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Petar Gaydarov∗, Konstantin Delchev

Abstract. Turán’s problem asks what is the maximal distance from a
polynomial to the set of all irreducible polynomials over Z. It turns out
it is sufficient to consider the problem in the setting of F2. Even though
it is conjectured that there exists an absolute constant C such that the
distance L(f − g) ≤ C, the problem remains open. Thus it attracts different
approaches, one of which belongs to Lee, Ruskey and Williams, who study
what the probability is for a set of polynomials ‘resembling’ the irreducibles
to satisfy this conjecture. In the following article we strive to provide more
precision and detail to their method, and propose a table with better numeric
results.

1. Introduction. In 1962 P. Turán [9] asked whether every polynomial
with integer coefficients is close to an irreducible polynomial with an equal or

smaller degree. For a polynomial f(x) =
n
∑

k=0

akx
k, let L(f) denote its length,
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defined by

L(f) =

n
∑

k=0

|ak|.

Thus we can rephrase the question: Is there an absolute constant C such that for
every polynomial f ∈ Z[x] there exists an irreducible polynomial g ∈ Z[x] with
deg(g) ≤ deg(f) and L(f − g) ≤ C.

In general the problem remains open, but a number of partial results are
known. In 1970, Schinzel [8] proved that if we remove the restriction about the
degree, then C = 3 is such a constant. Moreover, he showed that for a polynomial
f of degree n, there is an irreducible polynomial g with L(f − g) ≤ 3 and

deg(g) ≤ exp
(

(5n+ 7)(‖f‖2 + 3)
)

,

where ‖f‖2 stands for the sum of the squares of the coefficients of f . More
recently, Banerjee and Filaseta [1] improved this by showing that the bound on
the degree of the irreducible polynomial g depends only linearly on that of f
(though exponentially on ‖f‖2). More precisely, the bound on the degree of g
satisfies

deg(g) ≤ 8max{n+ 3, n0}5
8‖f‖2+9,

where n0 is an effectively computable constant.
Turán’s problem has been tested and verified for polynomials of small

degree n by explicit computations. In 1997, Bérczes and Hajdu [2] showed that
C = 5 suffices for polynomials of degree n ≤ 22, and in 1998 [3] demonstrated
that this bound suffices for n ≤ 24. In 2008, Ruskey, Lee, and Williams [6]
established that C = 5 is sufficient for n ≤ 32 by using an algorithm developed
in [4]. More recently, Mossinghoff [7] extended this result to n ≤ 34. This was
again bettered by Filaseta and Mossinghoff [5] as they proved that constant to
be sufficient for degree at most 40.

The results were proven by showing that C = 3 suffices for polynomials
with leading and constant terms which are both odd. For such a polynomial
f with degree n, by Eisenstein’s criterion with prime p = 2, there exists an
irreducible polynomial g(x) with deg(g) = n and L(f − g) ≤ n. For a posi-
tive integer n, we denote by Cn the smallest positive integer having the follow-
ing property: For every f ∈ Z[x] with degree n and odd leading and trailing
terms, there exists an irreducible polynomial g ∈ Z[x] with deg(g) ≤ deg(f) and
L(f − g) ≤ Cn.

We can also further simplify Turán’s problem by considering a local ver-
sion. For a polynomial f ∈ F2[x], we define its length L2(f) as its number of
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monomials. Let Cn(2) be the smallest positive integer with the property that for
every f ∈ F2[x] with degree n and constant term 1, there exists an irreducible
polynomial g ∈ F2[x] with the same degree and L2(f − g) ≤ Cn(2). We know
that any polynomial g ∈ Z[x] with an odd leading coefficient is necessarily irre-
ducible in Z[x] if its reduction modulo 2 is irreducible in F2[x]. Then it follows
that Cn ≤ Cn(2). Thus, to establish the result C ≤ 5, we only need to prove
that Cn(2) ≤ 3. An additional result by Filaseta and Mossinghoff [5] states that
for n ≥ 246 the distance of a positive proportion of polynomials in F2[x] to every
irreducible polynomial is greater or equal to 4, i. e., Cn(2) ≥ 3.

Lee, Ruskey and Williams [6] study the Hamming distance from polyno-
mials to classes of polynomials that share certain properties of irreducible poly-
nomials over F2. The results give some insight into whether or not irreducible
polynomials can be effectively modeled by these more general classes of polyno-
mials. The properties they examine are the number of elements which is ⌊2n/n⌋,
the non-zero constant term, the odd density and reciprocal-closeness.

At first they choose uniformly randomly sets S satisfying the first three
properties. They derive a formula for the expected number of polynomials at a
certain distance from these sets S (a full proof of the formula is presented by
Mossinghoff [7]). However, these results turn out not to be close enough to the
actual data about irreducible polynomials over F2. The authors then examine
uniformly randomly chosen sets R which satisfy all four properties. Ruskey et al.
first examine those sets for an odd degree n of the polynomials. They derive a
formula for the expected number of polynomials in the neighbourhood (distance 1)
of those uniformly randomly chosen sets R. For the case for polynomials of even
degree n they only conjecture a formula for the number of polynomials in the
neighbourhood of the sets R.

In this paper we strive to clarify and expand on them. In Section 2 we
discuss the prior work of Ruskey et al. In Section 3 we examine the uniformly
randomly chosen sets R of polynomials of even degree n and find a formula for
the expected number of polynomials in the neighbourhood of those sets which is
different from the one conjectured by Ruskey et al.

2. Prior work. It will be convenient to restate the results in terms
of bitstrings. We identify the bitstring b1b2 . . . bN with the polynomial xN+1 +
bNxN + · · ·+ b1x+ 1.

Hamming distances to an odd density set. By S(N,M) we denote
a set of M odd density bitstrings each of length N , chosen uniformly at random
from the set of all 2N odd density bitstrings of length N . We say that a bitstring
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is odd if it has odd density; otherwise, it is even. The Hamming distance H(b, c)
between two bitstrings b and c of length N is the number of positions in which
the corresponding bits differ. We say that two bitstrings are adjacent if their
Hamming distance is one; i. e., they are adjacent in the hypercube. We extend
the notation to sets S of bitstrings by defining H(b, S) = min{H(b, s)|s ∈ S}.

Given a set of length N bitstrings S, the neighbourhood, H1(S), of S is
the set {b ∈ {0, 1}N |H(b, s) = 1 for some s ∈ S}; in other words it is exactly the
same as the open neighbourhood of S in the hypercubeQN , in the graph-theoretic
sense.

Theorem 1 ([6]). Asymptotically the expectation

E|{b ∈ {0, 1}N |H(b, S(N,M)) = d}|

is equal to











































2n/n when d = 0;

2N−1(1− e−4) when d = 1;

2N−1 − 2n/n when d = 2;

2N−1e−4 when d = 3;

0 when d > 3.

When we compare these results with the actual data about irreducible
polynomials they do not match. Since the current model does not explain the
data, we need to refine it. We restrict the random strings to be reverse-closed.
Given a binary string b, let bR represent the reversal of b. A set of binary strings
S is reverse-closed if bR ∈ S whenever b ∈ S.

Even length odd density reverse-closed sets. Let O represent the
binary strings of length N with odd density, and let E represent the binary strings
of length N with even density. Since N is even, there is no b ∈ O where b = bR.
Therefore, we can partition O into O> and O< where O> and O< are defined as:

O> = {b ∈ O : b > bR}

O< = {b ∈ O : b < bR}.

Let R = R(N,M) be a reverse-closed set of M odd density bitstrings of length
N , chosen uniformly randomly. Our objective is to calculate the expected size of
H1(R(N,M)) as a function of M and N .
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Theorem 2 ([6]). When N is even the expected size of the set H1(R(N,M))
is

E|H1(R(N,M))| = 2N/2

(

2N/2−1 −

(2N−2−N/2
M/2

)

+
(

2N/2−1 − 1
)(2N−2−N

M/2

)

(2N−2

M/2

)

)

.

From Theorem 2 it follows that

Theorem 3 ([6]). When N is even, then

E|H1(R(n− 1, 2n/n))| ∼ 2n−2(1− e−4).

3. Odd length odd density reverse-closed sets. When N is
odd the computation becomes more complicated because some bitstrings satisfy
b = bR. Again let R = R(N,M) ⊆ O be a uniformly randomly chosen reverse-
closed set of M bitstrings. Our goal is yet again to compute the expectation for
H1(R) depending on M and N. We define O> and O< the same way and let O=

be

O= = {b ∈ O : b = bR}.

We can partition E into E0, E1 and E2 where:

E2 = {b ∈ E : b and bR differ in exactly two positions};

E1 = {b ∈ E : b = bR};

E0 = {b ∈ E : b /∈ E2 ∪ E1}.

To illustrate these sets, let us consider an example for N = 5.
The string b = 01100 ∈ E2 since H1({b}) ∪ O= = {00100, 01110}. In

general, b is in E2 if bn = 1, and bx 6= bN−x has a unique solution for 0 ≤ x ≤
(N−1)/2. Then H1({b})∪O

= contains the result of changing the xth or (N−x)th

bit of b.
The string 01010 ∈ E1 since H1({b}) ∪ O= = {01110}. In general, E1

contains binary strings b in E such that bn = 0, and bx = bN−x for all 0 ≤ x ≤ N .
Then H1({b}) ∪O= contains the result of changing the middle bit of b to one.

The string 01001 ∈ E0 since H1({b}) ∪O= = ∅. The set E0 contains the
binary strings in E that are not in E2 or E1.

We now prove the following proposition.
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Proposition 1. Let b(i) denote the bitstring which differs from b in the

ith position. The equation b(M) = bR(L) has a solution if and only if b = bR.

P r o o f. Let b have an even length. Let bi denote the ith position in b.
There are two possibilities for the equality b(M) = bR(L) to hold true.

I Let M 6= N − L. Then the following must be true:

b1 = bN ;

b2 = bN−1;

. . .

bM 6= bN−M ;

. . .

bL = bN−L;

. . .

bN/2 = bN/2+1;

. . .

bN−L 6= bL;

. . .

bN−M = bM .

Obviously it is impossible for bM 6= bN−M and bM = bN−M to hold true simulta-
neously.

II Let M = N − L. Then the following must hold true:

b1 = bN ;

b2 = bN−1;

. . .

bM 6= bN−M = bN−L 6= bL;

. . .

However, this means bM = bL, i. e., the bitstring b must be a palindrome. The
proof is analogous when b has on odd length. ✷

The following lemma was first presented by Lee et al. [6], however, the
full proof was omitted from their paper.
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Lemma 1. Using this partition we obtain:

|{c ∈ O= : c ∈ R ⇒ b ∈ H1(R)}| =















0, when b ∈ E0;

1, when b ∈ E1;

2, when b ∈ E2

and

|{c ∈ O> : c ∈ R ⇒ b ∈ H1(R)}| =















N, when b ∈ E0;

(N − 1)/2, when b ∈ E1;

N − 2, when b ∈ E2.

P r o o f. The first supposition follows from the definition of the sets. We
need to prove the second one. Since there are two bitstrings in O= which are
neighbours of b ∈ E2, then the other N − 2 different bitstrings neighbouring b
are in either O> or O<. Let us denote them by O>

b and O<
b , respectively. Since

the set R is reverse-closed, then every bitstring in O< corresponds to one which
belongs to both O> and R. Neither one of the reverses of the bitstrings in O<

b

concurs with any of the bitstrings in O>
b as proven in Proposition 1. The same

holds for a bitstring b ∈ E0. When b ∈ E1 the difference is that every bitstring
in O<

b concurs with one of the reverses of the ones in O>
b . ✷

The above-mentioned sets have the following cardinalities:

|O| = |E| = 2N−1;

|O=| = 2(N−1)/2;

|O>| = |O<| = 2N−2 − 2(N−3)/2;

|E2| = (N − 1)2(N−3)/2;

|E1| = 2(N−1)/2;

|E0| = 2N−1 − (N + 1)2(N−3)/2.

Theorem 4. The probability for a fixed bitstring b to be in the neigh-
bourhood of R is equal to

P(b /∈ H1(S)|b ∈ E) =

(∑
(|O=|−2

i

)(|O>|−(N−2)
(M−i)/2

)

∑
(|O=|

i

)( |O>|
(M−i)/2

)

)

N − 1

2(N+1)/2
+
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+

(∑
(|O=|−1

i

)(|O>|−(N−1)/2
(M−i)/2

)

∑
(|O=|

i

)( |O>|
(M−i)/2

)

)

1

2(N−1)/2
+

+

(∑
(|O=|

i

)( |O>|−N
(M−i)/2

)

∑
(|O=|

i

)( |O>|
(M−i)/2

)

)

(

1−
N + 1

2(N+1)/2

)

,

where we sum over i from 0 to |O=| such that 2|(M − i).

P r o o f. We seek to find the number of all possible reverse-closed sets
of bitstrings with odd density. First, we find the number of ways to choose
i bitstrings from O= and (M − i)/2 bitstrings from O> (the other (M − i)/2
bitstrings are the corresponding ones in O<). We multiply the two numbers
in order to compute the number of ways to uniformly randomly choose the set R.
We sum this with respect to the values of i that have the same parity as M
(the number of bitstrings from |O>| and |O<| is equal, hence the sum is an even
number). This shows that the number N(S) of possible sets S is

N(S) =

|O=|
∑

i=0
2|(M − i)

(

|O=|

i

)(

|O>|

(M − i)/2

)

.

The number of sets which are not in the neighbourhood of R depends on whether
b is in E2, E1 or E0. We denote the numbers of these sets by N(S2), N(S1)
and N(S0), respectively. We use the same method as when we computed N(S).
However, this time we need to subtract the number of bitstrings in the neighbour-
hood of S. We know these numbers thanks to Lemma 1. Therefore, we obtain
the result:

N(S0) =

|O=|−2
∑

i=0
2|(M − i)

(

|O=| − 2

i

)(

|O>| − (N − 2)

(M − i)/2

)

N(S1) =

|O=|−1
∑

i=0
2|(M − i)

(

|O=| − 1

i

)(

|O>| − (N − 1)/2

(M − i)/2

)

N(S2) =

|O=|
∑

i=0
2|(M − i)

(

|O=|

i

)(

|O>| −N

(M − i)/2

)

.
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Using the basic properties of probability we have

P(b /∈ H1(S)|b ∈ E) =
2
∑

i=0

P(b /∈ H1(R)|b ∈ Ei)P(b ∈ Ei|b ∈ E).

We then divide the number of favorable outcomes by the total number of possible
outcomes and obtain

P(b /∈ H1(R)|b ∈ Ei) = N(Si)/N(S)

and

P(b ∈ Ei|b ∈ E) = |Ei|/|E|.

Combining the formulas for N(Si) with the above equations, we achieve the
desired result. ✷

This formula is different from the one conjectured by Lee et al. [6]. They
have suggested the following formula:

P(b /∈ H1(S)|b ∈ E) =

(

∑

(

|O=|−2
i

)

(

O=

i

)

(|O>|−(N−2)
(M−i)/2

)

( |O>|
(M−i)/2

)

)

N − 1

2(N+1)/2
+

+

(

∑

(|O=|−1
i

)

(O=

i

)

(|O>|−(N−2)/2
(M−i)/2

)

( |O>|
(M−i)/2

)

)

1

2(N−1)/2
+

+

(

∑

( |O>|−N
(M−i)/2

)

( |O>|
(M−i)/2

)

)

(

1−
N + 1

2(N+1)/2

)

,

where in each of the sums the summation is over all i = 0, 1, . . . ,M such that
(M − i)/2 is an integer.

In the following tables one can see that this formula is significantly differ-
ent from the one in [6]. Moreover, computational results show that the original
proposition, provided in [6] without proof, becomes negative for values greater
than 16.
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N # irreducible M probability probability

polynomials over F2 with Φ1 with Φ2

5 9 10 0.008333 0.006466

7 30 32 0.045619 0.009787

9 99 102 0.111236 0.012428

11 335 341 0.224294 0.013156

13 1161 1170 0.449207 0.013559

15 4080 4096 0.906438 0.0139

17 14532 14563 1.841681 0.014242

19 52377 52428 3.749562 0.014566

The expectation is calculated using the formula

E|H1(R)| = |E|P(b ∈ H1(R))

= 2N−1(1− P(b /∈ H1(R))).

N M expectation expectation # polynomials with distance

with Φ1 with Φ2 1 from the irreducible

5 10 28.25824 15.86667 16

7 32 61.08037 63.37365 63

9 102 227.5236 252.8185 255

11 341 794.3226 1010.529 1020

13 1170 2256.048 4040.46 4048

15 4096 15329.13 16156.27 16216

17 14563 −55160.4 64602.6 64731

19 52428 −720781 258325 258718

For odd values of N the formula conjectured in the original paper does
not always give feasible results as seen from the probability greater than 1 and
the negative expectation in some cases. In comparison the formula derived in
this paper provides results which seem closer to the actual data about the set of
irreducible polynomials.

4. Conclusion. While we provide formulas for the expectation that
a polynomial is at distance 1 from the sets R, several important questions re-
main. An exhaustive computational approach is needed to compare this to the
actual data for the irreducibles which can possibly indicate whether the chosen
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properties are sufficient, or new ones are needed. The most likely such candidate
is non-divisibility by second degree irreducible polynomials. Formulas for greater
distances can also be of interest.
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