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ABSTRACT

In the emergent deployment of microgrids, storage systems play an important role providing ancillary services, such as
backup power and reactive power support. This concept becomes crucial in the context of microgrids with a high
penetration of renewable energy resources, where storage systems may be used to smooth the intermittency and variability
of most of them. Plug-in electric vehicles provide an enormous distributed storage capability, which favours the technical
and economical exploitation of such systems. This paper presents a comprehensive implementation and control of a
bidirectional power converter for Vehicle-to-Grid integration, based on a bidirectional DC/DC converter followed by a full
bridge DC/AC converter. The evaluation of the adopted topology and its control is performed through MATLAB/Simulink
simulation.

Keywords: Batteries, Distributed generation, Grid-to-Vehicle, Microgrids, Vehicle-to-Grid.

1. INTRODUCTION

World primary energy demand is projected to increase by 1,2% per year, on average, from now until 2035.
Electricity demand is projected to grow by a higher rate, 2,2% per year, considering it is expected that
applications, formerly based on chemical energy, will be based on electrical energy in the following decades
(IEA, 2012). Besides, the need for dependency reduction on imported fossil fuels has become crucial due to
long-lasting instability in many fossil fuel-producing countries which increases the price of energy and
reinforces the need to find alternatives. Furthermore, a dramatic reduction of carbon dioxide emissions (COy),
addressed by various organizations and strategy maps, can only be achieved by reducing the usage of fossil
fuels. CO, emissions are, in large scale, determined by the level of energy-intensive activity, in particular related
to power generation, including heat production, basic materials industry (iron and steel manufacturing) and road
transport (Olivier, et al., 2013).

In order to cope with this scenario, changes in energy efficiency are required along with a shift in fuel mix,
from fossil fuels to renewable energies, foreseeing a sustainable and environmentally friendlier development. At
the present, there is a wide-spread integration of distributed renewable energy sources. By the end of 2012, the
power capacity from renewable energy supplied an estimated 22% of global electricity (UNEP, 2013). The
penetration of renewable energy sources (RES) tends to grow, since the competitiveness of solar and wind
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power is improving considerably (Olivier, et al., 2013). In this context, distribution energy systems are more
efficiently exploited into a microgrid concept, i.e., a local network integrating renewable and/or non-renewable
distributed energy resources (DER), energy storage devices and loads, guaranteeing security and reliability
parameters. Microgrids may operate as standalone systems or connected to the utility grid, contributing to
electrification of remote areas and allowing consumers to produce energy to their own requirements whilst
reducing the actual stress of power transmission systems (Guerrero, et al., 2013a; Guerrero, et al., 2013b).
Microgrids have no spinning reserves like classical utility grid and most microsources have a delayed response
when implementing secondary voltage and frequency response. From this point of view, intermediate storage
units and micro sources with built-in battery banks are therefore expected to offer the advantages like spinning
reserves.

Another feature in the energy sector paradigm is the deployment of electric propulsion systems,
representing one of the most promising pathways to address future energy requirements. Plug-in electric
vehicles (PEV), hybrid and fuel-cells vehicles are replacing internal combustion engine (ICE) vehicles, with
similar driven performance, better efficiency, passenger comfort and safety (Zhang, Cooke, 2010; Zandi, et al.,
2011). According to 2012 data, electric vehicle deployment has a distinct geographic distribution: United States
has the largest share of hybrid electric vehicles sales (70%), Japan holds the second position (12%) and
Netherlands the third position (8%); regarding PEV sales, Japan holds the largest share (28%) followed by the
United States (26%) and China (16%) (EVI, IEA, 2013). Battery costs are coming down, more than halving in
four years, which together with consumer education and national policy initiatives, contribute to mass-market
deployment in future years (EVI, IEA, 2013).

PEV have an important advantage when compared with ICE vehicles and also self-contained hybrid
electric vehicles: a distributed energy storage capacity which can be connected to the grid providing ancillary
services such as backup active power, acting as a manageable load and discharging energy back to the grid
when necessary, reactive power support and peak-shaving. This potential is especially important under the
context of microgrids with a high penetration of RES: the additional storage capability may be used to smooth
the intermittency and variability of most RES and provide a balance in system cost for grid-integrated storage
systems. In fact, energy storage may enhance the exploitation of RES, improving the payback period and also
contribute to the frequency and voltage stability strategies of the microgrid.

To do so, battery chargers should be deployed, allowing a bidirectional power flow, by acting as a
manageable backup power device and discharging energy back to the grid when necessary, in a grid-to-vehicle
(G2V) and vehicle-to-grid (V2G) concept, respectively, engendering the G2V/G2V interface technologies
(Ferdowsi, 2007; Saber, Venayagamoorthy, 2009, 2011; Zhang, Cooke, 2010; Yilmaz, Krein, 2013).

This paper presents a bidirectional power converter topology and the implemented control strategy, for the
integration of the battery of an electric vehicle in a small microgrid. The power converter topology was
introduced in (Leite, et al., 2013a) and the control strategy has been improved in (Leite, et al., 2014). In this
work, the reactive power compensation is implemented through the power converter by means of the control of
the quadrature component of the grid current, under a vector control scheme, which provides a continuously
variable reactive power injection or absorption to the electrical grid, upon its lagging or leading power factor,
respectively.

The remaining contents of this paper are organized as follows: main infrastructures of the IPB microgrid
are briefly described in Section 2 and the bidirectional power topology for G2V/V2G integration, as well as the
control strategy are described in Section 3; section 4 presents the implemented simulation procedure using
MATLAB/Simulink, in order to validate the proposed power converter topology and control schemes; finally, in
Section 5, there are drawn the main conclusions of the paper.

2. IPB MICROGRID INFRASTRUCTURES

The IPB microgrid has been developed as a research platform and also for demonstration purposes in the
context of an university campus, as part of a wider project named VERCampus — Live Campus of Renewable
Energies — which integrates a set of technologies, infrastructures and initiatives which have been carried out in
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the university Campus of the Polytechnic Institute of Bragancga (IPB). The main purpose of this project is to
promote DER with integration of renewable energies technologies, for IPB students, stakeholders and all
community in general.

The microgrid under consideration is schematically presented in Figure 1 and has been developed for
isolated and self-sustainable systems up to a rated power of 5 kW integrating RES with the purpose of being a
demonstration platform in terms of technology transfer and applied research (Leite, et al., 2012a). It uses the
bidirectional inverter Sunny Island 5048, from SMA, which is the core equipment responsible for the
management of the energy flow, and incorporates the following DER: a small 1,4 kWp wind turbine; a solar
tracker with a 3 kWp photovoltaic (PV) string; a 2 kWp PV string installed on the roof of the laboratory; a 5 kW
back-up diesel generator, powered by a mix with 40% of biodiesel produced from wasted oils in the biofuels
laboratory and a 200 Ah battery bank.

A pico run-of-river hydropower plant with 1 kWp (Leite, et al., 2012b) and a 1,34 Wp photovoltaic glass
facade are also under development and will be integrated into the microgrid in the foreseeable future.

Photovoltaic syste
S Pico hydro power plant

. ,
SB2100TL SB3000 I' WB‘ITUP WB1200 wf
| -

SB5048

ri

sB1200

/ Loads

licrogri
230V, 50Hz

Bi-directional battery inverier
for off-grid systems

AC1 (Loads/Sunny Boys)

Microgrid setupin the laboratory

ECO Buggy IPB

Figure 1.- lllustration of the implemented microgrid.

Another interesting infrastructure is the electric vehicle IPB ECO Buggy, shown in Figure 2, whose battery
is to be integrated into the microgrid as an additional energy storage element, including several ancillary services,
by using a suitable power converter topology and control schemes.

Figure 2.- The IPB ECO Buggy.

The IPB ECO Buggy is a light electric vehicle using state-of-the-art technology with respect to the electric
propulsion system (Leite, et al., 2013b). The chosen electric motor is an axial flux permanent magnet
synchronous machine (PMSM), due to its high efficiency, torque and power density. A lithium iron phosphate
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battery, with a capacity of 70 Ah and rated voltage of 96 V, was chosen for the IPB ECO Buggy due to its
advantages (Leite, et al., 2013b, 2014). In fact, lithium iron phosphate (LiFePO4) has been investigated
intensively (Hua, Syue, 2010; Zaghib, et al., 2004) as a potential cathode material for rechargeable lithium ion
batteries due to the low cost of raw materials, long life cycle and superior safety characteristics (Hua, Syue, 2010;
Tingting, et al., 2011).

3. BIDIRECTIONAL POWER CONVERTER TOPOLOGY FOR V2G/G2V INTEGRATION

The converter topology is based on a bidirectional DC/DC converter followed by a full bridge DC/AC
converter. The first works as a buck converter for charging the battery (G2V mode) and as a boost converter for
injecting current into the grid (V2G mode). The second is a vector controlled single-phase voltage source
inverter (VSI).

The converter topology and the basic control schemes are shown in Figure 3. The shadowed area in Figure
3 (a) represents an integrated power module from Powerex that is being used in the laboratory platform to
implement the V2G/G2V interface. In this case the first leg is used to implement the DC/DC converter and the
second and third legs are used as a single-phase VSI.
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Figure 3.- Converter topology (a) and control schemes: (b) V2G (discharge) and G2V (charge) control; (c)
Voltage Oriented Control of the VSI; (d) VOC scheme.

3.1. Control of the DC/DC converter

For the control of the DC/DC converter in V2G mode (discharging mode) the IGBT 1 is always turned
OFF and the IGBT 2 is turned ON and OFF at the switching frequency. The IGBT 2, the inductor L and the

diode 1 (of IGBT 1) operate as a boost converter. The reference current, |;,sz , IS set according to the power to
be injected into the grid and the maximum admissible depth of discharge. On the other hand, to control the
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DC/DC converter in G2V mode (charging mode), the IGBT 2 is always turned OFF and the IGBT 1 is turned
ON and OFF at the switching frequency. The IGBT 1, the inductor L, the capacitor C and the diode 2 (of IGBT

2) operate as a buck converter. In this case, the reference current, 1, ., , and the reference battery voltage, are

set according to a three-stage charge curve defined by the battery manufacturer.A PI current controller compares
the reference current with the measured one, |, , and generates the control signal for pulse generation (Figure

3 (b)).

Adopting the generator reference-arrow system, current and power delivered by the battery are positive,
i.e., in V2G mode and if the battery is charging, those quantities are negative (G2V mode).

3.2.  Control of the Voltage Source Inverter

The control scheme of the VSI is shown in Figure 3 (d) and it is based on the Voltage Oriented Control
(VOC) applied to three-phase systems. Three-phase quantities such as grid voltages and currents can be
represented by their space phasors which are vectors with two components described in a fixed orthogonal o3

system. In single-phase systems, the use of such representation is not possible unless a virtual orthogonal
component is coupled to the real axis in order to emulate a two axis reference frame. For this purpose, an
additional orthogonal component was proposed in (Zhang, et al., 2002) by introducing the imaginary orthogonal
circuit concept. Thus, auxiliary orthogonal components are obtained by applying a 90° phase shift with respect
to their counterparts in the real circuit. Hence, voltages and currents can be represented by their space phasors:

V,=V +]v
aff a B
{f e 1)
Ly =1, + Ji,
From the output LC filter of Figure 3 (d), and applying Kirchhoff’s voltage law,
Ve op =Vg.op + Rl + L /dt 2

where R and L are the parasitic resistance and the inductance of the filter, respectively.

The resulting a8 components are 90° phase shifted sinusoidal signals that can be used for the control of

the VSI using classical Pl controllers. However, two well-known drawbacks appear: the inability of PI
controllers to track sinusoidal references without steady-state error and poor disturbance rejection capability
(Teodorescu, et al., 2011). This occurs due to the poor performance of the integral action if the disturbance is a
periodic signal. To overcome these drawbacks of PI controllers with a sinusoidal reference and harmonic
disturbances, the power control of the VSI can be implemented in a dq reference frame rotating at an angular
speed w=2xf , where f is the grid frequency. In this so-called synchronous reference frame, the orthogonal
components of the grid voltage and current space phasors are DC quantities and, therefore, classical Pl
controllers can be used since they achieve zero steady state error at the fundamental frequency and improve
their dynamic response.

VOC is based on the use of this synchronous reference frame with the dg axes rotating at @ speed and
oriented such that the d axis is aligned with the grid voltage phasor as drawn in Figure 3 (c). By doing this, the
guadrature component of the grid voltage will be zero and, consequently, active and reactive powers can be
controlled separately by controlling, respectively, the d and g components of the grid current as presented
hereinafter.

Considering the rotating transformation of a general variable X, given by X, =qu919 =quej“‘, where

6=« is the angle of the rotating reference frame with respect to the fixed of axes, and replacing (1) into (2),
after simple mathematical manipulations the following equations are obtained:

V¢ = Riy +Ldi, /dt —oli, +Vv,
V. o =Ri,+Ldi, /dt —wLi; +v, ,

®)
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From Figure 3 (c) and aligning the d axis with the grid voltage phasor results that v, , =0, from which (3)
becomes

Ve =Vy —a)Liq +Vy 4 "
Ve q = Vg — oLl
where
Vv, =Ri, +Ldi, /dt .
v, =Ri, +Ldi,/dt ®)

In the VOC scheme depicted in Figure 3 (d), the reference grid current is composed by two terms: i; and |q

The first one is used to perform the DC-link voltage control and the second one is used to control the reactive
power in an independent way. Typically, i;’ is managed to obtain unity power factor, though the implemented

VOC is prepared for reactive power support to the grid, described as follows.

The power control of the grid VSI is based on the instantaneous power theory (Czarnecki, 2006), where the
power can be defined in the synchronous reference frame. Assuming that the d axis is perfectly aligned with the

grid voltage phasor, i.e., v, ,=0, therefore, active power and reactive power, in single-phase systems, are

proportional to iy and i, , respectively, as follows (Samerchur, et al., 2011):
P =1/2(V, aly +V, dig ) =12V, dig ©
A=1/2(Vy gl —Vy 4l ) =—1/2V, di,

From the above equation the dg components of the reference current are defined by the active and reactive
power reference values:

{@zZPv%d=2P7W| )

Iy =2Q /vy s =2Q /v

Concerning the active power control, instead of using (7), the i; component of the grid reference current is
given by the PI controller in order to maintain the voltage at DC-link constant. The active power control is
performed by the boost converter and the reference value is given by the power to be extracted from the battery,
in the V2G operation mode, or by the battery charge control algorithm in G2V mode, as depicted in Figure 3

(b).

Finally, the VOC scheme of Figure 3 (d) shows the 90° phase delay block (0,25T - a quarter of the grid
period) that creates the virtual quadrature component, allowing the emulation of a two-phase system, and also a
PLL block that has been implemented to obtain the angle, &, of the grid voltage, for reference frame
transformation and synchronization purposes. The implemented PLL is a second order generalized integrator
(Ciobotaru, 2006).

4. SIMULATION RESULTS

The above mentioned power structure and control strategy have been simulated in order to evaluate the
control performance of the bidirectional converter for V2G/G2V integration. The simulation validation was
performed using MATLAB/Simulink with simulation time of 2e-6 s and sampling frequency of 10 kHz. The
control is carried out with a period of 0,1 ms (1/10 kHz).

In the simulated scenario, with an elapsed time of 4 s, the battery is charging during the first 1,5s (G2V
mode) and in the remaining time interval, it is discharging (V2G mode). At t =2,5 s the active power reference
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changes from 1000 W to 0 W. Then, at t =3 s, the reactive power reference changes from 0 var to -400 var and
at t =3,5 s it changes from -400 var to +400 var. The simulation results are depicted hereinbelow.
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Figure 4.- Grid voltage and PLL output voltage. Figure 5.- DC-Link voltage (voltage across the DC-

Link capacitor).

The simulated grid voltage, together with the PLL output and the voltage across the DC link capacitor are
shown in Figures 4 and 5, respectively. As can be seen from the first one, the PLL fits perfectly the fundamental
component of the grid voltage. Regarding the voltage across the DC link capacitor, C,., (Figure 5) it is

composed of a DC component and a pulsating component with double main grid frequency (Rodriguez, et al.,
2005). The initial voltage of the capacitor is 400 V and, after an initial transient, the voltage PI controller brings
the DC voltage to the reference value. When the power converter changes from G2V to V2G operation mode,
then the DC/DC converter changes from “buck” to “boost” operation mode. Consequently, the current changes
from about -10 A to 10 A and, therefore, the DC voltage tends to increase dramatically and, consequently, the
voltage PI controller rapidly brings the DC voltage to the reference value. At t =2,5s, when the active power
reference value is set to zero, no current is sent from the battery to the capacitor and, therefore, the DC voltage
tends to decrease but the voltage Pl controller brings the DC voltage to the reference value once again. It should
be noted that the changes in the reactive power do not affect too much the voltage across the DC-Link capacitor.

Figure 6 shows the voltage and current of the battery during the simulation time span. In G2V mode
(during the first 1,55s), the current reference value is set by the charging algorithm which is -10 A. In V2G
mode, it is defined by the power to be extracted from the battery which was set to 1000 W, giving a reference
current of about 10 A with a battery voltage of 99,5 V. After the first 2,5 s no power is injected into the grid
because the active power reference value is set to zero. Concerning the initial state of charge (SoC) of the
battery, it is assumed to be equal to 90%.
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Figure 6.- Battery current (above) and voltage Figure 7.- Grid current components in synchronous
(below). reference frame: d component (above) and g

component (below).

The grid current dg components in the synchronous reference frame are depicted in Figure 7. It can be

observed that the d component, which controls the active power, is negative in G2V operation, positive in V2G
mode and zero when the active power reference value is set to zero. On the other hand, the g component, which
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controls the reactive power, is zero during the first 3 s and then it follows continuously the reactive power
changes, that is, from 0 var to -400 var, at 3 s, and from -400 var to +400 var, at t =3,5s.

Figure 8 presents the main details of the instantaneous grid voltage and current as well as the grid current
magnitude for different events of the simulation scenario. Figure 8 (a) shows the transition from G2V to V2G
mode of operation. As it can be seen, before reaching 1,5 s, the current is in phase opposition with respect to the
voltage and after 1,5 s it is in phase. Thus, firstly the power flows from the grid to the battery (negative power)
and afterwards from the battery to the grid (positive power). The change from G2V to V2G do not happens at
exactly 1,5s because there is a ramp limiter to avoid a sudden change in the current reference value. The
pulsating component of the grid current, which can be seen in the amplitude signal of Figure 8 (a) and (b), is a
consequence of the pulsating component of the voltage across the DC-Link capacitor, which is due to the grid
frequency, as previously mentioned (Khajehoddin, et al., 2008).

P LT L nii
;WW%WW%W%%JWWWWWMW
R N
SN T
AN P A e e
SnTnTnTaTRnAVAVAVAVAN IR Bav AV AV AV AN N TR IR
VU

Figure 8.- Grid voltage (scaled) and grid current (the red and blue lines are the instantaneous current and its
magnitude, respectively) during (a) the change from G2V to V2G mode of operation (at t =1,5s), (b) the
change in the active power reference from 1000 W to 0 W (at t =2,5 s), (c) the change in the reactive power
reference from 0 var to -400 var (at t =3 s) and (d) the change in the reactive power reference from -400 var to
+400 var (at t=3,55s).

At t=25s the active power reference changes from 1000 W to 0 W and, after a transient, the current
reduces to zero, as can be seen in Figure 8 (b). This event was simulated in order to validate the control of the
reactive power by the inverter upon a lagging and leading grid power factor. Thus, at t =3 s, a step of -400 var
is set in the reactive power reference and, therefore, the grid current lags the voltage by 90°, as can be seen in
Figure 8 (c). This means that the VSI is absorbing reactive power from the grid. Therefore, at this time instant,
the g component of the grid current, in the synchronous reference frame, changes from 0 to a negative value
(about -2,4 A), as observed in Figure 7. At t=3,5s, and keeping the active power set to zero, the reference of
the reactive power is changed from -400 var to +400 var, meaning that that the VSI is now delivering reactive
power to the grid. At this time instant, the g component of the grid current, in the synchronous reference frame,
changes from -2,4 A to 2,4 A, as can be observed in Figure 7. These current values are the ones required to
absorb a specified inductive reactive power and to deliver a capacitive reactive power, respectively.
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The evolution of d component of the grid current during the simulation time interval is shown in Figure 7.
As expected, the d component of the grid current does not vary with the changes in the reactive power but the
rms value of the grid current increases when a step of -400 var is applied, as can be seen in Figure 8 (c).
Obviously, the rms value is the same when the reactive power changes from -400 var to +400 var, but the
current stops lagging the voltage and starts leading the grid voltage by an angle of 90°, as shown in Figure 8 (d).

5. CONCLUSIONS

This paper presented an on-going implementation and validation, throughout simulation, of a power
converter topology for a V2G/G2V interface, for the integration of a light electric vehicle, with a lithium ion
phosphate battery, under a 5 kW microgrid project. Simulation results showed that the adopted topology and
control strategy is able to manage bidirectional active and reactive power flow allowing power factor
compensation and, on the other hand, the battery behaves as an electric load or generator and improves the
storage capability of the microgrid. By this way, the vehicle battery and its interface may collaborate to the
reliability and quality criteria of the energy supply.
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