View metadata, citation and similar papers at core.ac.uk

FPR

Gabriel N. S. Costa¹, Elza M. M. Fonseca², Laercio J. Junior³

¹Polytechnic Institute of Bragança - IPB and Federal Technological University of Paraná - UTFPR ²LAETA, INEGI, UNMEE, Department of Applied Mechanics, Polytechnic Institute of Bragança, Portugal ³Federal Technological University of Paraná – UTFPR, Brazil

brought to you by ${\ensuremath{\mathbb J}}{\ensuremath{\mathbb T}}$ CORE

2nd DOCTORAL CONGRESS in ENGINEERING 2017 · 8 - 9 JUNE · FEUP · PORTO · PORTUGAL

1-KEYWORDS

Fire behaviour, char layer, charring rate, temperature, wood

2-INTRODUCTION

- Wood has been broadly used as construction material due to their availability in nature, variety, lightness, good physical characteristics, excellent architectural, thermal and acoustics characteristics and allowing easy assembly of sets.
- Under adverse work conditions, the material properties might degrade, compromising its performance and safety.
- Numeric and experimental studies have been performed, which objective was to predict the material behaviour, under influence of external factors, as fire situations
- Wood is considered a combustible material, when it burns, flames are released. However, wood on fire, it presents a peculiar behaviour, since its core may remain unchanged. When being consumed by flames, a char layer formed will condition the heat inside wood, therefore protecting its core.
- The wood charring rate is one of the major parameters used to describe wood behaviour towards fire, as it allows determine the time fire resistance that the structures will performed in site and its structural safety.
- To improve wood fire resistance, insulating materials are used in wood structures. In general, these materials have low thermal conductivity, therefore a reduced heat transfer rate is transferred through the wood member.

3-APLICATIONS

4-WORK DISCUSSION

- The main goal of this study is to evaluate the thermal behaviour of wooden cellular slabs exposed to fire conditions, according the standard ISO 843 curve.
- Different numerical simulations for nonlinear thermal and transient analysis will be obtained, using the finite element method.
- The importance of this study relies on its contribution to an alternative numerical methodology, which allows to determine the safety and fire resistance levels in wooden cellular slabs, with or without insulation materials.

5-THERMAL PROPERTIES

PRO	OPERTIES OF WOOD		Density	Specific Heat	Conductivity	Emissivity	Melting temperature	Difusivit
	··· Conductivity [w/mK]		[Kg/m ¹]	[J/kgk]	[W/m ² K]		[°C]	[mm2/5]
	-Specific heat [J/KgK]	Fiber	14	1030	0,039	0,750	700	2,0746
	- •Density (x100) [Kg/m ³]	glass						
		Fiber	20	1030	0,036	0,750	>1000	1,7475
		glass						
[[]]`\		Rock	30	1030	0,04	0,9	>1000	1,2945
		loon						

400 600 800 Temperature [°C]

6-DIMENSIONS AND MODELS

Fiber Glass	Fiber Glass	Fiber Glass	Rock Wool	2			
$\rho=14 \rm kg/m^2$	ρ = 20kg/m ³	p = 14kg/m*	p = 30kg/m*	/	Models	Abreviação	Considerações
700	2100	700	700	1.	Model 01	n/DNS_n/AIR	Without insulation and air
	100			1	Model 02	FG_14_60_n/a	Fiber Glass = 60 mm, ρ = 14 kg/m², without air
60	60	145	60	60x260	Model 03	FG_20_60_n/a	Fiber Glass = 60 mm, $p = 20$ kg/m ² , without air
120x260		1	J 120x260	1	Model 04	FG_14_145_n'a	Fiber Glass = 145 mm, ρ = 14 kg/m², without ai
670	700	700	670		Model 05	RW_30_60_n/a	Rock Wool = 60 mm, ρ = 30 kg/m ² , without air
	28	900		ļ	Model 06	FG_14_60_y/a	Fiber Glass = 60 mm, ρ = 14 kg/m², with air.
1			-		Model 07	FG_20_60_y/a	Fiber Glass = 60 mm, ρ = 20 kg/m², with air.
1 1					Model 08	FG_14_145_ya	Fiber Glass = 145 mm, ρ = 14 kg/m², with air.
5.5.		and and			Model 09	RW_30_60_y/a	Rock Wool = 60 mm, ρ = 30 kg/m², with air.
	-				Model 10	y/IN5_y/AIR	With insulation and air

		Model S/ISO_S/AR	Average rate be- tween the models	EC5 [14]	Frangi et al [17]	Haddad [10]
		0,69	0,642	0,65	0,99	0,74
0.646 [R = 0.679 [mm/min]		Relation of charr	ing rates to so	ftwood (spruce)	

8- MESH	CHAR LAYER	TEMPERATURE PROFILES
Mach of p/INS p/AID		<u>,</u>
Mesh of h/INS_h/AIR	fl/INS_fl/AIK	n/INS_n/AIR
Mesh of FG_14_60_n/AIR	FG 14 60 n/AIR	
		FG_14_60_n/AIR
Mesh of FG_20_60_n/AIR	FG_20_60_n/AIR	FG 20 60 v/AIP
	EG 14 45 p/AIR	ð
Mesh of FG_14_145_n/AIR	10_14_145_WAIK	FG_14_145_n/AIR
Mesh of RW_30_60_n/AIR	(% RW 30 60 n/AIR	2.1.4 W. J.M. M. J.M. M. J.M. MARK
		RW_30_60_n/AIR
Mesh of FG_14_60_w/AIR	FG_14_60_w/AIR	
		FG_14_60_w/AIR
Mesh of FG_20_60_w/AIR	FG_20_60_w/AIR	EC 20 (0 m/AID
		FG_20_00_w/AIK
		<u>.</u>
Mesh of FG_14_145_w/AIR	FG_14_145_w/AII	FG_14_145_w/AIR
Mesh of RW_30_60_w/AIR	RW_30_60_w/AIR	RW_30_60_w/AIR
Mash of p/INS w/AID		

n/INS_w/AIR

- Results permit to determine the temperature evolution and the residual cross-section through the slab element at different time instants for fire situations.
- The final time considered was 3720 [s].
- The red and orange colors show higher temperatures.
- The blue and green colors show lower temperatures.
- Gray color shows the wood char layer.

9-TIME-TEMPERATURE HISTORY

- Different wooden cellular slabs were developed to identify the best and worst design model.
- Results and comparison between protected and unprotected slabs were obtained.
- The best insulation under fire was glass fiber of density 60 kg/m3 and 145mm of thickness in wooden slab without air considerations.
- In simulations where mesh air is present, the best thermal insulation was rock wool.
- The simulation with the air effect can greatly change the results.

11-REFERENCES

- EN 1995-1-2:2004. Eurocode 5: Design of timber structures, Part 1-2: General-Structural fire design, CEN, 2004.
- Frangi, A., M. Knobloch, M. Fontana, G. Bochicchio. 2008. "Fire Behaviour of Cross-Laminated Solid Timber Panels", Zurich. ETH Zuric - Institute of Structural Engineering, Fire Safety Scienceproceedings of the ninth international symposium, pp. 1279-1290.