPR/Cas9 also has been employed to look at the 

involvement of chromatin remodeling in GABAA α1 (Gabra1) sensitivity to alcohol (Bohnsack, 

Patel, & Morrow, 2017). Lentiviral delivery of a Cas9 fusion construct coupling Cas9 to an 

acetyltransferase, as well as the guide RNA to direct recombination to Gabra1, altered the 

acetylation state of Gabra1 in cortical primary neurons, conferring protection from alcohol-
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induced reduction in Gabra1 mRNA and GABAA α1 protein expression. Despite these 

successes, barriers still exist to the widespread adoption of this technology to manipulate adult 

neurons in vivo (Heidenreich & Zhang, 2016). Viral packaging of the Cas9 protein has proved 

somewhat challenging, although recent reports indicate modified viral strategies for Cas9 

delivery show promise for viral CRISPR to permanently alter DNA in adult neurons (Nishiyama, 

Mikuni, & Yasuda, 2017; Staahl et al., 2017; Tervo et al., 2016). One remaining limitation of this 

technique is the lack of cell type specificity in current constructs, requiring incorporation of 

restrictive promoters into the viral expression construct, in the absence of rodent lines 

expressing Cas9 in circumscribed populations. Mice have been generated with Cas9 expression 

under the control of Cre recombinase (J. Chen, Du, He, Huang, & Shi, 2017), which allow 

restricted gene knockout in neuronal subpopulations based on the strategy employed for Cre 

expression. Expansion of Cas9 expression under Cre regulation to allow for viral Cas9 delivery 

would achieve the highest level of precision in CRISPR-directed gene deletion. Like other 

emerging technologies, this shortcoming will likely be overcome within the next few years, which 

would provide CRISPR/Cas9 with the same precision and flexibility currently afforded to FLEX-

RNAi expression. Together these emerging technologies enhance the ability of the alcohol 

research field to address both cell type- and circuit-restricted involvement of individual molecular 

targets to regulate the various alcohol-related behaviors, including drinking, that characterize 

AUD. 

 

Summary 

AUD results from many neuroadaptations that may differentially contribute to the various 

behavioral phenotypes classified as components of AUD. The development of molecular 

techniques capable of interrogating the molecular bases of AUD with enhanced specificity at the 

cellular and circuit levels is crucial for continued progress in elucidating precisely how alcohol 

impacts the brain and the exact pattern of adaptations necessary to generate a defined set of 
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maladaptive behaviors. Through continued refinement in our understanding of the biochemical 

basis of this disorder, new treatments may be discovered with enhanced therapeutic success in 

specific subpopulations of AUD individuals. 
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Figure legends 

Figure 1. TRAP technology enhances the precision of qPCR templates. Extraction of 

mRNA from brain tissue collected by microdissection of a region of interest without post-

dissection processing produces a mixed-cell total mRNA template (top left). Increasing levels of 

precision in the source of qPCR mRNA templates is seen with progression through the flow 

chart, highlighting important differences in the interpretation of observed mRNA alterations 

based on what manner of template – from the heterogeneity of total mRNA to neuronal 

population-specified ribosome-associated RNA – is quantified. 
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Highlights: 

• TRAP simplifies sequestration of mRNA targeted for translation 
• TRAP can profile mRNA expression by cell types or subcellular compartment 
• Viral CRISPR techniques can manipulate gene expression in a restricted fashion 
• FLEX can target genetic manipulation by cell type via Cre recombination 


