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1. Introduction. Granular computing (GrC), which was proposed by

Zadeh in 1996 [13], is an important research direction in information processing

and widely applied in many computer science fields such as approximate rea-

soning, artificial intelligence, data mining, machine learning. In GrC, a binary

relation divides a data set into some information granules. Each information

granule is a set of objects that are indistinguishability, similarity, and proximity

of functionality.

In Pawlak’s rough set theory [8], a given equivalence relation divides a

data set into equivalence classes or concepts. According to the granular computing

approach, the set of those equivalence classes is called a granular structure and

each equivalence class is called an information granule. For a tolerance rough set

model on an incomplete information system [4], each tolerance relation determines

a covering on the object set, in which each element is a tolerance class. That

covering is called a tolerance granular structure and each tolerance class is called

a tolerance granule. In a fuzzy rough set model [1, 2], the equivalence relation in

Pawlak’s rough set is extended to a fuzzy similarity relation. Each fuzzy similarity

relation determines a fuzzy partition on the object set. The fuzzy partition is

called a fuzzy granular structure and each fuzzy similarity class in the fuzzy

partition is called a fuzzy information granule.

In granular computing, information granularity is a measure of the gran-

ulation degree of a universe based on a given binary relation. Information gran-

ularity represents the fineness or roughness of granular structure. The smaller

the information granularity is, the finer a granular structure is. In general, the

information granularity characterizes discernibility ability or the difference among

information granules in a granular structure and it has been used effectively in

approximation problems, data mining and machine learning. In the past two

decades, information granularity has attracted the attention of many granular

computing researchers. Many concepts of information granularity were proposed

by many different approaches [5, 6, 7, 11, 12]. Wierman [11] introduced the con-

cept of information granularity based on Shannon’s entropy in complete informa-

tion systems. Liang et al. [5, 6] proposed the concept of information granularity

based on Liang’s entropy in complete and incomplete information systems. Qian

and Liang [7] introduced the concept of information granularity based on com-

bination entropy. Xu et al. [12] presented information granularity based on the

improvement of roughness in rough set theory.

Fuzzy information granularity is the information granularity of a fuzzy

granular structure. Qian et al. [9] proposed two fuzzy information granularities
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in order to evaluate the fineness/roughness of a fuzzy granular structure based

on three partial order relations. The first fuzzy information granularity is the

extension of information granularity in [3], the second fuzzy information granu-

larity is the extension of rough entropy in [5]. However, both fuzzy information

granularities based on partial order relations experience limitations in assessing

the fineness or roughness of a fuzzy granular structure in some special cases.

In this paper, we first build a fuzzy distance between two fuzzy granular

structures and discover some properties. Based on the fuzzy distance, we propose

extension fuzzy information granularity to overcome the limitations of fuzzy infor-

mation granularity in [9]. Finally, some experiments are performed on data sets

from UCI to evaluate the effectiveness of extension fuzzy information granularity.

The paper is organized as follows. Section 2 reviews some basic concepts of fuzzy

granular structure space and partial order relations in [9]. Section 3 constructs

a fuzzy distance between two fuzzy granular structures and discovers some prop-

erties of the fuzzy distance. Section 4 proposes the concept of extension fuzzy

information granularity. Section 5 presents the results of experiments on some

data sets from UCI. Finally, section 6 gives some conclusions and subsequent

developments.

2. Some basic concepts. Based on the fuzzy similarity relation in

fuzzy rough set [1, 2], in this section we present some basic concepts related

to fuzzy information granule, fuzzy granular structure, fuzzy granular structure

space [9].

In rough set theory, an information system is denoted by IS = (U,A)

where U is the set of objects; A is the set of attributes. Each equivalence relation

IND(P ) on attribute set P ∈ A defines a partition on U , denoted by U/IND(P ).

According to the granular computing approach, U/IND(P ) is an information

granular structure and each equivalence class in U/IND(P ) is an information

granule. If a ∈ A contains a missing value then IS is called an incomplete in-

formation system. In incomplete information systems, Kryszkiewicz defines a

tolerance relation SIM(P ) on attribute set P ∈ A. The relation SIM(P ) deter-

mines a covering on U, denoted by U/SIM(P ). U/SIM (P ) = {SP (x) |x ∈ U }

where SP (x) is a tolerance class that contains object x ∈ U . U/SIM(P ) is

called a tolerance granular structure and SP (x) is called a tolerance granule.

The information granules and tolerance granules are a basic calculation unit to

build efficient measures to solve attribute reduction and rule extraction problems.

However, the equivalence relation or tolerance relation cannot characterize the
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similarity among objects in real problems. For that reason, researchers use a

fuzzy similarity relation to replace the equivalence relation in the fuzzy rough set

[1, 2].

Let IS = (U,A) be an information system, a fuzzy similarity relation P̃ is

defined on the attribute set P ∈ A. Then, P̃ has properties: reflexive P̃ (x, x) = 1,

symmetric P̃ (x, y) = P̃ (y, x), max-min transitive P̃ (x, z) ≥ min{P̃ (x, y), P̃ (y, z)}

for any x, y, z ∈ U . The fuzzy similarity relation P̃ on attribute set P ∈ A is

represented by the following relation matrix:

M(P̃ ) =




p11 p12 . . . p1n
p21 p22 . . . p2n
. . . . . . . . . . . .
pn1 pn2 . . . pnn




where pij = P̃ (xi, xj) is the value of the relation between object xi and xj on

attribute set P, rij ∈ [0, 1].

Given two fuzzy similarity relations P̃ and Q̃ on attribute set P and Q,

for any x, y ∈ U we have:

1. P̃ = Q̃ ⇔ P̃ (x, y) = Q̃ (x, y)

2. R̃ = P̃ ∪ Q̃ ⇔ R̃ (x, y) = max
{
P̃ (x, y) , Q̃ (x, y)

}

3. R̃ = P̃ ∩ Q̃ ⇔ R̃ (x, y) = min
{
P̃ (x, y) , Q̃ (x, y)

}

4. P̃ ⊆ Q̃ ⇔ P̃ (x, y) ≤ Q̃ (x, y)

According to the granular computing approach, a fuzzy similarity relation P̃ de-

fines a fuzzy granular structure K(P̃ ) in U . K(P̃ ) =
(
S
P̃
(x1), SP̃

(x2), . . . , SP̃
(xn)

)

where S
P̃
(xi) = pi1/x1 + pi2/x2 + · · · + pin/xn is a fuzzy information granule of

object xi. The cardinality of the fuzzy information granule S
P̃
(xi) is calculated by

∣∣S
P̃
(xi)

∣∣ =
n∑

j=1

pij

Let K(U) be a set of all fuzzy granular structures in U determined by

fuzzy similarity relations on attribute sets. K(U) is called a fuzzy granulation

structure space. Given a fuzzy granular structure

K(P̃ ) = (S
P̃
(x1), SP̃

(x2), . . . , SP̃
(xn)),
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S
P̃
(xi) = pi1/x1 + pi2/x2 + · · ·+ pin/xn.

In particular, if pij = 0, i, j ≤ n then
∣∣S

P̃
(xi)

∣∣ = 0, i ≤ n and the fuzzy granular

structure K(P̃ ) is the finest one, denoted as K (ω̃), i.e.,

K (ω̃) = (Sω̃(x1), Sω̃(x2), . . . , Sω̃(xn)) ,

where Sω̃(xi) =
∑n

j=1
ωij/xj , ∀i, j ≤ n, ωij = 0. If pij = 1, i, j ≤ n then

∣∣S
P̃
(xi)

∣∣ = |U |, i ≤ n, and the fuzzy granular structure K(P̃ ) is the coarsest one,

denoted as K(δ̃), i.e., K(δ̃) =
(
S
δ̃
(x1), Sδ̃

(x2), . . . , Sδ̃
(xn)

)
where

S
δ̃
(xi) =

∑n

j=1
δij/xj , ∀i, j ≤ n, δij = 1.

In [9], Qian et al. present three definitions of partial order relations �1,

�2, �3 to characterize the uncertainty of a fuzzy granular structure.

Definition 1. Given two fuzzy granular structures K(P̃ ),K(Q̃) ∈ K(U)

where

K(P̃ ) =
(
S
P̃
(x1), SP̃

(x2), . . . , SP̃
(xn)

)
, K(Q̃) =

(
S
Q̃
(x1), SQ̃

(x2), . . . , SQ̃
(xn)

)
.

The partial order relations are defined as

1. K(P̃ )�1K(Q̃) ⇔ S
P̃
(xi) ⊆ S

Q̃
(xi), i ≤ n ⇔ pij ≤ qij, i, j ≤ n, just

P̃�1Q̃. The equality K(P̃ ) = K(Q̃) ⇔ S
P̃
(xi) = S

Q̃
(xi), i ≤ n ⇔ pij =

qij, i, j ≤ n can be written as P̃ = Q̃. K(P̃ )≺1K(Q̃) ⇔ K(P̃ )�1K(Q̃) and

K(P̃ ) 6= K(Q̃), which is denoted by P̃≺1Q̃.

2. K(P̃ )�2K(Q̃) ⇔
∣∣S

P̃
(xi)

∣∣ ≤
∣∣∣SQ̃

(xi)
∣∣∣, i ≤ n where

∣∣S
P̃
(xi)

∣∣ =
∑n

i=1
pij,∣∣∣SQ̃

(xi)
∣∣∣ =

∑n

i=1
qij, , just P̃�2Q̃. The special case, K(P̃ ) ≃ K(Q̃) ⇔

∣∣S
P̃
(xi)

∣∣ =
∣∣∣SQ̃

(xi)
∣∣∣ , i ≤ n can be written as P̃ ≃ Q̃. K(P̃ )≺2K(Q̃) ⇔

K(P̃ )�2K(Q̃) and K(P̃ ) 6= K(Q̃) can be written as P̃≺2Q̃.

3. K(P̃ )�3K(Q̃) ⇔ for K(P̃ ), there exists a sequence K1(Q̃) of K(Q̃) such

that
∣∣S

P̃
(xi)

∣∣ ≤
∣∣∣SQ̃

(
x1i
)∣∣∣ , i ≤ n where K1(Q̃) =

(
S
Q̃
(x11), SQ̃

(x12), . . . ,

S
Q̃
(x1n)

)
, in short P̃�3Q̃. Special case, K(P̃ ) ≈ K(Q̃) ⇔

∣∣S
P̃
(xi)

∣∣ =
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∣∣∣SQ̃

(
x1i
)∣∣∣ , i ≤ n, in short P̃ ≈ Q̃. K(P̃ )≺3K(Q̃) ⇔ K(P̃ )�3K(Q̃) and

K(P̃ ) 6= K(Q̃), in short P̃≺3Q̃.

For the three partial order relations defined, Qian et al. [9] draw a conclusion

that the partial order relation �3 is the best one for characterizing the coarse-

ness/fineness between two fuzzy granular structures. Based on the relation �3,

Qian et al. [9] proposed a definition of fuzzy information granularity.

Definition 2. Let K(U) be the set of all fuzzy granular structures on U .

For any K(P̃ ) ∈ K(U) there exists a real number g(P̃ ) satisfying the following

properties:

1. g(P̃ ) ≥ 0 (non-negativity)

2. For any K(P̃ ),K(Q̃) ∈ K(U), if K(P̃ ) ≈ K(Q̃) then g(P̃ ) = g(Q̃) (invari-

ability)

3. For any K(P̃ ),K(Q̃) ∈ K(U), if K(P̃ )≺3K(Q̃) then g(P̃ ) < g(Q̃) (mono-

tonicity);

then g is called a fuzzy information granularity.

In order to find a fuzzy information granularity that satisfies Definition 2,

we need to check the relation �3 between two fuzzy granular structures. However,

there does not exist any relation �3 between two fuzzy granular structures in the

following Example 1.

Example 1. Given U = {x1, x2, x3, x4}, K(P̃ ) =
(
S
P̃
(x1), SP̃

(x2), SP̃
(x3) ,

S
P̃
(x4)

)
∈ K(U) and K(Q̃) =

(
S
Q̃
(x1), SQ̃

(x2), SQ̃
(x3), SQ̃

(x4)
)

∈ K(U) are

two fuzzy granular structures on U where S
P̃
(x1) = 1/x1 + 0/x2 + 0/x3 + 0/x4,

S
P̃
(x2) = 0.3/x1 + 0.6/x2 + 0/x3 + 0/x4, SP̃

(x3) = 0/x1 + 0/x2 + 0.4/x3 + 0/x4,

S
P̃
(x4) = 0/x1+0/x2+0/x3+0.1/x4 and S

Q̃
(x1) = 1/x1+0.6/x2+0/x3+0.7/x4,

S
Q̃
(x2) = 0.3/x1 + 0.7/x2 + 0.8/x3 +0/x4, SQ̃

(x3) = 0/x1 + 0/x2 +0/x3 + 0/x4,

S
Q̃
(x4) = 0/x1 +0/x2 +0.7/x3 +0.4/x4. It is easy to see that there does not ex-

ist any �3 such that K(P̃ )�3K(Q̃) or K(Q̃)�3K(P̃ ). Therefore, we need to find

new information measures to replace �3 for characterizing the coarseness/fineness

between two fuzzy granular structures. In this paper, we propose a new definition

of fuzzy information granularity based on fuzzy distance.
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3. Fuzzy distance and properties. In this section, we will construct

a fuzzy distance between two fuzzy granular structures. The fuzzy distance is

constructed based on basic units which are the fuzzy distance between two fuzzy

granules or two fuzzy sets.

3.1. Fuzzy distance between two fuzzy sets.

Lemma 1. Given three real numbers a, b, m where a ≥ b. Then, we have

a− b ≥ min (a, m)−min (b, m).

P r o o f. It is easy to see that a − b ≥ min (a, m) −min (b, m) satisfies

all three cases m ≥ a, b ≤ m < a, m < b. This completes the proof. �

Lemma 2. Given three fuzzy sets Ã, B̃, C̃ on the same universe U . Then

we have the following properties:

1. If Ã ⊆ B̃ then |B̃| −
∣∣∣B̃ ∩ C̃

∣∣∣ ≥ |Ã| −
∣∣∣Ã ∩ C̃

∣∣∣.

2. If Ã ⊆ B̃ then |C̃| − |C̃ ∩ Ã| ≥ |C̃| − |C̃ ∩ B̃|.

3. |Ã| − |Ã ∩ B̃|+ |C̃| − |C̃ ∩ Ã| ≥ |C̃| − |C̃ ∩ B̃|.

P r o o f. 1) From Ã ⊆ B̃, for any xi ∈ U we have µ
B̃
(xi) ≥ µ

Ã
(xi). By

using Lemma 1 we have

µ
B̃
(xi)− µ

Ã
(xi) ≥ min

(
µ
B̃
(xi), µC̃

(xi)
)
−min

(
µ
Ã
(xi), µC̃

(xi)
)
.

⇔

|U |∑

i=1

µ
B̃
(xi)−

|U |∑

i=1

µ
Ã
(xi) ≥

|U |∑

i=1

min
(
µ
B̃
(xi), µC̃

(xi)
)
−

|U |∑

i=1

min
(
µ
Ã
(xi), µC̃

(xi)
)

→ |B̃| − |Ã| ≥ |B̃ ∩ C̃| − |Ã ∩ C̃| → |B̃| − |B̃ ∩ C̃| ≥ |Ã| − |Ã ∩ C̃|

2) From Ã ⊆ B̃, for any xi ∈ U we have µ
B̃
(xi) ≥ µ

Ã
(xi)

⇔ min
(
µ
B̃
(xi), µC̃

(xi)
)
≥ min

(
µ
Ã
(xi), µC̃

(xi)
)

⇔ µ
C̃
(xi)−min

(
µ
Ã
(xi), µC̃

(xi)
)
≥ µ

C̃
(xi)−min

(
µ
B̃
(xi), µC̃

(xi)
)

⇔

|U |∑

i=1

µ
C̃
(xi)−

|U |∑

i=1

min
(
µ
Ã
(xi), µC̃

(xi)
)
≥

|U |∑

i=1

µ
C̃
(xi)−

|U |∑

i=1

min
(
µ
B̃
(xi), µC̃

(xi)
)

⇔ |C̃| −
∣∣∣C̃ ∩ Ã

∣∣∣ ≥ |C̃| −
∣∣∣C̃ ∩ B̃

∣∣∣

3) From Ã ∩ C̃ ⊆ Ã, by using property 1) we have

(1) |Ã| − |Ã ∩ B̃| ≥ |Ã ∩ C̃| − |Ã ∩ C̃ ∩ B̃|
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From Ã ∩ B̃ ⊆ B̃, by using property 2) we have

(2) |C̃| − |C̃ ∩ Ã ∩ B̃| ≥ |C̃| − |C̃ ∩ B̃|

From (1) and (2) we have |Ã| − |Ã ∩ B̃| + |C̃| − |C̃ ∩ Ã| ≥ |Ã ∩ C̃| −

|Ã ∩ C̃ ∩ B̃|+ |C̃| − |C̃ ∩ Ã| = |C̃| − |Ã ∩ B̃ ∩ C̃| ≥ |C̃| − |C̃ ∩ B̃| �

Proposition 1. Given two fuzzy sets Ã, B̃ in the same universe U . Then

d(Ã, B̃) = |Ã|+ |B̃| − 2|Ã ∩ B̃| is a fuzzy distance between Ã and B̃.

P r o o f.

1) It is clear that |Ã| ≥ |Ã ∩ B̃| and |B̃| ≥ |Ã ∩ B̃|, so d(Ã, B̃) ≥ 0.

2) It is clear that d(Ã, B̃) = d(B̃, Ã).

3) We need to prove the triangle inequality: d(Ã, B̃)+d(Ã, C̃) ≥ d(B̃, C̃).

By using Lemma 2 property 3) we have:

|Ã| − |Ã ∩ B̃|+ |C̃| − |C̃ ∩ Ã| ≥ |C̃| − |C̃ ∩ B̃| (1)

|Ã| − |Ã ∩ C̃|+ |B̃| − |B̃ ∩ Ã| ≥ |B̃| − |B̃ ∩ C̃| (2)

Adding (1) with (2) we have

(|Ã|+ |B̃| − 2|Ã ∩ B̃|) + (|Ã|+ |C̃| − 2|Ã ∩ C̃|) ≥ |B̃|+ |C̃| − 2|B̃ ∩ C̃|, or

d(Ã, B̃) + d(Ã, C̃) ≥ d(B̃, C̃).

From 1), 2), 3) we can draw a conclusion that d(Ã, B̃) is a fuzzy dis-

tance between two fuzzy sets Ã and B̃. Based on this fuzzy distance, in the

next subsection we will construct the fuzzy distance between two fuzzy granular

structures. �

3.2. Fuzzy distance between two fuzzy granular structures and

its properties.

Theorem 1. Let

K(P̃ ) =
(
S
P̃
(x1), SP̃

(x2), . . . , SP̃
(xn)

)
, K(Q̃) =

(
S
Q̃
(x1), SQ̃

(x2), . . . , SQ̃
(xn)

)

be two fuzzy granular structures on K(U) where U = {x1, x2, . . . , xn}. Then,

D
(
K(P̃ ),K(Q̃)

)
=

1

n

n∑

i=1



∣∣S

P̃
(xi)

∣∣+
∣∣∣SQ̃

(xi)
∣∣∣− 2

∣∣∣SP̃
(xi) ∩ S

Q̃
(xi)

∣∣∣
n




is a fuzzy distance between K(P̃ ) and K(Q̃).
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P r o o f. It is clear that D(K(P̃ ),K(Q̃)) ≥ 0 and D(K(P̃ ),K(Q̃)) =

D(K(Q̃),K(P̃ )). We need to prove the triangle inequality. For any K(P̃ ), K(Q̃),

K(R̃) ∈ K(U) we have to prove that

D(K(P̃ ),K(Q̃)) +D(K(P̃ ),K(R̃)) ≥ D(K(Q̃),K(R̃)).

From Proposition 1, for any xi ∈ U we have

d(S
P̃
(xi), SQ̃

(xi)) + d(S
P̃
(xi), SR̃

(xi)) ≥ d(S
Q̃
(xi), SR̃

(xi)).

Thus D(K(P̃ ),K(Q̃)) +D(K(P̃ ),K(R̃))

=
1

n

n∑

i=1



∣∣S

P̃
(xi)

∣∣+
∣∣∣SQ̃

(xi)
∣∣∣− 2

∣∣∣SP̃
(xi) ∩ S

Q̃
(xi)

∣∣∣
n




+
1

n

n∑

i=1

(∣∣S
P̃
(xi)

∣∣+
∣∣S

R̃
(xi)

∣∣− 2
∣∣S

P̃
(xi) ∩ S

R̃
(xi)

∣∣
n

)

=
1

n

n∑

i=1

d
(
S
P̃
(xi), SQ̃

(xi)
)

n
+

1

n

n∑

i=1

d
(
S
P̃
(xi), SR̃

(xi)
)

n

≥
1

n

n∑

i=1

d
(
S
Q̃
(xi), SR̃

(xi)
)

n
= D

(
K(Q̃),K

(
R̃
))

.

It is easy to see that D
(
K(P̃ ),K(Q̃)

)
gets the minimum value 0 if and

only if K(P̃ ) = K(Q̃) and D
(
K(P̃ ),K(Q̃)

)
gets the maximum value 1 if and

only if K(P̃ ) = K (ω̃) and K(Q̃) = K(δ̃) (or K(P̃ ) = K(δ̃) and K(Q̃) = K (ω̃)).

Therefore, 0 ≤ D
(
K(P̃ ),K(Q̃)

)
≤ 1. �

Example 2. Given U = {x1, x2}, K(P̃ ) = (S
P̃
(x1), SP̃

(x2)), K(Q̃) =

(S
Q̃
(x1), SQ̃

(x2)), K(R̃) = (S
R̃
(x1), SR̃

(x2)) where S
P̃
(x1) = 0.1/x1 + 0.2/x2,

S
P̃
(x2) = 0.2/x1 + 0.4/x2, SQ̃

(x1) = 0.2/x1 + 0.2/x2, SQ̃
(x2) = 0.1/x1 + 0.6/x2,

S
R̃
(x1) = 0/x1 + 0.2/x2, SR̃

(x2) = 0.1/x1 + 0.1/x2. From Theorem 1 we have

D(K(P̃ ),K(Q̃)) = 0.1, D(K(Q̃),K(R̃)) = 0.175, D(K(P̃ ),K(R̃)) = 0.125. It is

clear that D(K(P̃ ),K(Q̃)) +D(K(P̃ ),K(R̃)) > D(K(Q̃),K(R̃)).
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Proposition 2. Let K(P̃ ),K(Q̃),K(R̃) ∈ K(U) be three fuzzy granular

structures on K(U). If K(P̃ )�1K(Q̃)�1K(R̃) or K(R̃)�1K(Q̃)�1K(P̃ ) then

D(K(P̃ ),K(Q̃)) +D(K(Q̃),K(R̃)) = D(K(P̃ ),K(R̃)).

P r o o f. Suppose that K(P̃ )�1K(Q̃)�1K(R̃). Then for any

xi ∈ U we have S
P̃
(xi) ⊆ S

Q̃
(xi) ⊆ S

R̃
(xi) and |S

P̃
(xi) ∩ S

Q̃
(xi)| = |S

P̃
(xi)|,

|S
Q̃
(xi) ∩ S

R̃
(xi)| = |S

Q̃
(xi)|, |SP̃

(xi) ∩ S
R̃
(xi)| = |S

P̃
(xi)|, |SQ̃

(xi)| ≤ |S
R̃
(xi)|.

Therefore,

D(K(P̃ ),K(Q̃)) +D(K(Q̃),K(R̃))

=
1

|U |

|U |∑

i=1



∣∣S

P̃
(xi)

∣∣+
∣∣∣SQ̃

(xi)
∣∣∣− 2

∣∣∣SP̃
(xi) ∩ S

Q̃
(xi)

∣∣∣
|U |




+
1

|U |

|U |∑

i=1




∣∣∣SQ̃
(xi)

∣∣∣+
∣∣S

R̃
(xi)

∣∣− 2
∣∣∣SQ̃

(xi) ∩ S
R̃
(xi)

∣∣∣
|U |




=
1

|U |

|U |∑

i=1




∣∣∣SQ̃
(xi)

∣∣∣−
∣∣S

P̃
(xi)

∣∣

|U |
+

∣∣S
R̃
(xi)

∣∣−
∣∣∣SQ̃

(xi)
∣∣∣

|U |




=
1

|U |

|U |∑

i=1

(∣∣S
R̃
(xi)

∣∣−
∣∣S

P̃
(xi)

∣∣
|U |

)
= D

(
K(P̃ ),K

(
R̃
))

.

�

Example 3. Given U = {x1, x2}, K(P̃ ) = (S
P̃
(x1), SP̃

(x2)), K(P̃ ) =

(S
P̃
(x1), SP̃

(x2)), K(R̃) = (S
R̃
(x1), SR̃

(x2)) and K(P̃ )�1K(Q̃)�1K(R̃) where

S
P̃
(x1) = 0.1/x1 + 0.2/x2, SP̃

(x2) = 0.2/x1 + 0.3/x2, SQ̃
(x1) = 0.2/x1 + 0.3/x2,

S
Q̃
(x2) = 0.3/x1 + 0.4/x2, SR̃

(x1) = 0.3/x1 + 0.4/x2, SR̃
(x2) = 0.4/x1 + 0.6/x2.

From Theorem 1 we have

D(K(P̃ ),K(Q̃)) =
0.4

4
, D(K(Q̃),K(R̃)) =

0.5

4
, D(K(P̃ ),K(R̃)) =

0.9

4
.

It is clear that D(K(P̃ ),K(Q̃)) + D(K(Q̃),K(R̃)) = D(K(P̃ ),K(R̃)). From

Proposition 2 we have the following Corollary 1 and Corollary 2.
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Corollary 1. Let K(U) be a fuzzy granular structures space on U and

K(P̃ ),K(Q̃) ∈ K(U). If K(P̃ )�1K(Q̃) then D(K(P̃ ),K(ω̃)) ≤ D(K(Q̃),K(ω̃)).

Corollary 2. Let K(U) be a fuzzy granular structures space on U and

K(P̃ ),K(Q̃) ∈ K(U). If K(P̃ )�1K(Q̃) then D(K(P̃ ),K(δ̃)) ≥ D(K(Q̃),K(δ̃)).

Proposition 3. Let K(P̃ ) ∈ K(U) be a fuzzy granular structure in K(U),

then we have D(K(P̃ ),K(δ̃)) +D(K(P̃ ),K(ω̃)) = 1.

P r o o f. Suppose that K(P̃ ) = (S
P̃
(x1), SP̃

(x2), . . . , SP̃
(xn)). Then

D(K(P̃ ),K(ω̃)) =
1

n2

n∑

i=1

|S
P̃
(xi)|, D(K(P̃ ),K(δ̃)) =

1

n2

n∑

i=1

(n − |S
P̃
(xi)|).

Then we have D(K(P̃ ),K(δ̃)) +D(K(P̃ ),K(ω̃)) = 1. �

4. Extension fuzzy information granularity based on fuzzy

distance and its properties. In this section we will present a new defini-

tion of fuzzy information granularity based on fuzzy distance, called extension

fuzzy information granularity. We also present some problems about the relation

between fuzzy distance and fuzzy information entropies in [3, 9].

The following Theorem 2 shows that the fuzzy information granularity in

Definition 2 is also defined based on fuzzy distance.

Theorem 2. Let K(U) be a fuzzy granular structure space in universe U .

For any K(P̃ ),K(ω̃) ∈ K(U), D(K(P̃ ),K(ω̃)) is a fuzzy information granularity.

P r o o f. Suppose that K(P̃ ) = (S
P̃
(x1), SP̃

(x2), . . . , SP̃
(xn)) and

K(ω̃) = (Sω̃(x1), Sω̃(x2), . . . , Sω̃(xn)).

(1) It is clear that D is not negative.

(2) If K(P̃ ) ≈ K(Q̃) then there exists f : F (P̃ ) → F (Q̃) such that for any

xi ∈ U , |S
P̃
(xi)| = |f(S

P̃
(xi))| and f(S

P̃
(xi)) = S

Q̃
(xji). Then we have

D(K(P̃ ),K(ω̃))

=
1

|U |

|U |∑

i=1

(∣∣S
P̃
(xi)

∣∣+ |Sω̃(xi)| − 2
∣∣S

P̃
(xi) ∩ Sω̃(xi)

∣∣
|U |

)
=

1

|U |

|U |∑

i=1

(∣∣S
P̃
(xi)

∣∣
|U |

)
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=
1

|U |

|U |∑

i=1

(∣∣f
(
S
P̃
(xi)

)∣∣
|U |

)
=

1

|U |

|U |∑

i=1




∣∣∣SQ̃
(xji)

∣∣∣
|U |


 =

1

|U |

|U |∑

i=1




∣∣∣SQ̃
(xj)

∣∣∣
|U |




= D
(
K(Q̃),K (ω̃)

)
.

(3) We will prove that if K(P̃ )≺3K(Q̃) then D(K(P̃ ),K(ω̃)) < D(K(Q̃),

K(ω̃)). Suppose that K(P̃ ) = (S
P̃
(x1), SP̃

(x2), . . . , SP̃
(x|U |)), K(Q̃) = (S

Q̃
(x1),

S
Q̃
(x2), . . . , SQ̃

(x|U |)) and K(P̃ )≺3K(Q̃), then there exists a fuzzy granular struc-

ture K1(Q̃) of K(Q̃) where K1(Q̃) = (S
Q̃
(x11), SQ̃

(x12), . . . , SQ̃
(x1|U |)) such that

|S
P̃
(xi)| ≤ S

Q̃
(x1i ) and there exist at least one xs ∈ U such that |S

P̃
(xs)| <

|f(S
P̃
(xs))| = |S

Q̃
(x1s)|. Therefore

D
(
K(P̃ ),K (ω̃)

)

=
1

|U |

|U |∑

i=1

(∣∣S
P̃
(xi)

∣∣+ |Sω̃(xi)| − 2
∣∣S

P̃
(xi) ∩ Sω̃(xi)

∣∣
|U |

)
=

1

|U |

|U |∑

i=1

(∣∣S
P̃
(xi)

∣∣
|U |

)

=
1

|U |




|U |∑

i=1,i 6=s

∣∣S
P̃
(xi)

∣∣
|U |

+

∣∣S
P̃
(xs)

∣∣
|U |


 <

1

|U |




|U |∑

i=1,i 6=s

∣∣∣SQ̃

(
x1i
)∣∣∣

|U |
+

∣∣∣SQ̃

(
x1s
)∣∣∣

|U |




=
1

|U |




|U |∑

i=1

∣∣∣SQ̃

(
x1i
)∣∣∣

|U |


 = D

(
K(Q̃),K (ω̃)

)
.

Consequently, D
(
K(P̃ ),K (ω̃)

)
is a fuzzy information granularity on

K(U).

For K(P̃ ),K(Q̃) ∈ K(U), Definition 2 shows that to construct a fuzzy

information granularity we need to check K(P̃ )≺3K(Q̃) or K(Q̃)≺3K(P̃ ). Ex-

ample 1 shows that in some cases it cannot be determined whether K(P̃ )≺3K(Q̃),

K(Q̃)≺3K(P̃ ) or not. Therefore, the relation ≺3 could not be used to compare the

fineness or coarseness between two fuzzy granular structures. Theorem 2 shows
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that fuzzy distance D
(
K(P̃ ),K (ω̃)

)
can be used to replace ≺3 to definition new

fuzzy information granularity. �

Example 4 (Continue from Example 1). To compare the fineness/coarse-

ness between K(P̃ ),K(Q̃) ∈ K(U), we calculate the fuzzy space D(K(P̃ ),

K(ω̃)) = 0.15, D(K(Q̃),K(ω̃)) = 0.325. Therefore, D(K(P̃ ),K(ω̃)) < D(K(Q̃),

K(ω̃)) and we can conclude that K(Q̃) is rougher than K(P̃ ).

Based on the fuzzy distance D(K(P̃ ),K(ω̃)), extension fuzzy information

granularity is defined as

Definition 3. Let K(U) be a fuzzy granular structure space on U . For any

K(P̃ ) ∈ K(U) there exists a real number g(P̃ ) satisfying the following properties:

1. g(P̃ ) ≥ 0 (non-negativity)

2. ∀K(P̃ ),K(Q̃) ∈ K(U), if D(K(P̃ ),K(ω̃)) = D(K(Q̃),K(ω̃)) then g(P̃ ) =

g(Q̃) (invariability)

3. ∀K(P̃ ),K(Q̃) ∈ K(U), if D(K(P̃ ),K(ω̃)) < D(K(Q̃),K(ω̃)) then g(P̃ ) <

g(Q̃) (monotonicity)

then g is called an extension fuzzy information granularity.

Next, we present the relation between fuzzy distance D(K(P̃ ),K(ω̃)) and

fuzzy information entropies [3, 9].

Let K(P̃ ) = (S
P̃
(x1), SP̃

(x2), . . . , SP̃
(xn)) be a fuzzy granular structure

in universe U . Based on Shannon’s entropy and Liang’s entropy, fuzzy entropies

H(P̃ ) and E(P̃ ) are defined as

H(P̃ ) = −
1

n

n∑

i=1

log2
|S

P̃
(xi)|

n
, E(P̃ ) =

n∑

i=1

1

n

(
1−

|S
P̃
(xi)|

n

)

Proposition 4. Let K(U) be a fuzzy granular structure space and K(P̃ ),

K(Q̃) ∈ K(U). Then we have

1) If D(K(P̃ ),K(ω̃)) ≥ D(K(Q̃),K(ω̃)) then H(P̃ ) ≤ H(Q̃)

2) If D(K(P̃ ),K(ω̃)) ≥ D(K(Q̃),K(ω̃)) then E(P̃ ) ≤ E(Q̃).

P r o o f. If D(K(P̃ ),K(ω̃)) ≥ D(K(Q̃),K(ω̃)) then according to Propo-

sition 1 we have |S
P̃
(xi)| ≥ |S

Q̃
(xi)| for any xi ∈ U . From the formula of H(P̃ )

and E(P̃ ) we have H(P̃ ) ≤ H(Q̃) and E(P̃ ) ≤ E(Q̃).
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Proposition 4 shows that the coarser the K(P̃ ) is (the bigger the fuzzy

distance D(K(P̃ ),K(ω̃)) is), the smaller the entropies H(P̃ ), E(P̃ ) are and vice

versa. This property is the same as the property of information entropies in

[3]. Consequently, extension fuzzy information granularity in Definition 3 is

strongly related to fuzzy information entropies and it is used to estimate the

fineness/coarseness or the difference, distinguishability of fuzzy granular struc-

tures. �

5. Experiment. Let us consider an information system IS = (U,A),

suppose that K(P̃ ) and K(Q̃) are two fuzzy granular structures defined by fuzzy

similarity relations P̃ and Q̃ on P,Q ⊆ A. The purpose of this experiment is to

determine the ability to distinguish K(P̃ ), K(Q̃) based on partial order relations

�1, �2, �3 (Definition 1) and fuzzy distance D(K(P̃ ),K(ω̃)). For example, for

the relation �1, if K(P̃ )≺1K(Q̃) or K(Q̃)≺1K(P̃ ), K(P̃ ) can be distinguised

from K(Q̃) by the relation �1. The relations �1, �2, �3 and D(K(P̃ ),K(ω̃))

are denoted as QH1, QH2, QH3 and QHM respectively.

The experiment performed on six data sets which have numeric attributes

from UCI [10] as in the following Table 1:

Table 1. Data sets for experiment

No Data sets Objects
Condition

attributes

Granular

structures

Pairs of

granular

structures

1 Ecoli 336 7 127 8001

2 Seeds 210 7 127 8001

3 Brest Cancer 699 9 511 130305

4 Lenses 24 4 15 105

5 Balloons 20 4 15 105

6 Hayes−Roth 132 4 15 105

Each data set is considered as an information system IS = (U,A). We

use the fuzzy similarity relation p̃ where p ∈ A in which the value of the relation

between xi, xj ∈ U is defined as

pij =





1− 4 ∗
|p(xi)− p(xj)|

|pmax − pmin|
,

|p(xi)− p(xj)|

|pmax − pmin|
≤ 0.25

0, otherwise
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where p(xi) is the value of the attribute p at the object xi, the maximum and

minimum value of the attribute p are pmax, pmin respectively. It is clear that

pii = 1 and 0 ≤ pij ≤ 1. Each attribute set P ⊆ A determines a granular

structure K(P̃ ). The total number of granular structures of each data set is

2|A| − 1 where |A| is the number of condition attributes (column 5 of Table 1).

The total number of granular structure pairs which are compared to each other

is C2

n =
n!

2! (n− 2)!
where n is the total number of granular structures (column 6

of Table 1).

To evaluate the distinguishability of two fuzzy granular structures, we use

an identification rate:

Identification rate (IR) = (Total number of distinguishability granular

structure pairs) / (total number of granular structures)

The experiments run on a PC Pentium dual core 2.13 GHz CPU, 1GB of

RAM, Windows 7. The values of identification rate (IR) are displayed in Table 2.

Table 2. Values of IR for QH1, QH2, QH3, QHM

No Data sets QH1 QH2 QH3 QHM

1 Ecoli 0.0125 0.1257 0.2506 1

2 Seeds 0.0114 0.3756 0.7502 1

3 Brest Cancer 0.0084 0.1127 0.2058 1

4 Lenses 0.0185 0.8096 0.8113 0.8596

5 Balloons 0.0167 0.7558 0.7652 0.9045

6 Hayes−Roth 0.0174 0.4312 0.6994 0.9256

Values of IR for QH1, QH2, QH3, QHM on each data set are displayed

on Fig. 1:

From the results of experiments as Table 2 and Fig. 1, QHM has the

largest IR, following by QH3, QH2 and QH1. Moreover, QHM distinguishes all

fuzzy granular structure pairs on the data set Ecoli, Seeds and Brest Cancer. For

other data sets, QHM is smaller than 1 because it does not count the fuzzy gran-

ular structure pairs which have the same fuzzy distance D(K(P̃ ),K(ω̃)). Con-

sequently, the fuzzy distance D(K(P̃ ),K(ω̃)) is the best measure to distinguish

fuzzy granular structures. The proposed extension fuzzy information granularity

defined by fuzzy distance is the best one to characterize the fineness/coarseness

of a fuzzy granular structure. Determining the fineness/coarseness of a fuzzy
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Fig. 1. Value of IR on six data sets

granular structure is the basic problem to solve the approximating, data mining,

especially in attribute reduction and rule extraction based on the fuzzy rough set

approach.

6. Conclusions. The information granularity is one of the basis mea-

sures in granular computing, and has attracted the attention of researchers for

many years. According to the fuzzy similarity relation approach, in this paper

we proposed an extension fuzzy information granularity based on the fuzzy dis-

tance between two fuzzy granular structures. The extension fuzzy information

granularity overcomes the disadvantages of fuzzy information granularity based

on three partial order relations referred in [9]. The result of experiments on some
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data sets shows that, the extension fuzzy information granularity is the best one

to distinguish fuzzy granular structures and characterize the fineness/coarseness

of a fuzzy granular structure. Our future direction is to research methodologies

of attribute reduction directly on decision tables with numeric attribute domain

by using this fuzzy distance.
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