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STRATEGIC TRADE BETWEEN TWO
COUNTRIES—EXPLORING THE CASE OF PARTIAL

LOCAL CONSUMER PROTECTION∗
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Abstract. The paper develops a dynamic model of trade between two
countries where the trading entities interact in a strategic context. Con-
sumers in both countries are endowed with certain incomes and try to acquire
as much as possible of the quantities available on the markets. Consumers
have privileged access to some of the good supplied locally, a form of partial
local protection. Over time, prices are adjusted to respond to the outcomes
of trading. For this setup, we prove the existence of Nash equilibria and
simulate the model numerically in Python to illustrate the possibility of ob-
taining different types of price dynamics depending on the price adjustment
rule used.

1. Introduction. In this paper we develop a trade model focusing on the
case of two countries (regions), where the trading entities compete strategically
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for the fixed supply of a good in each region. Depending on the outcome of the
trade, prices are adjusted over time to correct for excess supply or demand on
the respective markets. The setup is similar to our earlier works [3] and [8], with
the exception that here local consumers enjoy only partial protection in terms of
preferential access to the good on their home market. This stands in contrast
to the cited works, which employ the assumption of full protection. Since the
present model also covers the special case of full protection, it subsumes the
previous formulations. In this work, we focus on discrete-time dynamics.

For our model numerical simulations implemented in IPython/Jupyter
Notebook (see [7]) are carried out to explore the various types of price dynam-
ics that can be obtained under different parameterizations and price adjustment
rules. On the basis of our experiments we conclude that the model is capable
of generating diverse types of price dynamics, including degenerate (zero price)
outcomes and cyclicality.

Compared to our earlier work [4], here we expand the analysis in the fol-
lowing directions. First, we formally prove the existence of Nash equilibria for
the model. Second, we provide details on the numerical methods and a software
implementation in IPython. Finally, we demonstrate the robustness of our numer-
ical findings by reporting the counterparts of the experiments in [4] for changed
values of the model parameters which yield the same results in qualitative terms.

The paper is organized as follows. In section 2 we present our model.
Section 3 deals with the issue of existence of Nash equilibria. Section 4 pro-
vides details of the numerical implementation and the results of the simulations
performed. Section 5 presents our conclusions.

2. Model description. We study the interaction of two consumers
from different countries (regions), labelled 1 and 2, who compete for a good sup-
plied on both markets. Consumers are endowed with constant monetary income Yi
and the good is supplied in fixed quantities qi, i = 1, 2. There are no savings in-
struments and therefore income cannot be accumulated but is available only in
the current period.

The price of the good on the market of region 1 for the local consumer at
time t is denoted p1,t and the local price of the good in region 2 is p2,t. If con-
sumer 1 wants to import from the other region, an additional cost of ρ2 per unit
of good is incurred. This cost may have various interpretations, including trans-
portation costs, customs duties or other transaction costs associated with foreign
trade. Analogously, consumer 2 pays a cost ρ1 per unit of good imported from
region 1. Thus, the total price of goods imported from region 2 for consumer 1
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is p′2,t = p2,t + ρ2 and the total price of imports from region 1 for consumer 2 is
p′1,t = p1,t + ρ1.

Consumer 1 can place orders for quantities α and β on the markets of
region 1 and 2, respectively. The orders of consumer 2, placed in regions 1 and 2,
are denoted γ and δ. The consumers are aware of each others’ characteristics
and therefore a game-theoretic situation occurs. The orders of the consumers
form their strategy spaces (see [2], chapter 3, for details of the game-theoretic
terminology and results), denoted S1,t and S2,t, and assumed to be nonempty.
They are defined as follows:

S1,t =
{

(α, β) ∈ R2 | p1,tα+ p′2,tβ ≤ Y1, α, β ≥ 0
}
,(1)

S2,t =
{

(γ, δ) ∈ R2 | p′1,tγ + p2,tδ ≤ Y2, γ, δ ≥ 0
}
.(2)

In the course of trading, each consumer enjoys partial protection on the
local market. This means that a fixed share ε ∈ (0, 1] of the quantity q1 is reserved
for consumer 1 and, similarly, a share ξ ∈ (0, 1] of the quantity q2 is preferentially
available to consumer 2. Consumers have the right to buy the respective quantities
εq1 and ξq2 but are not obliged to do so. After the local consumer buys a part
or all of the preferentially available quantity, the remaining quantity of the good
is offered to the foreign consumer. In turn, the foreign consumer can purchase
part or all of this remainder and, if there is anything left, it is again offered to
the local consumer.

We assume that under the above conditions, each consumer wants to max-
imize the quantity ot the good purchased. This implies the following payoff func-
tion for consumer 1:

P1(α, β,γ, δ) = min(α, εq1) + min(β, q2 −min(δ, ξq2))+

min(α−min(α, εq1), q1 −min(α, εq1)−min(γ, q1 −min(α, εq1))) =

min(β, q2 −min(δ, ξq2)) + min(α, q1 −min(γ, q1 −min(α, εq1))).

(3)

Similarly, the payoff function for consumer 2 is

P2(α, β, γ, δ) = min(γ, q1 −min(α, εq1))+

min(δ, q2 −min(β, q2 −min(δ, ξq2))).
(4)

For the above game, consumers are assumed to trade by placing orders
in such a manner that a Nash equilibrium emerges as the outcome of the trade
(see section 3 for details of the concept and the existence result). The elements
of this equilibrium are the respective orders, denoted by (α∗, β∗) for consumer 1
and (γ∗, δ∗) for consumer 2. At the end of each period, after trading has been



34 Iordan Iordanov, Andrey Vassilev

concluded and a Nash equilibrium has been reached, prices are decreased if the
quantity available in the respective region has not been entirely consumed. Prices
are increased if there is unspent income in the respective region. These two
possibilities are mutually exclusive.

The above principle for the change in prices can be formalized through
different price adjustment rules.

In discrete time, an example of price adjustment rules might be

p1,t+1 = p1,tq
cons
1 /q1 + Y res

1 /q1 − p1,t,(5)
p2,t+1 = p2,tq

cons
2 /q2 + Y res

2 /q2 − p2,t,(6)

where Y res
1 = Y1− p′2,tβ∗, Y res

2 = Y2− p′1,tγ∗, qcons
1 = α∗+ γ∗ and qcons

2 = β∗+ δ∗.
As another example, the price adjustment rules can take the form

p1,t+1 = p1,tq
cons
1 /q1 + (Y1 − Y cons

1 )/q1,(7)
p2,t+1 = p2,tq

cons
2 /q2 + (Y2 − Y cons

2 )/q2,(8)

where Y cons
1 = p1,tα

∗ + p′2,tβ
∗ and Y cons

2 = p′1,tγ
∗ + p2,tδ

∗.
The above rules are versions of the rules used in [3] and [8].

3. Nash equilibria. Below we introduce several game-theoretic con-
cepts that are necessary for the definition and proof of existence of Nash equilib-
ria. The exposition follows chapter 3 in [2], adapted to our case and with minimal
changes in notation. We conclude the section by providing a proof that a Nash
equilibrium exists for our model.

Definition 1 (Best reply). The best reply for consumer 1, for given strategies
γ̄, δ̄ played by consumer 2, is defined as

BR1(γ̄, δ̄) = argmax
(α,β)∈S1,t

P1(α, β, γ̄, δ̄).

Analogously, the best reply for consumer 2 is defined as

BR2(ᾱ, β̄) = argmax
(γ,δ)∈S2,t

P2(ᾱ, β̄, γ, δ).

Since Pi are continuous and Si,t are compact, there exist solutions to the
best-reply problems, i. e., the best-reply sets are nonempty.



Strategic trade between two regions with partial local consumer protection 35

Definition 2 (Best-reply mapping). The best-reply mapping BR for a game is a
correspondence associating each strategy profile (α, β, γ, δ) with the set BR1(γ, δ)×
BR2(α, β), i. e.,

BR : (α, β, γ, δ)→ BR1(γ, δ)×BR2(α, β).

The best-reply mapping can be interpreted as showing how each player
would like to change their strategy after observing the strategy played by the
other player in the game.

Definition 3 (Nash equilibrium). A Nash equilibrium for a game is a strategy
profile (α∗, β∗, γ∗, δ∗) for which (α∗, β∗, γ∗, δ∗) ∈ BR(α∗, β∗, γ∗, δ∗).

According to Definition 3, a Nash equilibrium is a fixed point of the best-
reply mapping. It can be interpreted as a situation in which none of the players
finds it profitable to deviate from their current strategy given the choice of the
other player. Thus, the concept of Nash equilibrium captures the idea of a stable
outcome in a game.

A Nash equilibrium is guaranteed to exist under certain circumstances.
To formulate the existence result precisely, we provide the following definition of
quasiconcavity ([2], p. 66).

Definition 4 (Quasiconcavity). A function y = f(x), defined on D ∈ Rn, is
called quasiconcave if, for any choice of x1, x2 ∈ D for which f(x1) = f(x2), and
for any λ ∈ [0, 1], we have f(λx1 + (1− λ)x2) ≥ f(x1).

Quasiconcavity is obviously a more general concept than concavity.
The existence of Nash equilibria is given by the next result ([2], p. 70).

Theorem 1. Let the following hold true:

1. The sets S1,t, S2,t ⊂ R2 are compact and convex;

2. The functions P1(s) and P2(s) are bounded and continuous for all s ∈ St,
where St := S1,t × S2,t;

3. The function P1(α, β, γ, δ) is quasiconcave with respect to (α, β) ∈ S1,t and
the function P2(α, β, γ, δ) is quasiconcave with respect to (γ, δ) ∈ S2,t.
Then the noncooperative game defined by S1,t, S2,t, P1 and P2 has at least
one Nash equilibrium.
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To proceed with showing the existence of Nash equilibria for the game in
our model, we first prove the following

Lemma 1. The functions P1 and P2 defined respectively by (3) and (4) are qua-
siconcave.

P r o o f. We shall verify this claim for P1. Let (α1, β1, γ, δ) and (α2, β2, γ, δ) be
such that

P1(α1, β1, γ, δ) = P1(α2, β2, γ, δ).

We shall check that, for all λ ∈ [0, 1], we have

P1(λα1 + (1− λ)α2, λβ1 + (1− λ)β2, γ, δ) ≥ P1(α1, β1, γ, δ).

Without loss of generality, let 0 ≤ α1 < α2. There are two cases:

Case 1. 0 ≤ β1 < β2,

Case 2. 0 ≤ β2 < β1.

In Case 1 we set α̃ = λα1 + (1− λ)α2, λ ∈ [0, 1] and β̃ = λβ1 + (1− λ)β2.
Since α̃ ∈ [α1, α2], i. e., α̃ ≥ α1 (and also α2 > α1), it follows that

min(α̃, εq1) ≥ min(α1, εq1),

min(α2, εq1) ≥ min(α1, εq1).

Consequently, we have

max(q1 − γ,min(α̃, εq1)) ≥ max(q1 − γ,min(α1, εq1))

and
max(q1 − γ,min(α2, εq1)) ≥ max(q1 − γ,min(α1, εq1)).

The latter, combined with the fact that α̃ and α2 are greater than α1,
imply that

min(α̃,max(q1 − γ,min(α̃, εq1))) ≥ min(α1,max(q1 − γ,min(α1, εq1)))

and

min(α2,max(q1 − γ,min(α2, εq1))) ≥ min(α1,max(q1 − γ,min(α1, εq1))).

Considering the specific form of P1 as given in (3) and the fact that the
term containing β is concave in β, we have the required

P1(α̃, β̃, γ, δ) ≥ P1(α1, β1, γ, δ) = P1(α2, β2, γ, δ).

In Case 2 we change the multipliers in front of α1 and α2 from λ to (1−λ)
and vice versa. The claim follows immediately.
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We can now readily prove the following

Proposition 1. For the game defined by S1,t, S2,t, P1 and P2 as given in (1), (2),
(3) and (4), there exists a Nash equilibrium.

P r o o f. Conditions 1) and 2) of Theorem 1 are obviously fulfilled. Condition 3)
of the theorem follows from Lemma 1.

4. Numerical implementation and results. The model described
above was implemented in Python, using the infrastructure provided by IPython
in the context of the Jupyter Notebook (see [7] and [5], respectively). Our choice
to work with IPython within the Jupyter Notebook was motivated by several con-
siderations. First, Python itself was selected as the implementation language due
to its clean and transparent syntax, rich ecosystem of scientific computing pack-
ages (notably Numpy, Scipy and the plotting library Matplotlib) and suitability
for applications in exploratory computation (REPL-type environment). Our sec-
ond consideration builds on the last observation, as IPython further expands the
native Python capabilities in terms of interactive computing, ease of debugging
and speed of issuing and editing commands. Third, we chose to work with the
IPython kernel within the Jupyter Notebook because the notebook provides a
complete environment that bundles together code, output and documenting texts
in a transparent and reproducible manner.

To find a solution to the best-reply problem of the respective consumers,
functionality for constrained optimization from the library scipy.optimize was
employed. More specifically, we used the function minimize (with the required
change in the sign of the objective function to account for the fact that the
problem is one of maximization), which is a wrapper around several optimization
algorithms that are automatically selected based on the type of optimization prob-
lem under consideration (with equality or inequality constraints, bounds on the
variables etc.). For our formulation the minimize function employs the SLSQP
method. As per the documentation, this method uses sequential least squares
programming to minimize a function of several variables with any combination
of bounds, equality and inequality constraints. The method wraps the SLSQP
Optimization subroutine presented in [6].

The Nash equilibrium points for the game were computed on the basis of
the best reply solutions, using a fixed point routine, again from scipy.optimize.
The specific function used was fixed_point. This function by default finds a
fixed point through an algorithm using Steffensen’s method with Aitken’s ∆2
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convergence acceleration (see [1], p. 88). The essence of our approach was to
construct the best reply mapping for the game by combining the individual best
replies obtained via minimize and then pass it to fixed_point to compute a fixed
point of this mapping, which is by definition a Nash equilibrium.

In order for the minimize and fixed_point to complete successfully, one
also needs to specify the initial conditions and tolerance parameters for the respec-
tive solvers. In our case the initial conditions for the SLSQP solver for consumer 1
were chosen to be Y1/(2p1,t) and Y1/(2p′2,t). The initial conditions for consumer 2
were respectively set at Y2/(2p′1,t) and Y2/(2p2,t). The same initial conditions were
provided to the fixed point solver implementing Steffensen’s method. The default
tolerance and iteration options were used for the computations using minimize.
For fixed_point the convergence tolerance parameter xtol, which by default is
set to 10−8, was relaxed to 10−4, while the number of iterations was increased to
1000 from the default of 500.

Our simulations explored the types of price dynamics that can be obtained
under the chosen price rules by varying incomes, quantities and transportation
costs. Below we report several representative outcomes, shown graphically in
Figures 1–5.

The simulations were parametrized as follows. The common parameters
across all simulations are ε = 0.2, ξ = 0.15, p1,0 = 4 and p2,0 = 5. Table 1 presents
the subset of model parameters that changes across simulations. The numbering
of the simulations corresponds to the numbering of the figures presenting price
dynamics.

Sim. № Rules Y1 Y2 q1 q2 ρ1 ρ2
1 (5),(6) 105 125 32 42 2.5 2.5
2 (5),(6) 203 325 31 42 2.1 2.1
3 (7),(8) 98 322 510 44 1.9 1.9
4 (7),(8) 103 322 49 39 3 210
5 (7),(8) 55 5 32 42 2.2 2.2

Table 1. Parametrization of the model simulations

The simulation results make it evident that different price adjustment
rules used in conjunction with different parameter sets can produce very diverse
outcomes. These can range from trivial one-period “jumps” of prices to a steady
state value to much less regular behaviour such as transitional dynamics settling
down on a steady state value or cyclical behaviour.
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Fig. 1. Complex price dynamics with multi-period transition to the cyclical orbit (Sim-
ulation 1)
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Fig. 2. Convergence to steady state prices with dampened oscillations in the transition
dynamics (Simulation 2)
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Fig. 3. Simple transition to steady state prices (Simulation 3)
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Fig. 4. Monotonic convergence to a steady state price (Simulation 4)
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Fig. 5. Convergence to a steady state in one period (Simulation 5)

The specification of the price adjustment rules is crucial for the type of
dynamics obtained and the interpretation of the results. Parameter configurations
are also important but they can be justified in terms of the economic context the
model is trying to capture, e. g., trade between a relatively rich country and a
poor economy, or a situation of abundance of the supply of the good on one of
the markets vs. scarcity on the other market. In contrast, the specification of the
price rules may be more difficult to defend, especially in situations where there is
insufficient data to corroborate the chosen form. One commonly used approach
in the economics literature is to derive the price adjustment rules from explicitly
formulated problems for a new type of agent, for instance a profit maximization
problem for the good supplier. This is a fruitful direction for future research.

5. Conclusions. Our simulation results illustrate the possibility of ob-
taining diverse types of price dynamics in discrete time, depending on the specific
parametrization and price adjustment rules used. As mentioned, this opens up
the issue of the formulation and implications of using a specific adjustment rule.

Experience with similar models from [3] and [8] shows that the analytic
classification of Nash equilibria can be a daunting task even in the case of two
regions. This is confirmed by our initial attempts to classify the Nash equilibria
for this model. As a consequence, for a more general version of the model, for
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instance one involving several countries or more than one good, numerical simu-
lation appears to be the most promising direction for establishing the properties
of the model.
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