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ABSTRACT

Bacteriorhodopsin (BR) Is a photoactive protein, which has been studied as a memory storage device owing to its photochemical and thermal
stability!. BR photocycle comprises of two distinct stable binary states, bR (0) and Q (1) based on the wavelength of the applied radiation?.
However, such devices have a limited success due to low quantum yield of the Q statel. Many studies have used genetic and chemical
modification as optimization strategies to increase the yield of the Q state compromising the overall photochemical stability of the BR*. Here we
come up with a unique way of stabilizing the conformations of BR and thereby the BR and Q states of the protein through its adsorption onto
graphene. We have used all-atom molecular dynamics (MD) simulations utilizing NAMD (Nanoscale Molecular Dynamics) and the CHARMM
(Chemistry at HARvard Macromolecular Mechanics) force field to understand the interactive events at the interface of BR and a single layer
graphene sheet. Based on the stable RMSD (Root Mean Square Deviation) and interactive energies such as Van-der-Waals and electrostatics, we
propose that the adsorption of BR onto graphene can stabilize the photochemical behavior of BR. Furthermore, the switching between Cis and
Trans conformations of the retinal based on the angular change of the dihedral demonstrates that such an adsorption is beneficial to preserve the
binary states.
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