
Serdica J. Computing 10 (2016), No 2, 133–166 � Serdica
Journal of Computing

Bulgarian Academy of Sciences
Institute of Mathematics and Informatics

MODERN TRENDS IN THE AUTOMATIC GENERATION
OF CONTENT FOR VIDEO GAMES

Boyan Bontchev

ABSTRACT. Attractive and realistic content has always played a crucial
role in the penetration and popularity of digital games, virtual
environments, and other multimedia applications. Procedural content
generation enables the automatization of production of any type of game
content including not only landscapes and narratives but also game
mechanics and generation of whole games. The article offers a
comparative analysis of the approaches to automatic generation of
content for video games proposed in last five years. It suggests a new
typology of the use of procedurally generated game content comprising of
categories structured in three groups: content nature, generation process,
and game dependence. Together with two other taxonomies – one of
content type and the other of methods for content generation – this
typology is used for comparing and discussing some specific approaches to
procedural content generation in three promising research directions
based on applying personalization and adaptation, descriptive languages,
and semantic specifications.

�ACM Computing Classification System (1998): F.1.1, F.2.2, K.8.0.
Key words: video games, content generation, descriptive, personalization, semantics.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Bulgarian Digital Mathematics Library at IMI-BAS

https://core.ac.uk/display/156902177?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

134 Boyan Bontchev

1. Introduction. In recent decades, computer games have enjoyed a
diverse global audience and had a great impact on the new multimedia culture
worldwide. They started as simple text-based games in the early seventies of
the last century and, with the development of modern 2D and 3D video and
game console technologies, passed through several generations of video games
[1]. Nowadays, young, middle-aged and old people play video games, whereby
the average game player is 35 years old and plays mostly social, action and
puzzle/board games [2]. Computer games are an effective and interactive
means for retaining the interest of an audience by attracting attention for
much more time than traditional media. Playing video games results in many
benefits regarding the development of cognitive skills (such as enhanced
attention, creativity and problem solving), motivation (persistence to failures
and learning by failure), emotional skills (flow experience, mood management
and adaptive emotional regulation), and prosocial behavior and civic
engagement [3]. This is valid not only for games for entertainment but also for
serious games applied to education and training, defense, scientific modelling,
engineering, health care, advertising, politics, etc. [4].

The strong penetration of video games into the everyday life of modern
society fosters a multi-billion market of game hardware, accessories, and
content, where game content takes two-thirds of the whole [2]. The need of
novel and attractive game content will continue playing the most important
role for keeping players highly motivated and emotionally engaged in virtual
interactive worlds [5]. Although players started customizing game content,
there is a gap between the manual content production and the demand for new
game content fueled by an exponential growth of both the gamer community
and the production costs. Allocating more human resources at game companies
misses scalability and tends to be rather expensive; therefore, it cannot serve
as a solution to the problem of ever-increasing demand for game content. On
the other hand, Procedural Content Generation (PCG) provides a viable
alternative to manual content production, because it results in automatization
of the production of a specific type of content based on a set of input
parameters [6]. PCG has been applied in many popular commercial games for
generation of various types of content [7, 8] such as dungeons in Rogue (Toy
and Wichman, 1980) and Diablo (Blizzard Entertainment, 1996), star systems

Modern Trends in the Automatic Generation of content … 135

in Elite (Acornsoft, 1984), maps in Civilization (MicroProse 1991), vegetation
in SpeedTree (Interactive Data Visualization, 2003), terrains in Dwarf Fortress
(Bay 12 Games, 2006), weapons and shields in Borderlands (Gearbox, 2009),
and the world of Minecraft (Mojang, 2011), in order to enhance the game by
adding more realism, variety and complexity to the virtual fantasy world. At
the same time, PCG has been used in serious games for education and training
[9, 10] in order to foster the immersion, flow, and learnability of such games.

PCG for games is defined as “application of computers to generate
game content, distinguish interesting instances among the ones generated, and
select entertaining instances on behalf of the players” [11]. Players may have
indirect or direct control over PCG—for example, procedural generation of
game stories can automatically branch the main story according to player
choices [12]. Some authors [13, 6] treat game content as referring to all aspects
of a game that affect gameplay excluding behavior of non-player characters
(NPC), which includes gaming issues such as rules, dynamics, character
attributes, user interface, sound, level design, maps, terrain, story, quests, and
player’s inventory such as health, weapon, and munitions. In other studies [11,
14], generated game content applies to NPC in order to help the creation of
believable characters and social agents. It may include automatic generation of
tactics [14], dynamic dialogs with context generated from both episodic
memory and emotional valence of previous social interactions [15], and agent
behavior generated from planning graphs including natural language
generation [16].

This article tries to summarize achievements in procedural game
content generation concerning all game aspects affecting gameplay including
the behavior of NPC. The considerations are outlined in the scope of two
comprehensive taxonomies proposed in [11]—one of game content including six
layers: bits, space, systems, scenarios, design, and derived, and one of the
common methods for PCG. The article proposes a new typology of use of PCG
for video games comprising categories structured into three main groups:
content nature, generation process, and game dependence. Together with the
taxonomies of content type and common methods for PCG, this typology is
applied for comparing and discussing specific approaches to procedural content
generation, with a focus on their importance regarding type, methods, and

136 Boyan Bontchev

usage of procedurally generated game content. The comparative study is
conducted within three research directions identified as most promising:

1. personalized procedural content generation;

2. content generation using game descriptive languages;

3. content generation using semantic world representations.

Along with the comparison, we discuss the open problems of the
methods for PCG and recapitulate their advantages and disadvantages. The
article concludes with some remarks about the future trends of automatic
generation of content for video games.

2. Procedural content generation in games. When summarizing
practices and experiments for PCG, game designers have to answer at least the
simple questions: “What?”, “How?”, and “Where?”. With this purpose,
taxonomies of procedurally generated game content, of generation methods and
of use of generated game content are crucially important. Hendrikx et al. [11]
surveyed both game content types and methods used for procedurally
generating game content. Their effort resulted in two taxonomies outlined
below—one of procedurally generated game content and another of methods of
PCG. Since no classification of use of generated game content had been
proposed to date, we created a new one extending the preliminary distinctions
suggested in [7] for clarifying the role of search-based PCG.

2.1. Taxonomies of procedurally generated game content and
of methods of PCG. The taxonomy of procedurally generated game content
includes five main classes of content that can be generated procedurally for
using strictly inside games, and an additional class of generated content
derived from a game in order to be used for attracting players further to the
game world [11]. Each class contains several identified subclasses of content,
which can be either abstract or concrete. As shown in Fig. 1, the taxonomy
can be structured as a six-layer pyramid where upper classes may include
content from the lower classes. The six layers include sub-classes as follows:

Modern Trends in the Automatic Generation of content … 137

Fig. 1. Taxonomy of procedurally generated game content (after [11])

 Layer 1: Game bits—represent elementary game assets, which are
concrete (interactive items of the game world) or abstract (such as
textures and sound used for the creation of concrete bits). Identified
game bits include textures, sound, vegetation, buildings, behavior (of
objects interacting with each other or with the environment) and also
fire, water, stone, and clouds.

 Layer 2: Game space—denotes the game environment and can be defined
in a concrete way (as in a multi-leveled dungeon) or an abstract one (e.g.,
the board in backgammon). The game space sub-classes are indoor maps,
outdoor maps, and bodies of water.

 Layer 3: Game systems—make the game more attractive and realistic,
therefore immersive and believable, and include ecosystems, road
networks, urban environments, and entity behavior (e.g., behavior of an
NPC based on player actions and interactions).

 Layer 4: Game scenarios—describe the order in which game events evolve
and foster player motivation and engagement; may be presented in the
game in an abstract way (e.g., object interrelations) or a concrete one
(for example, game narratives) way. The challenge is to generate
automatically break-through stories with branching based to player input
choices [12]. Identified game scenarios are puzzles, storyboards, story, and
levels.

138 Boyan Bontchev

 Layer 5: Game design—here, Hendrikx et al. [11] referred to the game
design vision of [17]1, which is comprised of system design (includes
mathematical patterns and game rules) and world design of concrete
setting, story, and theme. The authors found no commercial games
applying procedural generation of game design.

 Layer 6: Derived content—defined as “content that is created as a side-
product of the game world” [11] and including news, broadcasts, and
leaderboards (player ranking tables). In light of the growing interactions
among gamers and game stakeholders in social networks, we think social
media posts about concrete video games should be included here as well.

Beside the taxonomy of procedurally generated game content, Hendrikx
et al. [11] defined a taxonomy of common methods for PCG. All the methods
studied by the authors had been applied successfully in commercial games and
applications using virtual worlds. They identified five fundamental classes of
methods for PCG, as follows:

1. Pseudo-random number generators.

2. Generative grammars—Lindenmayer-systems, split grammars, wall
grammars, and shape grammars.

3. Image filtering—binary morphology and convolution filters.

4. Spatial algorithms—tiling and layering, grid subdivision, vectorization,
fractals, and Voronoi diagrams.

5. Modeling and simulation of complex systems—cellular automata, tensor
fields, agent-based simulation, and other complex systems and theories.

1 Another popular vision of game design appears to be the MDA model (standing for
Mechanics, Dynamics, and Aesthetics). MDA comprises a paradigm coined by Hunicke,
LeBlanc and Zubek [18], where: (1) mechanics means game formal rules, their enforcement
mechanisms, data representation and algorithms embedded within game components; (2)
dynamics describes the run-time behaviour of the mechanics (i. e., interactions between
mechanics and the player’s input); (3) aesthetics refers to desirable emotional responses
evoked in players by the dynamics like excitement, frustration or motivational intensity.

Modern Trends in the Automatic Generation of content … 139

6. Artificial Intelligence (AI)—genetic algorithms, artificial neural networks,
and constraint satisfaction and planning based on using PDDL, i.e.,
Planning Domain Definition Language [19].

When speaking of methods for procedurally generated game content, it
is worth to distinguish approaches based on pure imperativeness of content
generation from others applying declarative semantic methods and models for
specification of individual problems. Imperative methods for procedural
content generation create virtual worlds on the basis of structured geometric
models of shapes, textures, and orientation concerning visual representation of
objects in these worlds. On the other hand, semantic methods for procedural
content generation make use of declarations of type, role, multiplicity, and
relationships of the objects (entities). For example, the semantic model of a
tree presented in [5] provides information about the attributes of that tree such
as age, soil preferences, and its in-forest relationships.

2.2. Typology of PCG use in games. A typology2 of ways of using
PCG was proposed in [7] where “any particular example of PCG can be placed
closer to one or the other extreme”. This continuum of use of PCG was
designed for clarifying especially the role of search-based PCG. Next, Shaker et
al. [21] presented a modified version of the same typology, which includes five
non-orthogonal distinctions:

 Online versus offline generation (we call it generation mode)—game
content may be generated statically (offline, i.e., before running the
game) or dynamically (i.e., at runtime during playing the game). For
example, the interior layout of given room can be generated offline before
the game is shipped, or on-the-fly (online for Web-based games) at the
moment of entering the room.

 Necessary versus optional content (we call it necessity)—generated
content can be really necessary, e.g., for answering a generated question
in order to open a door or continue traversing a maze [22]; other objects

2 We prefer to use the term “typology” instead of “taxonomy”, because its classification
categories “are neither exhaustive nor mutually exclusive” and “are descriptive rather than
explanatory or predictive” [20].

140 Boyan Bontchev

not directly related to the gameplay (i.e., the player can omit considering
them) can be generated optionally. It is important to note that necessary
generation should be always correct for the game.

 Random seeds versus parameter vectors (called degree of
parameterization [21])—while a random seeds algorithm generates a
random number as input for the content generator, parameterized
algorithms might receive one or several multidimensional input vectors.
The level of granularity of game designer control over PCG [5] depends
on the phase in the modelling process.

 Stochastic versus deterministic generation (we call it determinism)—in
contrast with stochastic generation, deterministic algorithms always
generate the same content given the same input parameters.

 Constructive versus generate-and-test algorithms (we call it
constructiveness)—while constructive algorithms generate correct
content once, generate-and-test approaches like genetic algorithms should
test and prove the correctness of created content according to some
criteria; in case of failure the candidate content is discarded, and new
content is generated and tested again.

In order to supplement the continuum defined in [7] and [21] up to a
general typology of PCG use considering not only search-based PCG, we add
to it several other categories (note that not all of them are mutually exclusive),
as follows:

 Multiplicity (generated content having single or multiple instances)—
PCG is still predominantly applied to single player games considering an
individual player’s experiences [23]. The author stresses the fact that
when used for multiplayer game design (e. g., in Civilization IV), PCG
usually creates a single instance content, which is the same for all the
players. Only in a few multiplayer games (such as Galactic Arms Race) is
PCG used to create multi-instance content at runtime, i.e., unique
content for each player visiting the same virtual space.

 Player modelling (non-personalized/non-adapted content versus
personalization and adaptation of PCG to an individual player)—when

Modern Trends in the Automatic Generation of content … 141

game designers strive to achieve unique playing experiences, gaming
content should be generated in real-time and tailored to the expectations,
needs and emotions of each player. Yannakakis and Togelius [13]
proposed experience-driven procedural content generation by means of
introducing a framework for PCG driven by computational models of
user experience. In the scope of the ADAPTIMES3 (ADAPTIve player-
centric serious video gaMES) project, Bontchev [22] proposed style-based
content selection in an educational game for learning strategic
management, where game tasks and quests were dynamically selected
according to playing style recognized within another video game played
beforehand.

 Player control (whether and how the player can control the PCG
process)—all content generators do not necessarily require any player
control over the generation process. In cases of adapted content
generation such as experience-driven procedural content generation [13]
and style-based adaptation of game content [22], the player has implicit
control over the generation process through the affective feedback loop of
content creation [24]. On the other hand, he/she could start intentionally
expressing a given playing experience (e.g., specific emotional input for
the generator) in order to change the generated content, i.e., he/she
might start controlling it in an indirect way via biofeedback. In cases of
personalized content generation like stories branching according to player
choices [12], the player is supposed to have direct control over the
generation process.

 Game industry: content generated for entertainment games (called also
games for fun) or for serious (or so-called applied) games—the
differentiation is important because of different specifics of serious games
compared to entertainment games such as skepticism of government-
funded institutions like schools or military organizations, and lack of a
“particularly large library of finished games”, “large-scale statistical
success”, and “systematic improvement in this industry” [25]. Because of

3 http://adaptimes.eu/

142 Boyan Bontchev

many factors (discussed later in the article), not all the types of methods
for PCG can be applied to content generation for serious games.

 Game genre—specific types of generated content and generation
methods are applied to different game genres such as platformers,
puzzles, racing games, strategy games, and many others (refer to [26] for
a description of game genres). Comparisons of commercial games of
various genres applying generated content are given in [11] and [6]. The
importance of the generated content depends strongly on the design of a
given game and its storyline—for example, content with low quality can
make a game less credible and realistic if one of the chief objectives is
visual realism [28].

 Derivation (content built in a game or derived from a game)—while
built-in content is used directly in the game and, therefore, applies to the
bottom five levels of content type shown in Fig. 1, content drawn from
the game is represented by the uppermost level of the pyramid (including
also social media posts about concrete video games).

The extended version of the typology presented above provides a
systematic basis for a comparison of the use of content generation in various
genres and types of games. The classification can be visualized by grouping of
the categories as shown in Fig. 2, as follows:

A. Content nature:

o Multiplicity—single instances versus multiple instances.

o Necessity—necessary versus optional content.

o Derivation—built-in versus derived content.

B. Generation process:

o Generation mode—online versus offline generation.

o Degree of parameterization—random seeds versus parameter
vectors.

o Determinism—stochastic versus deterministic generation.

o Constructiveness—constructive versus generate-and-test
algorithms.

Modern Trends in the Automatic Generation of content … 143

o Player modelling—non-personalized versus personalized
generation.

o Player control—controlled versus non-controlled content.

C. Game dependence:

o Game industry—entertainment versus serious games.

o Game genre—dependence on the specific genre of a game.

Fig. 2. Typology of use of procedurally generated game content

3. Procedural content generation in games. This section presents
selected examples of procedural content generation for entertainment or serious
games applied for education and training. Its objective is not to provide a
detailed survey on PCG such as [11] but rather to outline specific approaches
to procedural content generation and to stress their importance regarding type,
methods, and use of procedurally generated game content. We have identified
three promising directions of research and practical outcomes in the modern
development of PCG based on applying personalization and adaptation,
descriptive languages, and semantic specifications.

144 Boyan Bontchev

3.1. Personalized procedural content generation. Yannakakis and
Togelius [13] outlined two challenges of personalized PCG for video games
consisting in effective player modelling (presenting the emotional and cognitive
experience of individual players) and efficient measuring of the quality of
generated content in order to optimize player experience. They proposed a
basic framework of experience-driven PCG, which consists of four components
linked successively: Player Experience Modeling (PEM), assessor of content
quality, content representation, and content generator. The PEM models player
experience as a function of game content and players’ cognitive, affective and
style-based responses by means of subjective (self-report), objective (model-
based like arousal-valence dimensions of emotions, or model-free like
annotations of facial expressions), gameplay-based, or hybrid approaches. Next,
the quality of the generated content is evaluated according to the player’s
experience in a direct, simulation-based, or interactive way. While the direct
way maps specific content features to content quality using theory-driven or
data-driven functions, the simulation approach involves an AI agent (static or
dynamic) playing the game with content under evaluation and, on the other
hand, the interactive way relies explicitly or implicitly on player interactions.
After the assessment, content should be represented directly or indirectly in a
form suitable for optimal efficacy, performance, and robustness of the
generation process. Finally, it is sent to the content generator [28]. Based on
various examples, Yannakakis and Togelius [13] conclude that “the
quantification of player experience and the assessment of content quality based
on a computational model of player experience” are the main challenges of the
experience-driven PCG.

A further development of the ideas of experience-driven PCG is
presented by Roberts and Chen [29], who consider an approach of learning-
based PCG. They address three main problems of content quality in respect of
optimised player experiences, namely: (1) how to avoid unacceptable content
and how to categorize the content in the content vector space, (2) how to
exploit potentially unreliable information acquired from the public (including
player type/style), and (3) how to deal with player's preference changing
during playing a game (so called concept-drift). The learning-based approach
to PCG tries to learn from the developers about the content space and from

Modern Trends in the Automatic Generation of content … 145

the beta-testers during public tests in order to gain knowledge about player
behaviour. Thus, when the target players play the game, it can do player-
centric online content adaptation resulting in minimized interruptions to player
experience. For this purpose, the experience-driven PCG comprises three
stages and submodels that are trained during each stage, as presented in
Fig. 3. The models of Initial Content Quality (ICQ) and of Content
Categorization (CC) are trained during the development stage by game
developers for addressing problem (1), while the models of Generic Player
Experience (GPE) and Play-log Driven Categorization (PDC) are trained
during the public tests by beta testers for addressing problem (2). Finally, the
model of Individual Preference (IP) is applied at the adaptation stage by
monitoring their player log files, addressing problem (3).

Fig. 3. Learning-based procedure content generation framework (upon [29])

To collect experimental data for the learning-based PCG system,
Roberts and Chen [29] chose the popular first-person shooter (FPS) game
Quake for the public test via active learning distributed equally into five
categories of difficulty. They reported promising results about generating
content appealing to target game players.

As of now, most experiments considering personalized content
generation are run mainly for entertainment games. On the other hand, serious
games also need generated learning content that can be tailored to the needs
and preferences of a given group of learners [30]. An approach to the
generation of content adapted to learning and playing styles was proposed in
[22] making use of automatic generation of maze video games for training. The
work addresses the lack of free software platforms allowing easy creation of
simple but attractive customizable educational video games by professionals in

146 Boyan Bontchev

areas other than information technology. With this purpose, in the scope of the
ADAPTIMES project there was developed a software design tool for formal
description, customization, generation and management of 3D video labyrinths.
The tool was based on Brainstorm’s eStudio4 platform and was designed to
support game-based learning in various learning domains. Teachers can design
3D video mazes with a desirable degree of connectivity through textual or
graphic labyrinth editors as well as customize the maze nodes and the
transitions between them (Fig. 4).

Fig. 4. Software architecture of a maze design platform

The property editor uses either a predefined fixed set of properties for
each node (a room with specific disposition of learning tables with multimedia
content; textures, shapes, and colors of walls; sound and audio arrangements;
didactic and hidden 3D objects; test questions for opening doors, etc.), or
properties set by metadata. The formal descriptions, along with all the data
and learning content of a game, serve for the generation of a Python script,
which is executed by the game management platform in the Brainstorm
graphical environment. Besides general rooms connected by tunnels with
quizzes of various types, the generated 3D mazes can also include two mini-
games: a 3D Quiz with animated questions for learner assessment after passing

4 http://www.brainstorm.es/products/estudio/

Modern Trends in the Automatic Generation of content … 147

through a part of the maze and a 3D Zoom mini-game for ordering a stack of
scattered images. The learning content of both the 3D Quiz and the 3D Zoom
game was generated along with the labyrinth using the formal game
description. The maze design platform was applied in practical experiments for
generation of maze games for entrepreneurship training with adaptation based
on playing/learning styles, where styles were recognized implicitly and
dynamically through playing an action-adventure game [31]. The playing style-
based adaptation was used to adapt game tasks generated by the platform for
each room and each tunnel of the maze for entrepreneurship training (Fig. 5).

Fig. 5. A style-adapted game task in the Mission room of a maze for learning strategic
management

3.2. Content generation using game descriptive languages.
Game descriptive languages (GDLs) constitute a challenging research area.
They allow definition of games understood by computers for a specific range of
games. The Stanford GDL [32] is a declarative language using first order logic
defined for general game playing covering turn-based, competitive games like
chess and backgammon. Browne & Maire [33] proposed Ludi as a formal
system for playing, measuring and synthesizing combinatorial games within the

148 Boyan Bontchev

scope of GDL. Another simple description language similar to GDL is
PuzzleScript proposed by Stephen Lavelle [34] for easy prototyping of turn-
based, keyboard-controlled puzzle games. The General Video Game Playing
(GVGP) proposed in [35] extends the general game playing with other types of
games like arcade games and is conceived for AI agents playing unknown video
games by receiving the current state of the game and actions applicable to it.
A Video Game Description Language (VGDL) was designed especially for the
GVGP [36] for supporting the core mechanics and behavior of classical 2D
video games including PCG and automatic game generation. VGDL
descriptions consist of a map, objects, player definitions, avatars, physics,
events, and rules. Tom Schaul [37] designed Python VGDL (PyVGDL) as a
simple high-level GDL and applied it for specification of many popular 2D
video games such as Space Invaders, Lunar Lander, Pac-Man, Sokoban,
Legends of Zelda, and others. Perez-Liebana et al. [38] ported the
implementation of PyVGDL to Java and thus created the GVG-AI framework
able to load games and levels described in VGDL and to expose the formal
game model to agent controllers.

The descriptive languages outlined above have been used together with
other approaches for specification and generation of game content and various
video games. One of the most promising applications of both the VGDL and
GVG-AI framework is for automatic generation of game levels. Khalifa et al.
[39] proposed a GVG-LG framework for level generators for games specified in
VGDL and playable by some AI player, which “builds any required number of
different levels for that game which are enjoyable for humans to play”.
Together with the GVG-LG framework, they designed three sample level
generators: for creating sprites at random empty positions, for generation of
avatars, solid, harmful, collectible, and other sprites using a constructive
approach, and a search-based level generator based on a generic algorithm. A
pilot study compared the levels produced by these generators through testing
with human players and revealed that humans were unable to distinguish
between the constructive and random generators but prefer the search-based
generator [39].

An arguing approach to evaluation and automatic generation of general
video games using a description language is suggested in [40]. The authors

Modern Trends in the Automatic Generation of content … 149

developed a system that automatically finds out solutions for various video
games described in PuzzleScript and having different game mechanics, rules,
level designs, and winning conditions. They applied a set of level state
heuristics for estimating the proximity of a given game level to the solution
and, as well, a set of ruleset heuristics for defining the game’s mechanics and
assessing its playability. Next, they generated playable rulesets from scratch
using an evolutionary approach and thus proved that PuzzleScript can be used
for general design evaluation and generation.

Other approaches to applying a game descriptive language for mechanic
generation are based on PDDL [19], for declarative description of a game state
and transitions. Zook and Riedl [41] proposed a generate-and-test game design
process via mechanic generation. By means of a constraint solver, they
generate mechanics meeting (1) given required or optimized formal design
conditions and (2) adaptation requirements specifying additional playability or
design requirements. Next, they test whether these mechanics meet the
playability requirements. The game domain comprises a state model described
in PDDL, and a PDDL transition model allowing simulation and planning
checks. The approach was used for the representation of simple role-playing
and platformer games.

Fig. 6. The GME system pipeline from declarative representation and game assets to a
game world, built upon [8]

150 Boyan Bontchev

Automated generation of gameplay including world mechanics, assets,
states, virtual agents, and plot events was proposed by [8] on the basis of
declarative world representations. The authors conceived a platform called
General Mediation Engine (GME), which applies a PCG pipeline on top of an
experience management framework. The PCG pipeline receives, from an
experience manager, atomic formulae representing world states, preconditions
and effects (i.e., post-conditions). Next, it applies them for producing a state-
transition system of an interactive game, which serves for manipulating all the
assets based on a given state. The construction of state transition systems is
based on declarative PDDL descriptions of initial and goal states and
conditioned action operators to be performed by agents for transforming world
states. This transition system models the game world and is used by an
experienced manager and discourse generator. The experience manager
manipulates the game world by maintaining a desired experience plan
including NPC character actions and monitoring the transition system. It
consists of a state transition system, a planner, and a mediator used for
maintenance of world states, plan updates and execution of NPC actions. The
discourse generator generates a playable game world using the state-transition
system and the asset library (Fig. 6) and, as well, creates and maintains world
objects like the player, NPCs, and game items. It consists of several
components: an experience management (EM) interface initializing the
discourse generation system and receiving commands from the mediator; a
game state manager responsible for maintenance of game assets based on the
current state; a user interface (UI) generator creating and configuring the
interface, game camera, and world layout; and a level generator responsible for
building a high-level physical configuration graph by using locations and
connections specified by PDDL.

GME has been implemented as a Unity General Mediation Engine.
This game engine has been used to create a 2D sneaking game generated and
maintained in a declarative way [8].

3.3. Content generation using semantic world representations.
Semantic approaches to content generation for games started in the last twenty
years with applying semantic information to techniques for automatic

Modern Trends in the Automatic Generation of content … 151

generation of terrain erosion, distribution of vegetation, road networks, city
maps, and interiors of buildings [42]. For example, procedural techniques were
applied for generation of consistent buildings [43]. The first comprehensive
declarative semantic model of a game world useful for PCG was proposed by
Smelik [5], who defined four levels of abstraction of modelled game objects:
geometric objects level (including 3D geometric meshes, textures, etc.),
semantic objects level (represented by a set of generated objects and their
features), structure level (including feature extent and structural objects), and
specification level (outline shape and semantic attributes). Smelik developed a
SketchaWorld prototype incorporating various semantic features of different
objects situated on five predefined layers of the virtual world model: urban,
road, vegetation, water, and landscape layer. For a particular semantic object,
a combination of procedural methods was applied for generating all the
comprised elements. The generated elements were combined with instances of
semantic definitions into a semantic model of the object (Fig. 7). A semantic
consistency moderator was added for ensuring the maintenance of the
consistency of the semantic model of the content. This process of generic
procedural generation assisted by semantic specification was applied in the
SketchaWorld prototype for creating content for in-house developed simulators
for training military personnel and for the Levee Patroller serious game for
training levee inspectors [5].

Fig. 7. A generic process declarative procedural generation (after [5])

152 Boyan Bontchev

A semantic-based framework for enabling procedurally generated game
content by the player’s behavior and gameplay experience was suggested by
[44]. They applied reusable gameplay semantics defined by the designer for
matching the content generation with the player’s behavior and experience.
Knowledge about gameplay experiences, player behavior features and involved
game actors was imported from a semantic library and used to control and
constrain automatic content generation. Knowledge containers encoded valid
combinations between semantic entities (e.g., a car ramp) and player features
such as preferences, skills, style, and experiences. On the other hand, the
player model was observed for retrieval of dynamic values of player features
used “to synthesize such player-matching content into a meaningful game world
(segment)”. The authors integrated the semantic-based framework into an
existing 3D car game (Stunt Playground) and used it, together with a specific
model of player behavior and experience, in order to generate player-matching
game worlds at gaming time.

Educational games are very appropriate for personalized and adaptive
e-learning. Here, semantic structuring and organization of learning content
facilitate greatly automatic content extraction. Bontchev [10] proposed a
design and delivery workflow (Fig. 8), along with a software framework for the
construction of simple single-user word and logic games based on the
automatic extraction of the semantic organization of educational content
provided in the form of learning objects. Several word games such as hangman,
anagram, memory and association games (with optional use of intelligent
agents) have been created with an ability to generate learning content by
personalized extraction from courseware organized in an ontology. The course
instructor managed the personalization and adaptation of game content with
respect to agents’ behavior. The games were applied for adaptive e-learning in
XML technologies, with adaptation based on the learning style of the
individual learner. Practical experiments conducted by using the ADOPTA
platform [30] proved benefits resulting from a personalisable and adaptable
instantiation of puzzle games with didactic content generated from
semantically structured courseware, whereby games were automatically
inserted into a storyboard graph by means of adaptation rules addressing both
the learning style and the results of the learner.

Modern Trends in the Automatic Generation of content … 153

Fig. 8. Workflow of educational game creation and delivery [10]

4. Discussion. The section offers a discussion of the selected studies of
personalized, descriptive, and semantic-based procedural generation of content
for video games presented above. Table 1 presents a comparison of all the ten
approaches ordered as outlined in section 3. The table compares seven games
for fun and three serious games according to the classifications of content,
methods, and use of PCG. The content type varies from indoor/outdoor
objects to levels, rules, and courseware, while the majority of the generation
methods use declarative languages. Only the last three studies use semantic
modelling for generation of content. All approaches based on player modelling
generate multiple contents tailored according to the preferences, skills, style, or
experience of an individual player, with indirect control. They apply built-in
and necessary content generated either online of offline, using high-level
parameterization, in a deterministic or stochastic way, mostly for 2D games.
While some approaches follow a deterministic generation process, others make
use of stochastic or combined processes.

154 Boyan Bontchev

Table 1. A comparison of selected approaches for personalized,

Study [13, 28] [29]

Content type levels
monster and
ammunitions

Method of PCG neural networks
OBLIGE random level
generator5

Content
nature

Multiplicity multiple multiple

Necessity necessary necessary

Derivation built-in built-in

Generation
process

Mode online online

Parameteri-
zation

number, size and place
of gaps and switching

skill level, N monsters,
health packs, weapon,
monster types

Determinism stochastic stochastic

Constructive-
ness

generate-and-test generate-and-test

Player
modelling

subjective and
gameplay player models

content adaptation
according player
experience

Player control implicit
learning from beta
testers

Game
dependence

Industry games for fun games for fun

Genre 2D platformer 3D FPS

5 http://oblige.sourceforge.net/

Modern Trends in the Automatic Generation of content … 155

descriptive, and semantic-based procedural content generation

[22, 31] [39] [40]

indoor, courseware levels levels, rules

declarative declarative (VGDL)
declarative
(Puzzle-Script)

multiple single single

necessary necessary necessary

built-in built-in built-in

offline offline offline

no
priority and category of
sprites

level state and ruleset
heuristics

deterministic deterministic/stochastic stochastic

constructive
random, constructive,
generate-and-test

generate-and-test

playing style no no

implicit no no

serious games games for fun games for fun

3D learning mazes 2D platformer 2D puzzle

156 Boyan Bontchev

Table 1. A comparison of selected approaches for personalized,

Study [41] [8]

Content type
avatar-centric
mechanics, levels

world mechanics,
assets, states, virtual
agents, plot events

Method of PCG declarative (PDDL) declarative (PDDL)

Content
nature

Multiplicity single single

Necessity necessary necessary

Derivation built-in built-in

Generation
process

Mode offline online

Parameteri-
zation

required / optimized
design requirements;
adaptation
requirements

game state description

Determinism stochastic deterministic

Constructive-
ness

generate-and-test constructive

Player
modelling

no no

Player control no no

Game
dependence

Industry games for fun games for fun

Genre
2D role-playing,
platformer

2D puzzle

Modern Trends in the Automatic Generation of content … 157

descriptive, and semantic-based procedural content generation (continued)

[5, 6] [44] [10]

urban objects, roads,
vegetation, waters, and
landscapes

stunt arenas courseware

declarative semantic
modelling

declarative semantic
modelling

declarative semantic
modelling

single multiple multiple

necessary / optional necessary necessary

built-in built-in built-in

offline online offline

semantic object
attributes and
relationships

semantic gameplay
descriptions, player
features

playing / learning
style parameters

deterministic / stochastic stochastic deterministic

constructive / generate-
and-test

constructive constructive

no
preferences, skills,
style, experience

playing / learning style

no implicit implicit

serious games games for fun serious games

3D games for military
training

3D car racing 2D word puzzles

158 Boyan Bontchev

The comparison of the features of the approaches to PCG for video
games presented in Table 1 provides a base for further discussion about the
current state and the trends in the generation of game content. Here we will
outline some considerations about them, as follows:

 The role of personalized and adapted content generation appears to be
more and more important for the creation of appealing, engaging and
immersive games. At Table 1 reveals, player modelling approaches of
PCG can generate game content tailored according to player preferences,
skills, experience, or learning/playing style. Tailored and surprising game
environments created by such PCG methods increase game aesthetic
properties such as challenge, discovery, and fellowship [23]. On the other
hand, adapted PCG encourages communion and empathy among players,
e.g., while commenting generated maps in Civilization IV (Firaxis
Games, 2005). As well, the dynamic adaptation resolves the problem of
changes in player's preferences over time (so called concept-drift) [29].

 There are many approaches to PCG allowing the player to control the
generation process—all studies using player modelling for a personalized
and adapted content generation provide player control over the
generation. This control is performed in an implicit form thanks to the
affective feedback mechanism of content creation [24].

 For the majority of the presented approaches to PCG, game developers
have parameterized control over the generation process such as various
levels of skills required to deal with the generated content (i.e., content
difficulty), rulesets, type and state of health, ammunitions, monsters and
other NPC, and so on. This control over the generations tends to use an
advanced set of parameters allowing fine tuning and personalization of
automatically created content according to various design purposes.

 Both constructive and generate-and-test methods for PCG are applied to
offline and online content generation, although generate-and-test methods
such as genetic programming cause problems with the genotype-to-
phenotype mapping and require a large amount of content to be assessed
[29].

Modern Trends in the Automatic Generation of content … 159

 Applications of methods for PCG based on languages such as VGDL,
PuzzleScript, and PDDL appear to be more popular. Such methods use
descriptive languages for declarative representations of game levels, state,
transitions, rules, mazes, etc. Some of them apply advanced semantic
modelling in order to describe categorization of content objects and their
properties and interconnections, in order to generate credible ecosystems
for video game worlds [5, 6].

When discussing automatic content creation, we have to make a
distinction between content generated for entertainment games and for serious
(i.e., applied) games. Since the very beginning of their application, PCG
methods are applied mainly for games for fun. As Table 1 confirms, the
experiments of personalized content generation consider mainly entertainment
games. Besides game content such as mazes, land shaft and levels, serious
games also need automatically generated learning content that is able to be
tailored to the needs and preferences of a given group of learners [30].
Generation of personalized and adapted game content can help to overcome
three major types of obstacles hampering the massive penetration of serious
games [45]:

 Pragmatic barriers consisting in the relatively high cost and long
production time of a serious game, which establishes a baseline hard to
overcome. Other pragmatic issues causing gaps between expectations and
reality are time-scales, sustainability of the game-based training, and
outsourcing of the development serious games.

 Performance barriers existing because of the fact that the overall quality
of any serious game is lower than that of the modern entertainment
games—serious games are not perceived as so funny and engaging as
entertainment games. This perception raises an initial adoption barrier
that shatters the use of serious games.

 Pedagogical barriers—because of the fact that it is hard to ensure high
learnability [46] of a serious game and the lack of reliability of producing
expected elements of valuable learning and relevant training (providing
we have defined exactly what learning is required). Therefore, it is crucial

160 Boyan Bontchev

to understand what elements of learnability are to be measured for an
adequate assessment of the game from the didactic point of view.

Therefore, effective generation of both game content and learning
courseware appears to be very important and promising with respect to all
three major barriers to the large-scale adoption of serious games [45].

5. Conclusions. Since their adoption, methods for procedurally
generated game content appear to be more and more popular due to the
accelerating growth of the game market and the restrictions of manual content
creation. Instead of relying on the efforts of an army of human designers, PCG
follows well-defined procedures for automatic creation of game content [11, 13].
While PCG started with generating non-interactable content like stars, trees,
lakes, roads, mazes, etc., modern approaches tend to drive innovative game
design by automatic creation of game content possessing a level of interactivity
[23]. Interactive content may include game rules and dynamics, weapons and
shooting targets, game levels, learning courseware, and other types of game
objects. For a high interactivity of generated game content, an advanced and
versatile parameterization of the generation process is necessary. Next to
content interactivity, personalization and adaptation based on advanced player
modelling, use of game descriptive languages like VGDL, PuzzleScript, and
PDDL and, as well, semantic world representations appear to be important
research directions of modern PCG, as explained in sections 3 and 4. These
important features of modern PCG will fuel the creation of novel and
attractive games and will foster player immersion, engagement and overall
game playability [31].

The future of the procedural generation of games is determined by the
ever-growing gap between the demand for fresh game content and player-
centric game customization and, from the other side, both the rate and the
price of the current practices of manual content production by game designers
[11]. In order to provide new and customized game content at an affordable
price and in limited time, novel methods for PCG have to be applied in both
entertainment and serious games. All of them should allow game designers and
artists to control the (semi-)automatic design process, by providing
mechanisms for fine-tuning and adjusting the generation process parameters.

Modern Trends in the Automatic Generation of content … 161

Finally, the modern PCG methods are very promising with respect to
resolving major obstacles in the large-scale adoption of serious games. With
regard to modern trends in adoption of game-based learning, teachers and
instructors cannot continue relying only on single custom educational video
games embedding learning content from a specific domain. PCG should be
applied for creation of simple, cheap, personalisable and extensible software
platforms for rapid and easy construction of didactic games on top of
semantically structured course content in any learning domain, in order to
facilitate massive penetration of educational video games.

REFERENCES

[1] LEE R. S. Home videogame platforms. The Oxford Handbook of the
Digital Economy, 2012, 83–107.

[2] ESA. Essential facts about the computer and video game industry.
Electronic Software Association, 2015.

[3] GRANIC I., A. LOBEL, R. C. ENGELS. The benefits of playing video
games. American Psychologist, 69 (2014), No 1, 66.

[4] ALDRICH C. The complete guide to simulations and serious games: How
the most valuable content will be created in the age beyond Gutenberg to
Google. John Wiley & Sons, 2009, 576.

[5] SMELIK R. M. A Declarative Approach to Procedural Generation of
Virtual Worlds. PhD Thesis, Technische Universiteit Delft, Netherlands,
2011.

[6] SMELIK R. M., T. TUTENEL, R. BIDARRA, B. BENES. A survey on
procedural modelling for virtual worlds. Computer Graphics Forum,
33 (2014), No 6, 31–50.

162 Boyan Bontchev

[7] TOGELIUS J., G. YANNAKAKIS, K. STANLEY, C. BROWNE. Search-based
procedural content generation. Applications of Evolutionary
Computation, 2010, 141–150.

[8] ROBERTSON J., R. M. YOUNG. Automated gameplay generation from
declarative world representations. In: Proceedings of 11th AAAI
Conference on Artificial Intelligence and Interactive Digital
Entertainment, 2015, 72–78.

[9] SMITH, A. M., E. ANDERSEN, M. MATEAS, Z. POPOVIC. A Case Study of
Expressively Constrainable Level Design Automation Tools for a Puzzle
Game. In: Proceedings of the International Conference on the
Foundations of Digital Games (FDG’12), 2012.

[10] BONTCHEV B. A Framework for Educational Word Games. In:
Proceedings of the International Conference on Intelligent Computational
Systems (ICICS’2012), 978–981.

[11] HENDRIKX M., S. MEIJER, J. VAN DER VELDEN, A. IOSUP. Procedural
content generation for games: A survey. ACM Transactions on
Multimedia Computing, Communications, and Applications (TOMM),
9 (2013), No 1.

[12] RIEDL M., V. BULITKO. Interactive Narrative: An Intelligent Systems
Approach. AI Magazine, 34 (2013), No 1, 67–77.

[13] YANNAKAKIS G. N., J. TOGELIUS. Experience-driven procedural content
generation. IEEE Transactions on Affective Computing, 2 (2011), No 3,
147–161.

[14] PONSEN M., H. MUNOZ-AVILA, P. SPRONCK, D. W. AHA. Automatically
generating game tactics through evolutionary learning. AI Magazine,
27 (2006), No 3, 75–84.

Modern Trends in the Automatic Generation of content … 163

[15] GREY J., J. J. BRYSON. Procedural quests: A focus for agent interaction
in role-playing-games. In: Proceedings of the AISB 2011 Symposium: AI
& Games, UK, 2011, 3–10.

[16] HEWLETT W. R. Creating a Cognitive Agent in a Virtual World:
Planning, Navigation, and Natural Language Generation. PhD thesis,
University of California, Los Angeles, USA, 2013.

[17] BRATHWAITE B., I. SCHREIBER. Challenges for Game Designers. Charles
River Media Inc., Rockland, MA, 2008.

[18] HUNICKE R., M. LEBLANC, R. ZUBEK. MDA: A formal approach to game
design and game research. In: Proceedings of AAAI Workshop on
Challenges in Game Artificial Intelligence, 2004, 1–5.

[19] MCDERMOTT D., M. GHALLAB, A. HOWE, C. KNOBLOCK, A. RAM,
M. VELOSO, D. WELD, D. WILKINS. PDDL—The Planning Domain
Definition Language, Tech. Rep. CVC TR-98-003/DCS TR-1165, Yale
Center for Computational Vision and Control, New Haven, 1998.

[20] SMITH K. B. Typologies, taxonomies, and the benefits of policy
classification. Policy Studies Journal, 30 (2002), No 3, 379–395.

[21] SHAKER N., J. TOGELIUS, M. J. NELSON. Procedural Content Generation
in Games: A Textbook and an Overview of Current Research. Springer,
2015.

[22] BONTCHEV B. Video games for teaching entrepreneurship. Avtomatika i
Informatika, 3 (2015), 23–28.

[23] SMITH G. The future of procedural content generation in games. In:
Proceedings of the Experimental AI in Games Workshop, 2014, 53–57.

[24] GILLEADE K., A. DIX, J. ALLANSON. Affective videogames and modes of
affective gaming: assist me, challenge me, emote me. In: DiGRA 2005:
Changing Views: Worlds in Play, 2005.

164 Boyan Bontchev

[25] TERDIMAN D. What’s wrong with serious games? 2006.
https://www.cnet.com/news/whats-wrong-with-serious-games/,
25 May 2017.

[26] ADAMS E. Fundamentals of Game Design. Pearson Education Inc., Third
Edition, 2014.

[27] AMATO A. Procedural Content Generation in the Game Industry. In:
Game Dynamics. Springer, 2017, 15–25.

[28] PEDERSEN C., J. TOGELIUS, G. N. YANNAKAKIS. Modeling Player
Experience for Content Creation. IEEE Transactions on Computational
Intelligence and AI in Games, 2 (2010), No 1, 54–67.

[29] ROBERTS J., K. CHEN. Learning-based procedural content generation.
IEEE Transactions on Computational Intelligence and AI in Games,
7 (2015), No 1, 88–101.

[30] VASSILEVA D. Adaptive e-learning content design and delivery based on
learning styles and knowledge level. Serdica Journal of Computing,
6 (2012), No 2, 207–252.

[31] ADAPTIMES. Deliverable D9: Demonstration of the final field trial,
Version 1.0. 2016. http://adaptimes.eu/deliverables.html, 25 May
2017.

[32] LOVE N., T. HINRICHS, D. HALEY, E. SCHKUFZA, M. GENESERETH.
General game playing: Game description language specification, Technical
Report LG-2006-01, Stanford Logic Group, 2006.

[33] BROWNE C., F. MAIRE. Evolutionary game design. IEEE Transactions
on Computational Intelligence and AI in Games, 2 (2010), No 1, 1–16.

[34] LAVELLE S. PuzzleScript. 2013. http://www.puzzlescript.net/,
25 May 2017.

Modern Trends in the Automatic Generation of content … 165

[35] LEVINE J., C. B. CONGDON, M. EBNER, G. KENDALL, S. M. LUCAS,
R. MIIKKULAINEN, T. SCHAUL, T. THOMPSON. General video game
playing. Artificial and Computational Intelligence in Games, 6 (2013),
77–83.

[36] EBNER M., J. LEVINE, S. M. LUCAS, T. SCHAUL, T. THOMPSON,
J. TOGELIUS. Towards a video game description language. Artificial and
Computational Intelligence in Games, 6 (2013), 85–100.

[37] SCHAUL T. A video game description language for model-based or
interactive learning. In: Proc. IEEE Conference on Computational
Intelligence in Games (CIG), 2013, 1–8.

[38] PEREZ-LIEBANA D., S. SAMOTHRAKIS, J. TOGELIUS, T. SCHAUL,
S. M. LUCAS, A. COUËTOUX, T. THOMPSON. The 2014 general video
game playing competition. IEEE Transactions on Computational
Intelligence and AI in Games, 8 (2016), No 3, 229–243.

[39] KHALIFA A., D. PEREZ-LIEBANA, S. M. LUCAS, J. TOGELIUS. General
video game level generation. In: Proc. Conf. Genetic and Evolutionary
Computation, ACM, 2016, 253–259.

[40] LIM C.-U, D. F. HARRELL. An approach to general videogame evaluation
and automatic generation using a description language. In: Proc. IEEE
Conference on Computational Intelligence and Games (CIG), 2014, 286–
293.

[41] ZOOK A., M. O. RIEDL. Automatic Game Design via Mechanic
Generation. In: Proc. Association for the Advancement of Artificial
Intelligence, 2014, 530–537.

[42] TUTENEL T., R. BIDARRA, R. M. SMELIK, K. J. DE KRAKER. The role of
semantics in games and simulations. Computers in Entertainment,
6 (2008), No 4, 57:1–57:35.

166 Boyan Bontchev

[43] TUTENEL T., R. M. SMELIK, R. LOPES, K. L. DE KRAKER, R. BIDARRA.
Generating Consistent Buildings: a Semantic Approach for Integrating
Procedural Techniques. IEEE Transactions on Computational
Intelligence and AI in Games, 3 (2011), 274–288.

[44] LOPES R., T. TUTENEL, R. BIDARRA. Using gameplay semantics to
procedurally generate player-matching game worlds. In: Proceedings of
the 3rd workshop on Procedural Content Generation in Games, ACM,
2012, 3–10.

[45] OLIVEIRA M. Major barriers in the large-scale adoption of serious games.
Private discussion, March, 2014.

[46] ANDERSEN E., E. O’ROURKE, Y. E. LIU, R. SNIDER, J. LOWDERMILK,
D. TRUONG, S. COOPER, Z. POPOVIC. The impact of tutorials on games
of varying complexity. In: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, ACM, 2012, 59–68.

Boyan Bontchev
Faculty of Mathematics and Informatics
Sofia University “St. Kliment Ohridski”
1113 Sofia, Bulgaria
e-mail: bbontchev@fmi.uni-sofia.bg

Received June 13, 2017
Final Accepted June 26, 2017

