FIN	Congresso Nacional de			
	6 e 7 fevereiro 2015 OBIOMECÂNICA			
26				
CNB2015				
Portuguesa	Biomecânica cardiovascular, biofluidos e hemodinâmica			
Antropometria	Simulação ótima da hemodinâmica da carótida baseada em imagens de ultrassonografia			
Biofabricação	José P. R. Gonçalves, Catarina F. Castro, Carlos C. António, Luisa C. Sousa, Rosa Santos, Pedro Castro, Elsa			
Biomateriais	Azevedo			
Cardiovascular	Influence of blood elasticity in the hemodynamics along a stenotic bifurcated coronary artery			
Lesão/Impacto	S.I.S. Pinto, E. Doutel, J.M. Miranda, J.B.L.M. Campos			
Reabilitação	Visualização e quantificação da estenose carotídea usando imagens de ultrassonografia			
Desporti va	Helena A.M. Henriques, Luisa C. Sousa, Catarina F. Castro, Carlos C. António, Rosa Santos, Pedro Castro, Elsa Azevedo			
Crânio e Coluna				
Músculo-esquelético	Microfluidic modules for clinical diagnosis devices Ricardo Santos, Joel Vasco, Daniela C. Vaz			
Tecidos	Ontimização paramétrico do um Stant coronório			
Ocupacional	Nelson Ribeiro, João Folgado, Hélder Rodrigues			
Orofacial				
Ortopédica	Kaio Lourenço Teixeira Barbosa, Keyll Carlos Ribeiro Martins, Alexandre Sousa Nascimento, Evandro Martins			
Respiratória	Araujo Filho, Lídia Santos Pereira Martins			
Eng. Tecidos	Flow in proximal ventricular catheters			
Experimental	Célio Vancine Jr, Edson R.D.R. Vieira, Emanuel R. Woiski, Sérgio S. Mansur, Edson D. R. Vieira, José Ricardo			
Mecanobiologia	Camilo Pinto, Angelo L. Masset			
English	Influência das propriedades reológicas do sangue em microcanal com contração simétrica Solange M. Caetano, Susana F. T. Silva, Joana A. C. Calejo, Carla S. Fernandes			
	Modelação matemática da camada de plasma em microcanais A. Cachada, A. I. Pereira, R. Lima			
	Análise do fluxo sanguíneo não newtoniano em fístulas arteriovenosas término-laterais utilizadas no procedimento de hemodiálise J. A. Silva, J. Karam Filho, C. C. H. Borges			

[CNB2015] [Portuguesa] [Antropometria] [Biofabricação] [Biomateriais] [Cardiovascular] [Lesão/Impacto] [Reabilitação] [Desportiva] [Crânio e Coluna] [Músculo-esquelético] [Tecidos] [Ocupacional] [Orofacial] [Ortopédica] [Respiratória] [Eng. Tecidos] [Experimental] [Mecanobiologia] [English]

MODELAÇÃO MATEMÁTICA DA CAMADA DE PLASMA EM MICROCANAIS

A. Cachada¹, A. I. Pereira² e R. Lima³

¹ IPB, Instituto Politécnico de Bragança, Portugal; ana.ml.cachada@alunos.ipb.pt
 ² IPB, Instituto Politécnico de Bragança, Portugal,e
 Centro Algoritmi, Universidade do Minho; apereira@ipb.pt
 ³ UMinho, Universidade do Minho, Portugal; ruimec@ipb.pt

PALAVRAS CHAVE: Otimização não linear. Otimização global. Algoritmo genético. Camada de plasma.

RESUMO: Neste estudo apresenta-se uma proposta de modelação matemática da camada de plasma observada em escoamentos sanguíneos. Numa fase inicial, a resolução do problema fez uso da otimização não linear para encontrar o modelo matemático que minimiza o erro quadrático não linear entre o modelo e os dados numéricos que caracterizam a camada de plasma. Para tal, foram testados os algoritmos Simulated Annealing, Pattern Search, Algoritmo Genético e Quasi-Newton. Neste estudo conclui-se que o método de otimização que obteve melhores resultados foi o Algoritmo Genético. Também foi possível concluir que o melhor modelo para aproximar os dados numéricos que caracterizam a camada de plasma presente em escoamentos sanguíneos é baseado na soma de funções trigonométricas.

1 INTRODUÇÃO

O escoamento sanguíneo na microcirculação é crucial para o normal funcionamento dos tecidos e órgãos [4]. É do conhecimento geral, que o movimento dos glóbulos vermelhos em capilares e microcanais depende de diversos fatores, como o hematócrito e a geometria [5].

Assim, neste estudo é feita uma modelação matemática para definir 0 modelo matemático que melhor caracteriza a plasma presente camada de num escoamento sanguíneo. Os escoamentos sanguíneos em estudo foram realizados numa rede de microcanais que apresenta bifurcações e confluências [6]. Nestes escoamentos foi identificada a camada de plasma e a mesma foi caracterizada em vinte regiões diferentes do microcanal. Em cada região foi estudada a camada de plasma na parte superior e inferior do canal.

Inicialmente, foram usados os dados numéricos que caracterizam a camada de plasma obtidos por um escoamento sanguíneo com caudal 500nl/min е hematócrito 10%. Para resolução deste problema foram usados os métodos de otimização Simulated Annealing, Pattern Search, Algoritmo Genético e Quasi-Newton, disponíveis no software Matlab. Através dos métodos referidos foram testados diversos modelos matemáticos. Foi também usada a ferramenta cftool, presente no software Matlab, de modo a identificar o melhor modelo matemático. Na fase final deste estudo, foram analisados mais três conjuntos de dados referentes a três escoamentos com diferentes características. Este trabalho dá seguimento ao estudo já efetuado em [6].

Este artigo está organizado da seguinte forma: na Secção 1 descreve-se a motivação

do trabalho e a estrutura deste artigo. Na Secção 2 são caracterizados os microcanais e as regiões onde foram realizadas as medições da camada de plasma. São, também, apresentados os diversos modelos matemáticos testados para ajustar os dados obtidos. Na Secção 3 são apresentados e discutidos os resultados para o primeiro escoamento. Na Secção 4 são apresentados e discutidos os resultados referentes aos restantes escoamentos. Por fim, na Secção **5** são descritas as conclusões bem como o trabalho futuro.

2 MODELAÇÃO DO PROBLEMA

2.1 CARACTERIZAÇÃO DOS MICROCANAIS

Os escoamentos foram efetuados numa rede de microcanais com várias bifurcações e confluências [1, 6]. A camada de plasma foi medida nas regiões indicadas na Fig. 1.

Fig. 1 Geometria da rede de trabalho e representação das regiões onde foi medida a camada de plasma [1, 6].

2.2 TRABALHO ANTERIOR

Este estudo dá seguimento ao trabalho já efetuado em [6], onde os modelos matemáticos testados foram:

•
$$g_1(y, x) = y_1 x^2 + y_2 x + y_3$$

•
$$g_2(y, x) = y_1 x + y_2$$

•
$$g_3(y, x) = \sin(y_1 x) + \cos(y_2 x) + y_3$$

Neste estudo, os modelos foram testados recorrendo ao Algoritmo Genético.

Na avaliação dos resultados obtidos, concluiu-se que o modelo g_3 é o que melhor caracterizava a camada de plasma, no

sentido dos mínimos quadrados não lineares. Para mais detalhes consulte [6].

2.3 MODELAÇÃO DO PROBLEMA

O problema de otimização não linear sem restrições, aplicado a cada região estudada, encontra-se definido em (1),

$$\min f(y) = \sum_{k=1}^{N_R} (h_k - g_h(y, x_k))^2 \quad (1)$$

onde (x_k, h_k) , para $k=1,...,N_R$, correspondem às medições de cada região *R*. As regiões são definidas por $U_i \in L_i$, para i=1, ..., 10, como podemos verificar na Fig. 1.

Para identificar o melhor tipo de modelo matemático que caracteriza os dados da camada de plasma, foi usada a ferramenta cftool (Curve Fitting Tool). Esta ferramenta possui mais de quarenta modelos matemáticos para ajustar dados numéricos, sendo estes baseados em funções polinomiais, de potência, racionais e somas de senos. De todos os modelos ajustados os que apresentaram resultados satisfatórios correspondem às somas de senos. Assim, os modelos matemáticos testados neste trabalho definem-se por:

•
$$g_4(y, x) = \sin(y_1 x)^2 + \cos(y_2 x)^2 + y_3$$

• $g_5(y, x) = \sin(y_1 x)^2 + \cos(y_2 x)^2 + \sin(y_3 x) + \cos(y_2 x)^2 + \sin(y_3 x) + \sin(y_3 x)$

$$cos(y_4x) + y_5$$

• $g_6(y, x) = sin(y_1x + y_2)^2 + cos(y_3x + y_4)^2 + sin(y_5x + y_6) + cos(y_7x + y_8) + y_9$
• $g_7(y, x) = y_{10}sin(y_1x + y_2)^2 + y_{11}cos(y_3x + y_4)^2 + y_{12}sin(y_5x + y_6) + y_{13}cos(y_7x + y_8) + y_9$
• $g_8(y, x) = y_1sin(y_2x + y_3) + y_4sin(y_5x + y_6) + y_7sin(y_8x + y_9)$
• $g_9(y, x) = y_1sin(y_2x + y_3) + y_4sin(y_5x + y_6) + ... + y_{22}sin(y_{23}x + y_{24})$

2.4 Métodos de otimização

Neste trabalho foram considerados dois métodos de procura local, os métodos

Pattern Search e Quasi-Newton, e dois métodos de procura global, os métodos Simulated Annealing e Algoritmo Genético [3]. Foram usadas as implementações dos métodos predefinidas no software Matlab presentes nas Toolboxes Optimization e Global Optimization [2]. Os métodos estocásticos, Simulated Annealing e Algoritmo Genético, foram aplicados 30 vezes em cada região.

3 DISCUSSÃO DOS RESULTADOS Numéricos para o 1º Escoamento

Nesta secção são apresentados e discutidos os resultados obtidos referentes ao 1º escoamento. O escoamento sanguíneo considerado possui um caudal de 500 nl/min e hematócrito de 10% (500/10).

O problema (1) foi testado com todas as funções apresentadas na Secção 2.3 e resolvido com todos os métodos de otimização apresentados na Secção 2.4. O problema de otimização (1)obteve melhores resultados com 0 método Algoritmo Genético. Nas tabelas seguintes são apresentados os resultados obtidos por este algoritmo e considerando todos os modelos apresentados nas seções anteriores. Na Tab. 1 são apresentados os modelos matemáticos que obtiveram melhores resultados em cada região superior.

Tab. 1 Melhores resultados para o escoamento de 500 nl/min e hematócrito de 10% considerando todas as regiões superiores.

Dogião	Madala	Mínimo
Regiao	Niodelo	WIIIIIIO
\mathbf{U}_1	g ₇	8.82145×10^{2}
U_2	g_3	5.38480×10 ²
U_3	g_4	9.15090×10 ²
U_4	\mathbf{g}_7	7.25945×10 ²
U_5	g_8	7.96167×10 ²
U_6	\mathbf{g}_3	3.31380×10 ²
U_7	g ₃	5.27640×10 ²
U_8	g ₃	1.33840×103
U9	g_3	8.29820×10 ²
U_{10}	g ₇	9.76654×10 ²

Através da análise dos dados presentes na Tab. 1 verificou-se que os modelos matemáticos que melhor ajustam os dados numéricos no sentido dos mínimos quadrados não lineares são g_3 , g_4 , g_7 e g_8 . Em termos globais é possível concluir que, para o escoamento em questão, o melhor modelo é o g_3 . De referir que a diferença entre o valor mínimo obtido pelo modelo g_3 e pelo modelo g_7 não é significativa.

Na Tab. 2 apresentam-se os modelos matemáticos que obtiveram melhores resultados em cada região inferior.

Tab. 2 Melhores resultados para o escoamento de 500 nl/min e hematócrito de 10% considerando todas as regiões superiores.

Região	Modelo	Mínimo
L	g ₈	7.12918×10 ²
L_2	g 7	1.56274×10^{3}
L_3	g ₇	1.10731×10^{3}
L_4	g ₇	5.67882×10^{2}
L_5	g_8	9.40026×10 ²
L_6	\mathbf{g}_6	6.39617×10 ²
L_7	g_8	1.21853×10 ³
L_8	g ₇	5.28751×10 ²
L_9	\mathbf{g}_2	9.07880×10^{2}
L_{10}	g_8	6.89524×10^{2}

Pela análise da Tab. 2 podemos averiguar que o modelo g_8 apresenta melhores resultados para as regiões L_1 , L_5 , L_7 e L_{10} . Em termos globais é possível concluir que, os melhores modelos para caracterizar as regiões inferiores da camada de plasma são os modelos g_7 e g_8 .

Assim, é possível identificar os modelos que melhor caracterizam a camada de plasma, inferior e superior, sendo eles os modelos g_3 , g_7 e g_8 .

4 DISCUSSÃO DOS RESULTADOS NUMÉRICOS PARA DIFERENTES ESCOAMENTOS

Nesta secção são apresentados os resultados obtidos para os restantes escoamentos estudados.

Assim, foram testados dados referentes a três escoamentos diferentes com os modelos g_3 , g_7 e g_8 .

O primeiro conjunto de dados define um escoamento com caudal 500 nl/min e hematócrito (HTC) de 5%. O segundo conjunto de dados refere-se a um escoamento com caudal de 1000 nl/min e hematócrito de 5%. Por fim, o terceiro conjunto de dados estudados define um escoamento com caudal de 1000 nl/min e hematócrito de 10%.

Nas tabelas que se seguem são apresentados os modelos matemáticos que melhor aproximam, no sentido dos mínimos quadrados não lineares, a camada de plasma. Nas tabelas seguintes também são apresentados os modelos matemáticos cujo o erro quadrático possui uma distância inferior a 0.5, isto é,

$$|g^* - g_k^*| \le 0.5 \tag{2}$$

onde g^* representa o mínimo do melhor modelo matemático e g_k^* o mínimo do modelo matemático g_k .

O primeiro conjunto de dados refere-se a um escoamento com caudal de 500 nl/min e hematócrito de 5% (500/5).

Na Tab. 3 encontram-se os resultados referentes à camada superior de plasma.

Tab. 3 Melhores modelos para a camada de plasma superior de escoamento 5%HTC 500nl/min.

Região	Melhor Modelo	Outros Modelos
U_1	g_8	g ₇
U_2	g_8	g3 e g7
U_3	g ₇	
U_4	g ₇	
U ₅	g ₇	g_8
U_6	g ₇	g _{3 e} g ₈
U_7	g ₇	
U_8	g ₇	g3 e g8
U_9	g ₇	g _{3 e} g ₈
U_{10}	g ₇	g _{3 e} g ₈

Como se observa na Tab. 3 o modelo g_7 é o que melhor aproxima os dados das regiões U_3 até U_{10} . As regiões U_1 e U_2 apresentam melhores resultados para o modelo g_8 , no entanto verifica-se que o modelo g_7 satisfaz a condição (2).

A Tab. 4 contém os resultados referentes à camada de plasma inferior.

Tab. 4 - Melhores modelos para a camada de plasma inferior de escoamento 5% HTC 500nl/min.

Região Melhor Modelo		Outros Modelos
L_1	g 7	

L_2	g 7	g 3 e g 8
L ₃	g ₈	g 3 e g 7
L_4	g 7	g 3 e g 8
L_5	g3	g 7 e g 8
L_6	g ₈	g 7
L7	g 7	g 8
L_8	g ₈	
L9	g ₈	g 3 e g 7
L10	g ₈	g ₃

Na Tab. 4 podemos constatar que o modelo que, de forma global, apresenta melhores resultados é a g_8 . Para a região L_5 a melhor função é a g_3 mas o mínimo desta encontrase muito próximo dos mínimos dos modelos g_7 e g_8 . Por outro lado, nas regiões L_1 , L_2 , L_4 e L_7 os dados numéricos são melhor ajustados pelo modelo matemático g_7 .

Note-se que, para o escoamento em causa, 5% HTC 500nl/min, existe maior coerência nos resultados das regiões superiores.

Os resultados que se seguem são relativos ao segundo conjunto de dados relativos a um escoamento com hematócrito de 5% e caudal de 1000nl/min (1000/5).

A Tab. 5 contém os resultados correspondentes ao estudo da camada superior de plasma.

Tab. 5 Melhores modelos para a camada de plasma superior de escoamento 5%HTC 1000nl/min.

Região	Melhor Modelo	Outros Modelos
U_1	g_8	g ₇
U_2	g ₇	
U_3	g ₇	g _{3 e} g ₈
U_4	g_8	g ₇
U ₅	g_8	g _{3 e} g ₇
U_6	g ₇	
U_7	g7	g _{3 e} g ₈
U_8	g ₇	g _{3 e} g ₈
U_9	g_8	g _{3 e} g ₇
U_{10}	g ₇	g_8

A Tab. 5 mostra que, para as regiões superiores do escoamento 5% HTC 1000nl/min, o modelo g_7 é o que melhor define mais de metade das regiões, sendo que o modelo g_8 define apenas quatro regiões (U₁, U₄, U₅ e U₉). Todas as regiões que são definidas pelo modelo g_8 admitem o modelo g_7 como um bom modelo. Na Tab. 6 são apresentados os resultados referentes à camada inferior de plasma.

Tab. 6	Melhores	modelos	para a	camada	de plasma
inferior	de escoan	nento 5%]	HTC 1	000nl/mii	n.

Região	Melhor Modelo	Outros Modelos
L ₁	g 7	
\mathbf{L}_2	g_8	g3 e g7
L_3	g ₇	g _{3 e} g ₈
L_4	g ₇	g _{3 e} g ₈
L_5	\mathbf{g}_7	
L_6	\mathbf{g}_7	g ₈
L_7	g_8	g ₇
L_8	\mathbf{g}_7	
L_9	g_8	g _{3 e} g ₇
L_{10}	g ₇	g_8

Nas regiões inferiores, tal como nas superiores, o modelo que melhor define a maioria das regiões é o g_7 , sendo as restantes regiões (L_2 , L_7 e L_9) definidas pelo modelo g_8 . As três regiões que são definidas pelo modelo g_8 também admitem o modelo g_7 como um bom modelo.

A Tab. 7 contém os resultados relativos ao estudo da camada de plasma superior do escoamento 10%HTC 1000nl/min (1000/10).

Tab. 7 Melhores modelos para a camada de plasma superior de escoamento 10% HTC 1000nl/min.

Região	Melhor Modelo	Outros Modelos
U_1	\mathbf{g}_8	
U_2	g ₇	g3 e g8
U_3	g ₇	g ₈
U_4	g ₇	g _{3 e} g ₈
U ₅	g ₇	g ₈
U_6	g ₇	g_8
U_7	g_8	g _{3 e} g ₇
U_8	g ₇	g _{3 e} g ₈
U_9	g_8	g3 e g7
U_{10}	g_8	g ₇

Pela análise da Tab. 7 verifica-se que, para o escoamento 10%HTC 1000nl/min, o modelo que melhor aproxima os dados numéricos de seis, das dez regiões superiores, é o g₇, sendo os dados das restantes regiões (U₁, U₇, U₉ e U₁₀) melhor aproximados pelo modelo g₈. Mais uma vez, as regiões definidas pelo modelo g₈ também admitem o modelo g_7 como um bom modelo.

Por fim, na Tab. 8 encontram-se os resultados do estudo da camada de plasma inferior do escoamento 10%HTC 1000nl/min.

Tab. 8 Melhores modelos para a camada de plasma inferior de escoamento 10% HTC 1000nl/min.

Região	Melhor Modelo	Outros Modelos
L_1	g ₇	g_3
L_2	g_8	g3 e g7
L_3	g ₇	g ₈
L_4	g ₇	g _{3 e} g ₈
L_5	g ₇	g ₈
L_6	g ₇	g3 e g8
L_7	g_8	g3 e g7
L_8	g ₇	g _{3 e} g ₈
L9	g ₇	g _{3 e} g ₈
L_{10}	g ₇	g_8

Tal como as regiões superiores, a maioria das regiões inferiores são minimizadas pelo modelo g_7 , sendo que apenas os dados de duas regiões (L_2 e L_7) são melhor aproximados pelo modelo g_8 , estas regiões também admitem o modelo g_7 como um bom modelo.

As tabelas seguintes apresentam um resumo dos melhores modelos matemáticos por escoamento sanguíneo.

Tab. 9 Melhores modelos para os escoamentos sanguíneos em estudo – regiões superiores.

R	500/10	500/5	1000/10	1000/5
U_1	g 7	g ₈	g ₈	g ₈
U_2	g ₃	g_8	g ₇	g ₇
U_3	g_4	g ₇	g ₇	g ₇
U_4	g ₇	g ₇	g ₇	g_8
U_5	g_8	g ₇	g ₇	g_8
U_6	g_3	g ₇	g ₇	g ₇
U_7	g ₃	g ₇	g_8	g ₇
U_8	g ₃	g ₇	g ₇	g ₇
U_9	g ₃	g ₇	g_8	g_8
U_{10}	\mathbf{g}_7	\mathbf{g}_7	g_8	\mathbf{g}_7

Na Tab. 9 verifica-se que o melhor modelo matemático é o g_7 sendo o melhor modelo em 23 regiões, das 40 regiões analisadas. Também é possível verificar que o escoamento sanguíneo com caudal 500nl/min e hematócrito 5% é aquele que apresenta dados numéricos mais irregulares, não se podendo concluir sobre o melhor modelo.

Tab. 10 - Melhores modelos para os escoamentos sanguíneos em estudo – regiões inferiores.

R	500/10	500/5	1000/10	1000/5
L_1	g ₈	g ₇	g 7	g ₇
L_2	g ₇	g ₇	g_8	g_8
L_3	g 7	g_8	g ₇	g ₇
L_4	g ₇	g ₇	g ₇	g ₇
L_5	g ₈	g_3	g ₇	g ₇
L ₆	g_6	g_8	g ₇	g ₇
L_7	g_8	g ₇	g_8	g ₈
L_8	g 7	g_8	g ₇	g ₇
L ₉	g ₂	g_8	g ₇	g ₈
L_{10}	g_8	g_8	g ₇	g ₇

Na Tab. 10 é possível concluir que o modelo g_7 aproxima melhor dados numéricos de escoamentos sanguíneos com caudal de 1000nl/min.

Em termos globais, verificou-se que o modelo que melhor caracteriza as camadas de plasma, é o g_7 . Neste estudo foram analisadas 80 regiões, superiores e inferiores, sendo que o modelo matemático g_7 aproximou melhor os dados em 33% das regiões consideradas. Também é possível concluir que o modelo g_7 aproxima melhor os dados das regiões de escoamentos sanguíneos com caudal de 1000nl/min.

3 CONCLUSÕES E TRABALHOS FUTUROS

Com este trabalho conclui-se que, para o problema em estudo, dos métodos de otimização estudados, aquele que apresenta melhores resultados é o Algoritmo Genético.

Conclui-se ainda que, analisando todos os resultados de forma global, o modelo matemático que melhor caracteriza as camadas de plasma dos diferentes escoamentos é o modelo g_7 , modelo baseado na soma de funções trigonométricas.

Como trabalhos futuros sugere-se alargar o estudo a um maior número de escoamentos com características semelhantes aos apresentados.

AGRADECIMENTOS

Os autores agradecem à FCT, COMPETE,							
QREN e	e União	Europeia	(FEDER)	no			
âmbito	dos	projetos	PTDC/SA	AU-			
ENB/116	929/2010) e	EXPL/EN	AS-			
SIS/2215/2013.							

REFERÊNCIAS

- [1] R. Lima, Y. Imai, T. Ishikawa e M. Oliveira, "Visualization and Simulation of Complex Flows in Biomedical Engineering," Lecture Notes in Computational Vision and Biomechanics, Springer, 2014.
- [2] Matlab, "Global optimization toolbox," The MathWorks, Inc., 2012.
- [3] J. Nocedal e S. J. Wright, "Numerical optimization," Springer Series in Operations Research, Springer, 1999
- [4] D. Pinho, R. Lima, A. I. Pereira e F. Gayubo, "Automatic tracking of labeled red blood cells in microchannels," Internacional Journal for Numerical Methods in Biomedical Engineering, 2012.
- [5] D. Pinho, A. I. Pereira e R. Lima, "Red Blood Cells Motion in a Glass Microchannel," Numerical Analysis and Applied Mathematics, 2010.
- [6] B. Taboada, D. Bento, D. Pinho, A. I. Pereira e R. Lima, "Cell-free Layer Measurements in Bifurcating Microchannels: a global approach," XVI Congresso da Associação Portuguesa de Investigação Operacional, 2013.