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In this contribution we introduce a strategy for the compensation of plasmonic losses based on a recently
proposed nonlinear mechanism: the resonant interaction between surface plasmon polaritons and spatial solitons
propagating in parallel along a metal/dielectric/Kerr structure. This mechanism naturally leads to the generation of
a quasiparticle excitation, the so-called soliplasmon resonance. We analyze the role played by the effective nonlin-
ear coupling inherent to this system and how this can be used to provide a mechanism of quasiresonant nonlinear
excitation of surface plasmon polaritons. We will pay particular attention to the introduction of asymmetric linear
gain in the Kerr medium. The unique combination of nonlinear propagation, nonlinear coupling, and gain give
rise to a scenario for the excitation of long-range surface plasmon polaritons with distinguishing characteristics.
The connection between plasmonic losses and soliplasmon resonances in the presence of gain will be discussed.
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I. INTRODUCTION

High intensity electromagnetic fields are characteristic
for a surface plasmon polariton (SPP) in metal/dielectric
interfaces [1,2]. These high intensity fields are achieved
nearby the metal, so that this region becomes a natural
scenario for the presence of nonlinear effects. If the interface
is constituted by a metal and a Kerr medium, the characteristics
of the propagation of the SPP can be strongly modified by the
presence of the nonlinearity. In such a case, the propagation
constant of the SPP becomes dependent on the plasmon
amplitude. These nonlinear effects on SPPs were studied long
ago defining what is known as a nonlinear plasmon [3—6]. The
high intensities in the vicinity of the metal are also responsible
for a variety of nonlinear effects. When the confinement of
the electromagnetic field takes place at a nanometric scale,
as in plasmonic nanostructures, a panoply of these nonlinear
effects are expected to be strongly enhanced [7-10].

The high value of SPP losses for a single metal/dielectric
interface in the visible and infrared domains dramatically
reduces the SPP propagation length to a few tens of microns,
a value clearly insufficient for many practical applications.
Strategies to increase the SPP propagation length are then
necessary to overcome this important limitation (see [11] and
references therein.) The use of more complex waveguiding ge-
ometries than a simple interface permits access to SPP modes
with different spatial distributions. Some of these modes, those
in which the mode amplitude is more localized in the dielectric
than in the metal, present larger propagation lengths [12].
This is the case of the long-range surface plasmon polariton
(LRSPP), the low-loss symmetric mode of a thin metal
slab immersed between dielectrics with similar refractive
indices [13—15]. This strategy can increase the propagation
length up to a few centimeters. In order to compensate
plasmonic losses even further, the addition of gain into the di-
electric part of the waveguide has been a second step exploited
in recent years by different groups [16-24]. In the previous
context, the combination of nonlinear effects with gain in plas-
monic waveguides appears as a natural consequence. Different
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theoretical proposals of gain-assisted nonlinear waveguiding
structures have been developed recently [25-31]. Theoretical
tools to analyze periodic plasmonic waveguides and metama-
terials with loss and gain have been also reported [32]. Our
contribution in this article points out in the same direction
although it presents important distinguishing features.

Our approach is based on the concept of soliplasmon
resonance. A soliplasmon resonance can be understood as a
quasiparticle combining a SPP mode with a spatial soliton as a
result of its resonant or quasiresonant interaction during propa-
gation along a metal/dielectric/Kerr (MDK) interface [33,34].
Although the plasmon-soliton term refers generically to hybrid
nonlinear solutions involving metal and Kerr media and
they were already studied during the 1980s [3-6], they do
not necessarily deal with situations in which they exhibit
a manifest resonant behavior between plasmon and soliton
[25,35-46].

Mathematically, a plasmon-soliton solution of the nonlinear
Maxwell’s equations is formalized as a soliplasmon when it
can be approximated by the so-called soliplasmon ansatz [47].
Physically, the soliplasmon ansatz represents a variational
solution of nonlinear Maxwell’s equations in which the
plasmon and soliton components are distinguishable—thus
spatially separated—and not strongly overlapping. The varia-
tional equations for the soliplasmon ansatz are rather simple
in form since they correspond to two coupled oscillators:
one linear (for the SPP variational amplitude) and the other
nonlinear (for the soliton amplitude). However, the coupling
presents a distinguishing feature: it is nonlinear and evanescent
with the soliton amplitude |C;| and position a, i.e., g X
exp (—K|Csla) [33,47]. Besides, it is nonsymmetric, which
means that the soliton-to-plasmon coupling coefficient g
is generically much larger than the plasmon-to-soliton one
g [47]. Although obtained explicitly for a MDK interface,
the variational soliplasmon approach applies to more general
2D waveguiding structures in which the linear component
can be a plasmonic mode (not just a SPP) and the nonlinear
component can represent a nonlinear dielectric mode (not just
a spatial soliton of an homogeneous medium). The particular
characteristics of this nonlinear evanescent coupling makes
the soliplasmon model different from previous approaches
for similar metal/Kerr systems in which coupling terms turn
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out to be linear and symmetric [37,39]. The distinguish-
ing properties of the nonlinear evanescent coupling was
reported in [48,49], in which the soliplasmon model—for
symmetric coupling—was mapped into that of a bosonic
Josephson junction (BJJ). The dynamics of this nonlinear
BJJ was proven to be—qualitatively and quantitatively—
different from that of a standard linear coupling BJJ, thus
indicating the crucial role played by the nonlinear evanescent
coupling.

In this article we will analyze the profound effect that the
addition of gain in the Kerr medium has in the propagation
properties of the plasmonic component of a soliplasmon
resonance. The content of the article is distributed as follows:
in Sec. II we introduce the dissipative soliplasmon model;
in Sec. III we construct the spin model associated to this
model; in Secs. IV and V we obtain the stationary dissipative
soliplasmon solutions of the spin model; in Sec. VI we present
the phenomenon of critical gain linked to these solutions; and,
finally, in Sec. VII we unveil how dissipative soliplasmons can
act as mediators for strong nonlinear plasmonic amplification.

II. SOLIPLASMON MODEL WITH LOSS AND GAIN

The variational model for the nondissipative soliplasmon
system was developed with detail in Ref. [47]. A summary of
its main results is given in Appendix A. The variational model
for conservative soliplasmons was obtained assuming that the
propagation of a monochromatic quasistationary TM solution
along a MDK structure such as in Fig. 1 can be approximated
by the soliplasmon ansatz:

E(x,2) = Cp(2)ep(x) + Cs(z)sech[\/gle(z)I(x - a)],
)

where e,(x) is a linear SPP solution of the MD interface,
Cp(z) and Cy(z) are the two variational parameters, a is
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the soliton position, and y = (3/4)egcn, is the nonlinear
coefficient of the Kerr medium. The other components of the
TM mode, i.e., H, and E., can be obtained by using additional
constraints valid under reasonable approximations [47]. In
this first approximation the metal is considered to be an
ideal conductor with Im(e,,) = 0. However, for realistic lossy
metals in which Im(e,) # 0 the plasmon propagation con-
stant becomes complex ﬁg = /3/?, + iﬁ”fj. Consequently, the
paraxial plasmon propagation constant also becomes complex
Wp = W, +ip).

Besides the effect of metal losses generating the complex
SPP plasmon propagation constant, it is possible to add lineal
gain or loss in the Maxwell’s equation description of the
MDK structure in Fig. 1(a). This can be done mathematically
by considering a modified complex permittivity function
(x) = e (x) + i8er(x), where g7 (x) is the linear permit-
tivity function of the MDK structure (in which we assume
that metal losses are already included) and the imaginary part
dep(x) provides the loss-gain profile introduced additionally
in the structure by means of other lossy or active components.
It is possible to incorporate into our variational model these
gain-loss effects in a relatively simple manner if we assume
that their transverse distribution is clearly spatially separated
between the plasmon and soliton regions with small overlap-
ping. In this way, additional loss-gain occurring in the SPP
localization region, i.e., in the MD layers, would be given by
a modified complex profile €,(x) = €,(x) + ide,(x), where
£p(x) would be the permittivity profile of the MD structure
(including metal losses) given by the standard expression in
Eq. (A2) with complex ¢,,. On the other hand, loss-gain in
the soliton localization region would be analogously described
by the modified permittivity function g;(x) = &,(x) + i&,(x),
defined in the Kerr medium. Taking the imaginary part d& (x)
as a small perturbation of the unperturbed one &, (x) permits
one to calculate easily the first-order correction—which will
be purely imaginary—in terms of the unperturbed values using
standard perturbation theory. The first-order corrections to the

FIG. 1. (a) Scheme of the flux of EM energy in a soliplasmon structure with just metal losses. The SPP component is localized transversely
(x axis) with a maximum at the MD interface (x = 0), whereas the spatial soliton component is centered at a certain distance x = a from the
MD interface within the Kerr medium. Both propagate in parallel to the MD and DK interfaces. (b) Characteristic MDK structure supporting
dissipative soliplasmons in which gain is located in the Kerr medium in order to compensate for metal losses.
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propagation constants are given by [50]
B = / dx de 1 (x)e) (x)

N — dx 88p(x)e (x) 2)

Qmp

g = — f dx 68L(x)sech2|:\/7 |Csl(x — } 3)
m— desé(x)sechz[\/i |Cs|(x — a)} “4)
Ny Jo,

where we have used the spatial localization assumption on the
loss-gain functions to determine the integration domains Qyp
(x < d) and Qg (x > d) [47]. Therefore, the full propaga-
tion constants including the metal loss and the contribution
introduced by extra gain or loss sources in the system are

132 — IB/; +i(,3//§, +8'3//§7),
B2 =p72+isp"

The calculation of the complex paraxial propagation constants

®)

) .
Kp =My, +il,,
s = Mg+ i
is performed by means of Eqgs. (A7) but using now the
complex propagation constants (5). The real part of the soliton
paraxial propagation constant depends nonlinearly on the
soliton component Cj:

wy(Cs) = koy ICs %,
s\l
3 e 1/2

where y is the nonlinear coefficient of the Kerr medium
previously defined and ek its real linear dielectric constant.

An analogous analysis holds also for the coupling coeffi-
cients g and 4. The local permittivity functions Ag, and Ag;,
as defined in Eqgs. (A10), pick up additional imaginary parts
from the loss-gain function §e; associated to the new total
permittivity function g7 (x) = e (x) + i8er(x). According to
their definitions, the perturbed local permittivity functions are
now

Agp(x) +idep(x),
Neg(x) +idep(x),

AT, (x) =EL(x) — ep(x) =

A& (x) =8L(x) — &5(x) =

where Ag, and Ag; would be given by Egs. (A10) and
correspond to an unperturbed MDK structure in which only ¢,,
is complex (lossy metal). In this way, the first-order correction
to the coupling coefficients will be given by the overlapping
integrals:

ko Y
8q = ZEITN/I;dx e,,(x)SeL(x)sech[\/;lel(x — a)],

K p

_ ko \/7
8§g=—7+— 1/ d 8 h| [ Z1Cl(x — i
q ZSI/ZNS/I; x e,(x)der(x)sec |: 2| |(x a)j|

K
(6)
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in such a way that the whole coupling coefficients take the
form

g=q+idqg=q +isq",
a=q+i8G=q +isq",

where ¢ = Re(§) and 8¢” = Im(3) and analogously for g.
Note that both ¢ and §¢q are complex so that they are not exactly
the real and imaginary parts of g. However, their imaginary
parts are relatively small so that it is not a bad approximation
to consider ¢ ~ ¢’ and 8q ~ §q".

In summary, the introduction of localized loss or gain in
the MDK structure can be also analyzed using the same soli-
plasmon model in Appendix A but with complex propagation
constants and couplings:

dC,
_;d—z (;Lp+t,up)C + (¢’ +i8q")Cs,
_ld_z (wy +in)Cs + (g +1i8G")C,. @)

We will refer to this model as the dissipative soliplasmon
model.

III. SPIN MODEL

In this article, we are interested in the search for solutions
in which the intrinsic plasmon loss is compensated by the
gain in the Kerr medium. In the absence of coupling the
soliplasmon model equations (7) indicate that the plasmon and
soliton parameters evolve as C,(z) ~ ¢'*»*¢™"»% and C,(z) ~
e'ie= % respectively. Thus, in order to make the loss-gain
balance more explicit we write the imaginary parts of the
paraxial propagation constants as p, = kol and w), = —kog.,
where / and g are the positive-definite dimensionless loss and
gain coefficients. Note that due to the lack of symmetry of
the MDK structure these effective coefficients correspond to
an asymmetric spatial distribution of loss and gain; thus it
is expected that / # g in the most general case. If we divide
Eqgs. (7) by ko, all the coefficients of the system of differential
equations becomes dimensionless. Besides, if we introduce
the new propagation variable 7 = koz, the differential operator
becomes dimensionless as well. This procedure is equivalent
to set kg = 1, so that w,, 1y, ¢, and g become dimensionless
and, in addition, the measurement of axial distances is done in
units of k; ' = A/27 (from now on we maintain the notation
of z as the axial variable with this interpretation).

The system of coupled equations (7) admits the following
matrix representation:

dc
—i— = HC, ®)
dz
where C = (C,,,CS)T and
| Mp q
H=|" 9
[61 ,U«s] ©)

is the Hamiltonian of the system, where, in principle, all its
elements are complex.

The matrix H is non-Hermitian (H # H tHT being the
conjugate transpose or adjoint matrix of H) but it admits the
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following decomposition in Hermitian matrices:
H=T1+iX,

where

H+ Hf /
2 qdo My

—i . I —iA
> =—H-HHY=|., o1, 10
2( ) [ZAO _g] (10)

in which we have introduced the notation gy = %(q +g%) and
Ay = %(q —g"). We see that IT represents the Hermitian part
of the Hamiltonian H. If ¥ were absent, the evolution of the
system would be conservative—energy would be conserved—
and the norm of the vector C would be preserved since the
evolution operator exp (i Hz) would be unitary. The matrix X
is responsible for the breaking of the Hermiticity of H and,
thus, of the unitary evolution of C.

Now we introduce the equivalent of the density matrix of
a pure state p = |C)(C|, which in matrix notation would be
simply p = C - CT, where the dot represents standard matrix
multiplication. Our goal is to find the evolution equation for
p taking into account that H is no longer Hermitian. In order
to do so we need first to find the adjoint matrix equation
associated to (8), which is simply

id—CT =C'H.
dz

Using both equations it is straightforward to prove that
d .
~i% = Hp — pH' = [ILp] +i(Z.p).

where [A,B] = AB — BA and {A,B} = AB + BA are the
commutator and anticommutator matrices, respectively. In or-
der to convert the previous equation into an evolution equation
for a spin model we resort to the standard decomposition
of the p matrix in terms of the identity and Pauli matrices
{t0,71,72,73} (Where g = I), which constitute a basis of 2D

matrices:
’%
T
S, (—) .
2

10 =
i=0

An analogous decomposition applies to the IT and ¥ matrices:
3 r-
n-%a/(3)

Y= 2 aj(%).

w

~

Since p, I1, and ¥ are Hermitian matrices, all their compo-
nents in the {7(,7} basis are real. Taking into account the
commutation and anticommutation algebra of Pauli matrices:

ijk=123,
i,jk=0,....3,

[7i,7j] = 2i€;ji,
{zi T} = 2681,

one can readily prove the evolution equation for the four-
dimensional spinlike vector § = (Sy,S) in terms of the four-
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dimensional vectors Q2 = (£20,2) and 0 = (09,0):

dsS
d—ZO =—00S()—G-S,
(11
ds
— =—Q xS —0pS — Syo.
dz

All these vector components can be found out of the elements
of their generating matrices (10) by using proper projections.
The algebra of {7y, 7} matrices provides the adequate projec-
tion operators by means of suitable tracing: 2; = Tr[I1z;] and
o; = Tr[X1;]. Therefore,

[ a0 +q; q+q
Q=|ilgo—q5) | =|87" —8q" |,
|, — g Wy — W
~ (12)
—i(Ag — AY) 85q" + 8q”
o= AN+Ay |=| —q9+49 |
l+g I+g
along with
Qo = 1), + 15,
opo=1—g.

As it is well known, an identical procedure leads to the
definition of the four-dimensional real spin vector S = (Sy,S)
in terms of the original variational 2D complex vector C =
(Cp.Co)':

C,Cs + C5C,

§=1i(C;C, = C,Cy) | =

1Cpl> = 1G5

2|CplICs] cos ¢yp
—2[Cp|ICs|singy, |, (13)
Cpl? — IG5

where ¢, = ¢, — ¢; is the relative phase between the plas-
mon and soliton components. Additionally,

So=1Cpl> +1CsI> = ISI.

Because of the latter constraint, the first evolution equation for
So in Egs. (11) is not independent. It can be obtained from the
second one for S by scalarly multiplying the latter by S and by
taking into account the constraint Sy = |S|.

It is interesting to remark here on the different nature and
physical meaning of the £ and o four-vectors in the spin model
represented by Eqgs. (11). In the absence of the contribution of
the o four-vector, the system becomes a standard model of a
conservative spin system interacting with an external magnetic
field 2. This model is a well-known representation of a con-
servative quantum two-level system, in this case represented
by the vector |C) = (C), CS)T. Note, however, that in our case,
even in the conservative regime in which oy = 0 and o = 0,
both the original and the equivalent spin models are nonlinear
in the sense that the soliton propagation constant p, as well as
the couplings g and g are functions of the soliton amplitude.
Particularly, the nonlinear character of the couplings confers
distinctive features on the dynamics of the system [48]. A
nonzero value of the o = (0p,0) four-vector is generated
when the Hamiltonian is non-Hermitian, and this fact can be
produced either because its diagonal terms become complex
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(l,g # 0) or because its off-diagonal terms are not conjugate of
each other (¢* # g). In this way, the asymmetry in the coupling
(lg] # |q1) appearing in the variational equations (A6) even in
the absence of loss and gain—as demonstrated in Ref. [47]
one expects ¢ K ¢ in realistic cases—is also responsible for
the breaking of the Hermitian character of the dynamics. By
simple inspection of the expressions for (op,0) in Egs. (12)
we recognize that in the absence of gain and loss (/ = g = 0)
a zero value for its zero and third component is obtained
(09 = 03 = 0), whereas the “symmetry-conjugate” condition
(¢* = q) ensures the vanishing of its other two components
(01 = 02 = 0). Thus the presence of a nonzero (op,0) vector
in the spin equations can be interpreted as a signature of
the non-Hermiticity of the Hamiltonian for the variational
vector C caused by two different mechanisms: existence of
dissipation and/or gain (when /,g # 0) and/or asymmetry in
the conjugated coupling (when g* # q).

IV. STATIONARY SPIN STATES

In the absence of dissipation and gain, stationary states of
the soliplasmon model (A6) have been found previously for
both symmetric [33,48] and asymmetric coupling [34]. These
solutions are interpreted as bound states of a SPP and spatial
soliton, the so-called soliplasmons, as they are characterized
by areal propagation constant. This interpretation is confirmed
by numerical simulations of full Maxwell’s equations [34] and
by a theoretical variational approach [47]. Stationary states
of the soliplasmon model represent solutions of full vector
nonlinear Maxwell’s equations, i.e., they provide a variational
approximation to a monochromatic and stationary 2D nonlin-
ear wave. In this way, the soliplasmon can be considered, in
turn, a soliton, in which diffraction and nonlinearity subtly
cancel each other to generate a stationary state.

In Figs. 2(b) and 2(c) we provide some characteristic
examples of the two families of soliplasmon solutions provided

S,

J
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meridian

(a) 0-soliplasmon 40
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by the variational model (7) with the ansatz (1) in the ab-
sence of dissipation and gain. The so-called zero-soliplasmon
solutions in Fig. 2(b) constitute a family characterized by
a relative phase ¢, = 0, whereas the 7-soliplasmon family
in Fig. 2(c) is characterized by a relative phase ¢, = 7.
According to the ansatz (1) and the definition of e, (A4),
the peak value of the electric field at the metal interface
is given approximately by C,/e;, whereas the soliton peak
value can be directly approximated by C;. Since the variational
soliplasmon model, when applied to a single MDK structure,
has no free parameters we have chosen plausible values for the
physical constants of the MDK structure. We take the Drude
model value for the dielectric constant of silver at A = 765 nm
(em = —29.95), ny = 2.2 for the linear dielectric, and we
consider the chalcogenide glass As;Se; as the Kerr medium
with 7, =3 x 1078 m?>/W and ng = 2.4. The choice of
AsySes is justified by the fact that observation of spatial
solitons have been recently reported in slabs of this material
with relatively moderate peak intensities of approximately
Iy = 2 GW/cm?, which implies a peak value for the electric
field of Eg ~ 8 x 107 V/m [51] [the electric field in Figs. 2(b)
and 2(c) is normalized to this value] with an induced nonlinear
refractive index of Anynp, ~ 6 x 1076, The soliton position is
a = 7.3 pum and the width of the dielectric slabisd = 122 nm.
In any case, the purpose of the variational model is to provide a
qualitative approximation to extant nonlinear solutions rather
than an accurate description of them. It is in this sense that
the values taken for the MDK structure intend to be close to
realistic parameters.

When metal losses are naturally included in the model,
soliplasmons cease to be stationary solutions since their
plasmon component automatically “feels” the metal losses
and it is exponentially attenuated during propagation. Such
as pictorially reflected in Fig. 1(a), even in the presence of
plasmonic losses, a nontrivial net exchange of energy from
the soliton to the plasmon component of the soliplasmon

E/ (b) E/ (c)
E() b‘(i
5
2 4 6 8 .
5 X (um)
2 4 6 -10

8.
E/ X (um) E/
E{) 1 g E()

2 4 6 8

X (um)

2 4 6 8 X (um)”

X (um)

X (um)

FIG. 2. Nondissipative soliplasmons: (a) O and 7 soliplasmon families in the Earth-like Poincaré sphere (red arrows correspond to
representative 0-soliplasmons solutions, blue arrows to -soliplasmons ones); (b) intensity and phase of the three 0-soliplasmons solutions (red
arrows) in the Poincaré sphere; (c) the same for the three 7-soliplasmons solutions (blue arrows).
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occurs. As full simulations of nonlinear Maxwell’s equations
unveil, the pattern of energy exchange crucially depends
on phase initial conditions in such a way attenuation of
the plasmon component can be moderately compensated by
energy pumped from the soliton component [34]. This feature
is also successfully captured by the soliplasmon model when
[ # 0 (see also [34]). If partial compensation of plasmonic
losses is achieved by soliton pumping when no gain is included
in the system, a legitimate question to be considered is if total
compensation can be fulfilled if we allow the system to obtain
some gain in the region where the soliton is localized. In
our generalized soliplasmon model this possibility is naturally
incorporated since we precisely assumed the gain to be
spatially localized in the nonlinear region. Therefore, we only
need to let / # 0 and g # 0 in our loss and gain variational
equations (7). The question now is whether the interplay
between loss and gain will be able to generate new stationary
solutions for which diffraction and nonlinearity will achieve
again a new perfect balance.

Since we have proven in Sec. III that the loss and gain
soliplasmon model (7) is equivalent to the spin model (11),
the question of the perfect compensation of losses by soliton
gain can be reformulated in terms of finding stationary spin
solutions of these spin equations. The stationarity condition
for the solutions of the loss and gain soliplasmon model (7)
requires that both the modulus of the variational parameters C,
and C; as well as their relative phase remain z independent.
In terms of its associated spin vector S (13) this condition
is equivalent to dS/dz =0, which, according to the spin
equation Eq. (11), implies the

QxS+ 0pS+ S0 =0
or

xn+om+o=0, (14)
where we have introduced the unitary vector n = S/|S| =
S/ So.

Remarkably, the previous equation for n admits the
following explicit solution:

>[0020r + (0 - DR + 0y(0 x D)].

(15)
Inasmuch as n is unitary, the unitarity condition n-n =1
introduces the following important constraint on the (09,0)
and (€29, $2) parameters:

oglo* + (o - @) = o (a5 + |2°). (16)

1 1
n=—————
oo \og + |2

This constraint is a necessary condition to be fulfilled by the
parameters of the spin model for the existence of the solu-
tion (15). It is a highly remarkable feature that this constraint
is absent in the conservative case for which op = 0 and o = 0.

In order to illustrate the relevance of the constraint (16) it is
instructive to approach the conservative regime by taking the
limit o = (09,0) — 0 in Egs. (15) and (16). We easily find
that

(o)
00|

(0 - @) = +09|2| + O(0)’,

+ O(o),
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respectively. Therefore, by incorporating the approximated
constraint in the equation for n, we get

n= :FE + O(o). a7n
|€2]

This is the correct solution in the conservative case, in which
the stationary solution corresponds to a spin perfectly aligned
with the external magnetic field 2. As we can see, when
taking the conservative limit the correct result is obtained
only when one properly complements the solution with the
constraint (16). On the other hand, as already emphasized, the
conservative solution (17)—unlike the nonconservative spin
solution (15)—automatically satisfies the unitarity condition
n -n = 1 independent of the value of the parameters of the
spin model.

Another interesting limit is the one corresponding to
nondissipative solutions (! = g = 0) in the presence of asym-
metric coupling (¢* # g) implying the non-Hermiticity of
the Hamiltonian. If we neglect metal losses, this situation
corresponds to the more common case of conservative
soliplasmons for which the soliton-to-plasmon coupling is
considerably larger than the plasmon-to-soliton one, and,
therefore, coupling is clearly asymmetric [34,47]. According
to Egs. (12), in this situation we wish to take the oy — 0
limit—keeping o finite—in the general solution (15) and in
the constraint (16). A similar analysis to the previous one for
the full-conservative case leads us to the following expression
for the unitary spin vector n of nondissipative asymmetrically
coupled solutions:

1

= W[:Fumz —161)'*Q -0 x 2], (18)

n
together with the constraint for the spin model parameters
o - © = 0. Note that the previous expression reduces to the

conservative one (17) when we take the Hermiticity limit ¢ —
0.

V. STATIONARY DISSIPATIVE SOLIPLASMONS AND THE
“GOLDEN CONSTRAINT”

The previous analysis has no explicit reference to the
dependence of the vectors (0y,0) and 2 on the parameters
or our original dissipative soliplasmon model (7). In this
sense, its validity goes beyond the specificities of our model
describing soliplasmon dynamics. However, as we will see
next, the specific properties of the dissipative soliplasmon
model are important. The set of equations (12) provide the
link between the generic spin model parameters and the
matrix elements of the soliplasmon Hamiltonian (9). In order
to understand the peculiar properties of the spin model of
dissipative soliplasmons one has to keep in mind that all the
coefficients of the Hamiltonian (9) except u, are nonlinear
functions of the z-dependent soliton variational parameter
Cs(2).

A. “Golden constraint” for nonlinear solutions

We have stressed already in Sec. IV the importance of
the constraint (16) to determine a legitimate spin solution.
In terms of our original soliplasmon model this constraint
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becomes a condition to be fulfilled also by the parameters of
the soliplasmon Hamiltonian (9). By substituting the values
of the (0y,0) and (€2, 2) vectors in the constraint (16) using
Eqgs. (12) we obtain that the coefficients of the dissipative
soliplasmon model (7) have to fulfill the following constraint:

[(g + D), — 1) — (57" — 8¢")@ — ¢")I*
—(g — D[—4gl + (1), — )’
+4q’c_1’ 4 (55// _ aq//)Z] — 0 (19)

Since we are dealing with the imaginary part €} (x) as a small
perturbation, the imaginary parts of the couplings §¢” and §g”
have to be considered, in turn, small perturbation of their real
parts ¢’ and g'. On the other hand, the variational equations of
the soliplasmon model were derived under the weak-coupling
condition, so the coupling coefficients g and g were assumed
to be small with respect to the propagation constants 1, and
ws. Consequently, we can further simplify Eq. (19) by keeping
only the leading-order terms in both approximations, which
in this context implies neglecting the imaginary parts of the
couplings 8¢g” and 8g”. In this way we obtain a simple form
of the constraint given by

gl{(g — 1Y + [1), — wy(COT} — (g — 1*q'(Co)g (Cy)
=0, 20)

where we have introduced the dependence on the soliton
variational parameter C; explicitly.

Weritten in the form (20) it becomes clear the essential role
played by the constraint equation, either in its simplified or
general form, in the determination of the nonlinear solutions of
a dissipative soliplasmon. Indeed, when all the nonvariational
parameters of the problem are given, the constraint equation
define whether a solution can exist or not. The constraint is
nothing but a nonlinear equation for the modulus of the soliton
parameter |Cs|. Specifically for the MDK structure under
consideration, if we provide as an input its optical complex
coefficients ¢,,, €4, €x, the nonlinear index n,, the width d,
and the soliton position a, we can compute all terms in the
constraint using the expressions given in the Appendix A—
including the loss and gain coefficients / and g—except the
unknown value of |Cy|. Since this constraint is a necessary
condition for a stationary spin solution as given in Eq. (15) to
exist, if such a solution for |C;| cannot be found, we can state
that the corresponding dissipative soliplasmon solution does
not exist either. On the contrary, if one solution |Cy| of the
constraint is found we can univocally construct its associated
spin S and variational C vectors. Once the value of |Cy| is
fixed by the constraint in terms of the system parameters, all
the nonlinear coefficients w), ¢, and g depending on it are
likewise fixed. It is interesting to emphasize that, due to the
nonlinear character of the constraint (20), it is possible to find
more than one solution for |Cy]|.

Due to the paramount importance of the nonlinear con-
straint (20)—or (19)—for finding dissipative soliplasmon
solutions we shall refer to it as the “golden constraint.”
Remarkably, the golden constraint only exists in the presence
of dissipation. When we set [ = g = 0 in it, the constraint
disappears and, therefore, no restriction is exerted on the
nonlinear solutions of the problem. In the same way that
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the existence of conservative spatial solitons is rooted in the
compensation between diffraction and nonlinearity, the golden
constraint can be envisaged as the additional balance condition
between losses and gain that a dissipative soliton has to fulfill
in order to exist [52]. Unlike in the conservative case, in which
soliton solutions constitute a continuous family, the golden
constraint permit only a discrete number of them.

B. Spin solution of a stationary dissipative soliplasmon

We are now in conditions to find an explicit expression
for a spin solution of a stationary dissipative soliplasmon.
First, we substitute in the general stationary spin solution (15)
the explicit expressions of the (0y,0) and (£2,2) vectors in
terms of the coefficients of the dissipative soliplasmon model
as given in Eqs. (12). Secondly, we implement the golden
constraint (20) explicitly in the solution by eliminating the
dependence on the propagation constant detuning w/, — py in
favor of a dependence on [, g, ¢, and ¢g. The result is

2sgn(l — g)(gq +19)"'[(qq — ghgN'*
n= —2gl(gq +1g)™" .@D
—1+2gq(gq +19)~"

We stress again that the problem of finding a dissipative
soliplasmon solution is univocally solved once we have
determined the specific value of |Cy| that satisfies the golden
constraint. This can be seen clearly in the previous expression,
in which once |C;| is given ¢ and g are determined and the
spin solution is fixed. The particular form of (21) is, however,
not unique since we can implement the golden constraint
differently from what we did to obtain this solution. We
could have chosen to eliminate other parameter rather than the
detuning. In that case the explicit form of n in Eq. (21) would
look different although both expressions would correspond to
the same solution.

The spin solution r in Eq. (21) is a unit vector, for which
So = |n|> = 1. Therefore, it does not contain information
about the norm of the variational vector C, which is given by
the zero component of the spin vector Sy = |C ,,|2 +|Cy*. In
order to define the spin solution of a dissipative soliplasmon
completely we need to give an explicit expression of Sy in
terms of known parameters. From the definitions of Sy and S
in Eq. (13), we immediately obtain

_ 2168

So = .
0 l—n3

(22)

This expression together with the unit vector (21) define
completely the spin solution of a dissipative soliplasmon since
S = S()n.

The Poincaré or Bloch sphere is a common way of
representing the spin vector associated to a two-level quantum
system. We will use it to represent soliplasmon states given
by the previous spin equations. Inasmuch as Eq. (22) points
out that soliplasmon states represented by spin vectors with
arbitrarily large norm Sy can exist (if n3 — 1), we will extend
the Poincaré sphere in order to guarantee the visualization of
these states. We introduce the “Earth-like” Poincaré sphere
concept, which maps the infinite existence domain of Sy,
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given by [0,00[, into a finite one, [0,¢], where ¢ ~ 1.618
is the golden ratio, to facilitate this visualization. Details of
this construction are given in Appendix B. By definition,
the Earth-like Poincaré sphere is defined by two regions:
the inner sphere (the Earth’s sphere), characterized by the
transformed radius Sy € [0,1], and the outer shell given by the
domain Sy € ]1,¢[ (the “atmospheric” layer.) All spins whose
end point lies on the “atmosphere” layer will have Sy > 1.
The main advantage of this representation is that existing
states with infinitely large norm approaching the Sy — oo
limit will appear represented by points infinitely close to the
atmosphere’s outer surface with radius ¢ (i.e., Sy — ¢).

As a first example of its use, we provide in Fig. 2(a)
the spin representation of the nondissipative 0-soliplasmons
(red arrows) and m-soliplasmons (blue arrows) of Figs. 2(b)
and 2(c). The spin vectors for these solutions are given by
Egs. (18) and (22). Nondissipative soliplasmons are restricted
to lie on the S, = 0 section of the sphere since its relative
phase is either O or . The 0- and 7 -soliplasmon families form
a continuum of solutions, which are represented in this figure
by the orange and light blue curves, respectively. However, the
norm of these solutions change with Cs, as clearly visualized
in Fig. 2(a). The “Earth surface” has unity radius and it has
been selected in order that soliplasmons with S3 = 0, i.e., with
C, = Cy, lie on it. The north pole of the unit sphere is given
by the plasmonic state C, = 1 and C; = 0. However, both
the 0- and m-soliplasmon curves tend to the north pole of
the outer sphere indicating that for nondissipative soliplas-
mons these asymptotic states have infinitely large plasmonic
component (C, — o00). An analogous interpretation could
be given to the southern pole with increasingly solitonic
states.

PHYSICAL REVIEW A 95, 013816 (2017)

VI. CRITICAL GAIN

We will use the Earth-like Poincaré sphere also to represent
dissipative soliplasmons given by the spin vector defined by
Egs. (21) and (22). The main difference with respect to the
nondissipative case is certainly the existence of the golden
constraint (20) (we will focus on the simple version), which
restricts the number of potential solutions to a discrete set
instead of a continuous family. The number of solutions is
determined by the finite number of roots in the C; variable
given by Eq. (20). In order to have an idea of this number, it is
convenient to rewrite (20) in the form

L= W(C)T?
q’(cs)a’(cs)=gl{1+[“"g—f~l} } (23)

It can be checked that the product ¢’q’ behaves ap-
proximately as k;|C;|exp(—kz|Cs|), so that it presents the
characteristic shape shown by the dashed curve in Fig. 3.
In this representation we use the same parameters for the
MDK structure as in the conservative case but taking now a
realistic value for the complex silver dielectric constant (e, =
—34.0 + 1.8i at A = 870 nm), which determines a SPP loss
dimensionless coefficient of / = 1.05 x 1072 (corresponding
to / = 758 cm™!, in physical units). The function at the right-
hand side of Eq. (23) is a slowly monotonically increasing
function of C; parametrized by the gain coefficient g (solid
line in Fig. 3). The crossing points are the roots of the golden
constraint fixing the allowed values of C; for the permitted
dissipative soliplasmon solutions. The smooth gradient of
the right-hand side function in Eq. (23) can be considered
a general feature caused by the soft modulation of the induced
nonlinear refractive index with the soliton amplitude for

x107° %107
10 g=2x10"" 100 g=6x10""
80 80
60 60
40 40
20 20
L 1 2 3 4 5 & T 3 4 5 6
X107 Cs x10° Cs
100 / —//
150
80
60 g:1X10_3 100 g:1.4><10_3
40
50
20
1 1 2 3 4 5 6C, T 2 3 4 5 6 (,

FIG. 3. Representation of the “golden constraint” for increasing values of the gain coefficient g for a given loss coefficientof / = 1.05 x 1072

(I =758 cm™!, in physical units).
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plausible intensities in realistic nonlinear materials, due to
the small value of the nonlinear coefficient y. The sign of the
slope depends on the relative sign between the SPP and soliton
paraxial propagation constants.

The nonlinear character of the golden constraint determines
the existence of a critical value for the gain. Due to the peculiar
nonlinear dependence of ¢’g’ on |C;|, as compared to the
smoothness of the dependence on |Cy| of soliton propagation
constant u/, the typical scenario for crossing points is the
one depicted in Fig. 3. As we increase g, the monotonically
increasing right-hand side of Eq. (23) (solid line in Fig. 7)
takes a larger value at the origin. Thus two crossing points are
granted to exist until the solid line intersects the ¢’g’ function
at its maximum, something that occurs at a critical value of
g = g.. Consequently, for values of g below g there exist two
stationary dissipative soliplasmon solutions. As g tends to g.
the two solutions become increasingly more similar in such
a way that they become degenerate at g = g.. The solution
at g = g. is unique, and no stationary dissipative soliplasmon
solution exists for g > g.. We will refer to g, as the critical
gain.

In the left-bottom side of Fig. 4 we represent in the Earth-
like Poincaré sphere the two spins, denoted as S, and S,
associated to the pair of soliplasmon solutions obtained from
the roots of the golden constraint with gain coefficient g =
1 x 1073 (g = 72 cm™, in physical units) in Fig. 3. In this
case, the Earth surface with unity radius has been chosen in
such a way the purely solitonic soliplasmon, i.e., the state with
C, = 0and C; = Ej, lies on it. Thus, by construction, the spin
state (0,0, — Eg) is the state whose norm sets the reference for
all the states and it will represented by S = (0,0, — 1) in the
Earth-like Poincaré sphere. The reason for taking this state as
areference will become clear when we analyze propagation in
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the next section. In general, Ey is an arbitrary reference value.
Here, as in the previous section and for the sake of comparison
with realistic situations, we choose ittobe Eg = 8 x 107 V/m,
which approximately corresponds to the soliton peak value for
realistic experiments in chalcogenide materials [51].

Dissipative soliplasmons qualitatively differ from the soli-
plasmon of the nondissipative system (! = g = 0) not only
because they constitute a discrete set of two solutions instead
of a family—compare Fig. 2 and the S, and S, solutions in
Figs. 4(a) and 4(b)—but also because they are not restricted
to lie in the S, = O section of the Earth-like Poincaré sphere.
Therefore, they are neither O nor & soliplasmons, as clearly
visualized in Fig. 4 by the two spins S, and S;. The loss and
gain balance expressed in the golden constraint requires the
stationary soliplasmon solutions to present a nontrivial relative
phase to achieve perfect compensation. In our particular case,
both solutions present a very similar relative phase close to
—m /8, as visualized in the Earth-like Poincaré sphere of Fig. 4,
and thus an almost identical phase profile, as shown in Fig. 4.
In our particular case, both spin solutions are very close to
the SPP pole and to each other thus indicating they have large
SPP components and similar shapes. The fact that dissipative
soliplasmons with large SPP component exist is important for
plasmonic nonlinear amplification, as we will see in the next
section.

The stability mechanism behind these dissipative soliplas-
mon solutions is, in fact, very robust, as our simulation
in Fig. 5 unveils. Our choice of the initial condition to
demonstrate plasmonic amplification during propagation can
be also considered as a stability check. Our initial purely
solitonic state S™ = (0,0, — 1) can be taken as a perturbation
of the final soliplasmon state S, (yellow arrow) by writing
Sin = S, 4+ AS,. It is clear in the Earth-like Poincaré sphere

05 (@) 7020 30 40 50
04 S solution K3
4
T
2
S 3n
3A e
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(b)
S, solution 10 20 30 40 50
: il
: 4
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: 2
: 3n]
: 4
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FIG. 4. Pair of dissipative soliplasmons in the “Earth-like” Poincaré sphere corresponding to the configuration with g =1 x 1073 (g =
72 cm™!, in physical units) in Fig. 3: S, (yellow arrow) solution with C; = 0.295; S, (orange arrow) solution with C; = 0.848. Inset: intensity
and phase profiles of the corresponding two dissipative soliplasmon solutions represented in the Earth-like Poincaré sphere. (a) S, yellow arrow

solution; (b) S, orange arrow solution.
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D\
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FIG. 5. Nonlinear amplification of a surface plasmon in the
Earth-like Poincaré sphere. A purely solitonic input state (green
dot) with no plasmonic component at the South pole evolves into
a dissipative soliplasmon output state (yellow arrow) with a high
plasmon component located near the north pole well above the Earth
surface. Trajectory “takes off” from the soliton pole of the Earth
surface into the “atmospheric” shell swiftly reaching a point of
maximum height and amplification (white spot), then descending
smoothly to reach the final output dissipative soliplasmon state.

that, since S, is a “highly plasmonic” state—very close to
the north pole—the perturbation A S, is huge since the initial
state S™ is located at the south pole. Despite this fact, the
dissipative soliplasmon solution S, acts as an attractor for S
converting a state with no plasmonic component at all into a
state with a large relative plasmonic component. On the one
hand, the intermediate state of maximum amplification (white
spot in Fig. 5) is not a stable solution; it is also belongs to
the attractor basin of the stationary dissipative soliplasmon
S,. The second solution S is, unlike S,, highly unstable.
Numerical simulation of the evolution of a perturbed S; spin
state indicates that this state—even for perturbations as small
as a 1%—can move very far away from its initial value or
evolve into the stable spin S,,.

VII. NONLINEAR AMPLIFICATION

The existence of dissipative soliplasmons in a MDKD
structure with gain in the Kerr medium provides an original
mechanism for the amplification of surface plasmon polari-
tons. If a dissipative soliplasmon is the asymptotic stationary
state of an initial state with smaller plasmon component,
then amplification of the SPP signal occurs. The soliplasmon
model and its spin representation provides a useful scenario to
describe this mechanism. Using the soliplasmon ansatz (1),we
can characterize the SPP amplification property in simple
terms as

Cy| < |cp. (24)

In our spin model, the output state with plasmon component
Cg‘" will be represented by a dissipative soliplasmon spin
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S°"in the Earth-like Poincaré sphere. At the same time, the
states verifying the condition (24) will constitute in the Earth-
like Poincaré sphere the domain Slamp(S"“t) of initial states
that can be potentially amplified into S°". Mathematically,
if a solution S(z) has S°" as its asymptotic state and,
simultaneously, its input state $™ belongs to Qamp(S°) then it
is guaranteed that a nonlinear amplification of the SPP occurs.

The previous mechanism is clearly visualized in Fig. 5.
In this figure we have represented a paradigmatic example of
nonlinear SPP amplification. Our initial state is a soliplasmon
state with no plasmon component at all located right at
the south pole of the Earth surface, i.e., with C;? =0 and
C = Ey, where Ej is our normalization value chosen as
in Secs. IV and V. Our physical parameters are the same
used to find the dissipative soliplasmon pair in Fig. 4 in the
previous section. This means that the gain g is kept below the
critical gain g.. By solving the evolution spin equations with
this initial condition we find that indeed there is a trajectory
that connects the initial spin state §™ = (0,0, — 1) with the
dissipative soliplasmon solution S, (yellow arrow) represented
in Fig. 4. The evolution process presents two different well
defined phases. First, there is a process of a strong and fast
amplification, which takes the initial spin towards a point
of maximal amplification, represented in Fig. 5 by a white
spot. Amplification is visualized in the fact that this point is
located in the atmospheric shell indicating that the norm is
higher than unity and thus larger than the initial one. Besides,
this amplification generates plasmonic component—absent in
the initial state—since we moved away from the soliton pole
towards the northern hemisphere. The fact that the white spot
appears visually close to the outer surface of the atmospheric
shell indicates that amplification is large. The norm of the white
spot is in fact larger than in any other evolution state, including
the final state, thus indicating that is the point of maximal
amplification. After this transient there is a slow decay from
the white spot into the final stationary dissipative soliplasmon
state (end point of the yellow arrow). The asymptotic value
for S(z) exactly coincides with the stationary spin value S,
calculated in the previous section.

The graphic representation in the Earth-like Poincaré sphere
is a faithful reflection of the behavior of the intensity evolution.
The intensity can be calculated from the soliplasmon ansarz (1)
since it is given by the z component of the Poynting vector
so that I = EXH;‘ x |Ex|2. Once the spin trajectory S(z) has
been resolved, the variational parameters C,(z) and C,(z) are
obtained and the soliplasmon ansatz (1) provides an explicit
solution for E, (x,z) and thus for the intensity 7(x,z).

Strong and fast SPP amplification in the initial propagation
stage is certainly apparent in the behavior of intensity. It
occurs at typical distances of tens of microns, as visualized
in Figs. 6(a) and 6(b). The peak value for the intensity
corresponds to a point of maximum SPP amplification—the
white spot in the sphere in Fig. 5, which for this particular con-
figuration occurs for a propagation distance of around 13 um.
The nonlinear amplification of the plasmonic mode can be
more neatly seen if we use the intensity of the linear SPP mode
associated to the soliplasmon solution at every axial position
instead of the total one. The associated SPP field is easily
calculated by projecting the soliplasmon solution (1) into a
normalized SPP mode—given by the TM pair [ H y, (x), E px (x)]
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FIG. 6. Normalized intensity plots for the nonlinear SPP amplification process represented in the Earth-like Poincaré sphere of Fig. 5 for
two different values of the maximum propagation length L. We use normalized values given by I /I, = |E,|*/ E}, where E is the normalization
value referred to in the text. Physical units are used for distances. Left column graphics show the short distance behavior of the intensity for
L =20 pm: (a) intensity profile of the total soliplasmon solution and (b) intensity profile of the linear SPP mode excited by the soliton. Right
column shows the same evolution but for very long distances when L = 1 cm: (c) full soliplasmon solution and (d) linear SPP corresponding

excited mode.

and corresponding to the linear waveguide constituted by the
MD interface—at every propagation step:

ngj(x,z) = [/ dx H;y(x)Ex(x,z)i| E . (x).

The intensity Z, |EE;°J|2associated to this projection can
be interpreted in fact as the intensity effectively stored into
the plasmonic component of the soliplasmon mode during
propagation. So it is an optimal physical magnitude to quan-
tify the amplification-attenuation dynamics in the plasmonic
waveguide. The feature of maximum SPP amplification is thus
apparent in Fig. 6(b), where the normalized intensity Z,(x,z)
is represented up to a distance of 100 pm.

Asymptotic stabilization into a dissipative soliplasmon state
is visualized in Figs. 6(c) and 6(d), where the propagation
of the intensity is shown for a much larger distance of
L =1 cm. The final profile in Fig. 6(c) exactly corresponds
to the stationary soliplasmon solution obtained using the spin

model and represented by the yellow arrow in the Earth-like
Poincaré sphere (Fig. 5). The proximity to the north pole in
the sphere indicates that the relative weight of the plasmonic
component with respect to the solitonic one is much higher.
In fact, soliton modulation is hardly visible in the intensity
profile in Fig. 6(c) as soon as the SPP component stabilizes.
Besides, the whole soliplasmon solution is asymptotically
amplified. This feature is reflected in Fig. 5 by the fact that
the end of the yellow arrow lies on the atmospheric layer.
This overall amplification is smaller than for the intermediate
white point, whose norm is maximum, but it goes mostly to
the SPP component. The separate effect on the plasmonic
component is clearly seen in Fig. 6(d), where we represent
the normalized projected intensity Zy(x,z) up to a distance of
1 cm. In our example, maximal amplification of the SPP mode
occurs at short distances—around 13 pwm—but asymptotic
amplification is achieved after around 200 pm. From this point
on, infinitely long stationary propagation occurs provided the
system conditions are preserved.
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VIII. GAIN-LOSS BALANCE AND ENERGY FLUX

The plasmonic intensity Z, introduced in the previous
section can be also used to understand the gain-loss dynam-
ics of the soliplasmon system. Its spatial integral [,(z) =
J dxT,(x,z) can be systematically evaluated at every axial
distance once the variational parameters C,(z) and C,(z) are
determined. The complete knowledge of the function /,(z)
permits one to introduce the concept of effective plasmonic
gain function g&(z) in the following way:

dl,(z)
dz

This form permits one to understand the soliplasmon sta-
bilization dynamics in an analogous way as the onset of
laser oscillations in an idealized laser cavity with losses. Our
equation for I, (25) is analogous to the photon rate equation for
a lossy laser cavity in which the threshold gain—the minimum
gain compensating all cavity losses—is given here by the SPP
loss coefficient / [53]. As in the laser cavity, also a nonlinear
dissipative system, the steady state is only achieved when
gain balances loss completely after a nontrivial transient. We
can see in Fig. 7(a) how the stabilization of the dissipative
soliplasmon solution can be neatly interpreted in terms of the
balance between the effective plasmonic gain g;ff—calculated
using Eq. (25)—and the plasmonic loss. Indeed, the perfect
gain-loss balance condition for the plasmonic component is
asymptotically fulfilled

2(85" (@) — ) I,(2). (25)

eff:l

8 (26)

In fact, the gain-balance condition (26) defines the onset of the
dissipative soliplasmon resonance. It is remarkable that this
condition can be achieved despite the nominal linear gain in
the Kerr medium g being much smaller than /.

In order to understand the physical origin of the effective
plasmonic distributed gain, we need to focus on the energy
flux dynamics within the soliplasmon structure. If we consider
the SPP subsystem as the one defined by the domain Qyp
(x < d)—containing most of the SPP amplitude, Eq. (25) can
be understood as the continuity equation for the energy stored
in the plasmonic subsystem. The second term in Eq. (25)
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accounts for the rate of energy absorbed by an electromagnetic
“sink” present in the SPP subsystem, whose origin is nothing
but the losses at the metal layer. The first term is thus
naturally interpreted as the flux of electromagnetic energy
traversing the boundary of our selected domain Qyp, which
is given by the transverse flux at x = d. Thus this transverse
flux @, has to be proportional to the x component of the
Poynting vector at this point: ®,(z) o S,(d,z). In the absence
of gain (g = 0) this situation is qualitatively reflected in
Fig. 1(a). Plasmonic losses act as an electromagnetic energy
sink partially compensated by the flux of energy arising
from the soliton. However, this soliton-to-plasmon energy
flux is not enough to compensate plasmonic losses so that
the plasmonic component continuously decays and eventually
disappears. This qualitative analysis is confirmed by the
numerical simulations of soliplasmon propagation using the
full-vector nonlinear Maxwell’s equations in Ref. [34].

As we will see next, the nontrivial features of the energy
flux dynamics in our previous numerical simulation are also
captured by our soliplasmon model in a very appealing
way. By construction, the energy stored in the plasmonic
subsystem can be easily evaluated using the soliplasmon model
since, as a first approximation, /,(z) = K|C p(z)lz, where
K is a proportionality constant. By writing the variational
components in Egs. (7) as C,,(z) = |C,(2)]e"?+® and
separating real and imaginary parts, we can obtain an equation
for d|Cp|/dz. Since dI,/dz = 2K|Cp|d|C,|/dz we obtain
immediately

dl,(z) ( ICp(2)] . )
=2(K sin,(z2) — 1 )1,(2). 27
iz ¢, Gsp(2) »(2) 27
By comparing Eq. (25) to Eq. (27) and according to our
previous arguments regarding the transverse energy flux, it
becomes clear that the following relations are fulfilled:
1ICpI .
D,(2) o¢ g31(2) = Kq =~ sinyp(2).
’ ’ Gl
This equation permits one to understand the structure of
the electromagnetic energy flux in a stationary dissipative
soliplasmon. For a stationary dissipative soliplasmon the
absolute values |C,| as |C| are z independent (consequently,

(28)

Soliton-to-plasmon
energy transfer

Plasmonic
Josses

Solitgn
gain|
EM energy
source

EM energy

FIG. 7. (a) Effective gain as a function of distance showing perfect asymptotic loss compensation—we restore physical units (cm™') to
gain and loss coefficients and take the same configuration and parameters as in Secs. VI and VII. (b) Graphical representation of the typical
energy flux configuration for a stationary dissipative soliplasmon with gain in the Kerr medium compensating for SPP losses.
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so is g) as well as the relative phase ¢,,. Therefore, by
comparing Eq. (28) and the balance condition (26) we
immediately recognize that, once the modulus |Cs| is fixed
by the golden constraint (and thus also |C)|), the value of the
relative phase cannot be arbitrary. In terms of the energy flux,
@5y has to adjust its value in order to guarantee an energy flux
that balances plasmon losses completely. For our particular
solution in Fig. 4, for example, ¢, ~ 7/8. Put differently,
in a stationary dissipative soliplasmon the relative phase ¢y,
determines the exact electromagnetic energy flux flowing from
the soliton to the SPP compensating plasmon losses in an exact
manner. The equilibrium is achieved since the electromagnetic
gain in the Kerr medium is perfectly in balance with loss
in the metal through the soliton-to-plasmon energy flux, as
graphically depicted in Fig. 7(b).

It is remarkable how the soliplasmon model explains why
the existence of a nonzero flux balance is not achievable when
there is no gain in the Kerr medium. When g = 0, the golden
constraint as written in Eq. (23) tells us that the product
q'(C,)q'(Cy) has to vanish, which implies that the only solution
is the trivial one |Cg| = 0. The soliton component disappears
in the soliplasmon model equations (7) leaving only a decaying
plasmonic component that asymptotically vanishes: |C,| — 0.
Thus no nontrivial dissipative solutions can exist.

A different situation occurs in the conservative case, when
I = g = 0. As mentioned in Sec. V, the golden constraint dis-
appears. In addition and according to the balance equation (26),
since there is no loss to compensate the effective plasmonic
gain is zero, Thus the electromagnetic transverse flux &, has to
vanish, which, according to Eq. (28), implies that the relative
soliplasmon phase can only be either O or 7. This is exactly the
situation describing the conservative soliplasmons depicted in
Fig. 2. Inasmuch as there is no golden constraint we have the
two families of 0 and 7 soliplasmon solutions parametrized
by a continuous range of values of |C;|.

IX. CONCLUSIONS

In this work we have established a gain-loss generalization
of the mechanism for the excitation of lossy plasmonic
modes using spatial solitons previously reported in [33,34].
The key point is that this excitation mechanism occurs
in the neighborhood of a soliplasmon resonance. In this
generalization we define a noteworthy strategy to introduce
gain in the system. Linear gain g is introduced in the region
where the nonlinear Kerr medium is located [see Fig. 1(b)].
The strategy of including gain in the Kerr medium is suggested
by the previous mechanism of nonlinear excitation of SPPs,
in which the existence of a soliplasmon resonance plays
a crucial role. The nearly resonant state formed by the
SPP and the soliton—the soliplasmon resonance—exhibits
the phenomenon of anticrossing [33], thus indicating the
possibility of adiabatically (or diabatically if loss and gain are
introduced) making transitions between the two modes [54].
In our case, numerical simulations of full-vector nonlinear
equations have shown that the soliton is able to excite its SPP
partner in the presence of plasmonic losses in a relatively
efficient manner, increasing the SPP propagation length [34].
For this reason, we expect that adding a moderate gain
in the Kerr medium can considerably enhance this effect.
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Indeed, we have proven that by adding a small imaginary
part to the soliton propagation constant p, = pu), — ikog it is
possible to compensate plasmonic losses completely. With gain
coefficients g significantly smaller than the plasmonic loss [ it
is possible to excite a soliplasmon resonance in a way that the
imaginary part of its propagation constant i becomes exactly
zero, so that the propagation length associated to the SPP
component of the coupled system becomes infinite.

The key point of this nonlinear mechanism of plasmonic
amplification is, however, not only the existence of a res-
onant interaction between the SPP and the soliton but that
this interaction is dictated by an asymmetric and nonlinear
evanescent coupling. It is the fact that the two different
coupling coefficients depend on the soliton amplitude as ¢,§
exp (—K|Cqla), which makes the existence of stationary
dissipative soliplasmons—qualitatively and quantitatively—
different from what one would obtain by assuming standard
linear couplings (i.e., independent of |C;|). In particular, the
presence of a nonlinear evanescent coupling between the
SPP and the soliton predicts the existence of rwo dissipative
solutions always, provided gain g remains below a critical
maximum value g.. As a corollary, our model predicts
that nonlinear plasmonic amplification is critical (g < g.)
and asymmetric (/ 3> g). The same analysis using a linear
coupling instead leads to a completely different prediction
(see Fig. 3.) The nonlinear evanescent coupling is a direct
consequence of the soliplasmon ansatz used to obtain the
variational equations leading to the soliplasmon model (7), as
rigorously demonstrated from nonlinear Maxwell’s equations
in Ref. [47]. Asymmetry between the plasmon-to-soliton
coupling g and the soliton-to-plasmon coupling ¢ in realistic
configurations (g < ¢g) confers also peculiar properties to the
soliplasmon model and, thus, to the nonlinear mechanism of
plasmonic amplification associated to it.

The dissipative soliplasmon model presented here can be
applied to other solutions than a SPP and a spatial soliton. It
can be applied to a more general plasmonic mode of a 1D
or 2D generic plasmonic waveguide coupled to a spatially
separated nonlinear dielectric mode associated to an intricate
dielectric/Kerr waveguide [47]. For 1D structures, for example,
the plasmonic mode can be a LRSPP and the dielectric mode
can represent the nonlinear mode of a dielectric/Kerr/dielectric
waveguide. The qualitative features of the mechanism of
nonlinear plasmonic amplification mediated by dissipative
soliplasmon resonances here presented apply then to a more
general set of plasmonic structures. In this direction, the
dissipative soliplasmon model (7), or, equivalently, its spin
model version (11), describes a general behavior shared by
more gain-assisted nonlinear plasmonic guiding structures.
We focused here on the features associated to plasmonic
amplification since compensation of plasmonic losses has been
the main motivation of this work. However, the particular
nature of the soliplasmon model, with its peculiar asymmetric
and nonlinear evanescent coupling, makes this model certainly
much richer, as previous analysis for the particular case of
symmetric coupling shows [49]. In this sense, the use of
known techniques developed to analyze dissipative solitons
in nonlinear systems [52] can be applied to describe properly
the nature of all potential solutions of the soliplasmon model
beyond those found in the present work.
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Last but not the least, the soliplasmon model (7) presents
interesting connections to parity-time (PT) symmetric optical
systems [55,56]. It can be related to the discrete model
describing the so-called nonlinear PT-invariant dimers, rep-
resented physically by two linearly coupled active and passive
nonlinear waveguides with balanced gain and loss [57-60].
Despite the non-Hermiticity of the Hamiltonian these PT-
symmetric systems admit stationary dissipative soliton so-
lutions, in which loss is fully balanced by gain. In our
model the coupling is both asymmetric and nonlinear and,
nevertheless, stationary dissipative soliplasmons are equally
found with unbalanced gain and loss. Interestingly, in other
structures with unbalanced gain and loss, mathematically
represented by coupled Ginzburg-Landau equations but with
linear and symmetric coupling, it is possible to find also stable
dissipative solitons [61-63]. In this context, the dissipative
soliplasmon appears as a peculiar form of a dissipative soliton,
whose existence and properties rely on the asymmetric and
the nonlinear evanescent character of the plasmon-soliton
coupling near resonance. In this article we have used some of
the particular properties of the dissipative soliplasmon model
aiming at optimizing plasmonic amplification. However, many
other features of the model are still unexplored. Since nonlinear
plasmonic amplification occurs due to the mediation of the
dissipative soliplasmon quasiparticle, it is of great interest for
other potential applications to deepen in the distinguishing
properties of this type of solution.
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APPENDIX A: VARIATIONAL EQUATIONS

The variational equations describing the interaction of a
linear surface plasmon polariton (SPP) and a spatial soliton
propagating in parallel to a metal/dielectric/Kerr (MDK)
double interface were demonstrated in Ref. [47] (see Fig. 1).
The linear behavior of this system is described by a permittivity
function given by

EK, x>d, (AD)

<
SL(X) — {Sp(x)a X X d9
where d is the thickness of the dielectric layer, ex is the
dielectric constant of the Kerr medium, and &,(x) is the profile
of the permittivity that defines the MD interface where the SPP
propagates, i.e.,

_Jenm ifx <0,
£p(x)={8d if x>0,

en and e, being the dielectric constants of the metal and
the dielectric, respectively. In a first approach, the metal is
considered to be ideal so that Im(e,,) = 0.

The resonant interaction between the spatial soliton and the
SPP is well described by a variational 7'M solution for the

(A2)
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electric field E(x,z) = (E,,0,E,) of the form

E,(x,2) = Cp(2)ep(x) + Cs(z)sech[\/gle(z)l(x - a)],
(A3)

where

et x<0

e kX x>0

ep(x) = e;%x){ e, () fp(x) (A4)
represents the linear SPP field, &, and k; being the inverse pen-
etration lengths in the metal and dielectric, respectively. These
quantities are explicit functions of the dielectric constants of
the metal and of the dielectric [1,2]:

Km = _kOEm[_(gm + gd)]_1/29
(A5)
K = kogal—(em + €172,

with ko being the vacuum wave number.

The amplitude of the SPP, C,(z), is the first complex
variational parameter. The second term in Eq. (A3) represents
a soliton located at a distance a from the MD interface and
it has the standard form of a sech function with an amplitude
C(z), which constitutes the second variational parameter of
the model. The nonlinear coefficient y in the soliton functional
expression is given by y = (3/4)eocn,, where n, is the
ordinary nonlinear index of the Kerr medium. As one can
see, all the nonvariational parameters of the ansatz (A3) are
fixed. The soliton position a is an input of the model as well
as the rest of the nonvariational parameters, which are given
in terms of the physical constants defining the MDK structure.

In this variational approach the axial component E, can
be obtained approximately using a transversality constraint
once E, is determined. The variational equations for C,
and C; are obtained under the following assumptions: (i)
propagation is quasistationary (i.e., phases of variational
parameters are assumed to change faster than their modulus),
(ii) propagation is paraxial and preserves the quasitransverse
condition (|E,| < |E,|), and (iii) the SPP-soliton coupling
is small [i.e., overlapping of SPP and soliton amplitudes in
Eq. (A3) is small]. The variational parameters C,(z) and C(z)
define then the solution completely through the following
nonlinear model of coupled oscillators:

dC

- ld_zp = :upCp + q(Cy)Cs,
c (A6)
—i szsCsCs _CsCs
ldZ M( ) +Q( ) p
where
(B
TR
B} — kgex koy
145(Cs) = ( 0ok) _ 5 1Csl? (A7)
2konx 4ey/

are the paraxial propagation constants of the plasmon
and soliton, respectively. As it is well known, the plas-
mon nonparaxial propagation constant B, is explicitly
given in terms of the dielectric and metal dielectric
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,3 EmEd
p = )
Em + &d

whereas the paraxial soliton propagation u, in Egs. (A7), as
expected, presents a quadratic nonlinear dependence on the
soliton variational parameter Cy, since

constants [1,2]:

(A8)

12
Bo=ko(ex + Z1C12) .

Remarkably, this is not the only nonlinearity of this coupled
oscillator model. The variational calculation in Ref. [47]
predicts that the coupling coefficients in Egs. (A6) exhibit also
an implicit nonlinear dependence on the soliton variational
parameter C; through the overlapping integrals over the MD
and soliton domains Qyp (x < d) and Q (x > d):

q(Cy) = 25—2Np /Q _da fp(x)Amx)sech[\/g Gl — a)},

€k

_ ko 14

q(Cy) = m /Q dx fp(x)Asp(x)sech[\/;|Cs|(x — a)]
+qv(Cy), (A9)

where Ag; = &1 — & and Ag, = ¢, — ¢, are the local per-
mittivity functions, which are also completely determined by
the dielectric constants of the metal, of the linear dielectric,
and of the Kerr medium in the following way:

0, x <d,
Aep(x)_ {SK—Sd, x>d
and
Em — €K, X < 07
Aes(x) =164 —¢ek, 0<x<d, (A10)
0, x>d,

d being the width of the linear dielectric slab (see Fig. 1).
The term g is the contribution to the plasmon-to-soliton
coupling of the vector term associated to the gradient of the
SPP dielectric function silee »- There is no such contribution
for the soliton-to-plasmon coupling g because we consider the
soliton to fulfill a scalar equation. Note that, according to their
definitions, the local permittivity functions Ae, and Ag, are
only nonzero in the soliton €2; and Q2yp domains, respectively.
This property justifies the integration domains in Egs. (A9).
On the other hand, the parameters N, and N, are normalization
constants, which are given in terms of the plasmon and soliton
inverse penetration lengths as

1, _ _
N, = /dx fj(x) ~ E(Kd "),

N; = /dx sechz[\/glcﬁ(x —a)i| ~ 2"

Note that since the soliton penetration length also depends on
the shape of the soliton profile, there is an extra dependence on
the soliton variational parameter given by k; = (y /2)"/?ko|Cy].
This fact along with the expressions for the coupling co-
efficients (A9) clearly point out both the asymmetry and

(Al1)
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the nontrivial nonlinear nature of the resonant soliplasmon
coupling.

The variational model given by the nonlinear coupled oscil-
lator system (A6) is a model with no free parameters. All coef-
ficients entering these equations are given in the last instance
in terms of the optical coefficients that characterize the MDK
structure—i.e., &, €4, £k , the width d, and the nonlinear index
n,—along with the soliton position a. In this sense, within
the regime of validity of the approximations used to obtain
it, the variational model possesses the same predictive power
as the original Maxwell’s equations from which it was derived.

The inclusion of metal losses [Im(e,,) # 0] does not change
the equations for the SPP. They remain valid assuming now
that ¢, is complex [1]. For this reason the structure of all
the previous equations does not change. However, now the
plasmon function f, is complex since both k,, and «, are,
according to Eq. (AS5). The SPP propagation constant (A8)
becomes complex as well:

By =B +ip"

Consequently, and according to (A7), the paraxial propagation
constant becomes also complex: u, = u', +in” ,. The same
occurs to the coupling coefficients in (A9), which now can be
written explicitly separating their real and imaginary parts as

q= ql/n + lﬁq,;/l,

q =4, +i3q,.
We use the subindex m to indicate that the origin of these terms
is the existence of metal losses, so that 8g,,,8¢,, — 0 when
Im(e,,) — O.

APPENDIX B: EARTH-LIKE POINCARE SPHERE

The Poincaré sphere (or Bloch sphere) is a standard
representation of a density matrix, which is by construction
Hermitian and positive definite (det p > 0) [64]. The general
construction followed in Sec. III to write arbitrary Hermitian
matrices in the {7y, 7} basis determines that a generic density
matrix p is represented by a four-dimensional vector (Sp,S)
verifying the inequality |S| < Sp. This inequality defines a
sphere of radius Sy (the Poincaré or Bloch sphere) in the 3D
space of spin components. A pure state represented by a density
matrix p = |C)(C| is the only type of state that fulfills the
equality |S| = Sp having the explicit representation in terms
of the components of the complex vector C given in Eq. (13).
Pure states correspond then to vectors lying on the surface of
the Poincaré sphere. Nonpure states are represented by spin
vectors inside the Poincaré sphere.

When we are considering the conservative case, in which
we set 0 = 0 in the spin model evolution equation (11), |S] is
conserved and, therefore, all the allowed trajectories of the spin
S(z) occur on the surface of the Poincaré sphere. In the linear
case, the spin vector S(z) experiments a precession around
the constant effective magnetic field €2. In the nonlinear case,
since 2 depends on S, the magnetic field can also evolve in
z. However, no matter the evolution is linear or nonlinear, the
conservative character of the dynamics preserves the norm of
the spin and, therefore, the condition that S has to move on the
surface of the Poincaré sphere.
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When the spin system is nonconservative, we are in the
general case described by the spin evolution equations (11)
with o # 0. Now, the first equation for dSy/dz clearly
indicates that the evolution of the spin vector does not preserve
its norm. As a consequence, evolution can take the spin vector
out of the surface of the Poincaré sphere. In the general case
it is possible that dSy/dz is negative or positive so we can
find situations in which |S| < Sp or |S| > Sp. Consequently,
in the nonconservative case we expect that the trajectories of
the spin vectors move all over the space, inside and outside the
Poincaré sphere.

However, the expression that we found for the zero
component of a stationary dissipative soliplasmon (22) tells us
that we can find solutions with an infinitely large value of Sy
(when n3 — 1). The existence domain of S is then the whole
positive real axis [0,00[. Since the visualization of spin vectors
with large norm can be difficult using the standard Poincaré
sphere, we introduce a modified version of this representation.
Basically, we introduce a new function that maps the infinite
So domain into the finite domain [0,¢], where ¢ is the golden
ratio. The choice of ¢ is certainly arbitrary. Itis chosen because
it provides a good proportion between the spheres radii for an
equilibrated visualization of the inner and outer sphere:

Eo(z) = 2_<p arctan |:S0£Z) tan (l)}, (B1)
T S 2¢
s T S(2)
S(z) = So(z)—| SOl (B2)

where S is some reference value. The previous mapping has
the following properties:

So— 0 when Sy — 0,
So— 1 when Sy — §,
So — ¢ when Sy — oo.

In fact, the particular form of the mapping (B1) is to some
extent arbitrary since another mapping function could be used
provided it satisfied the previous requirements together with
the properties of analyticity and monotonicity in the [0,00[
domain. The advantage of such a mapping is that now all
spin vectors generated by the evolution described by the
nonconservative spin equations (11) fit always in an extended
Poincaré sphere of radius R = ¢. Since S is a monotonically
increasing function it is also true that

S| <S=0<8 <1,
1S|=8S=S,=1,
1S|>S=1<5< 0.

According to these properties, the function (B1) maps the inner
part and the surface of a Poincaré sphere (of radius R = )
into a normalized to unit Poincaré sphere. However, the infinite
outer part is mapped into a finite shell comprised between the
unit sphere and an outer sphere of radius equal to the golden
ratio ¢.

For example, if we chose to analyze the spin motion in
a conservative regime in which o =0 and thus [S| =S
is conserved, we would select S = Sg and therefore all the
motion would happen on the surface of the unit sphere. If we
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now switched on the nonconservative terms in Eq. (11) by
letting o # 0, the motion would cease to be on the surface and
either it would “take off” into the outer shell (if dSy/dz > 0)
or it would “dig into” the inner one (dSyp/dz < 0). In this
framework, the outer shell represents the set of spin states with
overall gain (larger norm) with respect to their counterparts
with o = 0. Equivalently, the inner shell constitutes the set of
states with overall loss (smaller norm) with respect to the
same spin states with o = 0. The physical picture of this
extended version of the standard Poincaré sphere is similar
to an Earth-like system, in which conservative motion occurs
on the Earth surface, lossy evolution takes place under the
Earth surface, and evolution with gain materializes into the
Earth atmosphere. For this reason, we refer to this form
of representing the solutions of the nonconservative spin
model (11) as the Earth-like Poincaré sphere.

APPENDIX C: PROPAGATION CONSTANT OF A
STATIONARY DISSIPATIVE SOLIPLASMON

In the framework of our spin model, a fully determined solu-
tion of a stationary dissipative soliplasmon is given by the spin
equations (21) and (22). Apparently, however, the information
about the propagation constant of the original stationary state
C=(C p,CS)T seems to be lost in the process of defining the
equivalent spin model. Indeed, this essential parameter does
not appear explicitly in the dynamical spin equations (11) nor
in the solutions for stationary spin states (15). On the other
hand, the general form of the spin vector S in terms of the
components of the C vector (13) only determines the modulus
|Cpl, |Cs| of the plasmon and soliton components as well
as their relative phase ¢;, = ¢ — ¢, but not the individual
phase of each component. In this way, given the spin vector of
a stationary solution, we can know the stationary state C up
to a global phase, which in principle could depend on z in an
arbitrary form:

=OC, (1)

co=one] 1501 ]

C(O)ei©

where C is the 2D complex vector that can be univocally
constructed from the values of the stationary spin solution.

Despite this fact, the propagation constant of the stationary
dissipative soliplasmon is also univocally defined. According
to our process of constructing our dissipative nonlinear
solution, once we determine—if extant—the specific value
of |Cy| that satisfies the golden constraint, all components of
the original nonlinear Hamiltonian H (9) are fixed. This is so
because ¢, g, and ug are functions of |C|, whereas 1), is a
constant. According to the original Hamiltonian equation for
the vector C (9), the stationary solution (C1) would fulfill this
equation in the following way:

d ~ ~
e _ pe.
dz

where the matrix H and the vector C are both independent
of z and fully determined by the stationary spin solution. The
solution of the equation above is thus

¢p(2) = uz,
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where
C'HC _ Ti(pH)
CiC ~— Tr(p) '

in which p = CC' is the density matrix associated to the
stationary spin solution. We can rewrite the previous equation
in terms of the real four-dimensional vectors 2, o, and S
following the procedure in Sec. III:

w = [Tr(T1p) + i Tr(Xp)]1/Tr(p)
=1(Q+Q2-n)+il(oo+o-n).

/J/:

However, for stationary spin solutions the imaginary part
vanishes. The reason is that the imaginary part of u
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is proportional to dSyp/dz since, according to the first of the
spin equations (11), we have
1 1 dSo
Im(p) = 2(00+6 ‘n) = So dz
Inasmuch as stationary solutions have invariant norm they
fulfill the condition dSy/dz =0 and, therefore, Im(u) ~
dSo/dz = 0.
In summary, we have seen that the propagation constant of
a stationary dissipative soliplasmon is real and it is univocally
defined by the components of the stationary spin solution
associated to it as
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