

Abstract—The BLEGen is a retargeting generation code tool

to implement Bluetooth Low Energy services. Based on a

specification of the main characteristics of the BLE services, the

BLEGen is able to produce all the necessary C code to

implement the services for the chosen microchip. The

specifications are written using a domain specific language,

which was designed to allow a very compact, easy to understand,

highly focused on the BLE standard concepts and fully

independent of the details and constraints of the target

microchip. The BLEGen was conceived based on the builder

design pattern to be a retargeting tool. This means that it is able

to generate code for distinct target microchips, using the

correspondent BLE software stack and taking advantage of the

concrete microchip architecture. The BLEGen allows the

implementation of new BLE services, reducing significantly the

development time and the level of expertise, since it avoids a long

learning period to understand the BLE stack used by each

manufacturer and the microchip architecture.

At this paper, it is presented the motivation, the domain

specific language defined to describe the BLE services, the

architecture of the BLEGen and the solutions adopted to make it

a retargeting tool.

Index Terms—Bluetooth low energy, builder pattern, code

generation.

I. INTRODUCTION

The internet of things, the ubiquitous computing and the

sensor networks are the new technological revolution that

already started and that will change our world. In less than ten

years the expectation is that almost everything around us will

be interconnected. It will not be only the computer, the mobile

or TV. The dog, the garbage collector, the car, the wallet, the

kids, everything will be connected, transparently for us and

using smart solutions that will put the technology to our

service in a way never achieved before. Our world will suffer

deep changes that will increase our life quality as individuals,

but also as society. It is expected to reach unparalleled levels

of efficiency, in all aspects of our reality. This revolution

already started. There are many cases of success in the

industry, agriculture, public services, security, leisure, and on

many other areas [1].

Recent studies point to more than 50 billion devices

connected until 2020. A market that represents, in the next 10

years, 14.4 trillion dollar [2] of net profit for the companies

positioned in these technological areas. The Bluetooth Low

Energy (BLE) [3] also known by Bluetooth Smart, is part of

Manuscript received August 10, 2014; revised November 10, 2014.

The authors are with the Polytechnical Institute of Bragança at Portugal,

Portugal (e-mail: poliveira@ipb.pt, pmatos@ipb.pt).

this technological revolution.

TABLE I: BLE MARKET VALUES [2]

Area Total Market (devices)
Mobile Phone Accessories > 10 Billions

Smart Energy (meters and monitors) ~1 Billion

Automation >5 Billions

Health, Sport and Fitness > 10 Billions

Assisted living > 5 Billions

Tags Animals (Food Safety) ~3 Billions

Intelligent Transport Systems > 1 Billion

M2M (devices connected to the Internet) > 10 Billions

The BLE is particularly useful and used on mobile devices,

like smartphones and tablets, where the expertise of the

software developers is focused on the application level

(Android/Java, iOS/Objective-C, Windows Phone/C#, ...). By

this point of view, dealing with the BLE is quite similar to

many other event oriented solutions, is not very complex and

it does not require special skills.

But the expertise to develop mobile software applications

is only part of the knowledge required to implement a full

solution [1]. Besides the software for the mobile device, the

full solution can require the external device, the one that it is

supposed to supply data to the mobile device or to be

controlled by this one.

The BLE is based on a service-oriented architecture, where

one of the devices assumes the role of server (also designated

by peripheral) and the other assumes the role of slave (also

designated by central). The server is the device that contains

the data and the slave is the one that requests data to the server.

The smartphones typically play the central role, monitoring

and controlling one or more peripheral devices. The

peripheral devices are typically programmed using low-level

languages, like C and even assembly, where a strong

knowledge about the hardware architecture and developing

tools is fundamental. It is the kind of know-how that is very

specific, very low level, typically constrained by the hardware

resources, like timers, memory, real-time clocks, interrupts

and many others things, and normally it is not very accessible

for most mobile application developers.

The BLE standard includes a set of profiles for the

peripheral devices, each one defining a service. The goal was

to promote a standardize set of services, that should be

supplied by the hardware manufacturers, to promote the fast

adoption of the BLE technology by the software developers

community, namely the developers of the Android, iOS,

Windows Phone and others mobile devices operating systems.

The profiles defined on the BLE standard and supplied as

implemented services by the hardware manufacturers help on

BLEGen — A Code Generator for Bluetooth Low Energy

Services

P. Oliveira and P. J. Matos

Lecture Notes on Software Engineering, Vol. 4, No. 1, February 2016

7DOI: 10.7763/LNSE.2016.V4.215

mailto:poliveira@ipb.pt
mailto:pmatos@ipb.pt

adaptation of the BLE technology, minimizing the required

knowledge and sometimes avoiding the development of this

component. As consequence, the market was quickly invaded

by a significant number of software applications, even when

most of the smartphones, tablets and computers available on

the market are not yet prepared for this technology.

But the expectations are very high and the number of

profiles included on the standard is restricted and, of course,

does not cover all the necessities. The implementation of new

services is not a simple task. The technology is too fresh

(there are few examples, documentation, support and experts

available on the market); the implementation is very

dependent of the microchip characteristics and resources; the

BLE specification is not very accessible and uses a wide range

of technologies; the available implementations of the BLE

stacks use very distinct architectures, implying distinct ways

of implement the services; and all the code is implemented at

a very low level, with all the natural constraints and

difficulties common to this level. Our experience shows us

that to achieve a satisfactory level of expertise, in order to

produce functional and consistent solutions, it can take

several weeks or even months. Specially because, most

microchips are very recent and, as consequence, there is a

natural lack of documentation and technical support.

Confronted with all these problems, we implemented a

code generator, the BLEGen to assist on the development of

BLE services. Presently, the generator, which is a prototype,

produces C code for only one family of microchips, the

nRF51 - one of the most used BLE microchips on the market.

But the code generator architecture, based on the builder

design pattern, ensures that the expansion of the generator, to

produce code for other microchips, is possible and not

difficult to do.

The work developed around the BLGen aims to supply a

tool to support the academic, research and industrial

community on the development of new BLE services, without

have to spend too much time learning the BLE

implementation details, the hardware architectures

specifications and how to use the developing tools. Based on a

domain specific language, that requires a very short and

higher-level description of the BLE services. This generator

can produce highly normalized and optimized C code.

The BLEGen, that is currently a prototype, produces all the

necessary code to implement BLE services for the

SoftDevices software stack [4], [5], used on the family of

chips nRF51 [6]. But it was conceived based on the builder

design pattern to enforce the separation of the parsing process

from the generation process. This solution, as it is explained

in Section IV, has several advantages, namely, it makes more

accessible and easier the maintenance of the BLEGen to

generate BLE services for new microchips.

The BLEGen is a domain specific tool and it is the only tool

known by the authors, available to support the development of

BLE services.

This paper is organized as follows: Section II introduces

the BLE, namely the GATT level that supports the services;

Section III introduces the syntax defined for the code

generator; Section IV explains the architectural design of the

generator; and Section V wraps up the paper with the

conclusions.

II. BLUETOOTH LOW ENERGY

BLE technology is an extension of the Bluetooth 4.0

standard, introduced by SIG in late 2009 and optimized

specifically for devices that use small batteries and require

very low consumption [7]. Devices that support Bluetooth

Low Energy are called Bluetooth Smart Devices and certified

by the Special Interest Group (SIG). Operate in the same ISM

(Industrial, scientific and medical) band than traditional

Bluetooth devices, and this is being divided into 40 channels,

with 3 for the process of advertising and 37 for data

communication [8]. The major advantage compared with

traditional Bluetooth is a significant reduction in consumption.

This is possible due to the simplification of the search and

connection process to devices. Another key feature for this

decrease of consumption is its reduced activity window,

sending small data packets for a few seconds and going into

standby mode, the remaining time. Compared to previous

Bluetooth versions, are used smaller data packets (2971 bits),

a lower data transmission rate (0.26 Mbit/s) and the radius of

coverage is limited to 50 meters, half the maximum allowed

by earlier versions [3]. Depending on usage, BLE can

consume up to 100 times less than previous versions and, even

in less favorable scenarios, the consumption is reduced at

least to half. This provides greater autonomy, being shown in

studies that the battery life may be many times larger than the

device, allowing solutions that would otherwise be unfeasible.

The standard also requires that the physical devices operate at

very low voltages allowing the use of simple watch batteries.

The manufacturers are also providing this technology at a low

cost and in very compact solutions, which allows the

existence of devices slightly larger than a coin [9]. Being a

standard accepted by most manufacturers, including the main

smartphones manufacturers, assures high levels of integration

and interoperability.

A. Pairing, Connection and Transmission

The type of communication is master-slave, the master is

responsible for the establishment of the network connection.

To establish a connection between devices, the master device

sends a discovery-message using broadcast for devices in

range, switching between the frequencies used by Bluetooth.

All the slave devices that are on, the discovery mode will

receive the messages, afterward they will reply, sending their

address and class. A connection request can exist depending

on the desired [10].

B. The BLE Protocol Stack

The BLE protocol stack is partitioned into controller and

host. The controller is responsible for managing the lower

layers of the stack, particularly the capture of physical

packages and control of the radio frequency circuit. The host

components are: logic control layer connection and

adaptation (L2CAP), Generic Access Profile (GAP), Security

Manager (SM), Attribute protocol (ATT) and the Generic

Attribute Profile (GATT). For a better understanding, the

entire stack can be seen in the Table II.

In this paper, we only address in detail the GATT layer,

because it is the only one relevant for the purposes of this

paper.

Lecture Notes on Software Engineering, Vol. 4, No. 1, February 2016

8

Lecture Notes on Software Engineering, Vol. 4, No. 1, February 2016

9

C. GATT

The Generic Attribute Profile (GATT), which is

responsible for describing the different frameworks of

services and is an extension of Attribute protocol (ATT) that

is specific by BLE 4.0. It provides the interface to the

application layer through the application profiles. Each

application profile defines the formatting of data and how

they can be interpreted by the application. The profiles

increase energy efficiency by reducing the amount of data to

be exchanged. These are designed for specific functionality,

e.g. there are heart rate, glucose, notification alerts and

several other profiles. This makes it easier for developers to

create applications for purposes of specific features by using

pairs of default values/attributes found in each profile.

TABLE II: BLUETOOTH LOW ENERGY STACK ARCHITECTURE

Application

A
p

p
s

Generic Access Profile

Generic Attribute Profile

Attribute Protocol Security Manager

Logical Link Control and Adaptation Protocol

Host Controller Interface

H
o

st

Link Layer Direct Test Mode

Physical Layer

C
o

n
tr

o
lle

r

A GATT service is a collection of related characteristics

that work together to perform a specific function. Each GATT

service has a number of characteristics. The characteristics

storing useful values for services and its permissions. For

example, the thermometer service includes characteristics for

a temperature measurement value that is read-only, and a time

interval between the measurements to be read/written. An

example of a GATT service, as well as their characteristics is

shown in the Table III.

TABLE III: EXAMPLE OF A GATT SERVICE

Handle UUID Description Value

0×0100 0×2800
Thermometer service

definition
UUID 0×1816

0×0101 0×2803 Characteristic: temperature UUID 0×2A2B

0×0102 0×2A2B Temperature value 20 degrees

0×0104 0×2A1F Descriptor: unit Celsius

0×0105 0×2902
Client characteristic

configuration descriptor
0×0000

0×0110 0×2803 Characteristic: date/time UUID 0×2A08

0×0111 0×2A08 Date/Time 1/1/1980 12:00

Each characteristic has at least two attributes: the main

(0×2803), which defines the universally unique identifier

(UUID), and the attribute value. They may also contain other

extra attributes called descriptors, which serve, for example,

to identify the measurement unit or any other information

relevant of the characteristic. The GATT knows that the

handle 0×0104 is a descriptor that belongs to feature 0×0101,

because this is not the attribute value, as the attribute value is

known to be 0×0101. Each service may define their own

descriptors, but the GATT defines a standard set of

descriptors that cover most of the cases, for example: numeric

and presentation format, readable description, the valid range

or extension properties. An example of a complete GATT

structure is show in the Table IV.

TABLE IV: GATT STRUCTURE

 Handle UUID Permissions Value

Service 0×0001 Service READ HRS

Characteristic 0×0002 CHAR READ HRM

Characteristic 0×0003 HRM READ/NOTIFY 80 bpm

Descriptor 0×0004 DESC READ NOTIFY

III. THE LANGUAGE SPECIFICATION

Before introduce the language specification, it is important

to say that the present prototype does not include solutions for

all available features of the BLE stack. The support for such

features will require some changes on the syntax, on the build

routine and on the concrete builders. But the essential of the

syntax and architecture will remain untouched.

Each service is identified by an address composed by 32

hexadecimal digits. To make the generated code more legible,

it is used a name that works like a prefix for the functions,

structures and other elements of each service. These two

elements are specified as it is illustrated in Fig. 1, where

WGEN is the name of the service and

0x2D26000057377FEE961BA8DB441BC2AC its address.

Syntax:

BLESERVICE (prefix, address){

 predef

 dis_connection

 characteristics

}

Example:

BLESERVICE("WGEN",

0x2D26000057377FEE961BA8DB441BC2AC){ ...}

Fig. 1. Service definition.

The predef is a block of C code surrounded by %{ // C

code }%, that will be insert before the code generated for the

BLE service. Users can use it to include the code that

complements the BLE service, like definition of types

(enumerations, structs and others), declarations of variables

and constants and, implementation of functions. The service

definition also allows to include the procedures that must be

executed on the connection and on the disconnection events

(dis_connection). These procedures should be defined using

C code, like it is showed in Fig. 2.

Syntax:

dis_connection –> connection |

disconnection

connection –> ONCONNECT:%{ // C Code %}

disconnection –> ONDISCONNECT:%{ // C

Code %}

Example:

ONCONNECT:%{counter=0;}%

ONDISCONNECT:%{fclose(fp);}%

Fig. 2. OnConnect and OnDisconnect procedures definition.

The service definition can also contain the definition of one

or more characteristics. For each one, it is request a prefix to

Lecture Notes on Software Engineering, Vol. 4, No. 1, February 2016

10

be used as distinctive element on the structures, functions and

other components. Each characteristic has also an address

with 32 digits that only differs from the service address in four

digits. To avoid the introduction of the 32 digits, the user only

has to supply these four digits (as a hexadecimal value), like it

is shown in Fig. 3.

Syntax:

characteristic –> prefix (address,

accesstype, typevalue, minnumber,

maxnumber)%{

// C code

}%

Example:

temperature(0x20AA, [rn], uint8_t,

1, %{len}%)%{ ... }%

Fig. 3. Characteristic definition.

The BLE supports five distinct access types to the

characteristics: read (r); write (w), write without response (o),

notify (n) and indicate (i). The read and write are,

respectively, to read and write the characteristic; the write

without response is similar to the write but there is not any

confirmation at the application level; the notify access is used

to notify the slave whenever the value of the characteristic is

changed on the stack; and the indicate access is similar to the

notification, but there is a confirmation of the message deliver.

The structure of the BLE service implemented is show in the

Table V.

TABLE V: STRUCTURE BLE SERVICE WGEN

 Handle UUID Permissions Value

Service 0×0001 Service READ WGEN

Characteristic 0×20AA TEMP1 WRITE 20

Characteristic 0×20BB TEMP2 READ/NOTIFY 30

The user can use several access types for each

characteristic. It is also necessary to define the type of value

associated to the characteristic and the interval of accepted

number of values. The type of value is defined using the

equivalent identifier of C language (uint8_t, float, char,...).

The interval is defined based in two integer or using C

expressions surrounded by %{ //C expression }%, as it is

illustrated at Fig. 3.

BLESERVICE ("WGEN",

0x2D26000057377FEE961BA8DB441BC2AC){

PREDEF:%{

typedef struct per{

uint8_t var1;

uint8_t var2;

} Period;

}%

ONCONNECT:%{counter=0;}%

CHARACTERISTICS:

temp1(0x20AA, [w], uint8_t, 1, 1)%{x=10;}%

temp2(0x30BB, [rn], Period, 1, %{len}%);

}
Fig. 4. Example of a BLE service specification.

At the end of the definition (see Fig. 3) there can be zero or

more blocks of C code surrounded by %{ //C code }%, one per

type of access used for the characteristic. Each one

corresponds to the code that will be executed when is done the

access by the correspondent type. Notice however that some

access types, like the notify, indication and sometimes the

read, don t́ execute any kind of procedure. But once defined

one, the user should define all the others, even when they

don t́ use it (using an empty block). Fig. 4 shows a full

example of a BLE service specification that will result, after

being processed, into two files (*.h and *.c) with more than

250 lines of code.

IV. THE ARCHITECTURE OF THE GENERATOR

To guarantee that the generator could be easily adapted to

produce code for other BLE microchips/stacks, the authors

used the builder design pattern [11] as it is illustrated at Fig. 5.

This pattern is used whenever the same building procedure

can be applied to build distinct products/outputs. The authors

believe that this is the case of this generator. This pattern

contributes to reinforce the separation between the parsing

and the code generation, allowing inclusively changing the

concrete builder at generation-time.

The implementation was done using bisonc++ [12] and

C++. The main function calls the parser to collect all the

necessary information from the specification and fulfill the

data structures (represented in Fig. 5 by the List of Service

objects). Afterward, based on the argument target,

instantiates the concrete builder (nRFBuilder/XBuilder) that

is able to generate the code for the desired microchip/stack.

Then, it calls the buildBLE() method, of the created Builder

object, passing the required data structures.

The Builder class, which is an abstract class, defines the

method buildBLE() that drives the building process, passing

the list of Services objects. It also imposes that the concrete

builder classes, like nRFBuilder and XBuilder, implement the

methods required for the building process (represented in Fig.

5 by genInit() and genServDef()). Each of these methods is

responsible for the generation of part of the final code.

V. CONCLUSIONS

The BLEGen presented in this paper simplifies

significantly the task of implement the BLE services, reduces

the developing time and the probability of errors, normalizes

the generated code and hides lot of details that are not

necessary to many developers. But the most important

contribution is that allows implementing a BLE service in few

hours, without having to be an expert on the hardware

architecture or on the implementation of correspondent BLE

stack.

As a prototype, it must be submit to more tests, namely

developing new concrete builders to see if the method that

drives the code generation is enough generic and flexible to

cover other BLE microchips/stacks. It is also important to

implement the missing features, like a solution to define the

security settings of the services or the possibility to associate

descriptors to the characteristics.

It would be nice to supply more evolved models of iteration

between peripheral and central units (client and server). For

Lecture Notes on Software Engineering, Vol. 4, No. 1, February 2016

11

example, the BLE is based on the client-server architectural

pattern, but does not allow to directly pass parameters to the

server, the requests are based only in the server id. The

implementation of a solution that simulates requests with

parameters is possible but requires more than one

characteristic, and a small protocol. With small improvements,

the proposed generator could easily supply this kind of

solution, hiding all the complexity and unnecessary details.

The BLEGen was already used to implement several

services, which will be available soon on the Android Market

and Apple Store, and the goal is to make the BLEGen

available as an open source project.

Fig. 5. Code generator architecture.

REFERENCES

[1] P. Oliveira, “Aplicação do Bluetooth Low Energy no controlo e

monitorização de dispositivos de muito baixo consumo,” Master

Thesis, Escola Superior de Tecnologia e de Gestão, Bragança.

[2] J. Decuir, “Changing the way the world connects - Bluetooth 4.0: Low

energy,” CSR, 2010.

[3] Specification of the Bluetooth System, Bluetooth SIG, Inc., 2013.

[4] Introduction to S110 SoftDevice, User Guide, Nordic

Semi-Conductors, 2013.

[5] Creating Bluetooth Low Energy Applications Using nRF51822,

Nordic Semiconductor, 2013.

[6] nRF51822 Multiprotocol Bluetooth 4.0 low energy/2.4GHz RF SoC -

Product Specification2.0”, Nordic SemiConductors, 2013.

[7] Bluetooth Low-Energy: An Introduction. (2014). [Online]. Available:

http://low-powerwireless.com/blog/2010/07/08/bluetooth-low-energy-

an-introduction/

[8] N. Lee. (2011). Bluetooth 4.0: What Is It, and does It Matter? [Online].

Available:

http://www.cnet.com/news/bluetooth-4-0-what-is-it-and-does-it-matte

r/

[9] J. Bradley, J. Barbier, and D. Handler, Embracing the Internet of

Everything to Capture Your Share of the $14.4 Trillion - White Paper,

Cisco, 2013.

[10] A. Huang and L. Rudolph, Bluetooth Essentials for Programmers,

Cambridge University Press, 2007.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns –

Elements of Reusable Object-Oriented Software, Addison-Wesley,

1994.

[12] F. Brokken. (2014). Bisonc++ V 4.08.00 User Guide. [Online].

Available: http://bisoncpp.sourceforge.net/bisonc++.html

P. Oliveira is currently a Ph.D. student in the Faculty

of Science at University of Porto, Portugal. He received

his CSE in computer engineering from Escola Superior

de Tecnologia e Gestão de Bragança, Portugal in 2013

and M.Sc. in information systems from Escola Superior

de Tecnologia e Gestão de Bragança, Portugal in 2014.

His research mainly focuses on bluetooth low energy,

behavior analysis and ambient intelligence.

P. J. Matos is an associate professor at the Department

of Informatics and Communications of the Institute

Polytechnic of Bragança. He concluded his PhD in

2005, master degree in 1989 and CSE degree in 1994 at

University of Minho, Portugal. He is an author of

several international refereed papers, participates

regularly in international research projects, mainly with

industrial partners, and his research interests include

decision support systems, data mining, web semantic, collective intelligence

and intelligent environments.

XBuilder

Services.ble

Director

parser()

lc: List<Service>

+ buildBLE(lc) + main(target)

Builder bb

nRFBuilder

genInit()

genServDef()
…

genServDef()
…

genInit()
nRFServices.c

nRFServices.

h

genServDef()

…
genInit()

XServices.

c

XServices.

h

buildBLE(lc){

 genInit(lc);

 …

 genServDef(lc);

}

main(target){
 lc = parser();
 switch(target){
 case nRF:

 bb = new nRFBuilder();

 bb->buildBLE(lc);

 …

 }

