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This study investigated the antioxidant, antimicrobial and cytotoxic properties of a purified yerba mate polysac-
charide. The yerbamate polysaccharide showed a prominent antioxidant activity as evaluated by2,2-diphenyl-1-
picrylhydrazyl (DPPH•)-radical scavenging activity (IC50 = 1.25 ± 0.10 mg/mL), 3-ethyl benzothiazoline-6-
sulphonic acid (ABTS•+)-radical scavenging activity (IC50 = 0.41 ± 0.05 mg/mL), and hydroxyl scavenging ac-
tivity (IC50 = 3.36 ± 0.31 mg/mL). The antioxidant activity evaluated as the ferric ion reduction power (FRAP)
and oxygen radical absorbance radical assay (ORAC), expressed as trolox equivalents, were 20.84± 1.61 μMTE/-
mg and 556.30 ± 12.83 μM TE/mg, respectively. The purified yerba mate polysaccharide presented high antimi-
crobial activity against several bacterial and fungal strains; however, no cytotoxicity against all four tumorhuman
cell lines assessed.

© 2018 Elsevier B.V. All rights reserved.
Keywords:
Antioxidant activity
Antimicrobial activity
Polysaccharide
Yerba mate
1. Introduction

The yerba mate (YM) (Ilex paraguariensis A. St. Hil.) is a plant that
grows naturally in Paraguay, Uruguay, Argentina and Brazil. The powder
of YM leaves and thin stems is used for the preparation of several stim-
ulant drinks. The three most important forms of consumption are
chimarrão (hot water extract of green dried leaves; mate in Spanish
speaking countries), tererê (cold water extract of green dried leaves)
and mate tea (hot water extract of toasted leaves) [1,2].

The yerba mate is associated with numerous health benefits among
which it is important tomention its antioxidant properties [3,4] vasodi-
lators properties [5,6], hypoglycemic effects [7,8] and fat loss properties
[9]. Different chemical components responsible for the yerba mate-
based beverages' positive health outcomes have been identified, such
as vitamins, minerals, polyphenols, xanthines, saponins, phenolic com-
pounds, amino acids, enzymes, cellulose, lignin and organic acids [10].

The biological and functional properties of yerbamate are frequently
associated with compounds from secondary metabolism. Yerba mate is
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known to be rich in phenolic acids such as caffeic and chlorogenic acids
and their derivatives, in addition to flavan-3-ols such as (+)-catechin
[11,12]. Other compounds frequently found in the extracts are: gallic,
syringic, ferulic and p-coumaric acids, rutin, methylxanthines (caffeine
and theobromine), saponins and tannins [1,8]. A few years ago, a poly-
saccharide from yerba mate leaves was purified and its chemical struc-
ture identified as a rhamnogalacturonan I (RG-I) with a main chain of
→4)-6-OMe-α-d-GalpA-(1 → groups, interrupted by α-l-Rhap units,
substituted by a type I arabinogalactan (Fig. 1) [13]. This RG-I presented
an anti-inflammatory action demonstrated by its capability of decreas-
ing tissue expression of inducible nitric oxide synthase (iNOS) and
cyclooxygenase-2 (COX-2) and a potential adjuvant action in sepsis
treatment [13]. In addition to this, the yerba mate RG-I was able to in-
hibit the gastric lesions induced by ethanol in rats [14].

In the past years, the scientific community has been increasingly
interested in the investigation of natural polysaccharides from
different sources, including rhamnogalacturonan-I (RG-I) and
rhamnogalacturonan-II (RG-II) type pectins, owing to their promis-
ing pharmacological and biological activities [15–20]. Based on
these considerations, efforts to enlarge the spectrum of the biological
actions attributable to the yerba mate RG-I are quite interesting and
desirable. Thus, the aim of the present work was to evaluate the an-
tioxidant, antimicrobial and cytotoxic potentials against tumoral
cells and porcine liver cells of this polysaccharide.
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rmperalta@uem.br
https://doi.org/10.1016/j.ijbiomac.2018.04.020
http://www.sciencedirect.com/science/journal/01418130
http://www.elsevier.com/locate/ijbiomac


Fig. 1. Structure of the YM purified polysaccharide (rhamnogalacturonan I), according to Dartora et al. (2013) [13].
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2. Material and methods

2.1. Plant material

I. paraguariensis A. St. Hil. plant (dry leaves and stems, stored at vac-
uum) was obtained from a reliable producer in Southern Brazil. The
plant was collected during the January crop of 2016. The region of pro-
duction presents subtropical climate, average altitude of 923.5 m and
during 2016 the registered rainfall was of 800–1800 mm. The material
was ground using an electric grinder and the standardization of
granulometry was made by sieves of 20 mesh. The obtained powder
was stored in a desiccator at room temperature (average 25 °C), and
protected from light, until further analysis.

2.2. Standards and reagents

Ethanol, chloroform, butanol, anthrone, rhamnose, sulfuric acid, so-
dium carbonate, Bradford reagent, 2,2-diphenyl-1-picrylhydrazyl
(DPPH), Folin-Ciocalteau reagent, ascorbic acid, methanol, 2,4,6-
tripyridyl-s-triazine (TPTZ), hydrochloric acid, ferric chloride, 3-ethyl
benzothiazoline-6-sulphonic acid (ABTS), potassium persulfate,
salicylic acid, iron sulphate, 6-hydroxy-2,5,7,8-tetramethylchromane-
2-carboxylic acid (TROLOX), 2,2-azobis (2-amidinopropane)
dihydrochloride (AAPH), fluorescein, dialysis membrane (7000 Da)
were purchased from Sigma-Aldrich Co (St Louis, MO). RPMI-1640,
Dulbecco's modified Eagle's medium (DMEM), Hank's balanced salt so-
lution (HBSS), fetal bovine serum (FBS), L-glutamine, trypsin-EDTA,
penicillin/streptomycin solution (100 U/mL and 100 mg/mL, respec-
tively) were purchased from Gibco Invitrogen Life Technologies (Cali-
fornia, USA). All other general laboratory reagents were purchased
from Panreac Quimica S.L.U. (Barcelona, Spain). Water was treated in
a Milli-Q water purification system (TGI Pure Water Systems, USA). All
other reagents used in the experiments were of analytical grade.

2.3. Polysaccharide extraction and purification

One hundred (100) g of dried powdered mate were extracted three
timeswith 500mLof ethanol (70%) for 3 h at room temperature and ag-
itation of 120 rpm to remove lowmolecular weight compounds and for
depigmentation. The sample was filtered and the procedure was re-
peated three times. Insoluble material was dried to remove ethanol
completely. The polysaccharide was extracted and purified from the in-
soluble material as previously described [13] with some modifications.
The residue of the extraction was dissolved in distilled water and sub-
jected to a hot extraction at 80 °C, for 15 min. Thereafter the extract
was autoclaved for 20 min. The soluble fraction was precipitated with
3 volumes of ethanol and kept overnight in the refrigerator. The mate-
rial was centrifuged at 4000 rpm for 15 min, and the precipitate re-
dissolved in distilled water. To remove the protein fraction, thematerial
was treated using the Sevagmethod [21]. Thematerial was precipitated
with 3 volumes of ethanol for 24 h and centrifuged at 4000 rpm for
15 min. The precipitate was re-dissolved in a small volume of distilled
water and dialyzed for 24 h against distilledwater. To remove DNA con-
tamination, a volume of 4 mL DNAse solution (2 U/mL in 100 mM Tris
buffer, pH 7.5, containing 25 mM MgCl2 and 5 mM CaCl2) was added
to the polysaccharide solution, and the mixture was incubated at 37 °C
for 20min. The DNA-free polysaccharidewas precipitatedwith ethanol,
centrifuged and dialyzed. Finally, the polysaccharide was lyophilized,
weighed, and stored at −20 °C for further analysis.

2.4. Chemical analysis

The presence of phenolics and proteins in the yerba mate polysac-
charide was evaluated by using the Folin-Ciocalteu method [22] and
Bradford's method [23], respectively. For the first determination, a stan-
dard curve was constructed using gallic acid and the results were
expressed as gallic acid equivalents/mg of material. For the evaluation
of protein, bovine serum albuminwas used as a standard and the results
were expressed as albumin equivalents (AE)/mg of material.

2.5. Ultraviolet-visible (UV–Vis) and Fourier transform infrared (FTIR)
spectroscopy

The purified yerbamate polysaccharidewas re-dissolved inwater to
obtain a concentration of 0.25 mg/mL. The UV–Vis spectra of the solu-
tion between 190 and 800 nmwere then recorded using a spectropho-
tometer (Beckman Coulter DU640 B, USA). Prior to FTIR analysis, the
polysaccharide was dried and desiccated in a vacuum jar. Thereafter,
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an amount of 2 mg of the dried sample was mixed with 200 mg KBr of
spectroscopic grade and compressed into pellets at a pressure of about
1 MPa. Sample spectra were obtained in triplicates using an average of
128 scans in the range between 500 cm−1 and 4000 cm−1 with a spec-
tral resolution of 2 cm−1. Peak heights and areas of the FTIR spectra
were determined bymeans of theOpus software version 6.5 normalized
by maximum and minimum peaks.

2.6. Biological activities

2.6.1. Antioxidant activity evaluation
Five different methods were used to evaluate the antioxidant activ-

ity of the YM polysaccharide: reduction power of the ferric ion (FRAP),
oxygen radical absorbance radical assay (ORAC), reduction of the 2,2-
diphenyl-1-picrylhydrazyl radical (DPPH•), reduction of the 2,2-azino-
bis (3-ethylbenzothiazoline-6-sulphonate) cation (ABTS•+), and hy-
droxyl radical scavenging activity. Successive dilutions of the stock solu-
tion were made and used for assaying the antioxidant activity of the
sample. FRAP and ORAC were evaluated as described previously [24].
Standard curves were constructed with trolox (r2 = 0.99) and the re-
sults were expressed as mmol trolox equivalents (TE)/mg lyophilisate
material. The DPPH and the ABTS assays were conducted as described
previously [25]. The lyophilisate concentrations (mg/mL) providing
50% antioxidant activity were calculated from the graphs of antioxidant
activity against the sample concentrations. Troloxwas used as a positive
control and water was used as negative control. The results were
expressed as IC50 values (sample concentration providing 50%of antiox-
idant activity). The hydroxyl radical scavenging activity of the YM poly-
saccharidewasmeasured having as principle the Fenton's reaction [21].
The resultswere also expressed as IC50 values. Ascorbic acidwas used as
positive control whereas the negative control was water.

2.6.2. Antimicrobial activity evaluation
For antibacterial activity assay, the followingGram-negative bacteria

were chosen: Escherichia coli (ATCC 35210), Salmonella enteritidis
(ATCC), Salmonella typhimurium (ATCC 13311), Enterobacter cloacae
(ATCC 35030), along with the following Gram-positive bacteria: Staph-
ylococcus aureus (ATCC 6538), Bacillus cereus (clinical isolate),Micrococ-
cus flavus (ATCC 10240), and Listeria monocytogenes (NCTC 7973). For
the antifungal tests the following microfungi were assessed: Aspergillus
fumigatus (1022), Aspergillus ochraceus (ATCC 12066), Aspergillus
versicolor (ATCC 11730), Aspergillus niger (ATCC 6275), Candida crusei
(human isolate), Penicillium funiculosum (ATCC 36839) and Penicillium
verrucosum var. cyclopium (food isolate). In order to investigate the an-
timicrobial potential of the YM polysaccharide against these foodborne
pathogens and spoilage agents, a modifiedmicrodilution techniquewas
applied [26]. Minimum inhibitory concentration (MIC) determinations
were performed by a serial dilution technique using 96-well microtiter
plates. Both minimum bactericidal (MBCs) and minimum fungicidal
(MFCs) concentrations were determined by serial subcultivation of a
2 mL sample into microtiter plates containing 100 mL of broth per
well and further incubation for 48 h at 37 °C or 72 h at 28 °C, as previ-
ously described [27]. The lowest concentrations with no visible growth
were nominated as MBC/MFC, corresponding to 99.5% killing of the
original inoculum. In the antibacterial bioassays, streptomycin (ICN-
Galenika, Belgrade, Serbia) and ampicillin (Panfarma, Belgrade, Serbia)
were used as positive controls, while in antifungal tests the commercial
fungicides bifonazole (Srbolek, Belgrade, Serbia) and ketoconazole
(Zorkapharma, Sabac, Serbia) were applied (at the concentration of
1 mg/mL in sterile physiological saline); 30% ethanol was employed as
negative control.

2.6.3. Cytotoxicity in human tumor cell lines
Four human tumor cell lines were used: MCF-7 (breast adenocarci-

noma), NCI-H460 (non-small cell lung cancer), HeLa (cervical carci-
noma) and HepG2 (hepatocellular carcinoma). Cells were routinely
maintained as adherent cell cultures in RPMI-1640 medium containing
10% heat-inactivated FBS and 2 mM glutamine (MCF-7, NCI-H460 HeLa
and HepG2 cells), at 37 °C, in a humidified air incubator containing 5%
CO2. Each cell line was plated at an appropriate density (1.0 × 104

cells/well) in 96-well plates. The sulforhodamine B assay was per-
formed according to a procedure previously described by the authors
[28]. Ellipticine was used as positive control.

2.6.4. Cytotoxicity in non-tumor liver cells primary culture
A cell culture was prepared from a freshly harvested porcine liver

obtained from a local slaughter house, according to a procedure
established by the authors [29]. It was designated as PLP2. Cultivation
of the cells was continued with direct monitoring every two to three
days using a phase contrastmicroscope. Before confluencewas reached,
cells were sub-cultured and plated in 96-well plates at a density of 1.0
× 104 cells/well, and commercial in DMEM medium with 10% FBS,
100 U/mL penicillin and 100 μg/mL streptomycin. Ellipticine was used
as positive control.

2.7. Statistical analysis

Three repetitions of the sample and triplicates for each concentra-
tion were carried out in all assays. The results were reported as mean
± standard error. The IC50 values and graphics were obtained from
the logarithmic non-linear regression curve derived from the plotted
data using the GraphPad Prism software (version 5.0).

3. Results and discussion

3.1. Yield and structural analysis of yerba mate polysaccharide

In order to obtain the pure polysaccharide previously illustrated by
Fig. 1 [13], the sequential methods shown in Fig. 2 were used. An
amount of 1.2 g of the dried pure polysaccharide was obtained starting
from 100 g of yerba mate. Phenolics and proteins were not detected by
chemical methods. In addition, the UV–Vis spectrum of the yerba mate
polysaccharide showed no absorption peaks at 260 and 280 nm (Fig. 3).
Significant contamination by proteins, peptides, DNA and phenolics is
thus unlikely.

FTIR spectroscopy is usually used for identifying characteristic or-
ganic groups in the polysaccharide. As illustrated by Fig. 4, vibrations
and glycosidic bonds typical of polysaccharide structures are apparent.
The absorption peak at 767 cm−1 indicates the presence of pyranoses
in α-configuration [30]. The absorption at 1072 cm−1 can be attributed
to the stretching vibration of the C-O-C glycosidic bond vibrations and
side group C\\O\\H link bonds [31]. The spectrum shows absorption
bands at 1013, 1076 and 1100 cm−1

, which are characteristic of pectin
polymers. The rhamnogalacturonan structure can be confirmed by the
stretching vibration bands of the ester carbonyl at 1610 and
1737 cm−1 corresponding to asymmetric carbonyl stretching of carbox-
ylate groups, overlapped by the water absorption band. The bands
around 1442 cm−1 and 1374 cm−1 for C\\H band stretching are due
to asymmetric and symmetric bending vibrations, respectively [32].
The band at 1609 cm−1 can be attributed to the C_O stretching vibra-
tion of uronic acid [33]. Strong and wide absorption bands at about
2800–3500 cm−1 for C\\H and O\\H stretching vibrations and the
strong absorption in the region of 1000–1125 cm−1 indicates the pres-
ence of the functional groups C\\OH, C\\O\\C and C\\C [34].

3.2. Antioxidant activities of the yerba mate polysaccharide

In vitro antioxidantmodels are based on the transfer of a single elec-
tron (DPPH•, ABTS•+, FRAP) or the transfer of hydrogen atoms (hy-
droxyl and ORAC) [35]. The results of three assays, DPPH, ABTS, and
hydroxyl radical scavenging activities, are shown in Fig. 5. The IC50

values of the scavenging activities were 1.25 ± 0.10 mg/mL, 0.41 ±



Fig. 2. Diagram for the obtainment of purified yerba mate polysaccharide.

Fig. 3. UV–Vis spectrum of the purified yerba mate polysaccharide.

Fig. 4. FTIR spectrum of the purified yerba mate polysaccharide.
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0.05 mg/mL and 3.36 ± 0.31 mg/mL, respectively. FRAP and ORAC,
expressed as equivalents of Trolox, were 20.84 ± 1.61 μM TE/mg and
556.30 ± 12.83 μM TE/mg, respectively.

The mechanism by which polysaccharides act as antioxidants is still
not a consensus among researchers. While some researchers strongly
relate the structures of the polysaccharides to their antioxidant activity
[36,37], others suggest that the antioxidant activities of complex carbo-
hydrates should be attributed to their phenolic and protein components
or contaminants rather than to the carbohydrate moieties, especially
when the analyses were carried out using crude or semi-purified poly-
saccharides [16,38–40]. Recent analyses conducted with the highly ho-
mogeneous polysaccharide fractions from Ilex latifolia [36] Mesona
chinensis [37], Bryopsis plumose [41], Malva aegyptiaca [42], Plantago
notata [43], Dendrobium officinale [44], and Schisandra sphenanthera
[45] have confirmed antioxidant activities of polysaccharides evaluated
by different methods. The mechanisms involved, however, remain
largely unknown. In general, functional groups such as\\OH,\\COOH
and C_O, largely found in polysaccharides in addition to anionic and
cationic functional groups, such as uronic acids, have been related to
the antioxidant activities of polysaccharides [35]. Moderate molecular
weight, water solubility, triple helix stereo-configuration and higher de-
grees of branching are also considered factors that might favour antiox-
idant activity [45].

3.3. Antimicrobial activities of the yerba mate polysaccharide

Antibacterial and antifungal activities of the YM polysaccharide are
presented in Tables 1 and 2, respectively. The polysaccharide had prom-
inent antimicrobial effects against Gram-negative bacteria (Enterobacter
cloacae, Salmonella enteritidis, and Salmonella typhimurium), Gram-
positive bacteria (Bacillus cereus, Micrococcus flavus, Staphylococcus au-
reus, and Listeria monocytogenes) and against Aspergillus fumigatus, As-
pergillus versicolor, Aspergillus ochraceus, Aspergillus niger, Candida
crusei, Penicillium funiculosum, and Penicillium verrucosum var. cyclopium.
According toMIC values, bioactive extracts from natural products can be
classified into strong inhibitors (MIC below 0.5mg/mL),moderate inhib-
itors (MIC between 0.6 and 1.5 mg/mL) and weak inhibitors (MIC above
1.6 mg/mL) [25]. According to these parameters, the herein assessed YM
polysaccharide can be considered a strong inhibitor against B. cereus,M.
flavus, E cloacae, S. enteritidis and S. typhimurium; however, aweak inhib-
itor of E. coli. Regarding the antifungal bioassays, the YM polysaccharide
seems to be a strong inhibitor against all tested fungi, except for A. niger.

It was reported elsewhere that the YM polysaccharide prevents le-
thality caused by poly-microbial sepsis in mice, which was attributed
to its action in reducing the neutrophil infiltration, on its turn an



Fig. 5. Antioxidant activity of the purified yerba mate polysaccharide. A: (ABTS•+)-radical scavenging activity; B: (DPPH•)-radical scavenging activity; C: Hydroxyl scavenging activity.
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important alteration associated to sepsis [13]. Although there is no
doubt that diminution of neutrophil infiltration may be beneficial in
sepsis, an equal or even higher weight must be attributed to the ob-
served antimicrobial action of the polysaccharide. After all, an antimi-
crobial effect represents a direct action on the infectious agents,
which, in principle, is more effective than indirect andmarginal mecha-
nisms such as neutrophil infiltration.

Antimicrobial activities have also been described for polysaccharides
isolated from Quercus brantii leaves [46], Olea europaea leaves [47],
Capparis spinosa leaves [48], and Malva aegyptiaca leaves [42]. The
mechanisms involved in the antimicrobial activity of polysaccharides
are worthy of further investigations. Differences in the cell membrane
composition and structure can explain the slightly greater resistance
among Gram-positive bacteria [48,49]. The YM polysaccharide showed
antibacterial activity against all tested strains, except to E. coli. This re-
sult suggests that the inhibition of iron absorption by the bacteria is a
possible mechanism of the antibacterial activity of polysaccharides.
Iron is an important element for bacterial growth and the enterobactin
secreted by E. coli has a high affinity for iron and can compete with the
chelating activity of polysaccharides [50].

3.4. Antiproliferative and cytotoxic actions of the yerba mate
polysaccharide

The YMpolysaccharide did not show hepatotoxicity in PLP2 cells, up
to the maximum concentration tested (GI50 N 400 mg/mL), what en-
dorses its safe use in the case of potential applications as a food additive
or nutraceutical. The same is valid for the four tumor human cell lines
assessed namely MCF-7, NCI-H460, HeLa and HepG2 (GI50
Table 1
Antibacterial activity of the yerba mate polysaccharide.

Compounds YM
polysaccharide

Streptomycin Ampicillin

MIC MBC MIC MBC MIC MBC

Gram positive
Bacillus cereus 0.30 0.40 0.10 0.20 0.25 0.40
Micrococcus flavus 0.30 0.40 0.20 0.30 0.25 0.40
Staphylococcus aureus 0.60 0.80 0.04 0.10 0.25 0.45
Listeria monocytogenes 0.60 0.80 0.20 0.30 0.40 0.50

Gram negative
Escherichia coli N1.60 N1.60 0.20 0.30 0.40 0.50
Enterobacter cloacae 0.30 0.40 0.20 0.30 0.25 0.50
Salmonella enteritidis 0.40 0.60 0.15 0.30 0.30 0.60
Salmonella typhimurium 0.40 0.60 0.25 0.50 0.40 0.75

MIC = minimum inhibitory concentration (mg/mL); MBC = minimum bactericidal con-
centration (mg/mL).
N 400 mg/mL). However, there are reports on the direct action of poly-
saccharides on the tumor cells or by enhancing the immune function of
the organism, exerting thus an indirect antitumor activity [51]. Different
rhamnogalacturan I and II type polysaccharides (RG-I and RG-II) have
been described as possessing potentially antitumoral activities. For ex-
ample, a RG-II-type polysaccharide isolated from mature leaves of
green tea, presented antitumor and anti-metastatic activities via activa-
tion of macrophages and natural killer cells [52]. RG-II isolated from the
leaves of Panax ginseng inhibited tumor growth by activating dendritic
cell-mediatedCD8+T cells [53]. Furthermore, a RG-I domain-rich pectin
from potato inhibited the proliferation of HT-29 cells and induced sig-
nificant G2/M cell cycle arrest [54]. Our results suggest that the YM
polysaccharide does not act directly on the tumor cell. However, it
could be able to act indirectly if one takes into account what was
found for the RG-II-type polysaccharide from green tea leaves. Addi-
tional approaches are necessary to clarify this question.
4. Conclusion

The results of the present work indicate that the YM polysaccharide
possesses antioxidant activities corroborated by different in vitro
methods. The YM polysaccharide also presents antibacterial and anti-
fungal activities, which can help to explain mitigation of sepsis caused
by this macromolecule according to a previous report. For these and
other reasons, the YM polysaccharide can be considered to be poten-
tially useful for the pharmaceutical and food industries.
Conflicts of interest

The authors declare no conflict of interests.
Table 2
Antifungal activity of the yerba mate polysaccharide.

Compound YM
polysaccharide

Ketoconazole Bifonazole

MIC MFC MIC MFC MIC MFC

Aspergillus fumigatus 0.40 0.60 0.25 0.50 0.15 0.20
Aspergillus versicolor 0.20 0.40 0.20 0.50 0.10 0.20
Aspergillus ochraceus 0.40 0.60 1.50 2.00 0.15 0.20
Aspergillus niger 0.60 0.80 0.20 0.50 0.15 0.20
Candida crusei 0.30 0.40 0.075 0.15 0.05 0.10
Penicillium funiculosum 0.40 0.60 0.20 0.50 0.20 0.25
Penicillium verrucosum var. cyclopium 0.30 0.60 0.20 0.30 0.10 0.20

MIC=minimum inhibitory concentration (mg/mL);MFC=minimum fungicidal concen-
tration (mg/mL).
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