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We study numerically the spatial dynamics of light in periodic square lattices in the presence of a Kerr term,
emphasizing the peculiarities stemming from the nonlinearity. We find that, under rather general circumstances,
the phase pattern of the stable ground state depends on the character of the nonlinearity: the phase is spatially
uniform if it is defocusing whereas in the focusing case, it presents a chessboard pattern, with a difference
of m between neighboring sites. We show that the lowest-lying perturbative excitations can be described as
perturbations of the phase and that finite-sized structures can act as tunable metawaveguides for them. The
tuning is made by varying the intensity of the light that, because of the nonlinearity, affects the dynamics of the
phase fluctuations. We interpret the results using methods of condensed-matter physics, based on an effective
description of the optical system. This interpretation sheds light on the phenomena, facilitating the understanding
of individual systems and leading to a framework for relating different problems with the same symmetry. In this
context, we show that the perturbative excitations of the phase are Nambu-Goldstone bosons of a spontaneously

broken U(1) symmetry.
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I. INTRODUCTION

Nonlinearities have played a key role in discovering an
amazing wealth of phenomena in laser beam propagation,
in the manipulation of light and in establishing connections
between optics and other areas of physics. Many analogies
with condensed-matter physics have been presented in the
literature; see, e.g., [1-3]. Optical versions have appeared for
different kinds of spatially ordered lattices as, e.g., honeycomb
graphenelike configurations [4] or Lieb lattices [5]. Remark-
able concepts like the topological protection of transport
properties have been translated from the condensed-matter
community to photonic systems [6—8]. In most situations,
the underlying photonic structure is a linear or nonlinear
refractive index which satisfies certain periodicity conditions
along the plane transverse to beam propagation. It naturally
induces an ordering in the distribution of light which can be
(partially) identified with the wave function of electrons within
crystals. It has been recently shown that the spatial ordering
can also arise spontaneously for appropriately chosen nonlocal
nonlinearities [9].

In this context, the present work deals with pattern forma-
tion and light propagation in nonlinear lattices [10,11]. We
consider square lattices, a symmetry that has been studied
in relation to guiding of light [12], formation of discrete
solitons [13], supercontinuum generation [14], lasers [15], and
metamaterials [16], just to mention a few examples. Moreover,
it is well known that the nonlinear Schrodinger equation on
which our work is grounded is also the mean-field description
of Bose-Einstein condensates [17]. Thus, our results can also
find application in the semiclassical modeling of cold atoms
in optical lattices [18].

Concretely, we study a case in which the linear refractive
index varies harmonically and the nonlinear refractive index is
taken as a constant Kerr term. The sign of the nonlinear term
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is decisive for the character of the ground eigenstate, since
the phase pattern depends on it. In the defocusing case, the
phase is spatially constant. In the focusing case, it has opposite
sign in neighboring sites, forming a chessboard pattern. Even
if the computations are performed numerically for particular
examples, we argue that this conclusion is rather general
and depends on the symmetry and the interplay between the
nonlinearity and the lattice. After discussing the diffractionless
modes and their stability, we study perturbations of the ground
state. Of particular interest are those sparked by altering the
phase of some sites of the lattice. The subsequent evolution
can be (approximately) interpreted as a wave that transports the
introduced phase difference while leaving the intensity pattern
(almost) unchanged. We show how finite-size propagating
nonlinear beams inside a photonic lattice can act as effective
“metawaveguides” for these phase perturbations, as depicted
in Fig. 1. Remarkably, the propagation properties of the phase
wave depend on the nature of the underlying nonlinear beam,
which in this way behaves as an optical “metamaterial” whose
susceptibility can be tuned by varying the power of the beam.

Apart from the discussion in terms of the usual formalism
in nonlinear optics, a major goal of this work is to introduce
methods that are customarily used in the solid-state literature
[19] but that have not been fully exploited in the present
framework. We devise a mean-field formulation, valid for
excitations of long wavelength compared to the lattice spacing.
The procedure is, in spirit, analogous to renormalization in
condensed-matter or particle physics. The resulting effective
description for an order parameter allows us, using Landau
theory, to discuss the stability of the nonlinear modes and
their lowest-lying excitations. The aforementioned pertur-
bations of the phase turn out to be a photonic example
of a Nambu-Goldstone boson, related to the spontaneous
symmetry breaking of the U(1) symmetry of phase rotations.
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FIG. 1. The black circles represent a square photonic lattice,
within which a finite-size nonlinear solution for the optical beam
propagates (yellow structure). With adequate features, it acts as an
effective metawaveguide for phase excitations of the optical field
(red path). These phase perturbations behave as photonic Nambu-
Goldstone bosons.

We emphasize that the introduced formalism can shed light
on results directly obtained from the complete model and is
instrumental in formulating predictions.

The paper is organized as follows: In Sec. II we intro-
duce the mathematical model and comment on its relation
to nonlinear propagation in photonic lattices. Section III
provides a numerical discussion of the eigenstates and their
stability. In Sec. IV, we construct the effective approximate
description, using a formalism borrowed from the condensed-
matter literature. In Sec. V, we analyze the perturbative
excitations and demonstrate their Nambu-Goldstone nature. In
Sec. VI, we study finite lattices and introduce the concept of
metawaveguide. Finally, in Sec. VII we conclude and outline
possible future directions. In Appendix A, we introduce in
a detailed and pedagogical way the concepts of Bloch and
Wannier functions, for readers that might not be familiar with
the formalism. Appendix B gives a precise definition of what
we define as the phase at each lattice cell.

II. MODEL

In order to model paraxial nonlinear propagation of
monochromatic light, we consider the dimensionless nonlinear
Schrodinger equation in the following form:

Y V2 2
‘57 =~ v+ Vg =gy, ey
where ¢ = +1 or g = —1, depending on the focusing or

defocusing character of the Kerr nonlinearity and V? is the
two-dimensional Laplacian. The potential of the linear term is
assumed to be periodic, defining cells of unit size which form
a square lattice,

Vi, y)=Vx+ 1Ly =V,y+D. 2
For definiteness, computations will be performed using
V=W cosz(nx) cosz(ny). 3)

As a convenient mathematical trick, customarily used
in condensed-matter physics, we also introduce periodic
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boundary conditions for the wave function,

v(x.y)=yx+N.,y)=¢xy+N), “4)

for some integer N >> 1, such that there are N unit cells in the
lattice. Obviously, the condition of Eq. (4) is unphysical. We
will relax it in Sec. VI, where finite structures are considered.
Most of the features found using Eq. (4) apply to realistic
setups.

This dimensionless formalism is connected to photonic
propagation in a periodic medium as follows. The standard
paraxial wave equation for a laser beam reads

—2ik0no% = V?A + 2AnkinoA, (5)
where ky = w/c =2m /A is the wave number in vacuum
and A is the wave envelope, slowly varying at the scale
of the wavelength. Dimensionful spatial coordinates are
denoted as ¥, §, 7 and the Laplacian is V? = 92 + 8%. The
refractive index is n = ny + An where ng is a constant and
for An « ny we consider the sum of a nonlinear component
and a linear part associated to the inhomogeneity of the
optical material An = "22—;;[’|A|2 + Anyin(%,3), where n, is the
nonlinear refractive index and 1y = +/110/€g. We now assume
that Any;,(%,7) is periodic in space, Any;, (%,7) = Angip(X +
a,y) = Anyy(X,5 + a) where a is the lattice spacing. We can
rescale Eq. (5) in order to bring it to dimensionless form,
Eq. (1), by taking

. 1 1o
(xa)’)Za(x’)’)v A= _W7
nokoa 'y |na

1
—_—V.
2nokja?

z = 2konoa’z, Any, = (6)
In particular, notice that V scales with a? and therefore the
value of V|, can be tuned by adjusting the lattice spacing. For
instance, imagine a sample value of ny = 1.5, and a maximum
deviation of the linear refractive index | Any;, | = 0.1. Then, the
value Vy = 800 that will be used in the illustratory examples
of the following sections corresponds to a & 8. The relation
between the dimensionless power and the physical one is

. e

P=——P. 7

872ng|n,| )

As is somewhat customary [20-22], we will abuse lan-
guage and identify the propagation distance 7 with a “time”
parametrizing the evolution. From this point of view, we refer
to the velocity of a perturbation ¥ (which is an angle in physical
terms) as the displacement in ¥, § divided by Z. The relation
to the dimensionless velocity is

A

v
drnoa

U= ®)

The particular potential of Eq. (3) was chosen because of
its simplicity and because it can be generated by illuminating
a photorefractive material with a standard interference pattern
[23]. Equation (1) and therefore most of our discussion can
be applied to the dynamics of Bose-Einstein condensed cold
atoms. In that context, Eq. (3) is a typical profile for two-
dimensional optical lattices [24] although it is well known that
other potentials are also possible [25].
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The discussion and general conclusions of this work depend
decisively on Eq. (2) but not on the concrete expression Eq. (3).
The nonlinear refractive index can also be space dependent as
long as it respects the symmetry of Eq. (2). A simple alternative
to Eq. (3) would be to consider inclusions of regions with a
certain refractive index in a bulk with different properties,
resulting in a piecewise constant V. This can be accomplished
with laser-written waveguides [26,27] or in typical photonic
crystal fibers [28-30]. An interesting possibility is that of
hollow core fibers since the linear and nonlinear properties
can be tuned by appropriately filling them with a gas [31,32].

We close this section by introducing some useful quantities.
The Hamiltonian density can be defined as

H=Vy* Vi + V@ ly* — gyl ©)

We define its integral as the energy and notice that the norm of
the wave function is related to the power of the optical beam:

E=/dedy, P =/|1//|2dxdy. (10)

It is straightforward to check from Eq. (1) that dP/dz =
dE/dz =0. In field theory, the energy is the conserved
quantity associated to time invariance. In the optical case, the
equivalent of a time translation is a spatial translation in the
z direction. The conserved quantity is the generator of axial
translations, namely, the z component of the wave vector. In
optical waveguide theory, this quantity is used to classify the
modes of a waveguide. Thus, the propagation constant is the
optical equivalent of energy in (linear or nonlinear) waveguide
theory.

III. EIGENSTATES AND STABILITY

A propagation-invariant mode of Eq. (1) takes the form
Y = e " p(x,y) for a real propagation constant u with

e = —Vip + Vx)p — glol*e. (11)

In the linear case (P — 0 or g = 0), the structure of the
lowest-lying solutions of Eq. (11), with the potential of Eq. (3)
and the periodic boundary conditions of Eq. (4), are readily
obtained by means of Bloch and Wannier functions [33]. We
describe these functions in detail in Appendix A for the reader
who is not acquainted with this formalism. Each of the linear
eigenfunctions gives rise to a solution of the nonlinear problem
Eq. (11),

Y = e Mpl(x). (12)

Here q)g (x) has the form of Eq. (A1) and therefore is labeled by
its pseudomomentum Q [with N 2 discretized possible values
given in Eq. (A5)]. The (pg (x) can be computed by propagating
Eqg. (1) in imaginary time. Notice that |<pQP (x)| is periodic
with period 1 (the physical period separating the lattice sites)
whereas (ps (x), in general, has period N (the period associated
to the size of the computational domain).

In Fig. 2, we depict the light intensity profile for different
values of Q for fixed P, N, and V. The nonlinearity is
attractive and it can be seen that the power is concentrated at
the different lattice sites, without great qualitative differences
between the different values of Q.
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FIG. 2. Propagation-invariant solutions of the nonlinear equation
with Vy =800, N =16, P/N? =5. On the left, |¢QP(x,y = %)l2
within a lattice cell for Q = (0,0) (solid black line), Q = (0,7)
(dashed red line), and Q = (7r,7) (dotted blue line). Notice that for
the first and third cases, it also corresponds to |<pQP(x = % y)|? due
to the symmetry of the configuration. On the right, a contour plot of
lp§(x,y)I* with Q = (7, ) for the whole domain. Notice that lattice
sites have sides of length 1, which is the period of the refractive index
and of |goQP (x,y)|?. Periodic boundary conditions for ¥ are imposed
at the boundaries of the computational domain of size N x N. All
units in figures are dimensionless—see Eq. (1). The dimensionless
formalism is connected to photonic propagation in a periodic medium
as discussed after Eq. (5).

In fact, the difference between the modes of different Q is
more clearly appreciated in a plot for the phases; see first line of
Fig. 3. In order to check the stability of the different solutions,
it is also convenient to depict the phase of the wave 1. Upon
evolution [see second line of Fig. 3, computed by numerically
integrating Eq. (1) with a standard beam propagation method],
the phase pattern of the stable solution remains ordered while
the one for an unstable solution loses its initial disposition. It
turns out that for the focusing case g = 1, the Q = (;r,7) so-
lution, with its chessboardlike phase pattern, is the stable one.
Conversely, in the defocusing case g = —1, the constant phase
Q = (0,0) solution is the stable one (not shown). We refer to
the Q = (0,0) and Q = (7r,7r) configurations as unstaggered
and staggered, respectively, borrowing the condensed-matter
terminology for ferromagnetic and antiferromagnetic spin
systems.

Some solutions, as for instance the case of Q = (7 /2,7/2)
shown in the first column of Fig. 4, can remain stable for
large values of z. For those cases, the simplest way to check
that Q = (sr,7r) is the real ground state is to introduce some
random noise in the initial condition. What we see is that, for
small values of z, the noise in the phase is apparent in the
regions where || is small but the phase remains ordered
otherwise. Under evolution, the initial phase pattern breaks
down, except for the staggered stable case.

The crux of this section is that focusing nonlinearity
selects staggered phase patterns and defocusing nonlinearity
unstaggered ones. A few examples have been depicted but our
numerical simulations for many different cases suggest that
this is a rather general conclusion. The effective description of
Sec. IV will provide a natural interpretation of this observation.

IV. EFFECTIVE DESCRIPTION

The goal of this section is to introduce, borrowing defini-
tions and methods from condensed-matter theory, a simple
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FIG. 3. Evolution, computed by numerical integration of Eq. (1),
of three different solutions of Eq. (11) with g =1, V, = 800,
N =16, P/N? = 5. The unstaggered Q = (0,0) is represented in
panels (a) (phase distribution at z = 0), (d) (phase distribution at
z = 10), and (g) [the blue solid line represents a one-dimensional cut
[ (x, %)Iz(z = 10) compared to the initial wave function depicted by
the red dashed line | (x, %)|2(z = 0)]. With the same specifications,
Q = (0,m) is represented in panels (b), (e), (h) and Q = (7,7) in
panels (c), (f), (i). The figure shows that the staggered configuration
Q = (7, 7) is the only stable one.

effective theory that allows us to understand and predict
general features of the propagation of light described by the
model of Eq. (1). In particular, the description deals with
any particular nonlinear solution <p5 (x) and the fluctuations
around it. We verify the conclusions by comparing them to
numerical computations. The derivation is spelled out in detail
in Secs. IVA, IV B, and IV C. The reader interested in the
conclusions but not on the technicalities may skip them.

A. Nonlinear Bloch and Wannier functions

For a particular solution of Eq. (11), (p(’; (x), we can define
the following potential:

Vil = VX) — glob ). (13)

Notice that Vi, satisfies the periodicity conditions of Eq. (2).
A set of Bloch functions can be defined for V,, following the
procedure of Appendix A. They are called nonlinear Bloch
functions and we denote them by qof; ol(x). Nonlinear Bloch
functions have appeared in the literature in various contexts
[34-39]. We consider here only the N 2 of the lowest band.
Since Vi, depends on P, the <p(f sol(x) also depend on the
power, which is a crucial difference with the linear case.
Since the propagation constant pq(P) also depends on P,
the nonlinear Bloch functions depend on . We now introduce
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FIG. 4. Evolution of the phase for initial conditions with noise,
fixing g = 1, V, = 800, N = 16, P/N? = 5. Panels (a)—(c) corre-
spond to the Q = (w/2,7/2) case for z =0, z=0.1, and z =4
respectively. Panels (d)—(f) correspond to Q = (;r,7r) for the same
values of z. The noise is introduced by multiplying the initial phase
at each point by a random number from a normal distribution of
amplitude 0.2. It is visible that the phase structure gets destabilized
in the Q = (/2,7 /2) case whereas it remains stable in the staggered
configuration.

the nonlinear Wannier functions,

Wi (x) = TR pEsol(x), (14)

1
—— e
M@;
where the sum runs over the N2 Bloch momenta and R takes
values corresponding to the center of the N2 lattice sites [see
Eq. (A7)]. By construction, gog (x) is itself a Bloch function of

the Vs, potential and therefore, according to Eq. (A9), it can
be written as

. VP .
<p5(x)=XR:cRWI{’(x), with chwe’R'Q. (15)

The Wy (x) are crucial for the effective theory presented in the
next section, since they constitute the most convenient basis to
analyze fluctuations around (pg (x).

B. Free energy

The optical equivalent of the free energy is

In terms of statistical physics, P plays the role of the number
of particles and p corresponds to the chemical potential. The
relation P = P(w) for a family of nonlinear solutions, or its
inverse & = w(P), can be understood as the equation of state in
the equivalent system. Along a family of nonlinear solutions,
we find the relations w = 0E/dP and P = —dF/du, linked
by the Legendre transform (16). This can be proved by con-
sidering a perturbation & — p + du, 9(X) = @(x) + d¢(x).
Keeping only the leading terms in the perturbation, we can
write 8P = [(p*8¢ + c.c)d’x and SE = [(8¢[—V?p* +
Vo* — glo*¢*] + c.c.)d’x, where c.c. stands for complex
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conjugate. Using Eq. (11), it is straightforward to check that
8E = pd P. The variation of the free energy within the family
of solutions is given by § F = §E — u§P — Py = —PSp.

The free energy (16) can be expressed as an integral over
the entire domain €2,

* g
F= / d2x<w Vo + VX)lgl* — Ew - mw). (17)
Q

Integrating by parts and using Eq. (11), we find that its value
for a solution of Eq. (11) is

F= 5/ d’xlpl*, (18)
2 Jeo

and therefore it is just characterized by the nonlinear interac-

tion.

The next step is to integrate out the dynamics at each
cell of the lattice in order to produce a discrete model. With
this goal, we use the expansion (15) in terms of nonlinear
Wannier functions to rewrite the free energy (17) in terms of
the N? coefficients cg associated to each cell. For simplicity,
we restrict ourselves to solutions with

m e (—ﬁ—kl,...,ﬁ), (19)

2nm

Qx:Qy:_Eq7

N 2 2

which present x <> y symmetry. Then, keeping only the on-
site and nearest-neighbor integrals of the Wannier functions,
we find

u U
F =Z<—t<u> 3" crerin, +1(Wlerl? — (2’” g
R

v=1

4

+ Z(—I(mcRFZ(c;;cm‘,+c;;+nch>+ e, (20)
R

v=1
where the n, are the vectors connecting nearest neighbors,

(1,0), (0,1), (—1,0), (0,—1) and the dots represent higher-order
terms. We have introduced the real quantities

1) = — / W=V + V(X) = uIWR 7%,
Q
I(n) = / WE* [~ V2 + V(x) — n]Wyg d*x,
Q
Uw) =g f (W |,
Q

2 *
I(p) = g/ |WE | W Wg 1, d°, (1)
Q

which are independent of the site R because of the translational
symmetry of the Wannier functions. In this expression, we
have made explicit that ¢, /, U, and I depend on the power
P and—due to the the equation of state u = w(P)—on the
propagation constant u, because they are computed from the
corresponding nonlinear Wannier functions; see Sec. IV A.

C. Perturbations

In the language of the discretized theory, small perturba-
tions around the propagation-invariant solution of Eq. (15)
are described by promoting the cg to z-dependent functions,
in such a way that the uniform amplitude of the nonlinear
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FIG. 5. In panels (a)—(d), the values of the integrals of Egs. (21)
are shown for four cases with different nonlinearity and different
Q, with fixed V, =800, N = 24. Additionally, the low-energy
coefficients appearing in Egs. (23) and (25), for the effective free
energy, and in the field potential (26) are shown in panels (f)—(h)
in terms of the normalized power P/N?. In all cases—except in the
remarkable case (f)—the blue and red lines are practically overlapping
and in the plot are seen as a single solid line corresponding to g = 1
withg = 0 and ¢ = =, respectively. On the contrary, panel (f) unveils
that the sign of b is positive for ¢ = 0 and negative for g = 7.

Bloch function is substituted by a slowly varying R-dependent
envelope function,

cr(z) = Or(x)e™ Q. (22)

The theory can be further simplified by going to a new
description in the continuum, valid for perturbations § ®g with
a typical length scale SR larger than the lattice spacing a. This
is accomplished by transforming the summation over the R
lattice sites of Eq. (20) into an integral, with ®r(z) = &(X,2).
We write the resulting free energy as

2
+ 1(cos ¢)(4| D |IVD|? + &*H(V D) 4+ OH(VD*)?)

F = / dzx[bVCD*VQD + (M|d>|2 — g|c1>|4>
Q

—2i(sing)(t + 2]|d>|2)d>*(8x<b + 8),(I>):|, (23)
with

U
b=tcosq, G= 3—1—81 cosq, M =1[—4tcosq.

(24)
In Fig. 5, we represent the values of 1, and the coefficients of

Egs. (21) and (24) as a function of P, found numerically for a
few examples.
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D. Landau theory, spontaneous symmetry
breaking, and stability

The expression of Eq. (23) is the sought effective descrip-
tion of the system that allows us to determine the stability
of solutions and to study the nature of the ground state. In
view of Egs. (15) and (22), the solutions with a definite
pseudomomentum Q of the form (A1) correspond in the
effective description to a continuous field with a uniform
envelope ® = @,

In order to simplify the discussion, we deal with the leading-
order terms in /() [compare in Fig. 5 the scale for () in
panel (d) to the rest of quantities] and, for reasons that will
be clear next, neglect the last anisotropic term in Eq. (23).
We then define the effective free energy describing the ground
state and their low-energy excitations as

F = sgn(b)F = / d2x[|b|vq>*vq>
Q

+sgn(b)<M|c1>|2 - %|q>|4) o ] (25)

This change of sign does not alter the dynamics but ensures
a positive kinetic term, as it is essential to define a proper
ground, or vacuum, state [40].

We now apply Landau theory, a mean-field approach used
to characterize phase transitions in condensed-matter and
particle physics [41]. We have to verify whether a constant
configuration ® = &\ # 0 can minimize (25). For sing # 0,
that is not possible because long-wavelength perturbations,
e.g., ®gexp(ikx), produce a smaller F due to the anisotropic
last term in Eq. (23) [this fact justifies the absence of the
anisotropic term in Eq. (25)]. Therefore, we must set g = 0,
ie., Q =(0,0) [see Fig. 13(a)] or g = m, ie., Q = (w,7)
[Fig. 13(d)].

From Eq. (25) we see that, due to the fact that the kinetic
term is now positive definite, a & = ®¢ minimum of F exists
if and only if it is a minimum of the effective field potential
term

V() = sgn(b)<M|c1>|2 — %|q>|4>. (26)
It is immediate to check that the nontrivial minimum condition
® = P # 0is achieved when (b M) < 0 and (b G) < 0. The
plots of Fig. 5 show that this happens for the cases g =1,
q = mand g = —1, g = 0. This is clearly visualized in Fig. 6.

Thus, we find that for attractive nonlinearity, the ground
state stable configuration is the staggered one whereas for
repulsive nonlinearity it is the unstaggered one, in full
agreement with the numerical computations of Sec. III. The
form of V in Eq. (3) is not crucial for this result, which
holds for generic types of periodic potentials. Heuristically,
one may think of this result as a minimization of the on-shell
free energy (18), assuming that |@|? is more spread out in
the unstaggered configuration, leading to a smaller [ |¢|*d?*x
and that the opposite happens for the staggered solution (cf.
Fig. 12).

In addition, the effective potential for a typical stable
configuration, as shown in Fig. 6, presents the paradig-
matic sombrero shape. This potential is characteristic of
the spontaneous symmetry-breaking mechanism appearing in
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FIG. 6. Calculated effective field potential V(P) for a self-
focusing (g = 1) and staggered (¢ = ) solution in a lattice with fixed
Vo = 800 and N = 24 as in Fig. 5. The power per site is P/N? =2
so that b = —0.3, M = 11, and G = 2.2. The same sombrero shape
is obtained in all cases (for these values of V, and N) provided g = 1
andg =morg=—landg =0.

condensed matter, like in superfluids or superconductors [42],
and particle physics systems, like in the Higgs mechanism
[40]. In situations described by this type of potential, the
ground state is degenerate (white circle of radius |®¢| in Fig. 6)
presenting a continuous phase degeneracy: ®o(x) = |Dole’.
Despite that the original free energy (25) and equation of
motion are invariant under U(1) phase transformations, the
ground state ®y(a) is not since it changes under a phase
shift ®p(«) # Po(a + 6). This fact has profound implications
in the nature of the low-energy spectrum of excitations; cf.
Sec. V. In this approach, the stability of the ground state
is equivalent to the stability of the original nonlinear Bloch
solution, represented by the uniform envelope @, at a fixed
value of P/N?.

The minimization of the effective potential V—and thus
F—requires

@ = 2. 27)
g
This quantity should be identified with the power in each lattice
site. As a nontrivial crosscheck of the approximate effective
model, we have verified that the value of M /G computed from
Egs. (21) and (24) typically coincides with P/N? up to a
deviation of a few percent.

This discussion based on Landau theory and on the effective
description of Eq. (23) provides a different point of view for the
interpretation of previous theoretical [43,44] and experimental
[45—47] results. It is worth emphasizing that the dependence
on pu—and, therefore, on P/N 2__of the coefficients of the
effective theory, which paves the way for the analysis a la
Landau, is the result of using the nonlinear Wannier functions
in the modeling.

Even if the computations have been spelled out for a
particular example, we remark that the conclusion is rather
robust, being applicable to large regions of the space of
parameters. There are some limitations, on which we briefly
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FIG. 7. Illustration of the propagation of the excitation of the
phase (g = 1, Vo, = 800, N = 24, P/N? = 5). The initial condition
is like that of Fig. 3(c), multiplying by ¢/*/> the wave function for a
column of lattice sites. Panels (a)—(c) depict the phase distribution for
three values of z. Panels (d)—(f) are y = 0 cuts of the same quantity.
Notice that in (a) the strength of the perturbation (;r/5) is higher than
the maximum of the color-map scale, a convention chosen to improve
visualization in (b) and (c).

comment now. In the small V, limit, our approximations
break down since the lattice structure becomes irrelevant and
therefore the discussion loses its validity. The same happens for
large P, since, the wave function can self-focus and collapse
in each cell (for g = 1) or overcome the periodic potential V
due to self-repulsion (for g = —1). Moreover, since this is a
nonlinear phenomenon in nature, cases with P/N 2 5 0 have
to be taken with care.

V. PHASE FLUCTUATIONS AS NAMBU-GOLDSTONE
BOSONS

The effective description of Sec. IV immediately yields
another important dynamical observation. As mentioned pre-
viously, we have a typical case of spontaneous breaking of
a continuous symmetry. The theory (23) is invariant under a
U(1) phase rotation, but its ground state is not. According to
the well-known Goldstone’s theorem [40], such a symmetry
breaking is accompanied by the existence of a massless
Nambu-Goldstone boson related to the motion in field space
along the generators of the broken symmetry—in our case
of the U(1) phase symmetry. This perturbation is always
the one dominating the low-energy dynamics [48,49], since
it is easily excited, when compared to other degrees of
freedom. Well-known examples of Nambu-Goldstone bosons
are phonons in superfluids or solids, magnons in ferromagnets
[41], or the pions stemming from spontaneous chiral symmetry
breaking in quantum chromodynamics [49]. Thus, on general
grounds, we expect to find long-range perturbations of the
phase which propagate as waves throughout the domain, that
can be identified with Nambu-Goldstone bosons.

In order to illustrate the process, we take a stable solution
and introduce a phase shift in some of the lattice cells; see
Fig. 7. In the example, we take a staggered solution with
focusing nonlinearity and, at z = 0, we multiply the i of
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the cells of the central column by /5. We then integrate
numerically Eq. (1) and depict how the perturbation of the
phase propagates within the lattice, generating a wave moving
leftwards and another one moving rightwards. We defer to
Appendix B a precise definition of the phase perturbation
plotted in the figure. The modulus of v, and, with it, the
power per lattice cell, also gets perturbed. However, the size
of its perturbation decreases as the P/N? of the background
solution increases and is subdominant with respect to the
phase oscillation. In this sense, we refer to the excitation as a
perturbation of the phase.

From a simulation like the one of Fig. 7, we can infer the
velocity of the wave by, e.g., following the position of the
first peak moving leftwards and fitting its position in terms of
z to a line. For fixed g and Vj, we find that it does depend
very mildly on the strength of the perturbation and on N. On
the other hand, it does change significantly with the value of
P/N? of the background solution, stressing the importance of
the nonlinear effects and of the usage of the nonlinear Wannier
functions.

We now discuss this dynamics in the framework of the
effective model of Sec. I'V. Introducing a small perturbation

® = Qo[ + y(x,2)]explia(x,2)] (y,o € R) (28)

in the equation of motion id®d/dz=F5F/5P" —
V(@ F/5VD*), where F is the integrand in Eq. (23)
and assuming sing = 0, we find

9,y = —cos q(t + 21@%)V2a,
d.0 = 2My — cosq(t + 61P;)V?y. (29)

By taking the axial derivative in the second equation, substitut-
ing the value of 9,y according to the first equation, and keeping
only the leading-order terms in the derivative expansion, one
finds the equation fulfilled by the phase excitation « at long
distances or, equivalently, at low energies:

2., i 2
Via — — 8% = 0. (30)
20

This equation is the wave equation in two spatial and one time
dimensions (where z plays the role of the temporal coordinate).
In the language of condensed-matter and particle physics, this
equation corresponds to the massless excitation associated to
the phase, which is the Nambu-Goldstone boson associated
to the symmetry broken by the ground state, namely, the U(1)
phase symmetry as depicted in the sombrero potential in Fig. 6.
In addition, our calculation predicts an explicit expression for
the phase velocity of the Nambu-Goldstone phase excitation:

v = /—2M(cos q)(t + 21|Do?). 31)

It is important to remark that M, ¢, I and |®y| are all
nontrivial functions of P?/N, as shown in Fig. 5. For the
focusing unstaggered and defocusing staggered cases, which
we found to be unstable in Sec. IV, this v is imaginary,
providing evidence of instability. For the focusing staggered
and defocusing unstaggered cases, Eq. (31) gives an estimate
that can be compared with the results of direct numerical
integration of Eq. (1). This is done in Fig. 8.

Equations (28)—(31) are the central result of this paper, since
they allow us to define a propagation mode from the effective
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FIG. 8. Comparison of the wave velocity obtained from repeated
numerical integration (solid line) of Eq. (1) and the one predicted
by the effective model (dashed line) in Eq. (31) as a function of
the power per lattice cell. The green upper curves correspond to the
defocusing unstaggered case and the red lower curves correspond to
the focusing staggered case. Notice that the horizontal axis starts at
P/N? = 0.5 because when this quantity tends to zero the excitation
loses its Nambu-Goldstone boson character.

theory that matches the direct numerical computations. Thus,
they confirm that the discussed phase perturbations are, indeed,
Nambu-Goldstone bosons. They also show that the velocity of
the perturbation depends on the intensity of the light beam.

The wave equation (30) leads to a linear dispersion relation
between w—the conjugate variable of the evolution variable
z—and the spatial wave vector k: w ~ |Kk|. This is a remarkable
fact since the dispersion relation associated to the original free
energy (25) for the envelope field ® is quadratic: w ~ |k|%. In
terms of spatiotemporal symmetries, the Galilean invariance
of the original description in terms of a generalized nonlinear
Schrodinger equation turns into the Lorentzian invariance
of the wave equation (30) for the « phase field. This is a
known effect in condensed-matter physics associated to the
spontaneous breaking of phase symmetry, as in superfluidity
and superconductivity [41,42,48]. A complete analysis in the
language of effective field theories [49], but in terms of
spontaneous symmetry breaking in nonrelativistic systems,
provides the same answer [50-52].

The plot of Fig. 8 shows that the effective model correctly
captures the qualitative features of the Nambu-Goldstone
boson phase excitation. For small P/N?, the velocity grows
in an approximately linear fashion. This can be understood
heuristically by noticing that, in the first term of Eq. (25),
if we split @ in modulus and phase, the kinetic term for
the phase is multiplied by <I>(2) ~ P/N?. If we integrate in z
to obtain the action, dz is multiplied by P/N?, resulting in
the mentioned linear dependence. For focusing nonlinearity,
the velocity reaches a maximum and then decreases. This
happens because the light distribution within each site gets
more and more spatially confined, reducing the interaction
with the neighboring sites. For larger values of P, the wave
function would self-focus and collapse within each site (we
notice that in the present dimensionless convention the critical
power of the Townes profile is 11.7). One can also appreciate

PHYSICAL REVIEW A 96, 053848 (2017)

0.3
8 ] G5
4 0.2
0 n
y -4 0.1
-8
0.0
8 J it
4 +-0.1
Y o
4 . 0.2
-8
-0.3
8 -4 0 4 38 8 -4 0 4 38
X T

FIG. 9. Propagation of a circular wave. Initial conditions are as
in Fig. 7, except that the /5 initial phase perturbation is performed
on the four central cells of the lattice. Notice that in (a) the strength of
the perturbation (;r/5) is higher than the maximum of the color-map
scale.

that the quantitative match of the model with the numerics
is better in the focusing case. The interpretation is that for
defocusing nonlinearity, the light distribution is more spread
out and the notion of lattice discretization becomes less clear,
limiting the quantitative validity of the approximation leading
to Eq. (20) and thus to all expressions derived from it, including
the one for v. Finally, let us remark that, as it happens in typical
cases of particle or condensed-matter physics, the quantitative
precision of the approximation could get better if additional
terms are included in the expansion leading to the effective
theory [49-51].

Of course, the profile of the wave depends on the symmetry
of the initial conditions. In Fig. 9, we plot the result of initially
perturbing the phase of four adjacent cells, resulting in a
circular-shaped wave.

VI. TUNABLE METAWAVEGUIDES
FOR PHASE EXCITATIONS

In the previous sections, we have used periodic boundary
conditions for the wave function, Eq. (4). Thus we assume
that the entire periodic structure is illuminated. This was
done for mathematical convenience, in order to introduce and
utilize Bloch and Wannier functions, as in condensed-matter
theory. As far as phase excitations are concerned, the effective
ground state defined by the uniform envelope |®g| of these
nonlinear Bloch functions, which extend over the entire
domain, acts as an effective optical material for phase waves.
For different values of power, the nonlinear Bloch function
behaves as a different metamaterial—made of light—for the
Nambu-Goldstone phase waves propagating on top of it, as
unveiled in Fig. 8.

In order to make contact with realistic situations, we need
to discuss what happens for finite materials and spatially finite
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FIG. 10. One-dimensional cuts of the phase perturbation ¢(x,y =
%,z) moving leftwards, initiated by initial conditions with a 7t /5 phase
shift in the right-most column. In this example g = 1 and V,, = 800.
The different panels correspond to different values of P/N?, namely
P/N? =2in(a), P/N? =4 in (b), and P/N? = 6 in (c). The color
scale does not cover the full range of the perturbation ¢, but it has
been chosen to optimize the visibility of the plots without missing
essential information.

solutions. The expectation, that we will check in this section
by numerical computations, is that most of the conclusions
can be directly generalized to this case. Notice that, even
if the Wannier functions were defined making use of the
periodicity conditions, they are essentially localized functions
(see Fig. 15 for illustration). Thus, the effective description
of Eq. (23) holds essentially unchanged, at least far from the
borders of the structure, and the predictions about stability
and the presence of a Nambu-Goldstone boson excitation
apply. Certainly, the larger the finite lattice is, the better the
approximation becomes.

Conceptually, since Bloch solutions act as a metamaterial
for phase waves, finite-size solutions embedded in a photonic
lattice can be used as effective waveguides to control phase
excitations, as pictorially depicted in Fig. 1. Since at low
energies the Poynting vector is approximately given by S ~
|®o|Va, afull optical control of the electromagnetic flux itself
can be also achieved using these metawaveguides.

In Fig. 10, we present some examples of propagation in
a finite structure. We define a rectangle of 52 x 8 unit cells
where V takes the form of Eq. (3). Outside the rectangle, we
fix V = Vj, hindering the diffusion of light to that region. With
the method of propagation in imaginary time, we find the stable
ground state of the system, which is, approximately, of the
form (A1). Then, we introduce, at the border of the rectangle,
a perturbation of the phase, similar to the one depicted in
Fig. 7 and compute the evolution of the system. As expected,
the perturbation of the phase propagates in a similar fashion
to the fully periodic case, apart from the fact that, since the
perturbation starts from the edge, it moves unidirectionally.
For a given g and P/N?, we can infer the velocity which turns
out to coincide, to the few percent level, with that depicted in
Fig. 8.

The plots of Fig. 10 show explicitly that velocity of the
Nambu-Goldstone phase excitation is different when perturb-
ing solutions with different values of P/N?, emphasizing
the nonlinear character of the dynamics. More subtly, within
each of the plots, small dispersive effects can be appreciated,
coming from mild dependencies of the velocity on the strength
and the wavelength of the perturbation. Curiously, another
wave appears moving rightwards from the left border, because
the initial condition is not an exact eigenstate. As expected
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FIG. 11. Bounce of a Nambu-Goldstone phase wave due to
reflection in the edge of the structure, resulting in a shift of the
propagation direction. The perturbation of the phase is depicted
in the lattice sites where Eq. (3) holds. For the rest, where V =
Vo, the modulus |y|? is nearly vanishing and we just plot them
in a uniform color to help visualization. In this example g =1,
Vo = 800, and P/N? = 5. Panels (a)—(f) correspond, respectively
toz = 0,4.5,6,7.5,9,10.5.

from the discussion of Sec. V, its velocity is very similar to
the one of the main perturbation.

It is interesting to discuss the fate of a perturbation
that reaches the boundary of the finite sample. It turns
out that the edges act, at least qualitatively, as a reflecting
surface. In this way, this structure becomes a paradigmatic
case of a metawaveguide—formed by light itself—discussed
previously. It is tunable because the velocity of the phase
perturbations can be controlled by changing the intensity of
the light within the photonic lattice; see Eq. (31) and Figs. 5, 8,
and 10. There are a number of possibilities when considering
nontrivial geometries as, e.g., having the potential of Eq. (3)
for some sites and constant V = V; for the rest. In Fig. 11,
we present an example of a U-shaped metawaveguide, and
it can be seen how the perturbation turns around due to its
interaction with the borders. This opens the possibility of
nontrivial manipulation of light through nonlinear effects and
of guiding the phase perturbations of Sec. V.

VII. DISCUSSION AND OUTLOOK

An everincreasing experimental control of the nonlinear
propagation of light in nontrivial media has led in recent
years to the observation in optical setups of many qualitatively
new phenomena. In particular, this has sparked remarkable
interest in finding conceptual and quantitative connections
with condensed-matter physics.

We have shown that methods borrowed from condensed-
matter physics can be useful for the optical community. We
have exploited the nonlinear character of the Schrodinger
equation (1) to set the bridge between nonlinear optics and
condensed matter in a quantitative manner. Expanding the
solutions of Eq. (1) in terms of nonlinear Wannier functions,
we have been able to obtain an effective description, Eq. (23),
of the dynamics of light propagating within a nonlinear
material with a transversally symmetric potential. In this
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context, we used Landau theory to formally establish the
existence of the paradigmatic sombrero potential, archetypal of
the spontaneous symmetry-breaking mechanism appearing in
condensed-matter and particle physics. This connection has
been posed not only qualitatively, but we have computed
the effective potential in terms of the coefficients of the
problem, showing the key role of the nonlinearity. In light
of this effective potential we have been able to determine the
stability criteria for the solutions both in the focusing and the
defocusing cases.

Two crucial outcomes arise naturally from this point of
view: first, the existence of a Nambu-Goldstone boson, which
is identified with the phase excitations. We have presented
the equation fulfilled by the phase excitation, Eq. (30). Again,
this is quantitatively evaluated in terms of the parameters of
the problem, agreeing with direct numerical simulations (see
Fig. 8, where the predicted and numerically calculated phase
velocities are compared). The Nambu-Goldstone boson occurs
both for self-defocusing and focusing non-negligible nonlin-
earity, in the latter case well below the limit for self-focusing
and collapse within each lattice cell. The second outcome is the
concept of a metawaveguide of light, discussed in Sec. VI: the
phase excitations identified as Nambu-Goldstone bosons can
be guided and controlled by the underlying nonlinear localized
light structure. We have presented numerical examples of how
to guide such a perturbation (cf. Fig. 11).

For an experimental observation, and since the main pertur-
bation is in the phase and not in the intensity, detection based
on interferometry would be needed, and it could constitute a
notable challenge. This requires interference with a reference
beam in a similar way as it is conventionally done for vortex
structures [53,54].

We have not discussed topological defects like vortices (see,
e.g., [55] for related work) and domain walls, that are also im-
mediate consequences of the described spontaneous symmetry
breaking. Its theoretical and/or experimental analysis is beyond
the scope of the present work. Certainly, we have limited the
discussion to a particular family of examples. It would be of
interest to extend it to more general cases as, e.g., lattices
with different symmetries [56], lattices with modulation [57],
anisotropic lattices [58], or with the inclusion of gain and loss
in parity-time symmetric systems [59].

We have also mentioned that our discussion might be ap-
plicable to Bose-Einstein condensates. It is worth mentioning
some works that analyze stability in related setups, including
one-dimensional [60—63] and two-dimensional cases [64,65].
Whether the approach advocated here can provide new insights
on these or other similar examples is an open question for the
future. It is worth mentioning that Nambu-Goldstone modes
have been discussed in the context of atomic condensates in
relation to the breaking of non-Abelian symmetry groups [66].

Finally, our work might pave the way for new connections
between classical results of condensed-matter theory and the
propagation of light within properly tuned media. Notice, for
instance, that symmetry and symmetry breaking have been
discussed in the context of cavity quantum electrodynamics
[67,68]. Another possibility could be to devise an optical
analog of the Heisenberg model used in statistical physics
to model ferromagnetism. That setup could mimic the subtle
structure of phases and phase transitions in two-dimensional
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systems [69,70], which is a manifestation of the rich and
sometimes counterintuitive dynamics of many-body systems.
It can also provide a useful framework to analyze the
role of light in recent experiments showing superfluidity in
polariton condensates [71]. Our work also stresses the role
played by phase excitations of nonlinear Bloch modes. Recent
experiments in quantum communication systems use the phase
of light to encode information, thus showing its advantages
over conventional encoding of the information in the amplitude
[72]. We expect that the phase mode discussed here is a good
candidate for encoding and guiding information in this context.
The concept of a metawaveguide of light for the control of
phase waves fits nicely within this scenario.

Our main claim is that a photonic condensed-matter
formalism is the perfect theoretical framework to analyze
the exciting analogies between condensed-matter (and particle
physics) and photonic systems.
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APPENDIX A: BLOCH AND WANNIER FUNCTIONS
IN THE LINEAR CASE

We detail here the linear problem (P — 0 or g = 0). Bloch
theorem states that the eigenfunctions can be written in terms
of Bloch waves e™'#“gpq(x) with

VP o
Po(x) = Te'Q"uQ(x). (AD)
The 1 is a complex function with period 1, namely uq(x,y) =
ug(x +1,y) = ug(x,y + 1), which can be computed for a
single cell by solving

woug = —Vug + Q*ug + V(X)ug — 2iQ - Vug, (A2)

with periodic conditions for uq at the edges of the unit side
cell. There should a band index (the generalization of the
quantum number for a single well) but we omit it and restrict
ourselves to the lowest band, an approximation that has been
kept throughout the paper. Normalization conditions are

1 1
f dy/ dxlug)* =1,
0 0

/ d*x¢, (X)¢q,(X) = P 8q,.q,.
Q

(A3)
(A4)

where we have intr%délced QNt(z) refer to the whole domain,
namely [, d*x = ffzé/z dx ffzé/z dy. The pseudomomentum
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FIG. 12. Representation of |ug(x, ¥)|? for Vy = 100 and different
values of Q. (a) O, = 0, =0. (b) 0, = 0, =7/2. (¢) O, =0,
Qy =n.(d) Q.= Qy =T7.

Q is discretized because of the finite area and is confined to
the first Brillouin cell and, therefore, it can take N2 values,
2w ( N N N N )

0y e ——=41,——=+42,...,——1,—
0,0y ~ + +

A5
2 2 2 2 (A5

where we have assumed that N is even. The N2 Bloch functions
form a basis for the states in the lowest band. They can
be readily obtained by standard numerical techniques from
Eq. (A2). In Figs. 12 and 13, we plot some examples of Bloch
waves. In Fig. 14 we plot the dispersion relation in the lowest

band u(Q).

FIG. 13. Representation of the phase of ¢ (x,y) for Vy = 100 and
N = 16. The four panels show the same four values of Q considered
for Fig. 12.
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FIG. 14. Dispersion relation u(Qy, Q) of the lowest band (Vy =
100).

Notice that when Q, and Q, take values O or 7, the Bloch
functions ¢q(x,y) are real. In particular, ¢ o) is everywhere
positive [see Fig. 13(a)] and ¢ ) changes from positive to
negative in alternating cells following a chessboard pattern
[see Fig. 13(d)]. For O, =0, Q, = 7 or vice versa, the phase
pattern is striped [Fig. 13(c)]. For the rest of Q, the Bloch
functions are complex (one could change to a real basis by
combining ¢q and ¢_q).

Let us now turn to the Wannier functions for the lowest
band. They constitute a basis of localized functions and are
linear combinations of the Bloch functions,

1 .
We( = ——= Y e PR, (A6)
Q

where the sum runs over the N2 Bloch momenta and R takes
values corresponding to the center of the N? lattice sites,
—N+1 N+3 N—-3 N-1
* ) + e, , . (A7)
2 2 2 2

R.,Ry € (

The prefactor is fixed to normalize the Wr(X) as

/ d*x Wy (X)Wg,(X) = SR, r,. (A8)
Q

Given the Wannier function for one of the sites, all the rest
can be found by a spatial translation Wr (X + n) = Wr(x),
where n is a lattice vector. In Fig. 15, we represent one of
them.

The inverse transformation is

P )
po(x) = % 3R OWr(x). (A9)
R

APPENDIX B: DEFINITION OF THE PHASE
PERTURBATION AT EACH LATTICE SITE

In Secs. V and VI we have discussed the propaga-
tion of phase perturbations. It is important to introduce
an appropriate prescription to represent it. For the unper-
turbed solution, the phase evolves with propagation con-
stant w and, moreover, it also changes from cell to cell
at any z. Directly plotting the phase is not illustrative.
We define here a procedure that is useful to visualize the
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FIG. 15. Square modulus of the Wannier function for R =
(—=3.—3%), with V; =100, N = 16. Panel (a) is a color map for
|[Wr(x)[>. We also include (in the lower part, in orange) the
representation of a one-dimensional section |WR(x,—%)|2 (arbitrary
units). Panel (b) uses a logarithmic scale, In|Wg|?. It shows that
Wr(x) has support in the whole domain but becomes negligible far
from the cell parametrized by R.
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dynamics (Figs. 7,9, 10, 11) and to compute the velocity. Other
prescriptions are possible; the discussion does not depend on
this definition.

First, we assign a phase to each cell by averaging

J x|y Parg(y)
Jaxiyr

where the integrals are taken within the lattice site with center
at R. This average does not make sense in general because
of the cyclic character of the phase, but is well defined for
all the cases at hand, since the in-site phase variations are
small; cf. Fig. 3. Then, we subtract the initial phase of the
unperturbed solution and the phase of a reference cell far from
the perturbation,

Pr(2) = (B1)

Pr(2) = Pr(2) — PR(0) — [PR(2) — PR (0)]. (B2)
With this prescription, the ¢r(z) of a stable unperturbed

solution is zero for all z. For a perturbed solution, it remains

zero far from the perturbation, at least until it reaches Rys.
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