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ABSTRACT

Intracortical bone remodeling normally ensures maintenance of the cortical bone matrix and strength, but during aging, this
remodeling generates excessive porosity. The mechanism behind the age-induced cortical porosity is poorly understood and
addressed in the present study. This study consists of a histomorphometric analysis of sections of iliac bone specimens from 35
women (age 16-78 years). First, the study shows that the age-induced cortical porosity reflects an increased pore size rather than an
increased pore density. Second, it establishes a novel histomorphometric classification of the pores, which is based on the
characteristics of the remodeling sites to which each pore is associated. It takes into consideration (i) the stage of the remodeling
event at the level where the pore is sectioned, (ii) whether the event corresponds with the generation of a new pore through
penetrative tunneling (type 1 pores) or with remodeling of an existing pore (type 2 pores), and (iii) in the latter case, whether or not
the new remodeling event leads to the coalescence of pores. Of note, the advantage of this classification is to relate porosity with its
generation mechanism. Third, it demonstrates that aging and porosity are correlated with: a shift from type 1 to type 2 pores,
reflecting that the remodeling of existing pores is higher; an accumulation of eroded type 2 pores, reflecting an extended resorption-
reversal phase; and a coalescence of these eroded type 2 pores into enlarged coalescing type 2 cavities. Collectively, this study
supports the notion, that age-related increase in cortical porosity is the result of intracortical remodeling sites upon existing pores,
with an extended reversal-resorption phase (eroded type 2 pores) that may likely result in a delayed or absent initiation of the
subsequent bone formation. © 2017 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals Inc.
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Introduction

ortical bone has been investigated for more than 300
Cyears(u) and has been at the origin of our present
perception of the bone remodeling process, establishing that
bone resorption precedes bone formation.® Still, very little is
known about the critical events contributing to the loss of
cortical bone during aging, causing an increased cortical
porosity and a reduced cortical thickness.”™ The increased
cortical porosity is undoubtedly due to an age-related dysfunc-
tion in the intracortical bone remodeling process, which under

physiological conditions renews cortical bone matrix in order to
maintain its mechanical properties throughout life.®? The
nature of this dysfunction in the remodeling process remains still
to be resolved.

The intracortical bone remodeling is often referred to as
Haversian remodeling and classically depicted as a cutting cone
with bone resorbing osteoclasts excavating a canal, which is
refilled by the coupled closing cone with bone forming
osteoblasts subsequently refilling the canal until only a narrow
canal remains.*'® A recent study has elaborated on the
organization of the cutting cone, demonstrating that the initial
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penetrative resorption process carried out by densely packed
osteoclasts is followed by secondary resorption conducted by
scattered osteoclasts intermixed with osteoblastic reversal
cells."” This so-called reversal-resorption phase widens the
canal until bone formation is initiated."” This study further
highlights that a delayed initiation of bone formation leads to an
extended secondary resorption and hereby a wider resorption
space."” The extent of the space resorbed by each remodeling
event is delineated by its cement line, which is embedded in the
bone matrix during subsequent bone formation. In cross-
sections, the intracortical remodeling sites can be observed as
eroded pores, when in the initial resorption phase or the
reversal-resorption phase, or as formative or quiescent pores of
osteons, when the bone formation was ongoing or terminated.
In cross-sectioned osteons, the extent of area that underwent
resorption is delineated by a cement line, on which the new
bone is deposited.

Cancellous and cortical bone loss during aging and osteopo-
rosis has often been depicted to be the results of an insufficient
refilling of the resorbed cavities, due to premature termination
of bone formation.">'® Recent studies have, however,
demonstrated that cancellous bone loss in osteoporotic patients
and osteopenic animals may also be the result of delayed or
absent initiation of bone formation, causing an accumulation of
remodeling sites in the reversal-resorption phase,?°~>> as earlier
suggested by several authors.*?® In cortical bone, the
unanswered question is whether the reported increased cortical
porosity during aging results from: (i) a delayed or absent
initiation of bone formation as suggested by Parfitt'?”); or (ii) the
accumulation of enlarged quiescent pores of osteons, due to an
insufficient bone formation refilling of the resorbed space, a so-
called negative BMU balance"®?? as investigated by Melsen's
group.“z’m)

The present study is part of a larger effort to characterize the
intracortical remodeling events contributing to increased
cortical porosity during aging, in order to answer the latter
highlighted question. A novel histological classification of the
pores was designed, based on the characteristics of the
remodeling events shown at the level of these pores. This
includes the stage of the intracortical remodeling events at the
level of the histological section; their remodeling type, because
intracortical bone remodeling events may not only generate
new canals, but also remodel preexisting canals, as sporadically
reported a long time ago!'%3%-3% and recently illustrated using
synchrotron radiation pCT®>3®; and their position relative to
preexisting osteons. This classification integrates and embraces
many of the separate categories reported in the litera-
ture,(1%39-3436-39) put which are purely descriptive. In contrast,
the present classification has the advantage to relate porosity
with its generation mechanism, thus automatically showing
which biological characteristics contribute the most to age-
induced cortical porosity. The present study focuses on the
histological characteristics of the pores classified categories of
intracortical remodeling sites, their prevalence, size, and
contribution to the overall porosity and their association with
age and cortical porosity in iliac bone specimens from women.

Materials and Methods

Human bone specimens and sectioning

The intracortical bone remodeling was analyzed using undecalcified
methylmethacrylate-embedded iliac crest bone specimens taken

2 cm behind the left anterior superior spine from 35 women (aged
16-78 years) during a forensic examination due to a sudden
unexpected death. None of the women showed any clinical evidence
of metabolic bone diseases, nor received any drugs affecting the
calcium metabolism, thus considered representative of a normal
population.®® Cross-sections, 7-wm-thick, were cut, stained with
Masson’s trichrome,“® and exposed to a detailed histomorpho-
metric investigation. For the 3D-reconstruction, 80 consecutive 7-
pm-thick sections were cut from one iliac specimen. Every other
section was stained with Masson'’s trichrome, while the remaining
sections were immunostained for osteopontin.

The study was approved by the Medical Ethical Committee
Erasmus MC (2016-391) in compliance with the World Medical
Association Declaration of Helsinki-Ethical Principle for Medical
Research Involving Human Subjects.

Immunostaining

The methylmethacrylate-embedding on the sections was first
removed using a xylene/chloroform mixture and 2-methox-
yethyl-acetate followed by rehydration and decalcification in 1%
acetic acid. Afterward, the sections were blocked with 0.5%
casein (Sigma-Aldrich, Copenhagen, Denmark) in Tris-buffered
saline (TBS: 0.05M Tris-HCl [pH 7.6] + 0.15M NaCl) and an avidin/
biotin blocking kit (DAKO, Glostrup, DK). The sections were
immunostained with biotinylated goat anti-osteopontin anti-
bodies (BAF1433; R&D Systems, Minneapolis, MN, USA)""
diluted in Renoir Red (PD904; Biocare Medical, Concord, CA,
USA), which were detected with alkaline phosphatase-conju-
gated streptavidin (016-050-084; Jackson ImmunoResearch,
Suffolk, UK) and visualized with Liquid Permanent Red (DAKO,
Glostrup, DK). Finally, the sections were counterstained with
Mayer’'s hematoxylin and then mounted using Aquatex.

Histomorphometry

The analysis was performed on both cortices within a 6.5-mm-
wide zone, starting 20 mm from the iliac crest, as depicted in Fig.
1A. The analysis was restricted to a 6.5-mm-wide zone, in order to
have a sufficient, but manageable, number of pores per bone
specimen (mean 117 pores per bone specimen; range, 63-179
pores), which was placed with the largest distance as possible to
the less well defined cortex at the iliac crest. The border between
cortical and trabecular bone was carefully outlined based on both
the bones structure and the lamellae structure of the bone matrix
(Fig. 1B); making it possible separate the hemi-osteonal
remodeled trabecular bone from the osteonal remodeled cortical
bone.” The presence of marrow cells and adipocytes could not
be used to guide the border between the cortical and trabecular
bone, because their presence appeared primarily related to the
size of the pores, even when deeply embedded in the cortex.
Within this zone each pore/osteon, in total 4095, was given an
identification number and marked onto a printed map of the
cortices (Fig. 1B). By use of polarized light, the surrounding
lamellae and cement lines were clearly visualized (Fig. 2). Based on
the literature and the initial systematic histological investigation
of the intracortical pores/osteons, we realized that it was
appropriate to categorize the pores according to the character-
istics of the remodeling sites to which these pores were
associated. These characteristics included:

1. The remodeling type of the pores, either type 1 or type 2.
Pores were defined as type 1 pores when associated with a
resorptive area that had no overlap with the pore of an
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Fig. 1. General analysis of age-induced cortical porosity. (A) Both cortices of ilium bone specimens from 35 women were analyzed over the indicated
zone of 6.5 mm starting 20 mm from the iliac crest. (B) Each pore and its associated remodeling site was identified, measured, classified and marked onto
a map. The border between the cortical and trabecular bone is marked with a hatched line. (C-H) The cortical porosity (C) and mean pore diameter (D)
were positively correlated with age, the number of pores/area was not correlated with age (E), and the cortical thickness was negatively correlated with
age (F). The cortical thickness is the mean thickness of the inner and outer cortices together. The mean pore diameter was positively correlated with
porosity (G) and the number of pores/area showed no correlation with porosity (H). Each dot represents the measurements in a given individual. The
relationship between parameters was calculated using Pearson’s correlation: *p < 0.05, **p < 0.01, and ***p < 0.001. The curves represent the best-fitted
lines for each parameter.

existing parent osteon. These pores most likely reflected the
generation of new canals (Fig. 2). Pores were defined as type
2 pores when associated with a resorptive area that
overlapped with the estimated position of earlier pores of
existing parent osteons. These pores merely reflect the
remodeling of existing canals (Fig. 2).

The position of type 2 pores in relation to their parent
osteons in cortex (Fig. 2). Intra-osteonal type 2 pores (type
2in pores), when the pores resorption area was within the
cement line of the existing parent osteon; cement-line
breaking type 2 pores (type 2g« pores), when the pores
resorption area broke through the cement line of the
existing parent osteon; and osteon coalescing type 2 pores
(type 2co pores), when the pores resorption area over-
lapped with the pore of two or more existing parent
osteons.

The remodeling stage of the pores. Based on their surface
characteristics, all pores were further subtyped into 4
different categories according to their remodeling stage

(Fig. 3). Eroded pores (type E pores) had eroded surfaces, but
no presence of osteoid surfaces; mixed eroded and
formative pores (type EF pores) had both eroded and
osteoid surfaces; formative pores (type F pores) had osteoid
surfaces, but no eroded surfaces; while quiescent pores of
osteons (type Q pores) had a terminated remodeling/
formation and no signs of new erosions. Pores with
remodeling stage E to F (E-F) are collectively referred to
as pores with a non-terminated remodeling.

The pores diameters, areas, as well as their osteons diameters
were measured. The pore and osteon diameter was measured as
the diameter of the largest circle fitting within the pore, or its
associated osteon. This diameter has been reported to
correspond to the diameter of the largest ball than can be
inflated within the pores and osteons cylindrical structures in
three dimensions, even when they were oblique cut." Here it
was critical that the observer detected the cement line of the
most recent event at each remodeling site, and not the cement
line from earlier events at the same site. Here, the mapping and
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Fig. 2. Histological appearance and classification of eroded pores that reflect the reversal-resorption phase of new intracortical remodeling sites. The
micrographs are from Masson'’s Trichrome stained section under polarized light. The eroded type 1 pores were classified as those having a resorption
area that showed no overlap with pores of existing osteons, corresponding to new pores generated by penetrative resorption. Some of the pores
originating from a penetrative resorption were classified as eroded cement-line breaking type 2 pores, as their resorption area expanded upon the pore
of an existing osteon. The eroded type 2 pores were classified as those having a resorption area that overlapped with pore of an existing osteons,
corresponding to the remodeling of an existing pore. The eroded type 2 pores that were within the cement line of the existing parent osteon were
classified as eroded intra-osteonal type 2 pores. The eroded type 2 pores having a larger resorption area breaking the cement line of the existing parent
osteon were classified as eroded cement-line breaking type 2 osteons, while those having an even later resorption that overlapped with the pore of two
or more existing parent osteons were classified as eroded osteon coalescing type 2 pores. Scale bars =25 pm.

validation of the pores category and measurements by two
observers was essential to prevent this potential mistake. The
observers were not independent, as the second observer
systematically reviewed the analysis conducted by the primary
observer. Upon disagreement, the specific pore was discussed until

consensus was reached. The completely sealed pores and their

associated remodeling sites were also included in the analysis.”
Finally, the cortical tissue and pore areas were measured using
a point grid, and subsequently used to calculate the cortical

porosity, thickness, and density of pores (number of pores per
cortical area). The investigated sections were blinded prior to the
analysis.

3D reconstruction

The 3D reconstructions of representative type 1 and type 2 pores
were based on micrographs of 80 alternating Masson's
trichrome-stained and osteopontin-immunostained consecutive
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sections obtained from one iliac bone specimen. The 80
sections/micrographs represent 560 um of the cortex along
the axis of the intracortical canals. The micrographs were
stacked, aligned and selected type 1 and 2 events/pores were
converted into 3D structures of type 1 and 2 remodeled canals
using Amira software version 5.4.1 (FEl, Hillsboro, OR, USA), as
described.“?

Statistical analysis

Age and porosity associations of the mean percentage of the
pore number or the porosity corresponding to given pore
types in each of the 35 women were statistically compared
using Pearson’s correlation test (r,) or Spearman’s (r)
correlations test. The statistical significance of the differences
between the proportion of the different pore types and their
contribution to the porosity and pore diameter was assessed
using a Student’s t test or a Mann-Whitney test when two
types were compared, and a Kruskal-Wallis test followed by a
Dunn’s posttest when more than two types were compared.
The D’Agostino and Pearson Omnibus normality test was used
to address whether the percentages were normally distrib-
uted. The statistical analysis and graphs were all prepared in
GraphPad Prism, version 6 (GraphPad Software Inc., La Jolla,
CA, USA).

Results

The detailed histological investigation of the cortical bone of
iliac bone specimens from 35 women included collectively 4095
pores/osteons. All the identified pores/osteons were mapped, as
depicted in Fig. 1, and classified according to the characteristics
of the associated remodeling site, as presented in Figs. 2 and 3.
The identified 2D remodeling sites provided a cross-sectional
status of the 3D intracortical remodeling events generating or
remodeling the pores as they passed through the plane of the
histological sections, and the respective pores contribution to
the cortical porosity.

An increased pore diameter and not pore density
associates with increased cortical porosity during aging

The investigated iliac bone specimens had a significant age-
associated higher cortical porosity (Fig. 1C) and smaller
cortical thickness (Fig. 1F). The higher cortical porosity with
age seemed primarily to be the result of a larger pore
diameter rather than a higher pore density, because only
the mean pore diameter correlated positively with age and
porosity (Fig. 1D, G), while the pore density (number of
pores per area) showed no correlation with age or porosity
(Fig. 1E, H).

Classification and diameter of pores according to their
remodeling type, stage, and position

The investigation included all cross-sectional pores of the
vascularized intracortical canal network composed of both
Haversian and non-Haversian canals. A total of 4095 pores were
investigated in the 35 iliac specimens, giving a mean of 117
pores per specimen (range, 63-179 pores). The pores were not
classified according to whether they reflect Haversian or non-
Haversian canals, but according to their remodeling type, stage,
and position, as described in the Materials and Methods section
and in Figs. 2 and 3.

The intracortical remodeling is initiated by a resorption
phase, conducted by bone-resorbing osteoclasts, which is
followed by a mixed reversal-resorption phase; where the
eroded bone surface is colonized by mononucleated osteo-
blastic reversal cells intermixed with scattered osteoclasts,
expanding the resorbed area. Intracortical pores reflecting
new 2D remodeling sites in the initial resorption phase or
subsequent the reversal-resorption phase are identified as
eroded pores (type E pores) with new eroded surfaces. These
eroded pores are either generated by a penetrative
resorption, generating a new eroded pore (type 1E pore)
having no overlap with the pore of an existing osteon, or by
resorption within a quiescent intracortical surface, generating
an eroded pore upon the pore of an existing osteon (type
2E pore) (Fig. 2).

The eroded type 2 pores were further categorized
according to their resorption areas position relative to their
parent osteons. The eroded type 2 pores having a small
resorption area were often classified as eroded intra-osteonal
type 2 pores (type 2E,\ pores), as they were within the cement
line of the parent osteon (Fig. 2). The eroded type 2 pores
having a larger resorption area that expanded beyond the
cement line of the parent osteon was classified as eroded
cement-line breaking type 2 pores (type 2Egk pores) or as
eroded osteon coalescing type 2 pores (type 2Eco pores), if
they expanded upon the pores of additional existing osteons
(Fig. 2). Note that pores that originate from a penetrative
resorption may also be classified as type 2Egg or 2Eco pores, if
their resorption area had expanded upon the pores of
existing osteons (Fig. 2).

As the eroded pores enter the formation phase, the pores first
have both eroded and osteoid (formative) surfaces (type EF
pores) and then eventually solely osteoid (formative) surfaces
(type F pores) (Fig. 3). The pores with a terminated bone
remodeling were classified as quiescent pores (type Q pores)
(Fig. 3). In the formative and quiescent pores the remodeling
type and position were defined based on their original
resorption area, which were outlined by their osteons cement
line (Fig. 3).

The diameter of the pores was highly variable and dependent
on the pores classification (Fig. 4A). In general, type 2 pores had a
significantly larger median diameter than type 1 pores. Within
type 1 pores, type 1EF pores had the largest median diameter.
Within type 2 pores, type 2E and 2EF pores had the largest
median diameter, whereas type 2Q pores had the smallest
median diameter. Moreover, type 2¢o pores had a significantly
larger median diameter than type 2g¢ pores, which then again
had a significantly larger median diameter than type 2,y pores.
Of note, the enlarged type 2Eco and 2EFo pores often had a
very irregular shape (Fig. 4B, C). From a 3D perspective, type 2Eco
pores reflect enlarged eroded cavities, leading to the coales-
cence of multiple canals, which are interconnected with
neighboring canals (Fig. 4D). This eroded cavity is much larger
than the adjacent narrow canal corresponding to type 1Q pores
(Fig. 4D).

Type 2 pores contribute more than type 1 pores to the
age-induced cortical porosity

In the iliac bone specimens from 35 women, the majority of the
pores were type 2 pores (Fig. 5A). The proportion of type 2 pores
showed a significant positive correlation with the age of the
women and the specimen’s cortical porosity, while the
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prevalence of type 1 pores showed a significant negative Pores with a non-terminated remodeling contributes
correlation with age and cortical porosity (Fig. 5B). Here the ratio more than quiescent pores with a terminated

between number of type 2 and type 1 pores (type 2/type 1 ratio) remodeling to age-induced cortical porosity

increased significantly with the age of the women and the

specimen’s cortical porosity (Supplementary Table 1). Type 2 Of the investigated pores, 77% were quiescent pores (type Q
pores appeared to reflect a larger proportion of the porosity pores), having a terminated bone remodeling, while merely
than the proportion of pores, as the type 2 pores were larger 23% were eroded to formative pores (type E-F pores), having
than the type 1 pores (Fig. 5C). Accordingly, the type 2 pores a non-terminated remodeling (Fig. 5E). Considering the pores
contribution to the porosity showed a positive correlation with contribution to the porosity, type E-F pores contributed to
both age and porosity, whereas the contribution of type 1 pores 67% of the porosity (Fig. 5G), while their cumulative pore
showed a negative correlation with both age and porosity (Fig. area reflected 5.4% of the cortical tissue area. The ratio
5D). A minor fraction of the investigated pores (median 1.3%) between the number of type E-F pores and type Q pores
and their contribution to the porosity (median 2.2%) could not showed no correlation with age, but a significant positive
be categorized due to unclear lamellar structures or small folds correlation (p < 0.001) with cortical porosity (Supplementary
in the sections (Fig. 5A, Q). Table 1).

B 612 ANDREASEN ET AL. Journal of Bone and Mineral Research



100~
804
60+

40-

% of pores

20+

@)

100+

% of porosity
» [<2] [
e e °

N
o
1

o
L

G

100~

% of porosity
B (=2 (-]
i A

N
e

st
A A
P AA%,
%, 00 Ap
RVTo Aasaat
00, 00 AAAA
et 4
00
[¢]
T T T
Type1 Type2 ?
AA
AAAAAA
Apand
< o0
0
<

Type1 Type 2 ?
Vvyvv
°p i
A Tvv
= A W
o A
LAY E@:‘ _@_ v
E-F Q E-F Q
Type 1 Type 2
A AA
A
A:% VV
2aaty
A v
AAAAA \CALY
a Aagpnd vw"vv
0%%00 =ete== I YN V'V;W
QOOO,
E-F Q E-F Q
Type 1 Type 2

——Type 1: r,=-0.55"** ~>=Type 1: r,=-0.35*

100+ =#=Type 2:1,=0.59"*" ~#r=Type 2: r,=0.36"
804 A A A

@ LA > A Ai“ A

® 604 Aé AL 4 7

° ° g 3

(=X

% 40 oggg-._o_ A 5 8

° o T 2 PR

S~ 20- ¢ 00 < 39 i4 % %goo © 4

{1 S PP
20 40 60 80 0 5 10 15 20 25
Age (years) Porosity (%)

——Type 1:r,=-0.54"*
==~ Type 2: r,=0.53**

=o=Type 1: r,.=-0.59"**
~4r=Type 2: r=0.61"**

] sppar i g
- A
a 80 A‘ AA A A AAAA A
= A
g go{ &
S
g‘ 40
s g © ®
R 20 L0 e ° @S o
% %S o O& s
0....3??..?.‘.9.2..0..0?.78 R AN STPI
20 40 60 80 0 5 10 15 20 25
Age (years) Porosity (%)
F ——Type 2E-F: 1,=0.46* || =A=Type 2E-F: r,=0.57***
80+ | ~¥-Type 2Q: r,=0.35* -¥=-Type 2Q: r,=-0.06™
604 Yy w Y
n v vyy
2 Vv v -V- _‘. _V ywv v v
8.40. W v A il R
“ v X VX
° YV v, v VY A
X b as T A
20+ A Zy AA
B & *
3 T
20 40 60 80 0 5 10 15 20 25
Age (years) Porosity (%)

% of porosity

—&=Type 2E-F: r,=0.68***
-¥=Type 2Q: r.=-0.50**

—=Type 2E-F: 1,=0.44**
~¥=-Type 2Q: r,=-0.24"

100+
A A AA A
80+ v AA:A A A AX:A 4
A AA 7 A A
60 &' L A
40 v .
- A
Yot s VY Ry
AL R L AS
204 wa 'Y : v v v A VVQVVY.V
0 VY y Y g v Vv, ;\'v
20 40 60 80 O 5 10 15 20 25
Age (years) Porosity (%)

Fig. 5. Incidence of the pore types classified as shown in Figs. 2 and 3 and their contribution to the overall porosity in the iliac bone specimens of 35
women, as well as these parameters correlation with the women's age and the iliac specimens overall porosity. Each dot represents the measurements in
a given specimen/women, the horizontal lines indicate the median for each type (A, C, E, G), and the curves in represent the best fitted-lines (B, D, F, H). (A-
D) Type 1 versus type 2 pores. The type 2 pores were more prevalent (A) and contributed more to the pore area (C) than type 1 pores, and their prevalence
(B) and pore area (D) was positively associated with age and porosity, while the prevalence (B) and pore area (D) of type 1 pores were negative associated
with age and porosity. (E-H) Type E-F versus Q pores subdivided according to their remodeling type. The type Q pores were most prevalent (E), but the
type 2E-F pores had the largest contribution to the pore area (G). Both the type 2E-F pores prevalence (F) and pore area (H) were positively associated with
age and porosity. (A, C, E, F) Statistical significant differences between the incidence of pore types as well as their contribution to the overall porosity were
calculated by a Student's t test (A), a Mann-Whitney test (C) and a Kruskal-Wallis test followed by a Dunn'’s posttest (E, F): dotted line, p < 0.05; line,
p < 0.001. (B, D, E, F) The pore types prevalence and contribution to porosity association with age and porosity were calculated using a Spearman rank
correlation test or a Pearson’s correlation test: *p < 0.05, **p < 0.01, ***p < 0.001.
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In Fig. 5E-H, type E-F and Q pores were categorized into type 1
and 2 pores. The majority of both type 1 and 2 pores were type Q
pores (Fig. 5E). The prevalence of both type 2Q and type 2E-F
pores increased significantly with age, whereas only the
prevalence of type 2E-F pores showed a positive correlation
with cortical porosity (Fig. 5F). Considering the pores contribu-
tion to the cortical porosity, type 2E-F pores contributed
significantly more to the porosity than type 1 and type 2Q pores
(Fig. 5G). In fact, only type 2E-F pores showed a higher
contribution to the porosity with age and a positive correlation
with the overall cortical porosity, whereas type 2Q pores showed
a negative correlation with porosity and unchanged with age
(Fig. 5H).

Eroded type 2 pores contribute more than formative
type 2 pores to age-induced cortical porosity

When subcategorizing type 2E-F pores according to their
remodeling stage, 54% of these type 2E-F pores were eroded
pores (type 2E pores), while 18% were mixed eroded and
formative pores (type 2EF pores) and 28% were formative pores
(type F pores) (Fig. 6A). This corresponded to a median ratio of
1.20 between the number of type 2E pores relative to the
number of type EF and F pores (Supplementary Table 1). The
prevalence of both type 2E and 2EF pores had a positive
correlation with age and porosity, while the prevalence of type
2F pores remained unchanged (Fig. 6B). The ratio between type
2E pores over type 2EF and 2F pores was significant higher with
age, but not correlated with cortical porosity (Supplementary
Table 1). Similarly, a median ratio of 1.33 was obtained when not
dividing the pores into type 1 and 2 pores. This ratio was also
significantly positive correlated with age, but no correlated with
cortical porosity (Supplementary Table 1).

When considering the contribution of type 2E-F pores to the
porosity, type 2E pores reflected 74% of their contribution and
35% of the overall cortical porosity (Fig. 6C). Only the type 2E
pores contribution to the porosity had a positive correlation
with age and porosity. On the other hand, the contribution of
type 2F pores had a negative correlation with age (Fig. 6D).

The generation of enlarged eroded osteon coalescing
type 2 pores contributes significantly to age-induced
cortical porosity

All type 2E pores were further subcategorized according to their
resorption areas position relative to the existing parent osteons,
as illustrated in Fig. 2. Most of the type 2E pores (62%) were
eroded intra-osteonal type 2 pores (type 2Ey pores), while 25%
were eroded cement-line breaking type 2 pores (type 2Egg
pores) and 13% were classified as eroded osteon coalescing type
2 pores (type 2Eco pores). The prevalence of the three positions
of type 2E pores increased significantly with age and porosity
with the exception of type 2E,y pores, which was not correlated
with cortical porosity (Fig. 6F).

Considering the different type 2E pores subcategories
contribution to the cortical porosity, there were no significant
difference between the different subcategories of type 2E pores
contribution to the cortical porosity, as their contribution was
highly variable between the different specimens (Fig. 6G). Here
49% of the type 2E pores contribution to the porosity reflected
type 2Eco pores (Fig. 6G). Only the type 2Eco pores contribution
to the cortical porosity had a positive correlation with age and
cortical porosity, while the type 2Ey and 2Egg pores contribution
had no correlation with age or porosity (Fig. 6H).

Discussion

Several studies have shown that during aging cortical bone
becomes increasingly porous and thinner due to a dysfunctional
intracortical bone remodeling. The present study establishes a
novel classification of the pores contributing to cortical porosity,
taking into consideration the characteristics of the associated
remodeling sites. Owing to this classification, the study
demonstrates that the accumulation of eroded pores upon
pores of existing osteons (type 2E pores) is the main contributor
to age-induced increase in the iliac cortical porosity. Moreover,
these accumulating eroded type 2 pores expand their resorptive
area, forming enlarged eroded osteon coalescing type 2 pores/
cavities, which have a major contribution to the increased
cortical porosity during aging in women, as summarized in Fig. 7
and discussed below.

Increased pore diameter, not density, contributes to
increased cortical porosity with age

The present study first showed that iliac cortical bone from
women had a higher cortical porosity together with lower
cortical thickness with age, as previous shown in cortices from
iliac,”*? femur,">*% and rib.*>4® Importantly, the increased
cortical porosity, as well as the women'’s age, was associated
with an increased pore diameter, and not associated with an
increased pore density. This highlights that the age-induced
increased cortical porosity in the investigated iliac specimens is
the result of an increased pore size, not an increased pore
density, which is in line with previous studies of the femur
midshaft.>44%47-49) Moreover, this supports that the overall age-
induced changes in the cortical porosity in the iliac specimens
resamples the age-induced changes reported in the femur
midshaft.

Classification of the intracortical remodeling sites of
pores contributing to cortical porosity

In order to investigate the intracortical remodeling sites
generating the pores contributing to age-induced cortical
porosity, we established the described classification of the
intracortical pores and their associated remodeling site. The
three criteria included in this classification is the outcome of a
very comprehensive and detailed histological investigation of all
4095 pores in the 35 women and their associated intracortical
remodeling sites within the investigated cortices. This was only
possible because each pore was carefully mapped on a printed
map of the cortex, making it possible to trace back the individual
pores. The three classification criteria reported in this study link
many of the selective criteria previously reported in the
literature.(1030-3436-3950-52) Mot importantly, the classification
takes into account that the intracortical remodeling sites not
only generate new pores (type 1 pores), but also remodel
existing pores (type 2 pores), 2034363839 55 well as the
remodeling stage of the pores.'%1452)

The classically depicted intracortical remodeling events,
initiated by a penetrative cutting cone generating a new canal
were in the cross-sections classified as type 1 pores. The eroded
type 1 pores reflected these remodeling events that were in the
recent reported reversal-resorption phase''” when passing
through the plane of the investigated histological cross section.
The eroded type 1 pores had a resorption area that within the
plane of the histological cross-sections had expanded upon the

(10,27)
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pore of an existing osteon were classified as eroded cement-line
breaking type 2 pores, even though they did not originate from
erosion within an existing pore at this plane of the histological
section. When the remodeling events generating a new canal
entered the formation phase within the plane of the histological

section, they were classified as formative type 1 pores, and
quiescent type 1 pores, when the remodeling was terminated.
Although, 38% of the pores were identified as a type 1 pore they
only contributed to 9% of the porosity, as they were in general
smaller than the type 2 pores. The remodeling sites generating
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type 1 pores identified in the present study are not directly
comparable with the previous reported type | remodeling
sites®93239) or single-zoned osteons,®" which seems to include
the pores categorized as cement-line breaking or osteon
coalescing type 2 pores.

The remodeling of existing pores was originally observed in
human ribs by Jaworski and colleagues,®*® who reported the
existence of small erosion widening an otherwise inactive old
Haversian system. Similar small erosions have also been referred
to as type |l resorption cavities,®? and reported to remain within
the boundaries of the parent osteons, as the eroded intra-
osteonal type 2 pores in the present study. When undergoing
bone formation, these pores are characterized as formative
intra-osteonal type 2 pores, reflecting the previous reported
type Il forming osteons.*? When bone formation was
terminated, these pores were characterized as quiescent intra-
osteonal type 2 pores, which correspond to the previous
reported new osteons in old osteons,*%333>1 double-zoned
osteons,®'>® and type Il osteons.**3® Collectively, these intra-
osteonal type 2 pores corresponded to 37% of the identified
type 2 pores.

Importantly, the resorption area of the eroded type 2 pores
may expand beyond the cement lines of the parent osteons,
forming eroded cement-line breaking type 2 pores. The
cement-line breaking type 2 pores corresponded to 51% of the
type 2 pores and to 34% of the overall porosity. These cement-
line breaking type 2 pores may likely reflect cross-sections of
so-called “breakout zones."®*3>39 These breakout zones were
described in 3D histological tracings of remodeling events in
serial cross-sections of cortical bone from dogs, baboons, and
humans,®® as well as synchrotron radiation wCT scans of
human midshaft femur.®>3® Here the pores resampling the
cement-line breaking type 2 pores were reported to reflect the
graduate transition (breakout) from intra-osteonal type 2
pores to type 1 pores, and vice versa. Indeed, one may argue
that all remodeling events observed as type 1 pores within the
plane of the histological section from a 3D perspective must
originate from events initiated on the surface of existing
canals, or from events penetrating in from the endosteal or
periosteal surface.®®

The resorption area of some eroded cement-line breaking
type 2 pores expanded upon multiple pores of existing osteon,
forming enlarged eroded osteon coalescing type 2 pores. These
pores may potentially also originate from the coalescence of
adjacent eroded cement-line breaking type 2 pores, as the pores
with an active remodeling have been reported to occur in
clusters.®® Furthermore, these pores may, in part, reflect so-
called composite osteons, which were reported to result from
coalescence of multiple osteons.®? Still, the composite osteons
were originally described as formative and quiescent pores, and
not as eroded pores.*® Nevertheless, one may indeed argue
that a great part of originally described quiescent composite
osteons actually were coalescing due to new erosions, as the
eroded osteon coalescing type 2 pores in this study. Here one
should note the similarity between the eroded osteon
coalescing type 2 pore illustrated in Fig. 4B and the quiescent
composite osteon illustrated by Bell and colleagues.®”
Moreover, the composite osteons with formative surfaces may
also still have a lot of eroded surfaces. Interestingly, the eroded
and mixed eroded and formative osteon coalescing type 2 pores
investigated in this study had the largest median diameter
among the different categories of pores. This is again in line with
the previous investigated composite osteons, which were

reported to reflect 83% of the so-called giant canals, having a
diameter above 385 wm, in the human femur neck.®%

Collectively, the categories included in the present study link
many of the previous reported criteria and terminologies used to
describe the pores and osteons. This provides a robust and
integrated classification of the pores and osteons according to
the associated intracortical remodeling sites, which pinpoints to
the biological events generating the pores contributing to
increased cortical porosity during aging.

Age-induced cortical porosity results mainly from the
accumulation of eroded type 2 pores

Owing to this novel classification, the current study was able to
stepwise pinpoint the remodeling type and stage of the pores
having a major contribution to the age-induced increase in
cortical porosity.

First, the study revealed that aging and the associated
increased cortical porosity were strongly associated with a shift
in the pores remodeling type from type 1 to type 2. Type 2 pores
were in general larger than type 1 pores, and the type 2 pores
did not reflect the generation of new pores, as the case for type 1
pores. Indeed, the generation of osteon coalescing type 2 pores,
corresponding in part to the composite osteons®?; actually
reduce the density of pores. Collectively, this may explain why
the pore size increased and the density of pores was unchanged
with age and porosity in the present study of iliac cortical bone
and in previous studies of the femur midshaft.**#*4=*%) From a
3D perspective this implies that the intracortical remodeling
events initiated on surfaces of existing canals with age to a less
extent branch off and form new canals, observed as type 1
pores.G>39)

Second, the study revealed that those type 2 pores
contributing the most to the cortical porosity with aging were
preferentially pores with a non-terminated remodeling. This is in
line with the notion that the intracortical bone turnover
gradually increase with age and especially after meno-
pause.'>'? still, the quiescent type 1 and 2 pores having a
terminated remodeling were more prevalent than those with a
non-terminated remodeling, and the prevalence of quiescent
type 2 pores had a positive correlation with age. On the contrary,
these quiescent pores seemed only to have minor contribution
to the porosity during aging. This negligible contribution of the
quiescent pores with a terminated remodeling to the age-
induced cortical porosity, questions the importance of the
previous reported negative BMU balance between the extent of
resorption and formation in these quiescent pores to the age-
induced cortical porosity.">'¥ Importantly, these studies did
not consider that the remodeling may occur upon existing
pores, meaning that they may have overestimated the quiescent
pores most recent final resorption area; ie, osteon diameter.
Future studies reassessing the extent of resorption, formation
and the BMU balance between the two within the osteons of
quiescent pores, taking into consideration the remodeling type,
are therefore needed; in order to fully understand the effect of
aging on the BMU balance and its contribution to age-induced
cortical porosity.

Third, the study revealed that type 2 pores with a non-
terminated remodeling cumulating during aging preferentially
were eroded type 2 pores, corresponding to remodeling sites in
the reversal-resorption phase. Importantly, the prevalence of
formative type 2 pores was lower than the eroded type 2 pores
and unchanged with age and porosity, while their contribution
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to the porosity actually was lower with age. In other words, there
were more eroded pores than formative pores, and the ratio
between the two was actually higher with age, as previous
reported.*”*¥ This ratio is greatly in conflict with the notion that
the short initial resorption phase and longer mixed reversal-
resorption phase roughly takes weeks and the formation phase
takes months.?” According to this notion, one should expect a
ratio around 0.25 and not the ratio of 1.33 obtained in the
current study. Assuming that the investigated cortices have a
steady-state remodeling or only a graduate increase in bone
turnover, it implies that the reversal-resorption phase in general
takes longer time than the formation phase. On the other hand,
it could also imply that the reversal-resorption phase is
extensively prolonged at given remodeling sites, while other
may still have a much shorter “normal” reversal-resorption
phase. As the reversal-resorption phase ends when the bone
formation is initiated, the prolonged reversal-resorption phase
must be directly linked with a delayed initiation of the
subsequent bone formation, which recently was reported to
be controlled by the recruitment rate of osteoprogenitor cells
during the reversal-resorption phase."" A direct example of an
intracortical remodeling event with a prolonged reversal-
resorption phase was previously reported by Tappen,®® who
traced intracortical canals in serial cross-sections of a human rib.
One of these canals was covered with eroded surfaces
throughout the entire sequence of 3000 um, while only a short
sequence of 300 wm had signs of bone formation on one wall. In
cancellous bone, a similar accumulation of eroded surfaces
reflecting a prolonged reversal-resorption phase has been
reported to contribute to the bone loss in elderly, as well as in
osteoporotic patients and animal models.(20-2224-26.55.56)

Eroded type 2 pores coalesce into enlarged eroded
cavities with age

Owing to the classification, the present study was able to show
that aging and the related increased cortical porosity was
associated with the generation of eroded osteon coalescing
type 2 pores, forming enlarged 3D cavities within the cortex.
Even though these eroded osteon coalescing type 2 cavities
represented only a small percentage of the total number of
pores, they had a major contribution to the overall porosity,
especially in the investigated elderly women. The enlarged
resorption area of these cavities may likely be the result of a
prolonged reversal-resorption phase, which was recently linked
to an extended radial resorption.(”) Moreover, these cavities
may, in part, reflect the giant canals/pores with a diameter above
385 pm described by Bell and colleagues,®” whose prevalence
increased with age in the femur midshaft of both men and
women, and which were more prevalent in the anterior part of
the femur neck cortex of female fracture patients compared to
controls.®”>® The enlarged eroded osteon coalescing type 2
cavities may also, in part, reflect the enlarged, coalescing and
irregular shaped pores illustrated in the endosteal part of
femoral cortex of elderly.*® Indeed, the latter pores may
originate from or directly reflect eroded osteon coalescing type
2 cavities reported in the current study, highlighting that these
latter pores may be the result of a prolonged reversal-resorption
phase due to a delayed or absent initiation of bone formation.""

Limitations of the study

A limitation of the present study was the age distribution of
the women from which the iliac bone specimens were

obtained and the number of specimens included. Here
especially the limited number of samples from women aged
40 to 60 years made it impossible to address whether
menopause had any additive effect that were independent of
the women'’s age, which accordingly was not within the scope
of this study. Moreover, additional samples may have
improved the significance of the correlations, but it is unlikely
that the inclusion of additional samples would affect the main
conclusions drawn in this study. In addition, one needs to
validate whether the age-induced cortical porosity varies
between different skeletal sites and between the genders, or
whether the findings of the current study are representative
for all skeletal sites and both genders. Future studies are
warranted to address the variability in the age-induced cortical
porosity between skeletal sites and genders, as well as the
effect of menopause in women using the pore classification
established in the present study.

Conclusion

Collectively, the present study shows that age-induced cortical
porosity reflects an increased pore size rather than increased
pore density in iliac cortical bone in women. Furthermore, the
study establishes a novel classification of the intracortical
pores used to investigate their generation and modulation,
which is designed to identify the critical intracortical
remodeling events responsible for age-induced cortical
porosity. Owing to this classification, the study demonstrates
that the age-induced cortical porosity in the investigated iliac
specimen is mainly the results from cumulative eroded pores
that originate by erosion upon existing canals (type 2 pores)
and coalesce into enlarged cavities. Here, the cumulative
eroded pores reflect that the reversal-resorption phase of the
intracortical remodeling events is in general prolonged,
leading to a delayed or absent initiation of bone formation.""
In a wider perspective, these results support the notion that
the transition from the reversal-resorption phase to the
formation phase is a critical step in physiological bone
remodeling, and that its absence is a major contributor to
bone loss during aging and osteoporosis.

Disclosures

All authors state that they have no conflicts of interest.

Acknowledgments

This work was supported by The Velux Foundation (VE-
LUX34368) and the Danish Southern Region Research Grant
(15/24851). We thank Birgit MacDonald and Kaja Sendergaard
Laursen for their outstanding technical assistance, Dorie
Birkenhager-Frenkel and Alex Nigg from the Department of
Pathology at Erasmus MC for collecting the bone
specimens.©”

Author’ roles: The study was designed by CMA and TLA. The
ethical approval and data handling related to the bone
specimens was conducted by BE and JL. The analysis was
conducted by CMA and TLA, whom also take the responsibility
for the integrity of the data analysis. The data was analyzed by
TLA and interpreted by CMA, JMD and TLA. The manuscript was
drafted by CMA and TLA, and revised by all authors, whom also
approved the final version.

Bl 618 ANDREASEN ET AL.

Journal of Bone and Mineral Research



References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. Havers C. Osteologia nova, or some new observations of the bones.

London: Smith; 1691. Available from: https://archive.org/details/
osteologianovaorOOhave.

. Leeuwenhoeck A. Microscopical observations of the structure of

teeth and other bones: made and communicated, in a letter by Mr.
Antohony Leeuwenhoeck. Philos Trans R Soc Lond. 1677;12:1002-3.
Available from: http:/rstl.royalsocietypublishing.org/content/12/
140/1002.extract. DOI:10.1098/rstl.1677.0052.

. Hattner R, Epker BN, Frost HM. Suggested sequential mode of

control of changes in cell behaviour in adult bone remodelling.
Nature. 1965;206(983):489-90.

. Epker BN, Frost HM. A histological study of remodeling at the

periosteal, haversian canal, cortical endosteal, and trabecular
endosteal surfaces in human rib. Anat Rec. 1965;152(2):129-35.

. Seeman E. Pathogenesis of bone fragility in women and men.

Lancet. 2002;359(9320):1841-50.

. Hansen S, Shanbhogue V, Folkestad L, Nielsen MM, Brixen K. Bone

microarchitecture and estimated strength in 499 adult Danish
women and men: a cross-sectional, population-based high-resolu-
tion peripheral quantitative computed tomographic study on peak
bone structure. Calcif Tissue Int. 2014;94(3):269-81.

. Bach-Gansmo FL, Bruel A, Jensen MV, Ebbesen EN, Birkedal H,

Thomsen JS. Osteocyte lacunar properties and cortical microstruc-
ture in human iliac crest as a function of age and sex. Bone.
2016;91:11-9.

. Frost HM. The skeletal intermediary organization. Metab Bone Dis

Relat Res. 1983;4(5):281-90.

. Parfitt AM. Osteonal and hemi-osteonal remodeling: the spatial and

temporal framework for signal traffic in adult human bone. J Cell
Biochem. 1994;55(3):273-86.

Johnson LC. Morphological analysis of pathology. In: Frost HM,
editor . Bone biodynamics. Boston: Little, Brown; 1964. p. 543-654.

Lassen NE, Andersen TL, Plgen GG, et al. Coupling of bone resorption
and formation in real time: new knowledge gained from human
Haversian BMUs. J Bone Miner Res. 2017;32(7):1395-405.

Brockstedt H, Kassem M, Eriksen EF, Mosekilde L, Melsen F. Age- and
sex-related changes in iliac cortical bone mass and remodeling.
Bone. 1993;14(4):681-91.

Vedi S, Tighe JR, Compston JE. Measurement of total resorption
surface in iliac crest trabecular bone in man. Metab Bone Dis Relat
Res. 1984;5(6):275-80.

Broulik P, Kragstrup J, Mosekilde L, Melsen F. Osteon cross-sectional
size in the iliac crest: variation in normals and patients with
osteoporosis, hyperparathyroidism, acromegaly, hypothyroidism
and treated epilepsia. Acta Pathol Microbiol Immunol Scand A.
1982;90(5):339-44.

Eriksen EF, Hodgson SF, Eastell R, Cedel SL, O’Fallon WM, Riggs BL.
Cancellous bone remodeling in type | (postmenopausal) osteopo-
rosis: quantitative assessment of rates of formation, resorption, and
bone loss at tissue and cellular levels. J Bone Miner Res.
1990;5(4):311-9.

Eriksen EF, Gundersen HJ, Melsen F, Mosekilde L. Reconstruction of
the formative site in iliac trabecular bone in 20 normal individuals
employing a kinetic model for matrix and mineral apposition. Metab
Bone Dis Relat Res. 1984;5(5):243-52.

Kragstrup J, Melsen F, Mosekilde L. Thickness of lamellae in normal
human iliac trabecular bone. Metab Bone Dis Relat Res.
1983;4(5):291-5.

Lips P, Courpron P, Meunier PJ. Mean wall thickness of trabecular
bone packets in the human iliac crest: changes with age. Calcif
Tissue Res. 1978;26(1):13-7.

Seeman E. Age- and menopause-related bone loss compromise
cortical and trabecular microstructure. J Gerontol A Biol Sci Med Sci.
2013;68(10):1218-25.

Andersen TL, Abdelgawad ME, Kristensen HB, et al. Understanding
coupling between bone resorption and formation: are reversal cells
the missing link? Am J Pathol. 2013;183(1):235-46.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Andreasen CM, Ding M, Overgaard S, Bollen P, Andersen TL.
A reversal phase arrest uncoupling the bone formation and
resorption contributes to the bone loss in glucocorticoid treated
ovariectomised aged sheep. Bone. 2015;75C:32-9.

Jensen PR, Andersen TL, Hauge EM, Bollerslev J, Delaisse JM. A joined
role of canopy and reversal cells in bone remodeling — Lessons from
glucocorticoid-induced osteoporosis. Bone. 2015;73:16-23.

Andersen TL, Hauge EM, Rolighed L, Bollerslev J, Kjaersgaard-
Andersen P, Delaisse JM. Correlation between absence of bone-
remodeling compartment canopies, reversal-phase arrest, and
deficient bone formation in post-menopausal osteoporosis. Am J
Pathol. 2014;184(4):1142-51.

Delaisse JM. The reversal phase of the bone-remodeling cycle:
cellular prerequisites for coupling resorption and formation. Bone-
key Rep. 2014;3:561.

Makris GP, Saffar JL. Disturbances in bone remodeling during the
progress of hamster periodontitis. A morphological and quantitative
study. J Periodontal Res. 1985;20(4):411-20.

Baron R, Magee S, Silverglate A, Broadus A, Lang R. Estimation of
trabecular bone resorption by histomorphometry: evidence for a
prolonged reversal phase with normal resorption in postmeno-
pausal osteoporosis and coupled increased resorption in primary
hyperparathyroidism. In: Frame B, Petts JT, editors. Clinical disorders
of bone and mineral metabolism. 4th ed. Amsterdam: Excerpta
Medica; 1983. p. 191-5.

Parfitt AM. The physiologic and clinical significance of bone
histomorphometric data. In: Recker R, editor . Bone histomorph-
ometry: techniques and interpretation. Boca Raton, FL: CRC Press;
1983. p. 144-222.

Kragstrup J, Melsen F, Mosekilde L. Thickness of bone formed at
remodeling sites in normal human iliac trabecular bone:
variations with age and sex. Metab Bone Dis Relat Res.
1983;5(1):17-21.

Riggs BL, Parfitt AM. Drugs used to treat osteoporosis: the critical
need for a uniform nomenclature based on their action on bone
remodeling. J Bone Miner Res. 2005;20(2):177-84.

Jaworski ZF, Meunier P, Frost HM. Observations on two types of
resorption cavities in human lamellar cortical bone. Clin Orthop
Relat Res. 1972;83:279-85.

Pankovich AM, Simmons DJ, Kulkarni VV. Zonal osteons in cortical
bone. Clin Orthop Relat Res. 1974(100):356-63.

Richman EA, Ortner DJ, Schulter-Ellis FP. Differences in intra-
cortical bone remodeling in three aboriginal American pop-
ulations: possible dietary factors. Calcif Tissue Int. 1979;28(3):
209-14.

Tappen NC. Three-dimensional studies on resorption spaces and
developing osteons. Am J Anat. 1977;149(3):301-17.

Parfitt AM, Mathews CH, Villanueva AR, Kleerekoper M, Frame B, Rao
DS. Relationships between surface, volume, and thickness of iliac
trabecular bone in aging and in osteoporosis. Implications for the
microanatomic and cellular mechanisms of bone loss. J Clin Invest.
1983;72(4):1396-409.

Arhatari BD, Cooper DM, Thomas CD, Clement JG, Peele AG.
Imaging the 3D structure of secondary osteons in human cortical
bone using phase-retrieval tomography. Phys Med Biol. 2011;56
(16):5265-74.

Maggiano IS, Maggiano CM, Clement JG, Thomas CD, Carter Y,
Cooper DM. Three-dimensional reconstruction of Haversian systems
in human cortical bone using synchrotron radiation-based micro-CT:
morphology and quantification of branching and transverse
connections across age. J Anat. 2016;228(5):719-32.

Bell KL, Loveridge N, Reeve J, Thomas CD, Feik SA, Clement JG.
Super-osteons (remodeling clusters) in the cortex of the femoral
shaft: influence of age and gender. Anat Rec. 2001;264(4)
:378-86.

Nyssen-Behets C, Duchesne PY, Dhem A. Structural changes with
aging in cortical bone of the human tibia. Gerontology. 1997;
43(6):316-25.

Ortner DJ. Aging effects on osteon remodeling. Calcif Tissue Res.
1975;18(1):27-36.

Journal of Bone and Mineral Research

UNDERSTANDING AGE-INDUCED CORTICAL POROSITY IN WOMEN

6190 W


https://archive.org/details/osteologianovaor00have
https://archive.org/details/osteologianovaor00have
http://rstl.royalsocietypublishing.org/content/12/140/1002.extract
http://rstl.royalsocietypublishing.org/content/12/140/1002.extract

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

Andersen TL, Sondergaard TE, Skorzynska KE, et al. A physical
mechanism for coupling bone resorption and formation in adult
human bone. Am J Pathol. 2009;174(1):239-47.

Andreasen CM, Delaisse JM, van der Eerden BCJ, et al. The balance
between bone resorption and formation during intracortical
osteonal bone remodeling: a study of transiliac bone biopsies
from women. J Bone Miner Res. 2016; 31 Suppl 1. [Poster session
presented at: Annual Meeting American Society for Bone and
Mineral Research (ASBMR); 2016 Sep 16—19; Atlanta, GA, USA; Poster
Sessions, Presentation Number: MO0257]. Available from: http://
www.asbmr.org/education/AbstractDetail?aid=99209603-5d86-
43bf-8789-92759a2ea9c¢5.

Parfitt AM. Age-related structural changes in trabecular and cortical
bone: cellular mechanisms and biomechanical consequences. Calcif
Tissue Int. 1984;36 Suppl 1:5123-8.

Thompson DD. Age changes in bone mineralization, cortical
thickness, and haversian canal area. Calcif Tissue Int. 1980;
31(1):5-11.

Bousson V, Meunier A, Bergot C, et al. Distribution of intracortical
porosity in human midfemoral cortex by age and gender. J Bone
Miner Res. 2001;16(7):1308-17.

Sedlin ED, Frost HM, Villanueva AR. Variations in cross-section area of
rib cortex with age. J Gerontol. 1963;18:9-13.

Barer M, Jowsey J. Bone formation and resorption in normal human
rib. A study of persons from 11 to 88 years of age. Clin Orthop Relat
Res. 1967;52:241-7.

Stein MS, Feik SA, Thomas CD, Clement JG, Wark JD. An automated
analysis of intracortical porosity in human femoral bone across age.
J Bone Miner Res. 1999;14(4):624-32.

Thomas CD, Feik SA, Clement JG. Increase in pore area, and not pore
density, is the main determinant in the development of porosity in
human cortical bone. J Anat. 2006;209(2):219-30.

Lerebours C, Thomas CD, Clement JG, Buenzli PR, Pivonka P. The
relationship between porosity and specific surface in human cortical
bone is subject specific. Bone. 2015;72:109-17.

50.

51.

52.

53.

54,
55.

56.

57.

58.

59.

60.

Bell KL, Loveridge N, Jordan GR, Power J, Constant CR, Reeve J.
A novel mechanism for induction of increased cortical porosity in
cases of intracapsular hip fracture. Bone. 2000;27(2):297-304.

Morgan JTJaCd. Observations on the structure and Development of
bone. Philos Trans R Soc Lond. 1853;143:109-39. Available from:
http://rstl.royalsocietypublishing.org/content/143/109.extract.
DOI:10.1098/rstl.1853.0004.

Agerbaek MO, Eriksen EF, Kragstrup J, Mosekilde L, Melsen F.
A reconstruction of the remodelling cycle in normal human cortical
iliac bone. Bone Miner. 1991;12(2):101-12.

Jordan GR, Loveridge N, Bell KL, Power J, Rushton N, Reeve J. Spatial
clustering of remodeling osteons in the femoral neck cortex: a cause
of weakness in hip fracture? Bone. 2000;26(3):305-13.

Jowsey J. Age changes in human bone. Clin Orthop. 1960;17:210-8.

Mosekilde L. Consequences of the remodelling process for vertebral
trabecular bone structure: a scanning electron microscopy study
(uncoupling of unloaded structures). Bone Miner. 1990;10(1):13-35.

Croucher PI, Garrahan NJ, Mellish RW, Compston JE. Age-related
changes in resorption cavity characteristics in human trabecular
bone. Osteoporos Int. 1991;1(4):257-61.

Bell KL, Loveridge N, Power J, Garrahan N, Meggitt BF, Reeve J.
Regional differences in cortical porosity in the fractured femoral
neck. Bone. 1999;24(1):57-64.

Bell KL, Loveridge N, Power J, Rushton N, Reeve J. Intracapsular hip
fracture: increased cortical remodeling in the thinned and porous
anterior region of the femoral neck. Osteoporos Int.
1999;10(3):248-57.

Zebaze RM, Ghasem-Zadeh A, Bohte A, et al. Intracortical
remodelling and porosity in the distal radius and post-mortem
femurs of women: a cross-sectional study. Lancet. 2010;
375(9727):1729-36.

Birkenhager-Frenkel DH, Courpron P, Hupscher EA, et al. Age-related
changes in cancellous bone structure. A two-dimensional study in
the transiliac and iliac crest biopsy sites. Bone Miner. 1988;
4(2):197-216.

620 ANDREASEN ET AL.

Journal of Bone and Mineral Research


http://www.asbmr.org/education/AbstractDetail?aid=99209603-5d86-43bf-8789-92759a2ea9c5
http://www.asbmr.org/education/AbstractDetail?aid=99209603-5d86-43bf-8789-92759a2ea9c5
http://www.asbmr.org/education/AbstractDetail?aid=99209603-5d86-43bf-8789-92759a2ea9c5
http://rstl.royalsocietypublishing.org/content/143/109.extract

