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Abstract 

The burial of phosphorus (P) in continental margin sediments is a critical component of the 

marine reactive P budget, and thus an important factor in marine biological productivity. 

We determined downcore records of P from a site drilled on the upper slope of the Gulf of 

Lions (PRGL 1), northwestern Mediterranean Sea. Changes in total P content were 

monitored from Marine Isotope Stage (MIS) 6 to MIS 11. In addition, in two selected 

intervals (248-277 ka and 306-342 ka) the total P record was expanded by adding detailed 

geochemical analyses of the various P fractions, including oxyhydroxide-associated P, 

authigenic P, detrital P and organic P. 
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Increased sedimentation rates during glacials owing to seaward migration of the Rhone’s 

mouth, enhanced the burial of reactive P (oxyhydroxide-associated + authigenic + organic) 

phases by decreasing its time at the reactive sediment/water interface, in turn resulting in 

increasing proportion of authigenic to detrital phosphorus. The inverse was found for 

interglacial stages. The effects of glacial/interglacial variation in sedimentation rate over P 

geochemistry resulted in changes in sediment-water interface oxygenation, as well as in the 

efficiency of P burial, as shown by (C:P)org and Corg:Preact proxies respectively.  

 

Two events of high P deposition associated with authigenic P formation, at 335 ka (Paut1) 

and 275 ka (Paut2), were associated with periods of rapid disintegration of North Atlantic ice 

sheets leading to Ice Rafted Debris (IRD) deposition. These high P deposition events 

appear to be linked to short warm periods that followed cold episodes. Enhanced 

continental runoff owing to more humid conditions during short warm episodes could play 

a critical role for enhanced biogenic productivity and posterior authigenic P accumulation.  

 

Keywords: paleoredox, phosphorus paleoproductivity, Gulf of Lions, Termination IV, MIS 
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1. Introduction 

Marine primary productivity is influenced by the availability of key nutrients such 

as nitrogen (N) and phosphorus (P) (Raymont et al., 1980). Phosphorus has been proposed 

as the ultimate limiting nutrient of oceanic production, owing to the ability of pelagic 

cyanobacteria to fix N from the atmosphere, thus offsetting any N deficit (Tyrrell et al., 

1999).  In fact, in the Mediterranean, P availability has been shown as a limiting factor of 

the primary productivity (Krom et al., 1991). Despite the physiologic importance of P to 

photosynthetic plankton, its availability to organisms in the marine realm is constrained 

because sources are limited to atmospheric and river influx (Ruttenberg, 2003), and 

bioavailability is limited by rapid sequestration in different phases (Filippelli, 2008). When 

assimilated by organisms, P is incorporated into an organic pool (Porg). In most marine 

environments, the P pool exported to the sea floor is dominated by Porg, while 

oxyhydroxide-associated P (Poxy) is of similar magnitude in continental margin 

environments with significant amounts of terrigenous material input (Filippelli and 

Delaney, 1996).  

 

The fate of P relative to carbon (C) appears to be controlled by oxygen availability 

in bottom waters. Phosphorus retention in sediments is enhanced by high oxygen content, 

whereas the contrary is valid for C (Pratt, 1984).  Differences in P retention between oxic 

and anoxic bottom conditions are explained by two mechanisms: (1) redox-dependent 

changes in the physiology of microorganisms in sediments, and (2) benthic phosphate 

cycling associated with reactive Fe oxide phases (Van Cappellen and Ingall, 1994). In 

aerobic environments microorganisms actively accumulate and store P as polyphosphates 

(Toerien et al., 1990). Once oxygen is depleted, the P stored by bacteria is used as an 
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energy source and released as dissolved phosphate to the environment. This mechanism has 

been observed in several bacterial genera and in protozoans (e.g. Shapiro, 1967; Toerien et 

al., 1990). Bacteria may also accumulate phosphate under anoxic conditions, however, the 

storage rate is much slower than under aerobic conditions (Kerrn-Jespersenand Henze, 

1993). A second mechanism of P retention enhancement is linked to Fe (oxyhydr) oxides, 

and is only operative in sediments overlain by oxygenated bottom waters. It involves the 

scavenging of phosphate produced during organic matter degradation during oxidative Fe 

precipitation (Berner, 1973). Such mechanisms of differential control on Porg and C 

retention in marine sediments due to oxygenation levels allow us to use them as paleoredox 

tracers (Algeo and Ingall, 2007). Two key factors also influence the use of (C:P)org as a 

tracer of redox conditions: (i) sedimentation rate have been demonstrated to affect (C:P)org, 

decreasing this ratio when sedimentation rate increases (Slomp and Van Cappellen, 2007), 

and (ii) diagenetic alteration of the main source of C and Porg (i.e. organic matter) may 

occur (Anderson et al., 2001).  

 

Once in the sediment, progressive burial of labile forms of P (i.e., P bound to 

organic matter and iron oxides) may be partially or completely transformed through 

precipitation of Ca phosphate minerals into stable Ca-P authigenic apatite (Froelich et al., 

1988). This process of “sink switching” constitutes the principal long-term sedimentary 

sink of non-detrital P (Anderson et al., 2001). Therefore, reactive P (Preact) best represents 

the geochemical behavior of sedimentary P. Preact consists in the sum of organic, oxide 

associated and authigenic forms (Ruttenberg, 1992, 1993), neglecting detrital P (Pdet), 

which enters and exits the marine system with little or no geochemical interaction with 

seawater.  Hence, the use of the Corg:Preact can  be indicative of the overall P retention 
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efficiency in the sediment, accounting for sink switching from organic matter to mineral 

phases.  

 

Continental margin sediments, in particular off major river mouths, are important 

for the burial and diagenetic transformation of P, yet how the dynamic depositional 

conditions in these settings affect sedimentary P cycling is poorly documented.  

Comprehensive analyses of P burial in continental margins are challenging to carry out as a 

consequence of local variability in productivity, the strong effect of sea-level changes on 

sedimentation rates during glacial/interglacial periods, and sediment reworking (Filippelli 

and Delaney, 1995).  The Gulf of Lions, located south-west of the Rhone delta, is an 

example of such river-dominated continental margins, and its sedimentary record has been 

demonstrated as suitable for reconstructing past climate variability over long (Bassetti et 

al., 2006; Berné et al., 2007) and short (Sierro et al., 2009; Frigola et al., 2012) timescale, 

which makes it appropriate to  evaluate the climate impact on P burial in a continental 

margin. 

 

The Mid-Brunhes Event (MBE) placed at 430 ka, marks the beginning of the 

strongest glacial/interglacial variability following the 100-kyr cycle during Quaternary 

(Lang and Wolf, 2011). While many paleoclimate studies are focused in the first two 

climate cycles (MIS 1-MI5), further research needs to be carried out from MIS 6 to 11 

where intense glacial/interglacial variability is observed.  In this work, we reconstruct P 

variability at the upper slope of the Gulf of Lions from MIS 6 to MIS 11. Phosphorus 

components were additionally extracted at greater detail during two periods between MIS 8 

and 10 (from 306 to 342 ka (MIS 9-10) and from 248 to 277 ka (MIS 8)). For these 
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intervals, P components were individually analyzed to assess: (1) the effect of sea level on 

sedimentation rates which in turn determines the degree of protection of P against 

degradation, and (2) atmospheric dynamics via intensification/reduction of northwesterly 

winds that impacts on water mixing and consequently the amount of oxygen that reaches 

sea floor. Examination of P components will shed light on P burial during (i) a full 

interglacial (MIS 9), (ii) a transition from glacial to interglacial conditions (Termination 

IV), (iii) and a significant transition between cold and warmer conditions during MIS 8 

(Cortina et al., 2015). These new data will contribute to a better understanding of the 

controls of P cycling in the northwestern Mediterranean Sea.  

 

2. Regional setting 

The Mediterranean Sea has an anti-estuarine circulation owing to its negative water 

budget (precipitation – evaporation < 0, which results mostly in oligotrophic conditions 

(Béthoux, 1979). There are however some regions with eutrophic conditions due to their 

hydrographic conditions (i.e. Gulf of Lions). The Gulf of Lions is one of the most 

productive areas in the Western Mediterranean Sea owing to vertical mixing in winter, 

upwelling events, and nutrient input from the Rhône (Lefevre et al., 1997). The study area 

is situated southwest of the Rhone delta, where about half of the total biological 

productivity is driven by riverine input of nutrients (Lefevre et al., 1997). 

 

The Gulf of Lions plays an important role in the general circulation of the 

Mediterranean Sea, since it is the source of Western Mediterranean Deep Water (WMDW) 

as a consequence of the cooling and sinking of Modified Atlantic Water (MAW) (Millot et 

a., 1990). Dense water formation also occurs on the shelf, where during winters dry and 
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cold northwesterly wind events are prolonged and surface waters on the continental shelf 

become denser and sink leading to cascading dense shelf water (CDSW) (Canals et al., 

2006).  

 

Ocean circulation in this region is mainly driven by the geostrophic Northern 

Current (NC), which is divided into two branches (Millot, 1990). The principal branch 

flows through the open sea along the Catalano-Balearic Sea, and a secondary branch 

occasionally circulates along the continental shelf edge, modifying the biogeochemistry by 

changing nutrient concentration of waters (Rubio et al., 2009) (Fig. 1). 

 

The core site studied herein (PRGL1) is located on the upper slope of the Gulf of 

Lions (Fig. 1), which allows the study of P geochemistry under two different scenarios in 

terms of sedimentation rate owing to glacial/interglacial sea-level variability. 

Accommodation space is defined as the volume available to store sediment and water in the 

continental shelf. During glacial stages, sea-level drops produced a rapid progradation of 

the deltaic system, reducing the accommodation space and consequently increasing 

sedimentation rate. In contrast, sea level rises during deglaciation periods (e.g. Holocene) 

promoted a rapid retrogradation of the deltaic system from the outer to the inner shelf, 

increasing the accommodation space in the continental shelf, that caused a decrease in 

sedimentation rate (Bassetti et al., 2006; Berné et al., 2007) and nutrient availability along 

the upper slope. This nutrient dilution was additionally enhanced by influence of the North 

Current (NC) and the Mistral wind (i.e., wind effect on shape and extension of river plume; 

Morel and Andre, 1991).  
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3. Methodology 

The borehole PRGL1 was drilled during the Promess1 campaign (summer 2004) in 

the Gulf of Lions (42.690º N, 3.838º E) (Fig. 1) on the interfluve of the Boucart and Herault 

canyons at a water depth of 298 m. The location of this site, near the shelf break, provides 

the potential for monitoring glacial-to-interglacial changes in sediment supply from the 

Rhone. This area provides excellent preservation of continuous sedimentary records 

because of the balance between the sedimentation rates and the accommodation space. 

Moreover, it is not influenced by the Rhone deltaic system and is distant from the 

Catalonian Margin, where erosive processes have taken place (Rabineau et al., 2005).  

 

Cores were split and 1 cm thick slices were taken every 10 cm. After constructing 

the age model, samples were selected for analysis with the objective of obtaining a 

millennial-scale temporal resolution. This goal was accomplished during glacial stages, 

with typical sedimentation rate above 1 m*kyr-1 (Sierro et al., 2009); however, during 

interglacials the resolution was usually lower due to lower sedimentation rate (i.e. less than 

0.05 m*kyr-1) (Sierro et al., 2009).  

 

3.1. Age model 

From 73.50 to 157.10 mbsf, we used the age model published by Sierro et al. 

(2009). For the second interval (from 157.10 to 210 mbsf) we used the age model published 

by Frigola et al. (2012). In both cases, the age model was mainly based on comparison of 

the G. bulloides 18O record with a stack of 57 globally distributed benthic 18O records 

(LR04 stack) (Lisiecki and Raymo, 2005), with the exception of the upper part where the 
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isotope record was tuned to Greenland Ice cores. The calculated sedimentation rate resulted 

in an average sampling resolution of 1,150 yr during interglacials and 160 yr during glacial 

stages. 

 

3.2. Elemental analysis 

A total of 240 samples were analyzed from 73.50 to 210 mbsf (128-422 ka) in order 

to determine P, Fe, S and Ti concentration in bulk sediment. For carrying on the analysis, 

0.1 g of each sample was dissolved using a MDS 2000 Microwave Digestion System and 

concentrated trace metal grade HNO3, HF and HCl. After digestion was completed, boric 

acid was added to stabilize the solutions. The samples were transferred to new 50 ml 

polypropylene centrifuge tubes and diluted to 50 ml double deionized water. To determine 

total concentrations a Perkin-Elmer iCAP 6000 Inductively Coupled Plasma-Optical 

Emission Spectrometer, with high speed, high-resolution double monochromator with CCD 

array detector was used. Concentrations were determined from the measured intensities 

through standard curves. Additionally, we used a NIST marine sediment sample (Standard 

Reference Material 2702) through the entire digestion and analysis to ensure quality control 

of the process. Our net values agreed within 5% of the NIST standard for P and S, and 

within 2% for Ti and Fe. 

 

3.3. Phosphorus sequential extraction 

In order to elucidate P geochemistry in these sediments, a sequential extraction 

technique was used (Filippelli, 2001), which is a modified version of the SEDEX technique 

developed by Ruttenberg (1992). This technique isolates P from four sedimentary 

components depending on the dissolution characteristics of the components and on the 
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optimized reagent strengths, reaction order, and reaction times. The four extracted 

components are: (1) oxyhydroxide-associated P (Poxy), adsorbed onto or co-precipitated 

with easily reducible iron oxides and/or oxyhydroxides, (2) authigenic P-rich minerals and 

biogenic debris (Paut), (3) detrital P (Pdet) that is associated with detrital fluorapatite, as well 

as certain clays and any residual phase not dissolved in weak acid, and (4) organic P (Porg), 

associated with organic matter.  

 

Details of the sequential extraction technique have been thoroughly documented 

before (Ruttenberg, 1992; Filippelli and Delaney, 1995), hence they will be simply 

summarized here. Two replicates of dry sediment weighing 0.5 g each were used. The first 

step, which isolated oxyhydroxide-associated P, involved treatment of the solid sample 

with a solution consisting of 0.22 M sodium citrate, 1 M sodium bicarbonate, and 0.13 M 

sodium dithionite for 6 h, followed by subsequent treatments of 1 M MgCl2 and H2O for 2h 

each. In the second step, which isolated authigenic and biogenic P, the residual solid was 

treated with 1 M sodium-acetate (buffered to pH 4 with acetic acid) for 5h, followed by two 

treatments of 1M MgCl2 and one treatment of H2O for 2 h each. In the third step, which 

isolated detrital P, the residual solid was treated with 1 M HCl for 16 h. In the fourth and 

final step, which isolated organically bound P, the residual solid was dried at 60ºC with 

50% (w/v) MgCl2 solution, ashed at 550ºC for 2 h, then treated with 1 M HCl for 24 h. For 

all steps other than oxyhydroxide-associated P, the standard ascorbic acid molybdenum 

blue technique (Strickland and Parsons, 1972) was used for developing color. Sample 

absorbances and P concentration calculations were performed using a Shimadzu UV-

2101PC scanning spectrophotometer with a computer interface and a Sipper 260 autosipper 

attachment. Sample absorbances were zeroed versus double deionized water and measured 
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at 885 nm with a slit width of 5 nm. Reagent blanks and standards were prepared to be 

equivalent to the matrix of each sample step analyzed. Inductively Coupled Plasma-Optical 

Emission Spectrometer (a Perkin Elmer iCAP 6000 Emission Spectrometer) was used to 

determine oxyhydroxide-associated P, since citrate-dithionite buffer used for this extraction 

interferes with the reduction of the molybdate P complex. The analytical reproducibility for 

P fractions was assessed through comparison to a long-term pooled marine sediment 

sample (Filippelli and Delaney, 1996). Total accuracy using this comparison is typically 5-

8% (Latimer and Filippelli, 2001). 

 

4. Results 

4.1. Elemental analysis in bulk sediments 

The average P concentration in sediments was 1020 μg g-1 (SD: 150 μg g-1), 

remaining remarkably stable between 800 and 1250 μg g-1 regardless of glacial/interglacial 

conditions (Fig. 2A,C). Two well-defined maxima were monitored around 275 ka ([P] = 

2100 μg g-1) and 335 ka ([P] = 1920 μg g-1) (Termination IV). Other less intense maxima 

were assessed with values above 1300 μg g-1 during Termination III ([P] = 1520 μg g-1), 

7d/7c transition ([P] = 1360 μmol g-1) and Interglacial MIS 11c (([P] = 1390 μg g-1).  

 

The average Fe concentration was 55.7 mg g-1 (SD: 6.1 mg g-1), showing strong 

millennial scale variability mainly during glacial stages (i.e. MIS 6, 8 and 10) (Fig. 2D). It 

tended to increase during cold stages marked by heavy 18O G. bulloides values, and to 

decrease during warmer periods. Minimum values were reached during interglacials MIS 

7e and 11c, and in a lesser extent during MIS 9e; whereas, distinctive maxima were 

monitored during MIS 7b, 7c, 8 and 9d. On the other hand, the average S concentration was 
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3.5 mg g-1 (SD: 4.5 mg g-1). The values ranged mainly between 1.6 and 6.4 mg g-1. Five 

distinctive maxima concurring with maximum values of Fe were monitored during MIS 7b 

([S] = 51 mg g-1), 7c ([S] = 19.6 mg g-1), 8 ([S] = 36.2 mg g-1 and 22.9 mg g-1) and 9d ([S] 

= 10.1 mg g-1) (Fig. 2E). Finally, the average concentration of Ti was 6.5 mg g-1 (SD: 0.7 

mg g-1), with values ranging mainly between 5.5 and 7.5 mg g-1 (Fig. 2F). As occurred with 

Fe, Ti concentrations showed strong millennial scale variability. Ti concentrations tended 

to decrease during warmer substages (i.e. 7a, 7c, 7e, 9a, 9c, 9e and 11c) indicated by light 

18O G. bulloides values.  

 

4.2. Phosphorus sequential extraction  

Figure 3A-3D shows the concentration of each extracted P component during two 

intervals: (1) from 306 ka to 342 ka (i.e. first interval), and (2) from 248 ka to 277 ka (i.e. 

second interval). During the first interval (306-342 ka), Poxy concentrations (Fig. 3A) 

showed little glacial/interglacial variability, with average concentrations of 60 μg g-1 (SD: 9 

μg g-1). Paut (Fig. 3B) exhibited concentrations of about 310 μg g-1 (around 50% of total P 

extracted (Pext)) during the glacial decreasing to about 150 μg g-1 at the interglacial. During 

Termination IV, a high Paut concentration event (680 μg g-1, 73% of total Pext) centered at 

335 ka was recorded. While, Pdet concentrations (Fig. 3C) increased from values of about 

90 μg g-1 (around 20% of total Pext) during the glacial to about 270 μg g-1 (around 60% of 

total Pext) at the interglacial. Porg concentrations (Fig. 3D) followed the same trend as Paut 

with less pronounced changes, except for the high Paut deposition event. Porg ranged from 60 

μg g-1 (around 9% of total Pext) during MIS 10 to 30 μg g-1 (around 7% of total Pext) at times 

of MIS 9.  
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During the second interval (248-277 ka), Poxy concentrations (Fig. 3A) oscillated 

around an average of 60 μg g-1 (SD: 12 μg g-1). Paut (Fig. 3B) concentrations were about 180 

μg g-1 (around 35 % of the total Pext) at the beginning of the interval and slightly decreased 

to about 150 μg g-1 around 260 ka. After this point, values increased to about 270 μg g-1 

(around 50% of the total Pext) at the end of glacial stage MIS 8. A high authigenic 

concentration event (680 μg g-1 , 65% of the total Pext) occurred around 275 ka. Pdet 

concentrations (Fig. 3C) were 210 μg g-1 and represented about 40% of the total Pext at the 

start of this interval, then increased to about 270 μg g-1 at 260 ka (50% of total Pext). After 

that time, detrital P concentrations tended to decrease, reaching values of about 150 μg g-1 

(around 30% of total Pext) at the end of MIS 8. Porg concentrations (Fig. 3D) ranged from 60 

μg g-1 to 30 μg g-1 and mirrored Pdet concentrations from 277 ka to 255 ka. After that, Porg 

concentration decreased together with Pdet to the end of MIS 8.  

 

By comparing P total measured by the ICP-OES with the sum of all components 

extracted by SEDEX technique, the proportion (in %) of Non-recovered P can be 

represented (Fig. 3E). It displays a strong millennial-scale behavior paralleling Ti 

concentrations (Fig. 3F) regardless of the environment where they were measured, i.e., 

predominant interglacial conditions for the first interval (306-342 ka), and glacial 

conditions for the second interval (248-277 ka). Correlation between % Non-recovered P 

and Ti concentrations for the first interval was: r1 = +0.72, p(a)<0.001, n = 29, whilst for 

the second interval was:  r2 = +0.73, p(a)<0.001, n = 32.  Two linear regressions were 

constructed (Fig. 3G), indicating both regressions the same slope (b1 = 6.7 ± 1.2, b2  = 5.7 ± 

1) and non-significant intercept (p(a)>0.05).  
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5. Discussion 

Phosphorus availability to primary producers is controlled by the balance between 

the input from rivers and the atmosphere, internal recycling and final removal through 

burial in sediments (Filippelli, 2008). Saharan dust is a great contributor of P in some 

regions of the Mediterranean basin (Herut et al., 2005). This contribution, however, is 

negligible in our core site, situated at the upper slope of the Gulf of Lions, and under the 

influence of the Rhone input. This input has been highly variable in the past owing to sea-

level oscillations (e.g., Sierro et al., 2009, Frigola et al., 2012), which, in theory, should 

have influenced P geochemistry. Moreover, during terminations, short millennial 

oscillations have been related with changes in the source of sediments arriving to the upper 

slope of the Gulf of Lions (Cortina et al., 2016b). This millennial-scale variability, likely 

driven by atmospheric dynamics, could therefore influence P dynamics as well.  

 

5.1. Reliability of P extraction  

Anoxic sediments are sensitive to chemical alterations when exposed to oxygen 

(Peterson et al., 1996), which usually occurs during core recovery and sample processing. 

In particular, oxidation of pyrite with oxygen produces sulfuric acid that can dissolve P-

bearing Ca-minerals (Chi et al., 2006). This mechanism was suggested to cause an increase 

of P bound to reducible Fe and a decrease of Ca-bound P in anoxic sediments exposed to 

oxygen of the Baltic Sea (Lukkari et al., 2007) and Cape Verde Basin (Kraal et al., 2009).  

 

Pyrite forms via the reaction of detrital iron minerals with H2S, that in turn is 

produced by the reductions of interstitial dissolved sulfate by bacteria using organic matter 

as a reducing agent and energy source (i.e. anoxic conditions) (Berner et al., 1984). 
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Enrichments in Fe and S related with pyrite formation have been documented during and 

immediately below sapropel deposition in the Eastern Mediterranean (Passier et al., 1997, 

1999). In our study, five distinctive periods of concurrent Fe and S excursions were 

monitored (Fig. 2D, 2E). These periods are sensitive to pyrite oxidation which could affect 

P components distribution. Of special interest are the events situated at MIS 8 around 252 

and 260 ka, in which P component extraction was performed. During these two events, Poxy 

increased to 90 μg g-1, indicating that part of Paut might be transferred to P bound to 

reducible Fe. The average of Poxy during MIS 8 is 60 μg g-1 with SD = 13 μg g-1, which 

implies that Poxy increases are close to the range of 2 times SD. Furthermore, no sharp 

decreases in Paut were assessed during these two events. Hence, we consider that core 

retrieving and sample processing did not affect significantly P results.  

 

Between 50 and 25% of P was not recovered by SEDEX technique, and this 

residual P is correlated with [Ti] in the two intervals studied with coefficients of 

determination above 0.5 (Fig. 3E, 3F, 3G). Moreover, weak correlations were found 

between previous published [Al] data (Cortina et al., 2013) and % Non-recovered P 

(R2<0.2). Titanium is preferentially concentrated in the coarser sediment fractions (Spears 

and Kanaris-Sotiriou, 1976) being an indicator of average grain size. Hence, our data 

suggest that an important fraction of P deposited in the Gulf of Lions is associated with 

coarser sediments which enters and exits the marine system with little or no geochemical 

interaction with seawater and so can be defined as non-reactive P, similar to the 

operationally defined Pdet (März et al., 2014). Considering that all non-extracted P is 

associated to detrital fraction, a correction of Pdet can be calculated:  
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%Pdet_cor = ((Pdet+Pnon-extracted) / Ptotal_ICP) x 100                                                                   (1) 

 

In both intervals (Fig. 4A, 5C), the %Pdet_cor parallels the %Pdet behavior, suggesting 

that the limitations of the SEDEX technique do not have a strong effect on our 

interpretations. 

 

5.2. Sea-level change impacts on P burial 

Glacial/interglacial sea-level change has a strong effect on sediments deposited on 

the upper slope of the Gulf of Lions (e.g., Sierro et al., 2009; Frigola et al., 2012; Cortina et 

al., 2011).  Sedimentation rates values ranged from below 0.2 m*kyr-1 during interglacial 

stages until values above 1 m*kyr-1 during glacials (Fig. 2B). These data suggest that 

higher P fluxes were associated to glacial stages with high sedimentation rates as a 

consequence of sea level fall that led to seaward migration of the Rhone’s mouth. In 

contrast, during interglacial stages sea level rose and the mouth of the Rhone migrated 

landward, decreasing the amount of sediments that carried for the Rhone reached the upper 

slope and consequently the P flux. Interestingly, no glacial/interglacial total P concentration 

variability was recorded (Fig. 2C) which appears counterintuitive given such strong 

sedimentation rate differences and the ensuing significant increase on P fluxes. In fact, 

similar results were achieved in a study that compared some broadly distributed open ocean 

versus continental margins locations (Filippelli, 1997) 

 

The study of the different geochemical fractions of P therefore offers crucial 

information for understanding P biogeochemistry in two completely depositional scenarios: 
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(1) glacial with PRGL1 under environmental conditions typical of continental margin 

locations and (2) interglacial, with PRGL1 less influenced by continental margin processes.  

 

The influence of glacial/interglacial sea-level changes in the geochemical character 

of P accumulated in the upper slope is seen in Figure 4. The first interval (MIS 9-10) 

reveals an increasing trend of %Pdet (Fig. 4A) from MIS 10 to MIS 9. These results 

highlight the strong effect that sedimentation rate has on P biogeochemistry. The fact that 

%Pdet increased during MIS 9 is likely the result of the remineralization of Preact during 

highstands. At these times, sediment rate slowed and reactive P-bearing components 

remained longer in the reactive upper sediment, undergoing winnowing by bottom currents 

during thousands of years (Sierro et al., 1999; 2009). This resulted in an increased 

dissolution of Preact and enhanced recycling of dissolved P into the overlying water column. 

In contrast, higher sedimentation rate during glacial stages resulted in more rapid burial, 

effectively removing Preact from the early diagenetic zone and allowing for greater 

preservation. This mechanism is supported by the glacial/interglacial differences in the 

Corg:N (Fig. 4E), which usually varies in response to changes of the dominant source of 

organic matter from marine (low values) to terrestrial (high values) (Meyers, 1994). The 

fact that Corg:N ratio was higher during interglacial stages was attributed to a reduced 

sediment input that resulted in extended periods of organic matter degradation at the 

sediment water interface favoring the preservation of more refractory organic matter 

(Cortina et al., 2013). As a result, the overall efficiency of P burial will decrease during 

highstands as indicated by the increase of the Corg:Preact (Fig. 4D). 
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5.3. Periods of distinctive P deposition and their implications for Western 

Mediterranean environmental conditions 

Two significant events of P burial associated with the authigenic phase were 

recorded (Fig. 3B), taking place during Termination IV (Paut1) and around 275 ka (Paut2). 

They are associated to the two strongest ice-rafted debris (IRD) deposition recorded in the 

North Atlantic for the last 500 kyr (McManus et al., 1999). During the last glacial, it has 

been postulated that major IRD layers resulted from catastrophic iceberg calving along the 

ice sheet margins of North Atlantic (Broecker et al., 1992), which coincided with the 

coldest events in the North Atlantic, referred as Heinrich Events (HE). In the Western 

Mediterranean, the appearance of the polar specie Neogloboquadrina pachyderma (s) has 

been tightly linked to such North Atlantic HE (Sierro et al., 2005, 2009; Cortina et al., 

2013). At the Gulf of Lions, cold conditions reached during HE has been linked to 

enhancement of northwesterly winds, water column mixing and bottom turbulence that 

promoted the appearance of the benthic foraminifer species Trifarina angulosa (Cortina et 

al., 2013).  

 

5.3.1. Paut1 at Termination IV 

The Paut1 event during Termination IV (Fig. 4B) is characterized by high IRD 

discharge in the North Atlantic (Mcmanus et al., 1999) and the appearance of cold planktic 

foraminifer species N.pachyderma (s) in the Gulf of Lions (Fig. 4H) (Cortina et al., 2013). 

During this period, organic rich layer (ORL) deposition took place in the Alboran Sea 

(Western Mediterranean) (unpublished data). In fact, sediment cores from Alboran Sea 

reported increases in total organic carbon (TOC) during this period (Murat et al., 1999). 

Owing to the recurrent oxygenation of the bottom driven by northwesterly winds, ORL 
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deposition is not expected in the Gulf of Lions. Nonetheless, it is a key area regarding 

primary productivity in the rather oligotrophic Mediterranean Sea (Lefevre et al., 1997) and 

P plays an important role on the growth of primary producers. Therefore, effects on P 

cycling of a mechanism influencing the whole Western Mediterranean may potentially be 

monitored.  

 

During this period, strong glacial/interglacial changes in the sedimentation rate are 

expected. These nonsteady-state processes have been demonstrated to have a high potential 

for producing and preserving authigenic minerals (Kasten et al., 1998; Thomson et al., 

1984). Therefore, high Paut deposition events could be interpreted as the result of 

nonsteady-state diagenetic processes rather than changes in the environment conditions. 

However, no enrichment of Fe sulfides (Fe and S) (Kasten et al., 1998) typical of 

nonsteady-state diagenetic processes are monitored during Termination IV (Fig. 2D, 2E), 

suggesting an environmental control only of Paut1 formation.  

 

Based on the proportion of fresh versus degraded terrestrial organic matter 

(DTOM), and analogous to last glacial, rapid cold/warm oscillations were identified during 

Termination IV in the Gulf of Lions (Cortina et al., 2016b). These rapid cold/warm 

oscillations detected in the Western Mediterranean basin, responded most probably to a 

collapse/resumption of the Atlantic meridional overturning circulation (AMOC). During a 

collapse (Broecker, 1994), increased atmospheric gradient in the North Atlantic induced 

dry and cold conditions in the Western Mediterranean region (e.g. Cacho et al., 1999, 

Sanchez-Goñi et al., 2002). These conditions, reduced runoff (Jimenez-Espejo et al., 2007; 

Rodrigo-Gámiz et al., 2011) and decreased the proportion of DTOM (Fig. 4F). However, 
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the AMOC resumption produced a decrease in the atmospheric gradient in the North 

Atlantic, which resulted in warmer and more humid conditions in the Western 

Mediterranean. Such conditions led to increased continental runoff and the ensuing erosion 

of old and reworked material form the Rhone catchment area incrementing % DTOM. 

 

The high Paut1 deposition event (Fig. 4B) and the ensuing enhancement of P burial 

efficiency (Fig. 4D) was contemporaneous with the increased continental runoff episode 

characterized by an increase in primary productivity in the water column as indicated by the 

rise in the productive planktic foraminifer species G. bulloides (Barcena et al., 2004) (Fig. 

4G) and the low Corg:N values (Fig. 4E). An external source of Ca-P minerals (Eijsink et 

al., 2000; Kraal et al., 2012) is discarded because the highest input of material carried by 

the Rhone at PRGL occurred during glacial maxima (Cortina et al., 2016b), and no 

increases of Paut were detected during those times. Therefore, two mechanisms can be 

invoked to explain Paut1 deposition: (1) the precipitation of P released by organic matter as 

carbonate fluoropatite (CFA) (Filippelli, 2001), and (2) enhanced burial of biogenic Ca-P 

(i.e. fish debris) (Schenau and De Lange, 2001, Slomp et al., 2002, Schenau et al., 2005).  

 

During Termination IV, paleoredox/sedimentation rate variability marked by 

(C:P)org (Fig. 4C) seems to mirror % DTOM, however, its lower resolution with regard the 

alkane-based proxy challenges their direct comparison. Nonetheless, the lowest (C:P)org 

values were achieved during the increased continental runoff episode. Weakened bottom 

turbulence compared with pre and post continental runoff episodes is displayed by T. 

angulosa (Fig. 4I) which indicates lower oxygenation conditions during this episode. 

Hence, increase of Porg with respect C is not linked to paleoredox control. On the other 
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hand, elevated values of both fresh organic matter (low Corg:N) and primary productivity 

(high %G. bulloides) are synchronous with the increment of % DTOM. These results 

suggest that enhancement of primary productivity driven by increased nutrients from river 

runoff overcame the signal of detrital organic matter (high % DTOM). Increased 

sedimentation rate owing to flooding events could favor low (C:P)org in sediments, 

however, by itself cannot explain lower (C:P)org reached during Termination IV compared 

with glacial maximum, since this would imply higher sedimentation rate when sea level is 

increasing. For this reason, high supply of fresh organic matter with low (C:P)org values 

(Ruttenberg and Goni, 1997)  via primary productivity is essential to driving low (C:P)org  

in sediments. Increased primary productivity would lead to more abundant fish populations 

in the oxic part of the water column and higher rate of fish debris deposition (Suess, 1981; 

De Vries and Pearcy, 1982). Owing to its labile nature, P can experience rapid dissolution 

and contribute to porewater PO4
3- accumulation and subsequent authigenic Ca-P formation 

(Babu and Nath, 2005). Furthermore, high sedimentation rate derived from both increased 

runoff and productivity could promote P biogenic preservation as demonstrated in other 

areas (Sirocko and Lange, 1991, Thamban et al., 2001, Slomp et al., 2002, 2004; Babu and 

Nath, 2005). Thus, the Paut1 deposition event monitored during Termination IV most likely 

reflects a high-productivity event.  

 

Radiocarbon dating has allowed a precise timing of events during the last ORL 

deposition (ORL1). During the Bolling-Allerod (B-A) in the Alboran Sea, several studies 

have pointed out humid conditions, increase of river discharge and stratification of the 

water column (Barcena et al., 2001, Frigola et al., 2008, Fletcher et al., 2010, Rodrigo-

Gamiz et al., 2011), which led to increased marine productivity (Jimenez-Espejo et al., 
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2008) and low oxygen content in deep waters (Rogerson et al., 2008). Although the PRGL1 

is located in shallow waters from the continental slope, the environmental conditions 

described for the ORL1 during B-A in the Alboran Sea resemble those that occurred during 

the Paut1 deposition event. These results suggest that, akin to Termination I, during 

Termination IV enhanced marine productivity is restricted to a warm/flood event of ORL 

deposition. These results could be indicative of a secondary control of primary productivity 

in ORL deposition, i.e. stagnation, as the main driver (Rogerson et al., 2008) 

 

5.3.2. The Paut2 event (275 ka) 

The Paut2 event (Fig. 5D) occurs during strong IRD deposition in the North Atlantic 

as well as the Paut1, but no ORL was deposited in the Alboran Sea at this time (Murat et al., 

1999). Cold conditions were reached in the Mediterranean as recorded by SST (Fig. 5A) 

and AP (Fig. 5B). Similar to Termination IV, though with smaller ranges, N.pachyderma 

(0-6 %) (Fig. 5G) and T.angulosa (0-25%) (Fig. 5F) oscillate between colder/high bottom 

turbulence and warmer/low bottom turbulence. Such low variability could be the result of a 

higher sea level during this interval (≈ 30 m according to Waelbroeck et al, 2002), in 

agreement with low %DTOM values (Fig. 5E). Short millennial-scale events are recorded, 

indicating warmer (high SST, low N. pachyderma (sin)) and decreased bottom turbulence 

(lower % T.angulosa), coinciding with the Paut2. Marine productivity could be also 

considered high given that assemblages are dominated by G. bulloides (34.5%) and N 

pachyderma (dex) (26.5%) (Cortina et al., 2013). The emergence of N. pachyderma (dex) 

could be the result of higher sea level and the development of a thermocline and a Deep 

Chlorophyll Maximum (DCP) (Pujol and Grazzini, 1995), which were not present during 

the lowstand at Paut1.  

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 23 

Therefore, Paut1 and Paut2 seem to be caused by productivity events associated with 

warmer episodes during strong IRD discharge in the North Atlantic. The fact that Paut 

deposition depended on atmospheric dynamics reflects the strong sensitivity that the 

Mediterranean Sea had to global climate processes.  

 

6. Conclusions 

During glacial (MIS 10) and interglacial (MIS 9) intervals the deposition of P in the 

upper slope of the Gulf of Lions was strongly influenced by sedimentation rates, which in 

turn was driven by sea-level changes. During higher sea level (i.e. warmer stages), the 

increase in the accommodation space in the continental shelf decreased the amount of 

sediments reaching the upper slope of the Gulf of Lions, thus reducing the sedimentation 

rate and increasing Preact time in the geochemically active sediment-water interface. This 

enhanced recycling and decreased the efficiency of P burial. During lower sea levels (i.e. 

colder stages), the increase in sedimentation rate as a consequence of decreased 

accommodation space reduced Preact time at the sediment-water interface, enhancing P 

burial efficiency. These results indicate the importance of continental margins in P burial 

efficiency at glacial/interglacial timescales. Besides this general glacial/interglacial trend, 

two highly-efficient P deposition events were identified from MIS 6 to MIS 11. These 

events occurred during periods with rapid cold/warm transitions associated with ice rafting 

and meltwater events in the North Atlantic, such as Termination IV and IRD deposition 

event centered around 275 ka. Specifically, Paut excursions occurred during short warm 

periods. We hypothesize that enhanced continental runoff associated with warm and humid 

periods increased nutrients in the mixed layer, stimulating primary productivity that led to 

more abundant fish populations and higher rate of fish debris deposition. Due to its labile 
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nature, rapid dissolution is expected, contributing to porewater PO4
3- accumulation and 

ensuing Ca-P formation. Our results highlight that both sedimentation rates driven by sea-

level and ice-sheets oscillations that influenced atmospheric dynamics at global scale have 

strong impact on P burial from millennial to larger climatic cycles. These processes could 

influence P remineralization from sediments and consequently primary productivity events 

on the northwestern Mediterranean at different timescales.   
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Figure captions 

Figure 1. Map of the Gulf of Lions modified from Jouet et al. (2006).  Blue arrows 

represent the two North Current branches. Dashed line depicts the secondary North Current 

branch that occasionally circulates along the continental shelf edge. Core site PRGL1 is 

represented by a black star.  

 

Figure 2. Variations in phosphorus deposited in the upper slope of the Gulf of Lions from 

MIS 6 to MIS 11. A Globigerina bulloides  18O values. The values from 125 ka to 265 ka 

were taken from Sierro et al. (2009), while values from 266 ka to 425 ka were taken from 

Frigola et al. (2012). B Sedimentation rate in PRGL1 (m*kyr-1). C Total phosphorus (P) 

concentration (g g-1). D Total iron (Fe) concentration (mg g-1). E Total sulfur (S) 

concentration (mg g-1). F Total titanium (Ti) concentration (mg g-1). Orange bars depict 

warmer substages.  

 

Figure 3. Variations of phosphorus components in sediments during two selected intervals: 

from 306 to 342 ka and from 248 to 277 ka (referred in the text as first and second interval, 

respectively). A Oxyhydroxide-associated phosphorus (Poxy, g g-1).  B Authigenic 

phosphorus (Paut, g g-1). C Detrital phosphorus (Pdet, g g-1). D Organic phosphorus (Porg, 

g g-1). E Percentage of non-recovered P obtained by SEDEX procedure. F Total titanium 

(Ti) concentration (mg g-1). G Linear regression between % non-recovered P and total 

titanium concentration (mg g-1), regression slope and determination coefficient are also 

displayed.  
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Figure 4. Effects of sea-level changes and flooding events in phosphorus deposited in the 

upper slope of the Gulf of Lions from 306 to 342 ka. A % Detrital phosphorus (% Pdet) 

calculated as the relative amount of Pdet extracted by SEDEX procedure in the total P 

concentration measured by ICP-EOS. Thicker and continuous line depicts %Pdet_cor that 

assumes all non-extracted P has a detrital origin. B Authigenic phosphorus (Paut, g g-1). C 

(C:P)org ratio. D Corg:Preact ratio. E Weight Corg:N ratio (Cortina et al., 2013). F Three-point-

average percentage of degraded terrestrial organic matter (% DTOM) (Cortina et al., 

2016b). G % Globigerina bulloides (Cortina et al., 2013). H % Neogloboquadrina 

Pachyderma (sin) (Cortina et al., 2013). I % Trifarina angulosa (Cortina et al., 2013). Red 

band represents MIS 9. Blue band represents MIS 10. Orange band represents Termination 

IV. Green band represents authigenic phosphorus high-deposition event (Paut1).  

 

Figure 5. Effects of sea-level changes and flooding events in phosphorus deposited in the 

upper slope of the Gulf of Lions from 248 to 277 ka. A Sea Surface Temperature (SST) 

(Cortina et al., 2015). B Percentage of Arboreal Pollen (Tzedakis et al., 2003). C % Detrital 

phosphorus (% Pdet) calculated as the relative amount of Pdet extracted by SEDEX 

procedure in the total P concentration measured by ICP-EOS. Thicker and continuous line 

depicts %Pdet_cor that assumes all non-extracted P has a detrital origin. D Authigenic 

phosphorus (g g-1). E Three-point-average percentage of degraded terrestrial organic 

matter (% DTOM) (Cortina et al., 2016b). F % Trifarina angulosa (Cortina et al., 2013). G 

% Neogloboquadrina Pachyderma (sin) (Cortina et al., 2013). Green band represents 

authigenic phosphorus high-deposition event (Paut2).  

  

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 41 

Highlights  

• Phosphorus deposition strongly depends on sea-level changes 
• Preact is preferentially released at times of low sedimentation rate 
• High Paut  formation is coetaneous with strong IRD discharges in the North Atlantic 

ACCEPTED MANUSCRIPT



Figure 1



Figure 2



Figure 3



Figure 4



Figure 5


