PDF hosted at the Radboud Repository of the Radboud University Nijmegen

The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/190841

Please be advised that this information was generated on 2020-09-09 and may be subject to change.

Kernel-Partial Least Squares regression coupled to pseudo-sample trajectories for the analysis of mixture designs of experiments
 Supporting Material

I Relationship between Scheffé and Cox model coefficients

It can be easily demonstrated that the Scheffé model coefficients can be derived from the Cox model ones as:

$$
\begin{array}{ll}
\text { Linear model: } & \beta_{i}=\alpha_{0}+\alpha_{i} \\
\text { Quadratic model: } & \beta_{i}=\alpha_{0}+\alpha_{i}+\alpha_{i, i} \\
& \beta_{i, j}=\alpha_{i, j}-\alpha_{i, i}-\alpha_{j, j} \tag{S3}
\end{array}
$$

Consider the following formulations of the second-order Scheffé and Cox polynomials (Equation S4 and S5, respectively):

$$
\begin{gather*}
y=\sum_{i=1}^{I} \beta_{i} x_{i}+\sum_{i=1}^{I-1} \sum_{j=i+1}^{I} \beta_{i, j} x_{i} x_{j}+\epsilon \tag{S4}\\
y=\alpha_{0}+\sum_{i=1}^{I} \alpha_{i} x_{i}+\sum_{i=1}^{I-1} \sum_{j=i+1}^{I} \alpha_{i, j} x_{i} x_{j}+\sum_{i=1}^{I} \alpha_{i, i} x_{i}^{2}+\epsilon \\
\text { s.t. } \begin{cases}\sum_{i=1}^{I} \alpha_{i} s_{i}=0 \\
\sum_{j=1}^{I} c_{i, j} \alpha_{i, j} s_{j}=0 & \forall i \in[1,2, \ldots, I]\end{cases} \tag{S5}
\end{gather*}
$$

By applying to Equation S 5 the mixture constraint:

$$
\begin{equation*}
\sum_{i=1}^{I} x_{i}=1 \tag{S6}
\end{equation*}
$$

and reformulating the second-order terms, x_{i}^{2}, as:

$$
\begin{equation*}
x_{i}^{2}=x_{i}\left(1-\sum_{\substack{j=1 \\ j \neq i}}^{I} x_{j}\right) \tag{S7}
\end{equation*}
$$

it follows:

$$
\begin{gather*}
\hat{y}=\alpha_{0} \sum_{i=1}^{I} x_{i}+\sum_{i=1}^{I} \alpha_{i} x_{i}+\sum_{\substack{i=1}}^{I} \sum_{\substack{j=1 \\
j \neq i}}^{I} \alpha_{i, j}^{*} x_{i} x_{j}+\sum_{i=1}^{I} \alpha_{i, i} x_{i}\left(1-\sum_{\substack{j=1 \\
j \neq i}}^{I} x_{j}\right) \\
\hat{y}=\sum_{i=1}^{I}\left(\alpha_{0}+\alpha_{i}\right) x_{i}+\sum_{i=1}^{I} \sum_{\substack{j=1 \\
j \neq i}}^{I} \alpha_{i, j}^{*} x_{i} x_{j}+\sum_{i=1}^{I} \alpha_{i, i} x_{i}-\sum_{i=1}^{I} \sum_{\substack{j=1 \\
j \neq i}}^{I} \alpha_{i, i} x_{i} x_{j} \tag{S8}\\
\hat{y}=\sum_{i=1}^{I}\left(\alpha_{0}+\alpha_{i}+\alpha_{i, i}\right) x_{i}+\sum_{i=1}^{I} \sum_{\substack{j=1 \\
j \neq i}}^{I}\left(\alpha_{i, j}^{*}-\alpha_{i, i}\right) x_{i} x_{j}
\end{gather*}
$$

being \hat{y} the estimated value of the response property to be predicted. The notation $\alpha_{i, j}^{*}$ permits to explicitly differentiate the interaction terms $x_{i} x_{j}$ and $x_{j} x_{i}$. Specifically, $\alpha_{i, j}^{*}=\alpha_{j, i}^{*}$ and $\alpha_{i, j}=2 \alpha_{i, j}^{*}=2 \alpha_{j, i}^{*}$ if $i \neq j$. Rewriting Equation S8, it is obtained:

$$
\begin{equation*}
\hat{y}=\sum_{i=1}^{I}\left(\alpha_{0}+\alpha_{i}+\alpha_{i, i}\right) x_{i}+\sum_{i=1}^{I-1} \sum_{j=i+1}^{I}\left(\alpha_{i, j}-\alpha_{i, i}-\alpha_{j, j}\right) x_{i} x_{j} \tag{S9}
\end{equation*}
$$

As:

$$
\begin{gather*}
\hat{y}=\sum_{i=1}^{I}\left(\alpha_{0}+\alpha_{i}+\alpha_{i, i}\right) x_{i}+\sum_{i=1}^{I-1} \sum_{j=i+1}^{I}\left(\alpha_{i, j}-\alpha_{i, i}-\alpha_{j, j}\right) x_{i} x_{j} \\
\hat{y}=\sum_{i=1}^{I} \beta_{i} x_{i}+\sum_{i=1}^{I-1} \sum_{j=i+1}^{I} \beta_{i, j} x_{i} x_{j} \tag{S10}
\end{gather*}
$$

it is then proved that:

$$
\begin{gather*}
\beta_{i}=\alpha_{0}+\alpha_{i}+\alpha_{i, i} \\
\beta_{i, j}=\alpha_{i, j}-\alpha_{i, i}-\alpha_{j, j} \tag{S11}
\end{gather*}
$$

In the particular case where $\alpha_{i, i}=\alpha_{i, j}=\alpha_{j, j}=0$ (first-order polynomial), then:

$$
\begin{equation*}
\beta_{i}=\alpha_{0}+\alpha_{i} \tag{S12}
\end{equation*}
$$

quod erat demonstrandum.
On the contrary, if the Scheffé model parameters are given, the corresponding Cox model ones can be calculated by solving the linear equation system encompassing either Equations S1 and 5 or Equations S2, S3 and 7.

Table SM. 1 - Tablet data: Scheffé model coefficients estimated by Scheffé polynomial fitting by means of OLS, Cox polynomial fitting by means of PLS and K-PLS

Model coefficient	Scheffé model fitting by OLS	Cox model fitting by PLS	K-PLS
β_{1}	198.16	198.10	198.16
β_{2}	114.06	111.94	114.06
β_{3}	328.97	326.21	328.97
$\beta_{1,2}$	-403.26	-404.98	-403.26
$\beta_{1,3}$	350.56	347.54	350.56
$\beta_{2,3}$	330.37	323.24	330.37

Subindices stand for: $1=$ cellulose; $2=$ lactose; $3=$ phosphate

Table SM. 2 - Bubbles data: Scheffé model coefficients estimated by Scheffé polynomial fitting by means of OLS, Cox polynomial fitting by means of PLS and K-PLS

Model coefficient	Scheffé model fitting by OLS	Cox model fitting by PLS	K-PLS
β_{1}	-1.49	-1.49	-1.49
β_{2}	2.35	2.35	2.35
β_{3}	-1.35	-1.35	-1.35
β_{4}	2.11	2.11	2.11
$\beta_{1,2}$	2.08	2.08	2.08
$\beta_{1,3}$	14.55	14.55	14.55
$\beta_{1,4}$	7.51	7.51	7.51
$\beta_{2,3}$	6.70	6.70	6.70
$\beta_{2,4}$	2.63	2.63	2.63
$\beta_{3,4}$	7.82	7.82	7.82

Subindices stand for: $1=$ dish-washing liquid 1 (DWL1); $2=$ dish-washing liquid 2 (DWL2);
$3=$ water; $4=$ glycerol

