


A column generation approach to the discrete lot
sizing and scheduling problem on parallel
machines

António J.S.T. Duarte and J.M.V. Valério de Carvalho

Abstract In this work, we study the discrete lot sizing and scheduling problem
(DSLP) in identical parallel resources with (sequence-independent) setup costs and
inventory holding costs. We propose a Dantzig-Wolfe decomposition of a known
formulation and describe a branch-and-price and column generation procedure to
solve the problem to optimality. The results show that the lower bounds provided by
the reformulated model are stronger than the lower bounds provided by the linear
programming (LP) relaxation of the original model.

1 Introduction

Since the introductory work of Wagner and Whitin [12] a great amount of research
has been done on the discrete lot sizing and scheduling problem (DLSP). The orig-
inal model has been extended from single-item to multiple-item and from single re-
source to multiple-resource configurations. Also, additional constraints and different
cost structures have been studied. Other studies aim at proposing and/or strengthen-
ing compact mixed integer linear (MILP) formulations in order to solve larger and
more complex instances. Examples of relevant research works on this problem are
[4, 5, 6, 7, 8]. Most of the published research for problems with parallel resources
is devoted to heuristics.

In this work we propose a Dantzig-Wolfe decomposition to a common integer
linear (ILP) formulation and a branch-and-price algorithm to solve the problem to

António J.S.T. Duarte
School of Technology and Management, Polytechnic Institute of Bragança, Campus de Santa
Apolónia, Apartado 1134, 5301-857 Bragança, Portugal, e-mail: aduarte@ipb.pt

J.M.V. Valério de Carvalho
Departamento de Produção e Sistemas, Universidade do Minho, Campus de Gualtar, 4710-057
Braga, e-mail: vc@dps.uminho.pt

1



2 António J.S.T. Duarte and J.M.V. Valério de Carvalho

optimality. For the single resource problem a similar column generation approach is
presented in [2].

For the parallel resource configurations the authors are not aware of similar ap-
proaches, although the used decomposition is very close the one used in[10, 11].
However, on those works, the problem of finding the optimal integer solution was
not addressed. Also, the problem does have some similarities with the capacitated
lot sizing and scheduling problem for which there is also some published research
involving column generation, such as [1, 3]. A relatively recent review of methods
for this problem can be found in [9].

In section 2 we provide a formal description of the problem. In section 3 we
present a compact original ILP formulation. In section 4 we present a minimum
cost flow model that can be used to readily compute upper bounds. In section 5 a
Dantzig-Wolfe decomposition for the ILP formulation is proposed along with the
resulting master problem and subproblem. In section 6 a dynamic programming ap-
proach to the resulting subproblem is presented. Three different branching schemes
to solve the problem to optimality are presented in section 7. Finally we present
some results showing that the lower bounds provided by the reformulated model are
stronger than the lower bounds provided by the linear programming relaxation of
the original model.

2 Problem description

There are R identical parallel resources, indexed with r = 1, . . . ,R, I items to be pro-
cessed, indexed with i = 1, . . . , I, and T discrete and equal periods of time, indexed
with t = 1, . . . ,T . In each time period, any given machine will be producing one
demand unit of a given item or will be idle.

Without loss of generality, we define the demand unit for a given item as the
quantity of that item that is possible to process in one machine during one time
period. In practice, this can be seen as a minimum lot size for each item. From this
point on, demands will be expressed in integer demand units.

Each item has the following associated coefficients: a vector of demands along
the planning horizon, di = {di1, . . . ,diT}; a startup cost, si, which is the cost of start-
ing the production of a different item in a given resource, which is resource and
time independent; an inventory holding cost, hi, defined as the cost of holding one
demand unit of item i over one time period (time independent).

The objective is to decide a production schedule (assigning machines to items
over the different time periods) that minimizes the sum of startup and holding costs
while meeting the required demands (back-orders are not allowed).



A column generation approach to DLSP on parallel machines 3

3 ILP formulation

Because the resources are identical, in our formulation, we use the aggregate vari-
ables, as defined in [6]. The complete set of variables is:

xit : number of resources producing item i on period t. Variables xi0 are defined in
order to account for the number of startups in period 1 and should be made equal
to a value that reflects the state of the various resources at the start of period 1;
yit : number of resources where production of item i is started on period t and a
startup cost is incurred;
zit : number of demand units of item i carried as inventory from period t to period
t + 1. Variables zi0 are defined and should be fixed to reflect the inventory level
at the start of period 1.

The complete ILP formulation is the following:

min
I

∑
i=1

T

∑
t=1

(siyit +hizit) (1)

s. t. zi(t−1)+ xit = dit + zit i = {1, . . . , I}, t = {1, . . . ,T} (2)

yit ≥ xit − xi(t−1) i = {1, . . . , I}, t = {1, . . . ,T} (3)
I

∑
i=1

xit ≤ R t = {1, . . . ,T} (4)

xit ≥ 0 and integer i = {1, . . . , I}, t = {1, . . . ,T} (5)
yit ≥ 0 and integer i = {1, . . . , I}, t = {1, . . . ,T} (6)
zit ≥ 0 and integer i = {1, . . . , I}, t = {1, . . . ,T} (7)

Note that xi0 and zi0 are actually constants that reflect the initial state of the
resources and the initial inventory levels. From this point on, for simplicity and
without loss of generality we will assume these constants to be 0.

The objective function (1) sums the startup costs and the holding inventory costs.
Constraints (2) express the inventory balance at each period. Constraints (3) ensure
that a startup cost is incurred whenever the number of resources used for a given item
increases. Finally, constraints (4) limit the number of resources used in each time
period, and constraints (5), (6) and (7) specify the type and limits of the variables.

Using a similar formulation and a standard optimization package on a personal
computer, the authors of [6] reported that they could not solve instances with I = 10,
R = 2 and T = 50 within 30 minutes of computation. It is clear that solving this
formulation directly is not practical, even for small instances.



4 António J.S.T. Duarte and J.M.V. Valério de Carvalho

4 Minimum cost flow formulation

When performing branch-and-bound it is important to be able to compute upper
bounds. In this section we propose a minimum cost flow formulation for the DLSP.
The formulation is incomplete in the sense that inventory costs are accounted but
not the startup costs, which means that the optimal solutions of the network flow
problem, when they exist, are feasible to the DLSP, but not guaranteed to be optimal.
A similar network for single item problems appears on [13].

Consider the following acyclic directed network. There is one supply node, S,
whose supply is equal to RT . Consider also a set of T transshipment nodes, one
for each time period, named T1, . . . ,TT . There are arcs from S to Tt with cost 0 and
capacity equal to R.

Each of the Tt nodes will be connected to I demand nodes named D1t , . . . ,DIt .
The demand on the Dit nodes will be equal to dit and the arcs from Tt to Dit have a
cost of 0 and unlimited capacity (in practice, the limit will be R). The flow on these
arcs has the same meaning as variables xit of the ILP formulation.

Another set of directed arcs will depart from each Dit node to the node Di(t+1).
These arcs have a cost equal to hi and unlimited capacity. The flow on these arcs has
the same meaning as variables zit of the ILP formulation.

Finally, in order to balance the supply and the demand, consider an additional
demand node, Didle, whose demand, didle, is computed as1

didle = RT −
I

∑
i=1

T

∑
t=1

dit

Finally, an arc with cost equal to zero and unlimited capacity, should connect S
and Didle. The flow on this arc represents the global capacity excess on the resources.

The complete network is represented on Figure 1. Note that zi0 and ziT can be
used to account for, respectively, initial and final inventory levels, if there is need
for them to be non-zero.

Because the flow in arcs (Tt ,Dit) has the same meaning as variables xit of the ILP
formulation, this network can be used to compute feasible solutions to the DLSP that
can be used as upper bounds, taking advantage of fast and widely available state-of-
the-art minimum cost flow algorithms.

5 Dantzig-Wolfe decomposition

In this section we apply and present a standard Dantzig-Wolfe decomposition to the
ILP formulation presented in section 3.

1 Note that, if didle is negative, the problem is infeasible due to a global lack of resource capacity.
If didle is non-negative, the problem can still be infeasible due to demand imbalances over time. A
trivial way to check feasibility is to use the same principle to compute the idle capacity at every
time period t ′, i.e., dt ′

idle = Rt ′−∑
I
i=1 ∑

t ′
t=1 dit .



A column generation approach to DLSP on parallel machines 5

Fig. 1 Minimum cost flow network representation.

The ILP formulation has a block angular structure. With the exception of (4),
which are coupling constraints, all other constraints can be grouped into I blocks,
one for each product item. In our decomposition we will leave constraints (4) in the
master problem and group all the constraints that refer to item i to a polyhedron
named Pi.

Because any polyhedron Pi is a convex region, any point belonging to Pi can be
represented as a convex combination of extreme points. Let pik be such points. For
any Pi polyhedron there will be Ki extreme points, so that k = 1, . . . ,Ki. Let λik ≥ 0
be the weight of each extreme point in a given combination such that, for any given
i, ∑

Ki
k=1 λik = 1. After variable substitution, the master problem will be:

min
I

∑
i=1

Ki

∑
k=1

cikλik (8)

s. t.
I

∑
i=1

Ki

∑
k=1

aiktλik ≤ R t = {1, . . . ,T} (9)

Ki

∑
k=1

λik = 1 i = {1, . . . , I} (10)

λik ≥ 0 and integer i = {1, . . . , I}, k = {1, . . . ,Ki} (11)

In this reformulated model, columns can be interpreted as potential schedules for
a single item, i, where cik is the cost of the schedule (including startup and inventory
holding costs) and aikt is number of resources used by the schedule in period t.

Because it is not practical to enumerate all the potential single item schedules,
they have to be dynamically generated. Based on the dual solution of the master



6 António J.S.T. Duarte and J.M.V. Valério de Carvalho

problem, the subproblems will generate valid and cost attractive schedules to be
included in the solution of the master problem.

Each Pi polyhedron will give origin to a different subproblem. Let πt and νi be
the dual variables associated with constraints (9) and (10), respectively. Subproblem
i will have the following formulation:

min
T

∑
t=1

(siyit +hizit −πtxit)−νi (12)

s. t. zi(t−1)+ xit = dit + zit t = {1, . . . ,T} (13)

yit ≥ xit − xi(t−1) t = {1, . . . ,T} (14)

0≤ xit ≤ R and integer t = {1, . . . ,T} (15)
yit ≥ 0 and integer t = {1, . . . ,T} (16)
zit ≥ 0 and integer t = {1, . . . ,T} (17)

The subproblem is a single item DLSP on parallel resources. Note that the bounds
on xit in constraints (15) are included to avoid the generation of invalid schedules
that will never be part of an optimal integer solution to the master problem.

After optimization, for a new column, cik = ∑
T
t=1 (siyit +hizit) and, hence, the

subproblem optimal objective function value is the reduced cost of that column. A
generated column is added to the master problem, only if its reduced cost is negative.
Also, coefficients aikt of the new column are equal to xit .

Clearly, if the solution of the reformulated model has only integer variables, then
an integer solution to DLSP can be computed. Nevertheless, one relevant charac-
teristic of this problem is that an integer solution to DLSP can also be computed
from non-integer variables of the reformulated model, whenever the solution of the
reformulated model corresponds to an integer solution in the space of the original
variables. This is fully exploited in the branch-and-price algorithm, because the so-
lution in the space of the original variables has to be computed to derive the branch-
ing constraints; the branching scheme is presented in section 7.

The following proposition defines the set of conditions that a solution to the
master problem must possess in order to be an integer solution to the DLSP:

Proposition 1. For a solution to the DLSP problem to be integer, it is sufficient that
all λik variables are integer or that all xit variables are integer, with

xit =
Ki

∑
k=1

aiktλik (18)

Proof. The variables λik are binary variables that represent a single item schedule
among all the resources, and, if they are all integer, they represent a valid solution.
Variables xit are the original formulation variables that represent the number of re-
sources used by item i in time period t. Thus, if all xit are integer, they represent a
valid solution.



A column generation approach to DLSP on parallel machines 7

Consider a new free decision variable, y′it defined as y′it = xit − xi(t−1). This de-
cision variable represents the change in the number of resources producing item i
from period t−1 to period t. If there is an increase in the number of resources used,
y′it will be positive (equal to the formerly defined yit ) and, if there is a decrease, it
will be negative. Given this definition, the following proposition is also true:

Proposition 2. Given the sets of variables xit , y′it and zit , if one of those sets is inte-
ger, then, the others must also be integer.

Proof. Variables y′it represent the variation in the number of used resources for a
given item and can be computed from xit as stated above. Hence if one of the sets
is integer the other is also integer. Variables zit are inventory levels and so zit =
zi(t−1)+xit−dit . Because dit are integer values, the previous reasoning still applies.

6 Subproblem optimization

In this section we present a dynamic programming algorithm to solve the subprob-
lem, a single item DLSP. The algorithm evaluates function Ft(z,r) that represents
the minimum cost to get z inventory level at the end of period t with r resources
setup for the production of the considered item. If we assume that all resources are
idle at instant 0, and the initial inventory is 0, then, F0(0,0) = 0. At each stage tran-
sition, we must decide how many resources will be allocated to the production of
the considered item, i. Let xit ∈ {0, . . . ,R} be that value. Then, from state (z,r) at
stage t−1 we can reach, at stage t, states (z′ = z−dit +xit ,r′ = xit) as long as z′ ≥ 0,
because inventory can not be negative. The objective function will be computed in
the following way:

Ft(z′,r′) =

{
Ft−1(z,r)−πtr′+hiz′+ si(r′− r) if r′ > r
Ft−1(z,r)−πtr′+hiz′ if r′ ≤ r

(19)

At each stage, the maximum theoretical number of states will be equal to (R+
1)(z+t − z−t + 1), where z−t and z+t are bounds on the inventory level at the end of
period t and can be computed as follows:

z−t = max
(
0,di(t+1)−R+ z−t+1

)
(20)

z+t = min

(
t

∑
l=1

(R−dil),
T

∑
l=t+1

dil

)
(21)

In equation (20) computation is recursive and should be initialized with z−T = 0,
stating that the minimum inventory at the end of period T should be 0 (see discussion
on section 4). The computations reflect the fact that, when the demand exceeds R,
there will be need for inventory at the end of the previous period or periods.

Concerning the equation (21), the maximum inventory is the minimum value
between the achievable inventory at the end of period t using maximum capacity



8 António J.S.T. Duarte and J.M.V. Valério de Carvalho

and the maximum inventory needs to satisfy demand from inventory for the rest of
the planning horizon (once again, assuming that the final inventory should be 0).

Note that these bounds can be used to improve (7) in the ILP formulation and
(17) in the subproblem formulation and can be easily modified in the presence of
initial and final inventories.

The above mentioned number of states is the theoretical maximum because if,
for some state, Ft(z,r) equals or exceeds νi, further transitions from that state can
be ignored, because the reduced cost of the new column would not be negative and,
hence, the column would not be attractive.

7 Branching

Solving the relaxed master problem to optimality does not guarantee an integer so-
lution. For that reason, in order to find an integer optimal solution it is necessary
to identify and eliminate fractional solutions. Branching is a standard procedure to
achieve that goal.

As it is widely known, when performing column generation, branching on the
master problem variables (λik) is not a good idea, because it leads to column regen-
eration whenever a branching decision of the type λik ≤ 0 is made.

Given proposition 2, presented in section 5, the sets xit , y′it and zit are natural
candidates for branching. The choice should be made based on the results of com-
putational performance tests.

Note that the original variables yit cannot be used for branching because, al-
though integrality on xit implies integrality on yit , the converse is not true. For
example, consider the number of resources used (aikt vectors) in two four-period
schedules for a given item: (0,4,4,4) and (4,4,3,1). Suppose that, in the optimal
solution of a given node, both λik are at a level of 0.5. As it can be easily seen,
xik = (2,4,3.5,2.5) while yik = (2,2,0,0). This solution would be fractional, while
the yit vector would be integer. In this case, the vector y′it would be (2,2,-0.5,-1) and,
hence, not integer.

The following subsections present the 3 possible branching schemes along with
the adjustments to the subproblem structure.

7.1 Branching on xit

When branching upon the xit variables, in node j, two branches of the problem are
created. On one branch (the left branch) the constraint

xit ≤ bx∗jc (22)



A column generation approach to DLSP on parallel machines 9

is added, where x∗j represents some non-integer value. On the other branch (the right
branch) the following constraint is added instead:

xit ≥ dx∗je (23)

With respect to finding the optimal solution of the model at a given node j, it
is necessary to call the subproblems for attractive columns not yet included in the
master problem. In node j, besides the initial constraints, the master problem has
other sets of constraints, denoted as P j

it , with i = 1, . . . , I and t = 1, . . . ,T , resulting
from all the branching decisions imposed on each different variable xit .

Let ρ
p
it, j be the dual variable associated with constraint p, with p ∈ P j

it . Thus, in
order for the subproblem to correctly identify the attractive columns, in the objective
function (12) and in the recursive equation (19), πt must be replaced with (πt +ρ

j
it),

where ρ
j

it is the sum of all dual variables, ρ
p
it, j, associated with constraints p ∈ P j

it ,

which are imposed on the variable xit at node j, i.e., ρ
j

it = ∑p∈P j
it

ρ
p
it, j.

7.2 Branching on zit

Branching on the zit variables requires some additional manipulations. Developing
zit = zi(t−1)+ xit −dit recursively yields the following (assuming the starting inven-
tory is 0):

zit =
t

∑
l=1

(xil−dil) (24)

To translate zit to the master problem space, once again, equation (18) should be
used. Using the same approach as before, on node j we want to branch on variable
zit , whose fractional value is z∗j . The left and right branching constraints will be,
respectively:

zit ≤ bz∗jc (25)

zit ≥ dz∗je (26)

Using the same notation as in section 7.1, if ρ
j

it is the sum of the dual variables
that refer to constraints imposed on the variable zit , the modification to objective
function (12) and to the recursive equation (19) is the replacement of hi by (hi−ρ

j
it).

7.3 Branching on y′it

Let y′j
∗ be the fractional value of y′it that we wish to branch upon on node j. The

constraints to impose on the left and right branches are, respectively,

y′it ≤ by′j
∗c (27)



10 António J.S.T. Duarte and J.M.V. Valério de Carvalho

y′it ≥ dy′j
∗e (28)

On these equations, y′it can be replaced with xit − xi(t−1) and projected to the
master problem space using equation (18). Once again, as in the previous sections,
let ρ

j
it be the sum of the dual variables whose associated constraints refer to variable

y′it .
In this case, the modifications to the subproblem structure are more complex than

in the previous branching schemes presented on sections 7.1 and 7.2.
In the case of the ILP formulation there is the need of creating a set of variables

to account for decreases in the number of used resources. Let’s name those variables
y−it . In the objective function (12) a new term associated with this new variables must
be included rendering the following objective function:

T

∑
t=1

(
(si−ρ

j
it)yit +hizit −πtxit +ρ

j
ity
−
it

)
−νi (29)

Also, an additional set of constraints must be included (similar to constraints
(14)):

y−it ≥ xi(t−1)− xit t = {1, . . . ,T} (30)

Also, in the subproblem formulation that resulted from the decomposition, the yit
variables have no upper bound because it is implicitly assumed that their coefficients
on the objective function are always positive. Because this last assumption is no
longer true, an upper bound on yit equal to max

(
0, xit − xi(t−1)

)
must be enforced

in the ILP subproblem formulation. The same logic applies to the y−it variables: an
upper bound equal to max

(
0, xi(t−1)− xit

)
must be enforced. For simplicity, the

necessary additional constraints are omitted here.
The recursive equation (19) needs also to be modified and, after the necessary

modifications, it will be:

Ft(z′,r′) =

{
Ft−1(z,r)−πtr′+hiz′+(si−ρ

j
it)(r

′− r) if r′ > r
Ft−1(z,r)−πtr′+hiz′+ρ

j
it(r− r′) if r′ ≤ r

(31)

With this changes, the subproblem will correctly process the additional dual in-
formation.

8 Computational results

In order to access the quality of our approach, an implementation was developed
in C# (Microsoft .NET framework 4.5) using ILOG CPLEX 12.5.0.1 for optimiza-
tion, with the default parameters. All tests were run in a laptop with a Intel Core
i7 3610QM @ 2.30GHz CPU. The branching scheme is based on the xit variables,
as described in section 7.1. This choice was made based on the performance results



A column generation approach to DLSP on parallel machines 11

of a limited set of preliminary computational tests, which pointed towards a better
performance of the partition scheme based on the xit variables.

The test instances were generated randomly, using the procedure described in [6].
Namely, the the inventory holding costs (hi) come from an integer Uniform distribu-
tion between 5 and 10, the startup costs (si) come from an integer Uniform distribu-
tion between 100 and 200 and the demands for a randomly chosen set of (i, t) pairs
(dit ), come from an integer Uniform distribution between 1 and R. Furthermore, the
instances have similar characteristics, namely, there are 4 sets of instances:

• set A: small instances (R = 2, I = 10 and T = 50);
• set B: instances with a large number of periods (R = 2, I = 10 and T = 150);
• set C: instances with a large number of items (R = 2, I = 25 and T = 50);
• set D: instances with a large number of resources (R = 10, I = 10 and T = 50).

These sets were combined with 5 levels of used capacity (75%, 80%, 85%, 90%
and 95%). For each combination, 3 instances were generated, resulting in a total of
60 instances.

The computational results are shown in Table 1, where each line contains ag-
gregate results for the 3 instances in each combination described above, and the
columns have the following meaning: column UC refers to the used capacity;
columns Nodes and Cols are the average number of nodes in the branch-and-price
tree and the average number of columns generated, respectively; columns TMIP and
TBP are average times (in seconds) to solve to optimality the ILP formulation pre-
sented in section 3 (TMIP) using the CPLEX MIP Solver and the proposed branch-
and-price framework (TBP), respectively; columns SMIP and SBP show the number
of instances solved to optimality using each procedure within a time limit of 30
minutes; column LBInc shows the average increase, in percentage of the ILP formu-
lation LP relaxation bound, to the LP relaxation of the reformulated model 2; finally,
column Gap shows the average gap, in percentage, between the LP relaxation of the
root node and the optimal (or best) integer solution found 3.

In addition to this set of results, we also tested our approach with the instances
used in [6]. These results appear in Table 2. The instances are similar to the gener-
ated ones with the exception that, instead of 3 instances per combination of param-
eters, there are 5 instances per combination 4.

The most noticeable result in the presented tables is that, for every set of in-
stances, except for set D, the computational times are faster than the ones obtained
with the CPLEX MIP solver. As noticeable, only for the instances in set D, has our
approach a poorer performance, which seems to indicate that it is not so well suited
for problems with a high number of resources to be scheduled. On the other hand,

2 Let ILPRel be the optimal objective value for the ILP relaxation and RMRel be the optimal
objective value for the linear relaxation of the reformulated model (relaxation of the search tree
root node). Using the above notation, LBInc = 100× (RMRel− ILPRel)/ILPRel.
3 If Best represents the optimal or best integer solution found, Gap = 100 ×
(Best−RMRel)/RMRel.
4 Except for set C (instances with 75% used capacity) where only 4 instances were available.



12 António J.S.T. Duarte and J.M.V. Valério de Carvalho

Table 1 Computational results.

Instance set UC Nodes Cols TMIP SMIP TBP SBP LBInc Gap

A: R = 2, I = 10
and T = 50

75 1.7 602.3 2.36 3 0.39 3 89.4 0.01
80 3.0 512.0 0.90 3 0.55 3 70.0 0.06
85 1.0 774.0 4.09 3 0.45 3 85.6 0.00
90 5.7 1031.0 1.20 3 0.41 3 67.0 0.16
95 34.0 1686.0 4.85 3 0.66 3 69.0 0.32

B: R = 2, I = 10
and T = 150

75 251.3 4795.7 219.47 2 14.42 3 87.3 0.30
80 3844.3 22495.0 - 0 255.79 3 96.4 0.26
85 2051.3 35514.0 - 0 19.07 2 75.9 0.43
90 617.0 18415.7 - 0 91.90 3 78.8 0.32
95 2624.0 78555.7 - 0 1046.95 2 75.6 0.48

C: R = 2, I = 25
and T = 50

75 3.7 583.0 1.20 3 0.52 3 88.0 0.03
80 1.0 716.0 3.20 3 0.57 3 90.9 0.00
85 35.7 1040.7 5.44 3 0.53 3 105.3 0.05
90 55.7 1010.7 5.09 3 0.50 3 85.9 0.13
95 700.3 1710.7 4.73 3 1.10 3 71.5 0.18

D: R = 10,
I = 10 and
T = 50

75 30.3 573.0 0.99 3 5.60 3 8.9 0.29
80 5.7 858.3 1.44 3 5.90 3 10.2 0.03
85 1228.3 3080.0 1.97 3 50.21 3 6.3 0.37
90 465.3 5410.0 1.94 3 144.79 3 7.8 0.28
95 3185.0 12928.3 6.85 3 214.27 2 9.3 0.67

Table 2 Computational results for instances in the literature 2.

Instance set UC Nodes Cols TMIP SMIP TBP SBP LBInc Gap

A: R = 2, I = 10
and T = 50

75 5.2 479.0 2.14 5 0.66 5 95.8 0.26
80 8.4 572.4 2.35 5 0.72 5 82.0 0.18
85 29.6 795.6 5.13 5 0.72 5 87.3 0.41
90 17.8 1124.0 3.25 5 0.80 5 73.2 0.26
95 30.0 1667.4 16.44 5 0.96 5 70.2 0.45

B: R = 2, I = 10
and T = 150

75 124.6 3518.2 - 0 25.33 5 116.0 0.18
80 664.8 10665.8 - 0 88.03 5 111.9 0.15
85 1047.4 15794.2 - 0 116.42 5 102.3 0.44
90 2704.4 56567.4 - 0 486.86 4 103.7 0.73
95 2656.2 86827.2 - 0 - 0 88.2 1.23

C: R = 2, I = 25
and T = 50

75 18.0 695.0 5.07 4 0.85 4 122.5 0.09
80 19.4 772.4 6.28 5 0.90 5 126.3 0.12
85 89.2 943.6 7.94 5 0.96 5 123.2 0.13
90 82.0 1213.0 33.58 5 1.09 5 135.2 0.21
95 320.8 1598.6 19.18 5 1.35 5 112.6 0.54

D: R = 10,
I = 10 and
T = 50

75 14.0 421.4 0.65 5 3.14 5 11.4 0.12
80 30.0 847.2 1.16 5 5.50 5 8.8 0.13
85 54.8 1208.4 1.08 5 6.72 5 9.7 0.19
90 2105.2 4618.8 5.53 5 170.97 4 10.2 0.29
95 5815.0 22939.4 7.85 5 442.06 1 11.3 0.68



A column generation approach to DLSP on parallel machines 13

for the instances in set B, our approach solved to optimality 32 of the 40 instances,
while the MIP solver only solved 2 instances to optimality.

Another important result is the linear relaxation improvement that our decom-
position achieves. This improvement is consistent across all instances tested and
clearly shows the merits of this approach. The instances in set D are the ones with
the lowest increase in the linear relaxation bound, which seems to indicate that,
when the number of resources increases, the decomposition is not as effective. This
is consistent with the previous paragraph comment.

Another interesting point to notice is the small Gap values in the last column of
the tables. It means that the linear programming relaxation at the root node provides
a very tight lower bound on the optimal integer solution. Even for the cases when our
approach fails to solve all the instances to optimality, there is a small gap between
the lower bound and the best known solution (e.g. set B with 95% used capacity).

The computational results in tables 1 and 2 should be similar and, in fact, they
show congruency, although the instances in table 2 seem to be slightly harder to
solve. This could be due to some difference in our interpretation or our implemen-
tation of the random generation procedure detailed in [6].

9 Conclusions and future work

In this work we presented a column generation approach to a known problem. The
computational results show that the presented algorithm can be used with success to
solve many real word size instances in very short times. They also show that, when
optimality is not achieved, the objective value of the best solution is close to the
lower bound provided by our column generation approach.

On the other hand, for some types of instances, with a high number of resources
to be scheduled, the results are not so good. Future research efforts should try to fully
understand those results and to improve the performance for that set of instances,
probably with the help of additional cuts, different branching schemes and/or with
an heuristic approach.

Acknowledgements The authors want to thank the anonymous reviewers of the IO2013 confer-
ence for the insightful comments to the first version of this paper and the authors of [6] for kindly
providing the problem instances they used in their work. This work has been partially supported by
FCT - Fundação para a Ciência e Tecnologia within the Project Scope: PEst-OE/EEI/UI0319/2014.

References

[1] Caserta M, Voß S (2013) A math-heuristic Dantzig-Wolfe algorithm for capacitated lot siz-
ing. Annals of Mathematics and Artificial Intelligence pp 1–18



14 António J.S.T. Duarte and J.M.V. Valério de Carvalho

[2] Cattrysse D, Salomon M, Kuik R, van Wassenhove LN (1993) A dual ascent and column
generation heuristic for the discrete lotsizing and scheduling problem with setup times. Man-
agement Science 39(4):477–486

[3] Degraeve Z, Jans R (2007) A new Dantzig-Wolfe reformulation and branch-and-price
algorithm for the capacitated lot-sizing problem with setup times. Operations Research
55(5):909–920

[4] van Eijl CA, van Hoesel CPM (1997) On the discrete lot-sizing and scheduling problem with
Wagner-Whitin costs. Operations Research Letters 20(1):7–13

[5] Gicquel C, Minoux M, Dallery Y (2011) Exact solution approaches for the discrete lot-sizing
and scheduling problem with parallel resources. International Journal of Production Research
49(9):2587–2603

[6] Gicquel C, Wolsey LA, Minoux M (2012) On discrete lot-sizing and scheduling on identical
parallel machines. Optimization Letters 6(3):545–557

[7] van Hoesel S, Kolen A (1994) A linear description of the discrete lot-sizing and scheduling
problem. European Journal of Operational Research 75(2):342–353

[8] van Hoesel S, Wagelmans A, Kolen A (1991) A dual algorithm for the economic lot-sizing
problem. European Journal of Operational Research 52(3):315–325

[9] Karimi B, Fatemi Ghomi SMT, Wilson JM (2003) The capacitated lot sizing problem: a
review of models and algorithms. Omega 31(5):365–378

[10] Lasdon LS, Terjung RC (1971) An efficient algorithm for multi-item scheduling. Operations
Research 19(4):946–969

[11] Manne AS (1958) Programming of economic lot sizes. Management Science 4(2):115–135
[12] Wagner HM, Whitin TM (1958) Dynamic version of the economic lot size model. Manage-

ment Science 5(1):89–96
[13] Zangwill WI (1968) Minimum concave cost flows in certain networks. Management Science

14(7):429–450


	capa
	dlsppp

