
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/190323

Please be advised that this information was generated on 2018-05-01 and may be subject to

change.

http://hdl.handle.net/2066/190323

Mixed Inductive-Coinductive Reasoning
Types, Programs and Logic

Proefschrift
ter verkrijging van de graad van doctor
aan de Radboud Universiteit Nijmegen

op gezag van de rector magnificus prof. dr. J.H.J.M van Krieken,
volgens besluit van het college van decanen

in het openbaar te verdedigen op donderdag 19 april 2018
om 16:30 uur precies

door

Henning Basold

geboren op 16 juni 1986
te Braunschweig (Duitsland)

Promotoren
Prof. dr. Jan Rutten
Prof. dr. Herman Geuvers

Copromotor
Dr. Helle Hvid Hansen (Technische Universiteit Delft)

Manuscriptcommissie
Prof. dr. Bart Jacobs (Voorzitter)
Prof. dr. Neil Ghani (University of Strathclyde, Verenigd Koninkrijk)
Prof. dr. Tarmo Uustalu (Tallinn University of Technology, Estland)
Dr. Andreas Abel (Chalmers University of Technology en Götenborgs

Universitet, Zweden)
Dr. Ekaterina Komendantskaya (Heriot-Watt University, Verenigd Koninkrijk)

This research has been carried out under the auspices of the iCIS (institute for Computing and
Information Science) of the Radboud University Nijmegen, the Formal Methods Group of the CWI,
and the research school IPA (Institute for Programming research and Algorithmics).

This research has been supported by NWO (grant number 612.001.021).

cba Copyright © 2018 Henning Basold, under a Creative Commons Attribution-ShareAlike 4.0
International License: http://creativecommons.org/licenses/by-sa/4.0/.

ISBN 978-0-244-67206-5
Typeset with XƎLATEX
Printed and published by Lulu

http://creativecommons.org/licenses/by-sa/4.0/

Contents

Acknowledgements vii

1. Introduction 1
Notes . 16

2. Preliminaries 19
2.1. Reduction Relations . 19
2.2. General Category Theory . 20
2.3. Presheaves . 21
2.4. Fibrations . 24
2.5. Algebras, Coalgebras and Dialgebras . 25

2.5.1. Coinductive Predicates and Up-To Techniques in Lattices 27
2.6. 2-Categories . 29

2.6.1. Adjunctions, Products, Coproducts and Exponents in 2-Categories 33
2.6.2. Algebras and Coalgebras for Pseudo-Functors 35

Notes . 36

3. Inductive-Coinductive Programming 37
3.1. Programming with Iteration and Coiteration . 37

3.1.1. Types and Terms of the Calculus λµν . 38
3.1.2. Computations in λµν . 43

3.2. Programming with Equations . 48
3.2.1. Types and Terms of the Calculus λµν= . 49
3.2.2. Computations in λµν= . 59

3.3. Relation Between λµν and λµν= . 66
3.4. Conclusion and Related Work . 67
Notes . 69

4. Observations 71
4.1. Observational Equivalence and Normalisation . 72

4.1.1. Observational Normalisation . 73
4.1.2. Tests and Observational Equivalence . 82

4.2. Category Theoretical Properties of λµν and λµν= . 90
4.2.1. Simple Classifying Categories . 90
4.2.2. Classifying 2-Categories . 95

4.3. Conclusion and Related Work . 100
Notes . 104

5. Inductive-Coinductive Reasoning 107
5.1. Program Properties as Coinductive Predicates . 108

5.1.1. Terms as Transition System . 108

iii

Contents

5.1.2. Observational Equivalence as Bisimilarity . 113
5.1.3. An Extensive Example: Transitivity of the Substream Relation 119

5.2. A First-Order Logic for Observational Equivalence 125
5.2.1. The Logic FOL▶ . 128
5.2.2. A Model, Soundness and Incompleteness . 137

5.3. (Un)Decidability of Observational Equivalence . 147
5.3.1. Observational Equivalence is Undecidable . 147
5.3.2. Decidability on a Language Fragment . 148

5.4. Discussion . 151
Notes . 157

6. Categorical Logic Based on Inductive-Coinductive Types 163
6.1. Hitchhiker’s Guide to Dependent Type Theory . 165
6.2. Categorical Dependent Recursive Types . 176

6.2.1. Introductory Example . 177
6.2.2. Signatures and Recursive Types . 178
6.2.3. Recursive-Type Complete Categories . 181
6.2.4. Recursive-Type Closed Categories . 187

6.3. Constructing Recursive Types as Polynomials . 188
6.4. Internal Reasoning Principles . 199

6.4.1. Internal Logic . 199
6.4.2. Induction and Dependent Iteration . 202
6.4.3. Coinduction . 210

6.5. A Beck-Chevalley Condition for Recursive Types . 212
6.6. Discussion . 216
Notes . 218

7. Constructive Logic Based on Inductive-Coinductive Types 223
7.1. The Calculus λPµ . 225

7.1.1. Raw Syntax . 227
7.1.2. Pre-Types and Pre-Terms . 228
7.1.3. Reductions on Pre-Types and Pre-Terms . 229
7.1.4. Well-Formed Types and Terms . 234

7.2. Examples . 237
7.3. Meta Properties . 243

7.3.1. Derivable Structural Rules . 244
7.3.2. Subject Reduction . 245
7.3.3. Strong Normalisation . 247
7.3.4. Soundness proof for saturated sets model . 251

7.4. Dependent Iteration . 255
7.5. An Application: Transitivity of the Substream Relation 259

7.5.1. Some Preliminaries in Agda . 260
7.5.2. Streams and Bisimilarity . 262
7.5.3. Stream-entry Selection and the Substream Relation 266

7.6. Discussion . 271

iv

Contents

Notes . 273

8. Epilogue 277

References 279
Own Publications . 299

Subject Index 301

Notation Index 305

A. Confluence for λµν= 309

B. Proofs of Section 6.3 315

Summary 319

Samenvatting 321

Zusammenfassung 323

Curriculum Vitae 327

v

Acknowledgements

Ich sage: laßt alle Hoffnung fahren, ihr, die ihr in die Beobachtung eintretet.
(Eng.: I say, abandon all hope, you who enter the realm of observation.)

— Galileo Galilei in Bertolt Brechts “Leben des Galilei”, Akt 9.

Before we start with the technical content of the thesis, I would like to thank a few people that
contributed to its development in one way or another.

First and foremost, I would like to thank my supervisor Helle Hvid Hansen. Her infinite patience,
her vast knowledge of scientific topics and the English language, and her attention to detail made
me not only a better researcher but also a much better writer. Before I started my PhD, I did
an internship at the CWI in Amsterdam with Marcello Bonsangue and Jan Rutten, who then also
became my promoter. It was there that I met Helle the first time and we started to have scientific
and non-scientific conversations. We also shared good evenings outside of work, through which
I learned about very nice restaurants in Amsterdam, and one or two tricks in the kitchen. Both
our discussions and Helle’s incredibly detailed feedback improved my research, mathematical and
writing skills tremendously, and without them, my thesis would be far worse than it is now.

As I already mentioned, I did an internship with Jan before he became my promoter. Already
at that time it became clear that Jan finds a good balance between giving one a lot of freedom
and guidance. But not just that, Jan has also the ability, which amazes me every time, to make
suggestions that open up new paths or lead to vast simplifications. This impression proved to be
right, and I am greatly indebted to Jan in his role as my supervisor. Without him, I would have
neither arrived at the research topics of my thesis nor at all where I am today. His constant support,
his suggestions, feedback and his ability to listen are invaluable.

Last but not least, Herman Geuvers entered the team when my research shifted towards type
theory. I learned a lot from Herman about logic and type theory. He has an enormous knowledge
about these fields, and I could always come by and get an extensive answer. If the answer would
be too complicated to be answered on the spot, he would go to his cabinet or bookshelf and take
a printed publication, sometimes his own, that would answer the question. Indeed, the strong
normalisation proof in the last chapter would not be there, had he not given me his ’94 paper on
strong normalisation of the calculus of constructions. Making a long story short, Herman is another
cornerstone in my development as a researcher, and I would like to wholeheartedly thank him for
everything he did and the positive atmosphere he creates.

Overall, I am equally indebted to all of you, Helle, Jan and Herman, for your support, your
kindness and what you have taught me. You were the best team of supervisors that I could envision!

I would like to thank other people that have directly contributed to the content of this thesis.
First, there is the reading committee consisting of Andreas Abel, Neil Ghani, Bart Jacobs, Ekaterina
Komendantskaya and Tarmo Uustalu. I am grateful for all the time and effort they put into reviewing
this, fairly lengthy, thesis and all the suggestions they made. In particular, I am happy that a
fundamental flaw was found by Andreas before publication.

Next, there are all the people that I have collaborated with on publications: Damien, Helle, Henning
G., Herman, Jan, Jean-Éric, Jurriaan, Katya, Marcello, Michaela, Niels and Stefan. I would like to
thank all of them for being fantastic collaborators.

vii

Acknowledgements

Finally, there are a few other people that I would like to mention because they had a direct
influence on the content and even the existence of this thesis. I am especially indebted to Stefan
Milius, who brought me into contact with Jan and thus opened up the path to my PhD. This
resulted in an internship with Jan and Marcello. During this internship and afterwards, I had some
outstanding discussions with Marcello, which resulted in my first publication. I am grateful for
Marcello’s scientific guidance, which laid the foundations for my later work in theoretical computer
science, particularly in the field of coalgebra.

Science demands a certain amount of dedication, a demand that can be very high at times and
one that can only be fulfilled if we have people of support and collaboration around us. It is these
people that I would like to dedicate the opening quote to. Brecht derived it from the inscription
“Abandon all hope, ye who enter here.” above the entrance to hell in Dante Alighieri’s La Divina
Commedia. The phrase is used by Galilei in Brecht’s play when he picks up again his studies on the
rotation of the sun and describes his approach to science: Work slowly, question everything, repeat
experiments and compare the outcomes, distrust everything that fits your beliefs, and only accept a
result if all other possibilities can be excluded. This is a daunting task, which can not only be lonely
at times but also carries the danger of becoming ignorant of the surrounding world. However, I was
very lucky and met some fantastic people along the way, who reminded me about what is important
in life and who were willing to share this daunting task. I mentioned my scientific collaborators
and guides already above, but there are further important people in my life.

In particular, I would like to thank Pauline Chew, Simone Lederer and Jurriaan Rot. Pauline was
always around with continuous support and for, often intense, conversations over food or late at
night. Thank you, Pauline, for all this and, above all, for making me grow as a person. With Simone
I had a perfect travel partner, who was always up for spontaneous activities in the weekend and
for good conversations. To you also a big thank you, Simone, for the good time and the different
perspectives you offered. And, I would like to thank you both, Pauline and Simone, for being
my paranimphs. I met Jurriaan at the CWI, from where we became friends and research partners.
Among the many interests that we share, our running sessions and bike rides, cooking and, of course,
coalgebras are the most important ones to me. Thank you, Jurriaan, for all the good cooperation,
and for your help with my thesis and articles.

The next shout goes out to my friends in Nijmegen, with whom I spent a great deal of my spare
time, be it at dinners, watching films, going to concerts or to museums: Alexis, Dario, Elena, Gabriel,
Jacopo, Joshua, Michael, Michele, Pauline, Robbert, Rui Fei, Simon, Sjef, Steffen and Tim, and my
flatmate Katja. Some friends I also found in Amsterdam, like Nick, who was my flatmate for two
years, and with whom I shared meals and good conversations in the evenings. Sung is another great
person that I met at the CWI. We had many discussions about Reo and life in general. Thank you
all for the pleasant time I had in the Netherlands, each of you knows what we share.

Among the fantastic people I met, there are also those that I am lucky to have or have had as
colleagues. My first job was the civil service in the hospital in Braunschweig, where I found in
Thomas Joosten and Jürgen Feß people, who supported me in my choice to study but also made me
aware of possible pitfalls. I am thankful that I could work before and during my studies with Udo
Hanfland and the people at BBR in Braunschweig, where I learned a lot about programming, project
management and collaboration.

At the university in Braunschweig, I am indebted to Jiří Adámek, Michaela Huhn and Stefan Milius
for their supervision of my master’s thesis. Also, I would like to thank Rainer Löwen for his lectures,

viii

which shaped my mathematical mind, and Fiona Gottschalk, Nadine Hattwig, Sebastian Struckmann
and Kristof Teichel for the good time we had racking our brains over (algebraic) topology.

The next stage was my time at the CWI, where I met many great people. The first was probably
Alexandra Silva. I owe her a lot, as she brought me in contact with Nick, gave us some basic furniture
and later often provided me with shelter in Nijmegen (thanks also to Neko for being such a good
host!). Besides being an excellent cook, Alexandra was a good friend and colleague in Nijmegen. At
CWI, I also got in contact with Matteo Mio with whom I have, on and off, good discussions about
mathematics, logic, geeky topics but also some nice evenings out. Also Enric Cosme-Llópez was
over at CWI as visitor and we had, both, in Amsterdam and in Lyon, a few good evenings. Since
we are at it, I would like to thank also all the other people that I met at CWI: Dominik, Erik, Farhad
(especially for the stories and film recommendations!), Frank (for the jokes and famous FM dinners),
Joost, Julian, Kasper, Michiel, Nikos, Stijn and Vlad.

At the Radboud University itself, I crossed paths with many people that I would like to thank
as well. One part of working at the university is teaching. I was lucky enough to assist in the
combinatorics course given by Engelbert, who is a fabulous teacher and prepares everything so
meticulously that there is nothing more that an assistant could wish for. Another part of working at
the university is research and writing. I would like to thank Bart for his scientific and initial financial
support, for his feedback and for managing the reading committee of my thesis. The last part of
working is, of course, the environment. I am grateful for all the people at the Radboud university that
made working there a pleasant experience: Aleks, Arjen, Baris, Bart, Bas S., Bas W., Bram, Camille,
Dan, Elena M., Elena S., Engelbert, Erik, Fabian, Fabio, Freek, Frits, Gabriel, Guillaume, Hans, Henk,
Herman, Ingrid, Irma, Jacopo, Jonce, Josef, Joshua, Jurriaan, Kasper, Kenta, Maaike, Markus, Mathys,
Matteo S., Max, Maya, Michael, Michiel, Mohsen, Nicole, Niels, Paul, Perry, Peter, Ralf, Rick, Ridho,
Robbert, Robert, Robin, Ronny, Ruifei, Saskia, Simone L., Simone M., Suzan, Tim, Tom C., Tom H.,
Twan, Zaheer. In particular, I would like to thank the Data Science group that I could still feel being
a part of, even though I was technically in another group after the reorganisation.

And then there are the people that I met “in the wild”, that is, at conferences, workshops or other
occasions. I am happy to be part of the coalgebra and TYPES community and would like to thank
them for their very warm and welcoming atmosphere. Apart from the people that I have mentioned
already, I would like to especially thank Andreas for our discussions that led me to the topics of the
last two chapters; Clemens for hosting me in Edinburgh and for being a friend in general; Filippo
for being a great roommate on Barbados and for initialising my contact to work in Lyon; Katya for
our discussions and her invitations to Scotland; Neil for our joint workshop and his insights into
category theory; Prakash for bringing together researchers through workshops and SIGLOG; Tarmo
for my fantastic first experience of TYPES in Tallinn and our discussions; and finally Daniela for
being a perfect flatmate and friend, who gave me also many scientific insights.

I want to end by coming back to my roots in Braunschweig, where I was happy to have found
some very good friends: Anja, Christoph, Christian, Lea & Patrick and Philipp & Kathrin. Thank
you all for your friendship and the great time we spent together. I would also like to express my
gratitude in memory to Rudolf, Anselm, Inge, Helga & Alfred. And finally, I would like to thank my
family, my parents and Virginie for their support and love.

Henning Basold, February 2018, Lyon.

ix

CHAPTER 1

Introduction

Thought must never submit, neither to a dogma, nor to a party, nor to a passion, nor to an interest, nor to a
preconceived idea, nor to whatever it may be, save to the facts themselves, because, for thought, submission
would mean ceasing to be.

— Henri Poincaré, 1909.1

The purpose of this thesis is to systematically study languages for specifying and reasoning about
mixed inductive-coinductive structures and processes. We will focus mostly on type theoretic and
category theoretic languages, but some of the reasoning principles are based on standard bisimula-
tions and up-to techniques. In the course of this thesis, we will analyse existing simple type theories
that allow the specification of inductive-coinductive processes, and we will exhibit several reasoning
principles for these type theories: through category theory, by using coinductive predicates and rela-
tions combined with up-to techniques, in form of a logic, and in certain cases by automatic decision
procedures. Moreover, we will develop a dependent type theory, both category theoretically and as
a syntactic calculus, that is based solely on inductive-coinductive types. As we will see, this type
theory can serve as a framework for quite general inductive-coinductive definitions and proofs, and
forms the pinnacle in expressivity of this thesis.

In the remainder of this introduction, we will motivate the study of inductive-coinductive reasoning
and provide an overview of the developments that happen throughout this thesis. To illustrate why it
is important to study inductive-coinductive reasoning in its own right, we will first discuss an example
of an inductive-coinductive property that pervades this thesis and that illustrates beautifully how
inductive-coinductive reasoning arises naturally in Mathematics and Computer Science. Afterwards,
we will give a brief historical overview, discuss the problems that will be tackled in this thesis
and detail the approach that we take. We will finish the introduction with a discussion of the
contributions and outline of this thesis.

Background and Motivation
Are you sitting comfortably? Then let us dive into the story of mixed induction-coinduction and
how it can help us in the practice of Mathematics and Computer Science.

Induction and coinduction are threads that cross the landscape of Mathematics and Computer
Science as methods to define objects and reason about them. Of these two, induction is by far the
better known technique, although disguised coinduction has always been around. It was only in
recent years that we began to see through this disguise and developed coinduction as a technique in
its own right. This led to some remarkable theory under the umbrella of coalgebra and to striking
applications of coinduction.

One of the topics in coalgebra that is actively researched are so-called behavioural differential
equations (BDE) [Rut03; Rut05], which allow for very concise and intuitive process specifications,
analogous to the differential equations from Mathematical Analysis. However, BDEs also inherit

1

Chapter 1. Introduction

from their analytic counterpart the problem that a system of equations may specify impossible
behaviour, and therefore may not have a unique solution or may have no solution at all. The
starting point of the research, which led up to this thesis, was thus to extend the known formats
for BDEs to cover wider application areas, while guaranteeing that the specified behaviour in these
more general formats is still well-defined. Once we have the ability to specify processes, it is
natural to also investigate reasoning principles for such processes to, for example, to be able to
compare their behaviour. Generalising process specifications and exhibiting reasoning principles for
these processes were the two main goals of the NWO project “Behavioural Differential Equations”
(612.001.021), in which part of the research for this thesis has been conducted. So how does mixed
induction-coinduction fit into this agenda?

As it turns out, induction and coinduction are complementary techniques, they are dual in a
precise sense that we will discuss later. Being complementary, it is often necessary to use both
techniques or even intertwine them. The combination of induction and coinduction allows us, for
instance, to construe forms of behavioural differential equations whose expressiveness exceeds that
of the currently available forms. We will also see that combined induction-coinduction is often
used implicitly, just like induction and coinduction used to be. Thus, the purpose of this thesis is
to systematically study the combination of induction and coinduction, which I hope, if anything,
inspires others to work on and use inductive-coinductive techniques.

The perspective that we will take in this thesis is that of logic and computation. However, this
should not limit the applicability of the results presented in this thesis to Computer Science. Rather,
the logics developed here are largely independent of the field, as are many of the ideas. I think that
many objects that occur in Mathematics, Computer Science, and other branches of science, in which
we build formal models, lend themselves to a mixed inductive-coinductive description. Therefore, I
wish to demonstrate, besides presenting general theory, also the use of inductive-coinductive objects
in an accessible way. That being said, some parts of this thesis presuppose knowledge of category
theory (Section 4.2 and Chapter 6) and an understanding of dependent type theory (Chapter 6
and Chapter 7). To support a reader unfamiliar with any of these, we provide in Section 6.1 a
short introduction to dependent type theory, and introduce some notations and non-standard bits
of category theory in Chapter 2. Despite these requirements, I hope that the reader may still find
pleasure in reading this thesis, and may obtain new insights from examples like that in Section 7.5.

Induction and Coinduction
So what are induction and coinduction? And how can their combination contribute to our under-
standing of problems in Mathematics and Computer Science and help solving these problems? The
way we will approach these questions is through the slogan that2

inductive objects describe terminating computations and values, whereas
coinductive objects describe the behaviour of observable processes.

Consider, for instance, natural numbers and infinite sequences, from here on called streams, of
natural numbers. The former illustrate the idea of terminating computations that result in values:
every computation on natural numbers terminates in either zero or the successor of another natural
number. For instance, the number “1” is a value, since it is the successor of zero, whereas “1 + 2”
is not a value but it computes to the value “3”. Streams of natural numbers, on the other hand, are

2

observable processes. To illustrate this, let us picture a box with a screen labelled “head” that displays
a natural number and a button labelled “tail”. If we push the button “tail”, the state of the box may
change and a new number may be displayed on the box. We can observe the behaviour of the box by
repeatedly pushing the “tail” button and noting down all the numbers that we see, thereby obtaining
an arbitrarily long sequence of numbers. This is illustrated in the following diagram, where each
square represents the unknown state of the box, the double arrows labelled “head” point to the
displayed values, and “tail”-labelled arrows signify state changes through button pushes.

n0

head

tail

n1

head

tail

n2

head

tail

n3

head
…

In fact, we can use these descriptions to characterise natural numbers and streams as follows.
First of all, for a given type3 X , we will write x : X if x is an element of type X . Let N be a
type of natural numbers and Nω a type of streams over natural numbers, both of which we will
characterise now without further specifying their internal structure.4 We have already said that the
natural numbers are characterised by having an element zero and a successor map, that is, there
is an element 0 : N and a map suc : N → N. In contrast to this, the streams come with two maps
hd : Nω → N and tl : Nω → Nω that allow us to obtain the head and the tail of a stream. Note that
the structure on N allows us to construct elements of N, hence we will refer to 0 and suc generally
as constructors. Streams have the dual property, their structure is determined by maps out of Nω ,
the observations hd and tl that we can make on streams. Suppose now that X is a type that comes
with a distinguished element x0 : X and a map s : X → X . We will compactly denote this as a triple
(X ,x0, s) and call it an algebra. What makes N special among such algebras is that there is a unique
map f : N→ X , such that, for all n : N,

f (0) = x0 and f (suc(n)) = s(f (n)). (1.1)

This is summed up by saying that (N, 0, suc) is initial among all algebras (X ,x0 : X , s : X → X).
Dually, streams are characterised by the property that (Nω , hd, tl) is final among all coalgebras
(Y ,h : Y → N, t : Y → Y), which means that there is a unique map д : Y → Nω such that, for all
y : Y

hd(д(y)) = h(y) and tl(д(y)) = д(t(y)). (1.2)

We formulate now the properties of inductive and coinductive types more abstractly. Let 1 be a
type with the property that the point x0 is equivalently5 given by a map z : 1→ X . If the types are
sets, then 1 is a set with just one element, say ∗ : 1, and we would define z(∗) = x0. Similarly, we
require that 0 : N is also given as a map zero : 1→ N. These assumptions allow us to express (1.1)
more elegantly in terms of composition of maps:

f ◦ zero = z and f ◦ suc = s ◦ f . (1.3)

To express (1.2) in this way, we do not need any further assumptions:

hd ◦ д = h and tl ◦ д = д ◦ t . (1.4)

3

Chapter 1. Introduction

Natural Numbers (Initial Algebra) Streams (Final Coalgebra)
Structure Constructors: zero and successor

zero : 1→ N suc : N→ N
Observations: head and tail

hd : Nω → N tl : Nω → Nω

UMP
x0 : X s : X → X

f : N→ X

1

N X

zero z

f

N X

N X

suc

f

s
f

h : Y → N t : Y → Y
д : Y → Nω

Y Nω

N
h

д

hd

Y Nω

Y Nω

t

д

tl
д

Table 1.1.: Defining properties of natural numbers and streams

Let us collect the defining properties of natural numbers and streams: natural numbers are determined
by constructors and a universal mapping property (UMP) for maps out of N, whereas streams are
determined by their observations and a UMP for maps into Nω . This is summed up in Table 1.1,
where we express the existence of the maps f and д as proof rules and the equations (1.3) and (1.4)
as commuting diagrams.

To describe in general terms what initial algebras and final coalgebras are, we will work with a
category C, which is a collection of objects and maps (also called morphisms) between them.6 We
write then X : C, if X is an object of C, and f : X → Y , if f is a map from X to Y in C. The integral
feature of categories is that we can compose maps of matching type: Given maps X

f
−→ Y

д
−→ Z in C,

there is a composed map д ◦ f : X → Z in C. This composition should also resemble the structure of
a monoid, in the sense that it is associative, and that for each object X : C there is a distinguished
map idX : X → X , such that for all f : X → Y , we have f ◦ idX = f and idY ◦ f = f . The last bit
of lingo that we need is that of a functor. A functor is a map F : C→ D between categories C and
D that maps objects and maps in C to objects and maps in D, while preserving the types of maps:
If f : X → Y is a map in C, then F (f) : F (X) → F (Y) is a map in D. Moreover, such a functor
must preserve identities and composition, analogous to monoid homomorphisms, which means that
F (idX) = idF (X) and F (д ◦ f) = F (д) ◦ F (f). Using the language of category theory, we can now
describe abstractly what inductive and coinductive objects are.

In general, induction arises from initial algebras and coinduction from final coalgebras. Let C be
a category and F1, . . . , Fn be functors with Fk : C → C. An algebra for these functors7 is a tuple
(X ,a1, . . . ,an), where X : C and ak : Fk (X)→ X . We say that an algebra (Θ, c1, . . . , cn) is initial, if
for each algebra (X ,a1, . . . ,an) there is a unique map f : Θ→ X , such that for all k = 1, . . . ,n the
following diagram commutes.

Fk (Θ) Fk (X)

Θ X

ck

Fk (f)

ak
f

(1.5)

In this case, we refer to the maps ck as constructors. Dually, a coalgebra is a tuple (Y , t1, . . . , tn) with

4

Y : C and tk : Y → Fk (Y), and (Ω,d1, . . . ,dn) is final, if for any coalgebra (Y , t1, . . . , tn) there is a
unique map д : Y → Ω that makes the following diagram commute for k = 1, . . . ,n.

Y Ω

Fk (Y) Fk (Ω)

tk

д

dk
Fk (д)

(1.6)

Consequently, we call the maps dk of a final coalgebra observations. Returning to the original
terminology, initial algebras are inductive objects, while final coalgebras are coinductive objects.
Moreover, it is fairly easy to see that the natural numbers object, as we described it in Table 1.1,
forms with zero and suc an initial algebra for the functors F1, F2 : C→ C with

F1(X) = 1 F2(X) = X

F1(f) = idX F2(f) = f ,

and that the streams object is final for the functors G1,G2 : C → C with

G1(X) = N G2(X) = X

G1(f) = idN G2(f) = f .

For instance, given an algebra (X , z, s), the equation that arises from (1.5) for the constructor zero
of the natural numbers is

f ◦ zero = z ◦ F1(f).

Since F1(f) = idX and by the laws of the category C, this equation reduces to f ◦ zero = z ◦ idX = z,
which is the identity that we have already encountered in (1.3).

Weaving Together Induction and Coinduction

So far, we have explored inductive and coinductive objects separately. Let us now take a look, again
with a computational angle, at an example that crucially combines inductive and coinductive objects.

Suppose we ask ourselves whether a stream σ is contained in another stream τ , that is, whether
all the entries in σ occur in order in τ . We say that σ is a substream of τ . For instance, a stream
that only consists of ones is certainly a substream of a stream that alternates between zero and one.
We can display their relation pictorially as follows, where we draw a line between entries in σ and
τ to show how they need to be related, in order to prove that σ is a substream of τ .

τ : 0 1 0 1 0 1 0 · · ·

σ : 1 1 1 1 1 1 1 · · ·

τ1 = tl ◦ τ

σ1 = tl ◦ σ

5

Chapter 1. Introduction

From this picture, we can extract a process for showing that σ is a substream of τ : The first entry
in σ is 1, which we can match with a 1 in τ by skipping the first entry in τ . Thus, we have
hd ◦ σ = hd ◦ τ1, where τ1 = tl ◦ τ . Having found the first match, we continue with the second
entry in σ . Indeed, we can match the second entry by hd ◦ σ1 = hd ◦ τ2, where σ1 = tl ◦ σ and
τ2 = tl◦ tl◦τ1. This process can be continued indefinitely, hence it is a coinductive process. However,
we note that it is important that finding an entry of σ in τ must not be an infinite process, for
otherwise the entry would actually not be found. In other words, matching one entry in σ with one
in τ is a terminating computation, thus inductive.

We can define the substream relation as follows. Let us, for reasons of brevity, say that σ is a
stream in Nω , if σ : 1→ Nω and we write also σ : Nω . Moreover, let Rel(Nω ,Nω) be the set of binary
relations between elements of Nω . The substream relation, which we will denote by ≤ here, will
be defined mutually with another relation ⊴ : Rel(Nω ,Nω). These two relations together implement
exactly the matching process that we outlined above: The inductive part comes about by saying that
σ ⊴ τ , if we can obtain a stream τ1 by dropping a finite prefix of τ , such that hd ◦ σ = hd ◦ τ1. The
coinductive relation ≤ repeats this process indefinitely. Formally, the substream relation ≤ is the
largest relation ≤ : Rel(Nω ,Nω), such that

∀σ ,τ : Nω . σ ≤ τ → σ ⊴ τ ,

and ⊴ : Rel(Nω ,Nω) is the least relation with
i) ∀σ ,τ : Nω . (hd ◦ σ = hd ◦ τ) ∧ (tl ◦ σ ≤ tl ◦ τ)→ σ ⊴ τ and

ii) ∀σ ,τ : Nω . (σ ⊴ tl ◦ τ)→ σ ⊴ τ .
The clause for ≤ says that if σ is a substream of τ , then σ is finitely matched by τ . On the other

hand, the clauses of the finite matching relation ⊴ state that σ ⊴ τ , either if their heads match and
the tail of σ is again a substream of the tail of τ , or if σ finitely matches τ after dropping the first
entry from τ . Since ⊴ is the least relation closed under these clauses, it indeed only allows finitely
many dropping steps.

There are, of course, some subtleties in this definition and how to use it. Thus, we need a framework
for inductive-coinductive definitions and reasoning, which prevents us from running into problems
that are caused by those subtleties. Since, as we will see below, there are no mathematical frameworks
that support inductive-coinductive reasoning to full extent, we set out in this thesis to develop such
frameworks. In the end, we will have the ability to reason about the substream relation formally
and work with it in an intuitive way. For instance, if 1ω is the stream of only ones and alt is the
stream alternating between 0 and 1, then an easy application is to show 1ω ≤ alt by simultaneously
showing that 1ω ⊴ alt and 1ω ⊴ tl ◦ alt.

Overall, this is an example that shows how inductive and coinductive reasoning naturally occur
together and complement each other. These are the kinds of examples that motivate and drive the
developments in this thesis.

Related Work and Origins
Given this motivation, let me sketch the evolution of induction and coinduction, and why we are
only at beginning of the evolution of mixed induction-coinduction. This also allows us to show how
this thesis fits into the existing literature.

6

The Orgins of Induction

Induction, as a proof technique on natural numbers, has been around implicitly since ancient times,
for instance in a proof by Euclid of the infinitude of the prime numbers, but was only made
explicit in the 17th century by Bernoulli. In the early 19th century it was popularised under the
name “Mathematical Induction” [Caj18], which is still used to this date, though we will refer to it
in this thesis just as induction. The name “Mathematical Induction” was chosen to distinguish it
from the argumentation method of “induction”, as it is used in the natural sciences. However, the
mathematical world had to wait until the end of the 19th century for a truly rigorous formulation
of induction. One was given by Dedekind [Ded88] in, what we would call today, second-order logic
and the other by Peano [Pea89] as a scheme in first-order logic. From there on, induction on natural
numbers became a standard technique in Mathematics, and was further developed into transfinite
or well-founded induction. A principal problem of restricting induction to natural numbers is that
one has to code other inductive structures, like finite trees, as natural numbers. This process is
sometimes referred to as “Gödelisation” because an integral part of Gödel’s incompleteness proof
relies on coding formulas as natural numbers. With the advent of Computer Science it was realised
that functions on inductive objects could be defined directly by “structural recursion” [Pét61] and
that properties could be proved by “structural induction” [Bur69]. Throughout this thesis, we will
refer to the former here just as iteration and the latter as induction, no matter what the underlying
inductive object is.

The Orgins of Coinduction

Just like induction, also coinduction has gone unnoticed for a long time. Most prominently, the
methods for proving the equivalence of states in automata theory or worlds in modal logic featured
concepts that are instances of coinduction. But even the function extensionality principle, namely
that two functions are equal if and only if they are equal on every argument, is an instance of
coinduction, as we will see. An important step towards exposing bisimulations was Milner’s work
on concurrency [Mil80], where he gives an inductive definition of bisimilarity. The crucial step to
exhibit the coinductive nature of bisimilarity was only taken by Park [Par81], who showed how
bisimilarity can be constructed as a largest fixed point for a certain monotone function. Also
set-theorists became interested in coinductive concepts, in the beginning of the 20th century only
implicitly but later more explicitly. The goal there was to overcome the restrictions of the axiom
of foundation, which ensures that the membership relation is well-founded. The problem then is to
recover the notion of extensionality, namely that two sets shall be considered equal precisely when
all their elements are equal. Aczel and Mendler [AM89] and Barwise et al. [BGM71] discovered that
extensionality in non-well-founded set theory can be stated through coinduction, see also [BM96].
What really stands out in the work of Aczel [Acz88] is the use of final coalgebras and a category
theoretical definition of bisimilarity [AM89]. From here on, coalgebras were studied in their own
right as a theory of processes or systems, with Rutten [Rut00] laying the ground work for a systematic
study of coalgebras and their properties. For insights into the historical development of coinduction,
the reader may consult [San09], which focuses on modal logic, non-wellfounded set theory and order
theory. The history of coalgebras is further discussed in [Rut00] and in the introductory texts [JR97;
JR11; and Jac16].

After coinduction and coalgebras had been developed, people strived to improve the definition

7

Chapter 1. Introduction

and proof principles associated with them. Two strands, which are the ones important to us here,
are the development of behavioural differential equations and up-to techniques. We have mentioned
behavioural differential equations (BDE) already earlier as the starting point of this thesis. They
were developed by Rutten [Rut03], building on the idea of input derivatives by Brzozowski [Brz64]
and Conway [Con71], which fully specify the behaviour of certain systems. BDEs allowed Rutten to
build a coinductive calculus of streams and formal power series, which he then uses to manipulate
solutions of some analytic differential equations [Rut05]. This last step is an elegant reformulation
of results by Pavlovic and Escardó [PE98]. The idea of using BDEs as process specification language
was picked up and further developed, for example, for streams [HKR17; KNR11; Rut05], binary
trees [SR10], automata theory [Han+14; KR12], context free languages [WBR11] and final coalgebras
that are presented by so-called co-operations [KR08]. Up-to techniques are the other coalgebraic
development that is important to us here. These were originally conceived as an improvement to
coinduction by Milner [Mil89] in his work on concurrent processes, and further studied by Sangiorgi
[San98]. Pous [Pou07] provided later a framework for the composition of up-to techniques, which
was presented and studied by Bonchi et al. [Bon+14] in category theoretical form, and further
expanded by Rot [Rot15].

Applications and Theory of Inductive-Coinductive Reasoning
The reason we went through the history of induction and coinduction is to show that both of them
have been used implicitly for a long time, and only fairly recently have they been made explicit
and studied in their own right. In fact, the same is true for mixed induction and coinduction. For
instance, the sieve of Eratosthenes itself is an inductive-coinductive process, in that it produces the
stream of prime numbers but requires an increasing, but finite, amount of computation steps to
compute the next prime number, see [Ber05]. But also in the general theory of coalgebras it was
realised that systems often need some further algebraic structure to, for example, model push down
automata [GMS14], formulate structural operational semantics [Kli11; TP97] or define operations on
coinductive objects [HKR17].

Of these, abstract generalised structural operational semantics [Bar04; TP97] is an interesting
case because the studied objects there are bialgebras, that is, objects that carry both algebraic and
coalgebraic structure. This happens usually because one aims to give operational semantics to a
syntactic theory, hence the name of the framework. In this framework, one may find an initial
bialgebra, which represents the operational semantics of the pure syntactic theory, and a final
bialgebra, which models denotational semantics. Since these two bialgebras generally differ, we note
that each of them only admits either induction or coinduction as proof technique, but not both.

There are many more examples, where induction and coinduction crucially occur together, like
weak bisimilarity [CUV15; NU10; Rut99; San11], Kőnig’s lemma and the fan theorem [NUB11;
TvD88], the study of continuous functions [GHP09a; GHP09b], Cauchy sequences, resolution for
coinductive logic programs [KL17; KP11], and recursion theory [Bas18b; Cap05]. Surely, there are
further examples that need to be uncovered, and I hope that this list inspires the reader to embrace
the inductive-coinductive approach.

This list virtually screams for a general account of mixed induction and coinduction. So is it
possible that no one has provided some general theory, given that inductive-coinductive reasoning
seems to be so prevalent? Indeed, people considered general approaches to some aspects of inductive-
coinductive objects. Most prominent are probably the cases of modal logic, programming and to some

8

extent category and game theory. In the case of modal logic, the desire was to express properties
that could refer to more than the (finite) number of steps that are specifiable with plain □^-formulas.
This lead Pnueli [Pnu77] to add further modal operators, resulting in linear time logic (LTL), that
allow one to state properties of finite trace prefixes and indefinitely long trace postfixes. In fact, this
allows the expression of restricted inductive-coinductive modal properties. It was later realised that
what LTL did could be expressed more generally as least and greatest fixed point formulas, thereby
motivating the development of the modal µ-calculus [Koz83]. The modal µ-calculus is an example
of a language, complemented by semantics [NW96] and proof systems [DHL06; Wal93], that deals
with general inductive-coinductive properties, albeit in a restricted setting.

In the case of programming, many people have worked on general calculi that feature inductive-
coinductive types. Probably the first to make such structures explicit and present them in a modern
form were Hagino [Hag87] and Mendler [Men87; Men91]. Later, Geuvers [Geu92] studied inductive-
coinductive types in their own right as well as inside the polymorphic λ-calculus of Girard [Gir71].
Most approaches, including the ones mentioned above, to programming with inductive-coinductive
types are based on iteration and coiteration schemes [AMU05; Gre92; How96a; Mat99; UV99b].
However, more recently Abel and Pientka [AP13] and Abel et al. [Abe+13] suggested the use of co-
patterns, which are in a sense dual to the well-known patterns for inductive types. These copatterns
enable very elegant specifications of inductive-coinductive processes by using recursive equations,
as we will see throughout this thesis. In fact, the original motivation for studying copatterns was the
aforementioned problem of extending behavioural differential equations, and copatterns certainly
inspired parts of this thesis. Copattern specifications are now part of the Agda language [Agd15],
which can serve both as a programming language and a “mathematical assistant” [Bar13]. Towards
the end of this thesis, we will demonstrate that reasoning based on equational specifications with
copatterns leads to compact proofs for properties of inductive-coinductive objects. Another mathem-
atical assistant that should be mentioned here is Coq [Coq12], since it also provides the possibility
to work with general inductive-coinductive objects, including predicates and relations. The problem
with Coq is the inherently flawed view that is taken on coinductive types, as we will discuss in detail
in Chapter 7. All of these existing calculi for constructing and reasoning about inductive-coinductive
objects are, however, either too weak to serve as a general logic or they lack a formal correctness
proof.

Then there are also order and category theory, which provide the most abstract accounts of
induction and coinduction that there are. In principle, both ordered sets and categories give us the
possibility to deal with higher-order recursion, in that we can construct initial and final objects
that are themselves monotone functions or functors, respectively [AAG05; Kim10; Par79]. Yet this
fact is hardly ever used, and it is one of the central themes in this thesis to take advantage of the
construction of higher-order inductive-coinductive objects.

Speaking of category theory, Santocanale [San02b] has used categories, in which certain inductive-
coinductive objects are available, to give semantics to parity games. Last but not least, inductive
and coinductive objects also arose in categorical logic. For instance, in the work of van den Berg
and de Marchi [vdBdM04] the aim is to formulate predicative set theory, that is, set theory without
the power set axiom, by using categorical logic. This aim is very close to that of this thesis. Indeed,
one of the main motivations, which drives the development of languages for inductive-coinductive
reasoning here, is to contribute to foundations that allow us to formalise large parts of Mathematics
and Computer Science in a constructive and computer-verifiable way. And once our reasoning

9

Chapter 1. Introduction

methods have evolved so far to attain this goal, we can free ourselves from Cantor’s “paradise”.

A Note on Terminology
To simplify the process of relating this thesis to existing work, we need to discuss the use of
terminology here and elsewhere. In view of the type theoretic development, we will distinguish
between the definition principles for maps on inductive and coinductive objects, and the associated
proof principles. For the definition principle on inductive objects, the terms “recursion”, “iteration”
and “induction” are often used interchangeably. However, I refrain from following this, and reserve
“recursion” for general self-reference, “iteration” for the definition principle of maps out of inductive
objects and “induction” for the proof principle. This matches also the traditional use of the term
in recursion (or computability) theory. When it comes to coinductive objects, the situation is that
“coinduction” is commonly used to refer to the definition principle (!) of maps into coinductive
objects [San11]. The associated proof principle is in the theory of coalgebras called the coinductive
proof principle [JR11; Rut00] or bisimulation proof method, for an appropriate notion of bisimulation,
cf. [Sta11]. We shall here, however, dualise the terminology for inductive objects and refer to the
definition principle of maps into coinductive objects as coiteration and the proof principles, which
allows us to show that elements of a coinductive object are equal, as coinduction. This streamlines
the terminology in [Rut00] and follows, in the case of coinduction, the wording in [HJ97]. For
convenience, we list this terminology with its meaning in the following table.

Inductive Objects Coinductive Objects
Definition principle Iteration: maps out of inductive

objects (also: inductive extension)
Coiteration: maps into coinduct-
ive objects (also: coinductive exten-
sion [Rut00])

Proof principle Induction: uniqueness of iteration,
or no proper subalgebras, or min-
imal structure closed under con-
structors

Coinduction: uniqueness of coit-
eration, or no proper quotients, or
bisimilarity implies equality

Research Aims: How to Weave Induction and Coinduction
So, if induction and coinduction work so nicely together, why is it necessary to write a whole
doctoral thesis on this topic? To clarify this, let us discuss the research aims that we will pursue
here. First of all, some aspects in our motivating example may strike one at least as odd and as
being a burden. For instance, the necessity to represent elements of an object as maps out of 1, or
even the need to rely on some external set theory to construct the substream relation. Thus, we are
certainly in the need of a language that allows us to define and reason about inductive-coinductive
objects in an accessible notation and without having to resort to any external theory. This leads us
to our first objective, namely to

find and study languages for inductive-coinductive definitions and reasoning.

However, we know that humans make mistakes. Although we can learn from these mistakes, they
should be avoided in published results that others rely on. A reasonable way to prevent mistakes

10

from slipping into accepted knowledge is to have a trusted entity that can check all our definitions
and proofs. Traditionally, we entrusted other humans with this task, with the advent of computers
it was realised though that proof checking could be mechanised if only sufficiently many details are
given. If we had languages, in which propositions and proofs can be implemented with reasonable
effort and are automatically verifiable, then this would lead to a shift from technical (proof) details
to the actual knowledge contained in publications. Hence, we obtain the requirement that

the studied languages should lend themselves to being automatically verifiable.

Once we have found such languages, we need to ask about the meaning of the objects that can
be defined in those languages. In other words, we need to

provide semantics for the studied languages.

This semantics can, and will, be given in terms of category and set theoretical structures and in
terms of operational semantics. Relating our languages to existing theories should be seen as a
complementary perspective, which exhibits the differences between the theories.

Finally, to make the languages useful, they should

provide an abstraction level similar to category theory but make specifications and proofs
easier to write and follow than in the language of categories.

This is somewhat vague, but notice that we used variables in the intuitive description of algebras
and coalgebras and the associated equations (1.1) and (1.2). That way, the behaviour of f and д
were clear from the outset. Moreover, we had to resort to identifying elements of an object X with
maps 1→ X . This is not just awkward, but also not correct in general, for example in the case of
monoids or presheaves.

Put in general terms, the intention of studying languages for inductive-coinductive definitions
and reasoning is to provide a framework that can serve as a logical foundation for category and set
theory. Since we will give operational semantics to our languages, we gain some understanding of
the languages on their own and we can equip them with meaning independent of other theories. If
the languages are now sufficiently rich to accommodate category theory and set theory, then we
are in the position to formalise and verify proofs for both of them. This is of course an ambitious
goal that will not be fully attained in this thesis, but we will nonetheless contribute to it.

Methodology: The Weaving Tools
Having collected our research aims, let us now discuss how we will approach them. The major
viewpoint that runs trough this thesis is type theory. In type theory, one studies types and terms,
where each term crucially has a type. In particular, we will study three type theories. Two of them
allow the definition of simple types like natural numbers and streams, while the third is a dependent
type theory and thus will admit inductive-coinductive predicates and relations. But we will not
restrict ourselves to type theory here. Indeed, we will also use category theory, coalgebraic methods
and first-order logic to provide reasoning principles for the type theories.

11

Chapter 1. Introduction

On the Choice of Type Theory

So, why should we prefer to use type theory as framework, rather than just category theory or set
theory? To explain this, we need to understand that category theory and set theory shine in certain
areas but are problematic in others. For example, relationships between objects in a wide variety of
situations are perfectly captured in categories, but categories in themselves are notoriously difficult
to use as logic directly and the arising proofs are not automatically verifiable upfront. We saw
the difficulty of using category theory already in the example, in particular in the identification of
elements with maps out of 1. This difficulty will become even more visible in the elaborate example
below. Axiomatic set theory, on the other hand, allows us to mechanise proof checking, but forces
us to work with explicit encodings, if not enriched with further abstractions (who would really want
to write a pair as {{a}, {a,b}}?). Finally, there are all kinds of philosophical issues with set theory,
which I will not dwell on here too much. Let me just say that in mathematical practice, set theory
is usually viewed as platonic, that is, one assumes a fixed universe of sets that exists independently
of our reality.8 Moreover, actual infinity is central to contemporary mathematical thinking and
practice [Fle07]. For example, whenever we say that (0, 1, 2, 3, . . .) is the stream of natural numbers,
we signify that the process indicated by the dots can be completed to an entity that consists of all
natural numbers. This is in stark contrast to the idea of coalgebras, which only describe the step-wise
behaviour of processes. For instance, the stream of natural numbers would intuitively be specified
by saying that its head is zero and that the further entries arise as the successor of the preceding
entry. The point of using type theories is now that they allow us to describe infinite objects and
processes abstractly, without the need to assume the existence of actual infinity, that is, without
having to assume the existence of infinite sets as objects in themselves. In fact, we will see that the
type theories allow us to directly express our intuitive understanding of natural numbers: the values
(terms in normal form) of the natural numbers type are static representations of numbers, whereas
the iteration and induction principle for that type expresses the dynamic character of counting.

Of course, one may object to this view on set theory, both on philosophical and practical grounds.
However, I think that type theory is at the moment the approach that reflects, at least in principle,
the mathematical practice of abstraction best. The hardest part is only to understand that proofs
can be represented as terms, something we will explain in Chapter 6. Thus, the type-theoretic view
on inductive-coinductive reasoning is in my opinion a fruitful one to study.

Now, this is a lot of praise for type theories, but we should also discuss their problems and
disadvantages in comparison to category and set theory. The first thing that most people would
notice, and which often triggers the rejection to use type theories, is the heavy syntactic burden
that comes with them. This is certainly a problem, which is not yet solved. However, by using
computers as “mathematical assistants” and by bringing type theories closer to mathematical practice,
we should eventually overcome this burden. A good example, in my opinion, of a development in
the right direction is Agda. Next, one may argue that all the abstraction that we can obtain with
type theories can also be reached by using category theory. This is indeed true, but I also do
not see category theory and type theory as competitors, they rather complement each other as
discussed above and, for example, by Lambek and Scott [LS88]. Concerning (axiomatic) set theory
versus type theory, this is mostly a philosophical issue as we saw, and merely a question of whether
one accepts impredicative definitions, which were for example rejected by Poincaré; whether one
accepts actual infinity, as it is rejected by constructivists and many pre-Cantorian mathematicians;
and whether one is willing to combine impredicative definitions and actual infinity with the law of

12

excluded middle and possibly the axiom of choice, despite the far-reaching consequences like the
Banach-Tarski paradox.

Outline and Contributions
After this somewhat philosophical digression, let us get back to the reality of this thesis and outline
the scientific contributions that may be found here.

We will go through a variety of languages that present different aspects and expressivity of
inductive-coinductive objects. In particular, in Chapter 3 we study two typed calculi λµν and λµν=
that cover the natural numbers and streams types. By a typed calculus we mean a language that
allows the construction of types, which correspond to the category theoretical notion of object, and
terms that inhabit these types, which in turn correspond to maps. The reason for studying two
languages is that the correctness of the first is easier to justify, whereas the second is easier to use
but requires more advanced techniques in its justification. Both calculi have appeared in one or
another form already, as we will discuss in Section 3.4. Thus, there is nothing new in the calculi
themselves, but rather in the analysis of and reasoning principles for these calculi.

Analysis of and Reasoning Principles for the Calculi λµν and λµν=
In Chapter 4, we first define observational equivalence for λµν and λµν= in terms of a modal logic
and prove some basic properties of it. This equivalence builds on, but also refines, many existing
ideas of program equivalences to make it work in an inductive-coinductive setting and to obtain the
desired category theoretical properties. These category theoretical properties are to show that the
types in both calculi have the expected unique mapping properties up to observational equivalence,
which we will express by using 2-categories. Employing 2-categories to study properties of programs
is, next to the definition of observational equivalence, the second contribution of Chapter 4. Both
observational equivalence and its category theoretical properties, although not described by using
2-categories, appear already in

[BH16] Henning Basold and Helle Hvid Hansen. ‘Well-Definedness and Observational
Equivalence for Inductive-Coinductive Programs’. In: J. Log. Comput. (2016).

The established 2-categories give us already some first reasoning principles for the calculi λµν
and λµν=. However, these principles are fairly difficult to use directly, which leads us to study in
Chapter 5 three approaches to expressing and proving properties of programs of the calculi from
Chapter 3. The first approach is based on bisimulations, which we prove to be adequate for the
modal logic that defines observational equivalence, in the sense that bisimilarity coincides with
observational equivalence. This shows that existing notions from the theory of coalgebra can be
instantiated even in a mixed inductive-coinductive setting. Furthermore, we show in an extensive
example that the substream relation, which we discussed earlier, is transitive. Since this relation is
defined as a mixed inductive-coinductive relation, we establish an up-to technique that allows us to
combine induction and coinduction in a novel way.

We will also see that it is not easy to use these bisimulations. Therefore, we are led to study
another approach, which consists of providing a logic that supports reasoning about inductive
and coinductive types, and the corresponding terms, equally well. The main reason for this logic

13

Chapter 1. Introduction

being easier to use than bisimulations is that it allows proofs to be recursive, that is, it provides a
mechanism, the so-called later modality, for (controlled) self-references in proofs. Crucially, the later
modality enables us to ensure the correctness of recursive proofs locally through inference rules
and saves us from having to construct explicit bisimulations. By giving sound semantics to this
logic in terms of the earlier studied bisimulations and up-to techniques, we obtain another proof
method for observational equivalence. For proofs that involve induction, this method is easier to use
than the method based on bisimulations. Moreover, the logic gives rise to automatically verifiable
proofs, which is demonstrated in a prototype implementation that accompanies the chapter. To my
knowledge, such a logic has not been studied before. However, in

[Bas18a] Henning Basold. ‘Breaking the Loop: Recursive Proofs for Coinductive Pre-
dicates in Fibrations’. In: arXiv (2018). arXiv: 1802.07143.

I tried to condense the essentials of this logic and present it in the setting of general fibrations. The
link between this generalisation and the here presented logic is not made in this thesis.

The last approach to proving observational equivalence we study in Chapter 5 is fully automatic.
This allows us to prove or disprove the equivalence of simple terms without human intervention.
Both the decision procedure for the language fragment and the accompanying correctness proofs
are new, although similar approaches have been studied for non-deterministic automata. We finish
Chapter 5 by showing that the automatic approach necessarily has to be restricted to fragments of
the languages from Chapter 3. This approach is thus limited in its applicability, compared to the
previous proof techniques.

Of these three proof techniques, the bisimulation and the automated method have been presented
in [BH16]. The extensive substream example in Section 5.1.3 and the logic in Section 5.2 are
unpublished.

Categorical Dependent Inductive-Coinductive Types
Note that in the definition of the substream relation we had to resort to set theory, which is external
to the category C. Up to Chapter 5, the provided languages only allow the simple types like that of
natural numbers or streams, and some basic reasoning about them, but it is not possible to define
the substream relation directly in any of these languages. Thus, the next logical step is to provide
languages that support also inductive-coinductive predicates and relations. This is the topic of the
last two chapters, where we develop a dependent type theory that is purely founded on inductive-
coinductive types. Preference was given to dependent type theory rather than the usual syntactic
proof systems, as they appeared in Chapter 5, because type theory generalises much better the ideas
behind the languages in Chapter 3 to predicates and relations. Moreover, proofs that one writes in
a dependent type theory can be readily verified by means of type checking. This motivation behind
dependent type theory is further explained in the guide in Section 6.1.

We develop in Chapter 6 requirements on categories that allow us to construct and reason about
inductive-coinductive types, which encompass the types from Chapter 3 and inductive-coinductive
predicates and relations. Such categories will be called µP-complete categories. Moreover, we show
that categories, which admit initial algebras for polynomial functor, are µP-complete under some
mild conditions. Both developments stem from

[Bas15a] Henning Basold. ‘Dependent Inductive and Coinductive Types Are Fibrational

14

http://arxiv.org/abs/1802.07143

Dialgebras’. In: Proceedings of FICS ’15. Ed. by Ralph Matthes and Matteo Mio. Vol. 191.
EPTCS. Open Publishing Association, 2015, pp. 3–17,

but the full proofs were not presented there. We further analyse in Chapter 6 the consequences of the
requirements on an µP-complete category, to the effect that we establish induction and coinduction
principles inside these categories. Finally, we give a first account of the relation of µP-complete
categories to the syntactic calculus we study in Chapter 7.

The basic idea of Chapter 6, to represent inductive-coinductive types as initial and final dialgebras,
is an extrapolation of the approach by Hagino [Hag87] to dependent types. Apart from this, all the
presented results in this chapter are new.

Syntactic Dependent Inductive-Coinductive Types
The final Chapter 7 provides a calculus, which casts the category theoretical language from Chapter 6
into syntactic form. To show that the resulting calculus can serve as a basis for reasoning about
inductive-coinductive objects, we provide a representation of first-order intuitionistic logic in the
calculus and show that it is consistent as such. In technical terms we show that the reduction
relation for that calculus preserves types and is strongly normalising. Both the calculus and its
mentioned properties are a novel development and have been presented in

[BG16a] Henning Basold and Herman Geuvers. ‘Type Theory Based on Dependent
Inductive and Coinductive Types’. In: Proceedings of LICS ’16. Logic In Computer
Science. ACM, 2016, pp. 327–336,

where the full proofs may be found in [BG16c]. We finish the chapter, and the thesis, with an
application of inductive-coinductive reasoning, which also serves as a running example.

The Substream Relation as Running Example
Throughout this thesis we follow one example that illustrates the stages of development. This
example is, how could it be any different, of mixed inductive-coinductive nature. The aim of this
example is to define and reason about the substream relation that we have seen earlier. In particular,
we want to show that this relation is transitive. We will take our first step towards defining the
substream relation in Chapter 3 by selecting entries of streams, which is interestingly an inductive-
coinductive process. The substream relation is defined in Example 5.1.13 in terms of stream entry
selection, which allows us to prove in Section 5.1.3 that the substream relation is transitive. In
Chapter 6, we review the definition of the substream relation and obtain a direct description of it
as an inductive-coinductive relation, without having to go through the process of selecting from
streams. We end Chapter 7 by representing this direct definition and the transitivity proof for the
substream relation in a theory of dependent inductive-coinductive types.

Further Contributions Beyond This Thesis
Apart from the above mentioned publication, the author has participated in the following contri-
butions, which, unfortunately, did not make it into this thesis due to size constraints: [Bas+14a;
BGvdW17; Bas+14b; Bas+15; Bas+17; BK16; BPR17].

15

Chapter 1. Introduction

Reading Advice
A quick word on how to read this thesis. Each chapter consists of an introduction, the main content
and a discussion of the content, related work, technical contributions and future work. Moreover, the
text is often annotated with further thoughts, remarks and some technical points. These annotations
appear at the end of each chapter, so as to avoid disrupting the actual text with littering remarks.
Let us also mention the dependencies between the content of the chapters. Chapter 3 provides the
basic object languages, for which we will provide reasoning techniques in Chapter 4 and Chapter 5.
The latter Chapter 5 depends crucially on the notion of program observation that we define in
Chapter 4. To read the last two chapters it is not necessary to have read any of the previous ones,
but it certainly helps to have done so. Also, it is not strictly necessary to read Chapter 6 before
Chapter 7, although the ideas for dependent inductive-coinductive types are mainly developed in
Chapter 6. Finally, since we use categories and many other technical notions, Chapter 2 provides
for convenience an overview of theory that is frequently used throughout the thesis, and which can
be consulted at any time.

Notes
1 In Œuvres de Henri Poincaré (1956), p. 152.
2 Sangiorgi [San11] describes coinduction as the study of cyclic processes. I find this view too
narrow, as it excludes, for instance, the sampling of physical (stochastic) processes, Brouwer’s
choice sequences or real numbers that are not computable. Admittedly, in the study of languages for
inductive-coinductive reasoning, the only processes we can describe by finite means necessarily have
to be cyclic. However, restricting ourselves to only cyclic processes would imply, for example, that
there are only countably many real numbers. Let us not get too much into philosophical discussions
on Platonism etc. here, but just cherish the idea that coinductive objects appear in a wide range of
situations. We will also find that function spaces are coinductive objects and, even though one can
see functions as non-cyclic cyclic processes, this stretches the “cyclic processes” perspective quite a
bit.

3 The word “type” has at this point no formal meaning, rather it rather refers to abstract entities, whose
only criterion is that they we are able to decide whether something is an element of it, cf. [Wet14].
Note that the use of the notation x : X for stating that x is of type X is consistent with the notation
for maps in categories: Given objects A and B in a category C, the notation f : A→ B can be read
as “f is of type A→ B”, where A→ B is the type of maps from A to B in the category C.

4 The approach of leaving the internal structure of types unspecified is typical for both category theory
and type theory. This is also their biggest strength compared to (axiomatic) set theory, where one
does specify the internal structure of types, here sets, and derives their properties from there.

5 In general categories this characterisation of natural numbers does, of course, not work. For instance,
the correct way to identify the properties of natural numbers in the category of monoids and their
homomorphisms is as a free monoid with one generator. Since we are more interested here in
foundations for definitions and reasoning, we will not talk explicitly about categories, in which the
objects have additional (algebraic) structure. That being said, the dependent type theory, which we

16

develop towards the end of this thesis, allows us to reason about categories with more structured
objects.

6 It should be noted that in the thesis itself it is assumed that the reader is familiar with category
theory, at least for Section 4.2, to some extent Section 5.2.2 and certainly in Chapter 6. Only for the
purpose of the introduction do we recall some of the category theoretical terminology.

7 A reader familiar with algebras and coalgebras will object now that this is not the standard definition.
This is indeed true and, in fact, we are dealing rather with dialgebras [Hag87] in disguise here.
However, for the sake of simplicity, we use the present definition in the introduction, as it allows
us to avoid introducing products and coproducts at this stage.

8 Also I am guilty of this, because in this thesis we will often refer to the category of sets, and thereby
follow common practice. Such a category does not exist, as the usual Zermelo-Fraenkel axioms
have no unique model. Even worse, there are non-standard models that completely break with our
intuition. However, moving away from the practice of referring to a category of sets would lead us
too far astray and is certainly besides the point of this thesis.

17

CHAPTER 2

Preliminaries

The purpose of this chapter is to provide a common base of terminology and notation for those
topics of term rewriting, category theory and coalgebraic theory that are necessary throughout the
thesis. Most of this material can be found in the standard literature on the corresponding topics.
Only in Section 2.6.1 do we pick notions of pseudo-adjoints between 2-categories that appear under
different names in other places. Thus, that section serves as a name reference for this thesis.

This chapter is structured as follows. We first introduce reduction relations in Section 2.1. In Sec-
tion 2.2, we settle on some notation for general category theory. The following four sections introduce
then more specific category theoretical terminology: presheaves and specific instances thereof are
discussed in Section 2.3; fibrations are defined in Section 2.4; Section 2.5 is devoted to algebras, coal-
gebras, their common generalisation of dialgebras, and a brief overview over coalgebraic predicates;
Section 2.6 introduces 2-categories, pseudo-structures, and (co)algebras for pseudo-functors.

2.1. Reduction Relations

In this section, we recall a few standard notions from the theory of term rewriting and equip
ourselves with some notation that we will need throughout the whole thesis. A standard reference
on term rewriting is, for example, [Klo92].

Generally, we consider an (abstract) term rewriting system to be given by a set T and a relation
−→⊆ T ×T . We refer to T as a set of terms and to −→ as a reduction relation on the terms in T . Such
a given reduction relation induces further relations on T . The first is the reflexive, transitive closure
of −→, which we usually denote by . Convertibility of terms arises as the symmetric closure
of , that is, as the equivalence closure of −→. This convertibility relation will be denoted by ≡,
and one says that terms s and t in T are convertible, if s ≡ t .

Terms and reduction relations may feature several properties. Let us introduce the ones that are
important to us here. First of all, a term t ∈ T is in normal form, if there is no reduction step from
t possible, that is, there is no s ∈ T with t −→ s . Sometimes, we denote this by t ̸−→. If for t ∈ T
there is a term s in normal form and t s , then we say that t is normalising or that t has a normal
form. Should there be no infinite reduction sequence that starts at t , then we say that t is strongly
normalising and we write t ↓ in this case. We may generalise this terminology to the reduction
relation by saying that −→ is (strongly) normalising if all terms in T are. Finally, −→ is said to be
confluent, if for all t , s1, s2 ∈ T with s1 t s2, there is an s ∈ T , such that s1 s s2. We
note that for confluent reduction relations convertibility is equivalently be given by

t1 ≡ t2 iff ∃t3.t1 t3 t2.

19

Chapter 2. Preliminaries

2.2. General Category Theory
Again, we will merely set up terminology and notations here to have a common ground with the
reader in what follows. A general introduction to the necessary category theory can be found in
the handbook of Borceux [Bor08], or from a more logic-oriented perspective in [LS88].

In this thesis, we will denote general categories by upper-case, bold-face letters B,C, Special
cases are the category Set of sets and functions, the (large) category Cat of categories and functors,
and the final category 1 with one object ∗ and one morphism id∗. Given a category C, we shall
denote the collection of objects in C by obC, but we also customarily write A ∈ C instead of A ∈ obC.
For objects A,B ∈ C, the collection of morphisms, also called hom-set, between A and B is written
as C(A,B). Note that we talk about sets here, which means that one would usually refer to C as
locally small. We shall not worry about size issues here too much and rely on the understanding
that C(A,B) is considered in a larger univerise, if it is not actually a set. This may happen, for
example, when we talk about functor categories later. However, if the morphisms between two
objects actually form a set, then C(A,B) can be extended to a functor C : Cop ×C→ Set by defining
it on morphisms f : A′→ A and д : B → B′ in C to be

C(f ,д)(u) = д ◦ u ◦ f .

From given categories, there are several ways of constructing other categories. The first con-
struction we need is that of functor categories: Given categories C and D, we denote by [C,D] the
category that has functors C→ D as objects and natural transformations between such functors as
morphisms. From the hom-functors we get a functor y : C → [Cop, Set] that embeds any category
C into a functor category, the so-called Yoneda embedding.

Another canonical construction of a category from a given category C is the so-called arrow
category C→. This category has as objects morphisms A → B of C and as morphisms between
f : A→ B and д : A′→ B′ pairs (u,v) of morphisms in C, making the following diagram commute.

A A′

B B′

u

f д

v

For every object A ∈ C, there is a full subcategory C/A of C→, the slice category of C above A. The
objects in this category are again morphisms in C, but this time around with fixed codomain A, and
the morphisms are given by commuting triangles of the following form.

B C

A

u

f д

Thus C/A embeds into C→ by mapping a morphism u : f → д to (u, idA). We will meet these
constructions of arrow and slice categories again when we come to fibrations in Section 2.4.

The last construction on categories that we will need is that of a quotient category. Suppose that
C is a category and ∼ an equivalence relation between the morphisms of C that respects typing and

20

2.3. Presheaves

composition, in the sense that for morphisms f and д in C with f ∼ д, we require that

∃A,B. f ,д ∈ C(A,B), ∀h. f ◦ h ∼ д ◦ h, and ∀h.h ◦ f ∼ h ◦ д.
Under these conditions, the quotient category [Mac98, Sec. II.8] C/∼ of C by ∼ has the same objects as
C and as morphisms equivalence classes of morphisms in C, that is, we have (C/∼)(A,B) = C(A,B)/∼.
The above conditions allows us then to define composition on equivalence classes, and to prove the
necessary identity and associativity axioms.

2.3. Presheaves
We now discuss a specific kind of functor categories in more detail. These functor categories are
categories of so-called presheaves, which are used to represent indexed families of all kinds. An
example application are Kripke models for intuitionistic logic that can be represented as presheaves.
Another instance of presheaves are the ωop-chains that can be used to construct final coalgebras,
see Section 2.5. In this thesis, we will use presheaves to give semantics to a logic, but not with the
intention that presheaves model evolving knowledge like in Kripke models for intuitionistic logic.
Rather, we interpret the logic over ωop-chains of Boolean values that state whether a formula holds
at a stage of the ωop-chain of the approximation of a final coalgebra, see Section 5.2.2 for the details
of these semantics. The purpose of this section is to collect some general results on presheaves that
are necessary to establish the semantics there.

Definition 2.3.1. Let C be a small category and S any category. An S-valued presheaf over C is a
functor Cop → S.

Since [Cop, S] is a functor category, limits and colimits can be computed in this category point-wise.
This gives the following standard result, see [Bor08, Sec. 2.15].

Proposition 2.3.2. Let C be a small category and S any category. If S is (co)complete, then also the
functor category [Cop, S] is (co)complete.

As already mentioned, the semantics in Section 5.2.2 will be given in terms of ωop-chains of
Boolean values. Parts of this semantics is an interpretation of logical implication, which will be
given in terms of exponential objects in [ωop,B]. As the construction of these exponential objects
is a bit delicate, we capture their existence in the following lemma.

Lemma 2.3.3. Let B = {tt, ff} be the two-valued Boolean algebra and ω the poset of natural numbers
considered as a category. The presheaf category [ωop,B] is an exponential ideal in [ωop, Set], that is, for
every object F ∈ [ωop, Set] and σ ∈ [ωop,B] there is an exponential object F ⇒ σ ∈ [ωop,B]. In particular,
[ωop,B] is Cartesian closed.

Proof. Note that [ωop,B] is a reflective subcategory of [ωop, Set], that is, there is an adjunction R ⊣ I
as in the following diagram

[ωop,B] [ωop, Set]

I

R

⊣

21

Chapter 2. Preliminaries

in which the functor I is fully faithful. The inclusion I is given by

I(σ)(n) =

{
1, σ(n) = tt
∅, σ(n) = ff

and the reflector R by
R(F)(n) = tt ⇐⇒ F (n) is inhabited.

Clearly, the induced monad L = I ◦ R on [ωop, Set] preserves finite products, from which be obtain
by [Joh02, Prop. A4.3.1] that [ωop,B] is an exponential ideal. □

The proof of Lemma 2.3.3 appeals to a rather abstract result. Let us for later reference give an
explicit definition of exponential objects in [ωop,B]. Usually, see [Awo10, Sec. 8.7], exponential
objects in [Cop, Set] are defined to be

(GF)(U) = [Cop, Set] (y(U) × F ,G),

that is, (GF)(U) is given as the set of natural transformations y(U) × F ⇒ G. The reason why
[ωop,B] has exponential objects is that we can define a map yB : ω → [ωop,B] by

yB(n)(m) B ω(m,n) is inhabited =m ≤ n.

That yB is indeed a functor follows by transitivity of ≤. Since the product in [ωop,B] is given by
point-wise conjunction, we also denote it by

(σ ∧ τ)(n) B σ(n) ∧ τ (n).

The exponential object for σ ,τ ∈ [ωop,B] is then given by

(σ ⇒ τ)(n) = [ωop,B] (yB(n) ∧ σ ,τ) is inhabited
= ∀m ∈ N. (yB(n)(m) ∧ σ(m)) =⇒ τ (m)

= ∀m ∈ N. (m ≤ n ∧ σ(m)) =⇒ τ (m).

A reader who has seen Kripke semantics for intuitionistic logic will certainly recognise that this
definition resembles the interpretation of implication in a Kripke frame.

Another ingredient of the semantics in Section 5.2.2 is the so-called later modality that has been
treated category theoretically by Birkedal et al. [Bir+11]. We define it and give some of its properties.

Lemma 2.3.4. Let C be a category with a final object 1, then the map ▷ : [ωop,C] → [ωop,C] given on
objects by

(▷σ)(n) =

{
1, n = 0

σ(k), n = k + 1

(▷σ)(n ≤ m) =

{
! : (▷σ)(m)→ 1, n = 0

σ(k ≤ k ′), n = k + 1,m = k ′ + 1

is a functor. Moreover, there is a natural transformation next : Id⇒ ▷.

22

2.3. Presheaves

Proof. First, we check that ▷σ ∈ [ωop,C], if σ ∈ [ωop,C]. Since (▷σ)(0) = 1 is final in C, there is a
unique morphism ! : (▷σ)(m)→ (▷σ)(0). For k ∈ N, we have on the other hand that if k + 1 ≤ m,
then m = k ′ + 1 with k ′ =m − 1 ∈ N. Thus it is sufficient to define

(▷σ)(k + 1 ≤ k ′ + 1): (▷σ)(k ′ + 1)→ (▷σ)(k + 1).

Since (▷σ)(k + 1) = σ(k) and (▷σ)(k ′ + 1) = σ(k ′), we can thus put (▷σ)(k + 1 ≤ k ′ + 1) =
σ(k ≤ k ′). Second, we define ▷ on morphisms. So let σ ,τ ∈ [ωop,C] and let f : σ → τ be a natural
transformation, we define a natural transformation ▷ f : ▷σ → ▷ τ as follows.

(▷ f)n : (▷σ)(n)→ (▷ τ)(n)

(▷ f)n =

{
! : 1→ 1, n = 0

fk : σ(k)→ τ (k), n = k + 1

Naturality of ▷ and the functor laws follow from finality of 1.
Finally, we need to establish the natural transformation next : Id⇒ ▷. We define it to be

nextσ : σ → ▷σ

nextσ ,n =

{
! : σ(0)→ 1, n = 0

σ(k ≤ k + 1): σ(k + 1)→ σ(k), n = k + 1

That next is natural in σ is again proven by finality of 1. □

The last integral result to the semantics is that the later modality gives rise to a fixed point
operator in the presheaf category [ωop,B], called Löb induction by Birkedal et al. [Bir+11].

Lemma 2.3.5. Let σ ∈ [ωop,B]. There is a morphism (▷σ ⇒ σ)→ σ in [ωop,B].

Proof. A very quick proof goes by using the fact that for any U ∈ [ωop, Set] there is a morphism
(▷U ⇒ U) → U in [ωop, Set], see [Bir+11], and then appealing by to the fact that [ωop,B] is a
reflective subcategory of [ωop, Set]. For convenience, we give a direct proof here though.

Let σ ∈ [ωop,B] and n ∈ N. We need to to show that if (▷σ ⇒ σ)(n) holds, then σ(n) holds. This
is shown by induction on n. Recall that

(▷σ ⇒ σ)(n) = ∀m ∈ N. (m ≤ n ∧ (▷σ)(m)) =⇒ σ(m).

For n = 0, we have that m ≤ n only if m = 0, and that (▷σ)(0) = tt. Thus, (▷σ ⇒ σ)(n) = σ(0),
as required. Suppose now that n = k + 1. The assumption reads then as

(▷σ ⇒ σ)(k + 1) = ∀m ∈ N. (m ≤ k + 1 ∧ (▷σ)(m)) =⇒ σ(m).

In particular, we have that ∀m ∈ N. (m ≤ k∧(▷σ)(m)) =⇒ σ(m), fromwhich be derive by induction
that σ(k) holds. Using the assumption again with m = k + 1, we obtain σ(k) =⇒ σ(k + 1). Thus,
we have σ(k + 1). By this induction, σ(n) holds for all n ∈ N if (▷σ ⇒ σ)(n) holds. Hence, there
is a morphism (▷σ ⇒ σ)→ σ . □

23

Chapter 2. Preliminaries

2.4. Fibrations
The next category theoretical notion we need are fibrations. Fibrations are an elegant way of
capturing the fact that in a (higher-order) predicate logic the variables range over some collection of
data. These variables are typically assigned some sorts, as the validity of a proposition often depends
on the data its variables range over. For instance, let P(x) B “x has a maximal element”. First of
all, we need to know what “element of” in this case means, so let us say, for example, that x ranges
over lists, and that “element of” means occurrence in a list. Next, what is the meaning of “maximal”
here? A possibility is that x ranges over non-empty, finite lists of natural numbers and we can use
the usual order on the natural numbers. Then for any such list u, the proposition P(u) has a sensible
interpretation and is in fact true. It would not be universally true if we had, for example, x assumed
to range over streams of natural numbers, as these have no maximal element. Finally, P(u) would
even be nonsensical if u would be a list over some non-ordered structure (leaving things like the
well-ordering theorem aside). This way of assigning types is exactly what we will use fibrations for
in Chapter 6. We will also discuss the intention of using fibrations further there. For now we will
just go through the technical background.

Definition 2.4.1. Let P : E → B be a functor, where the E is called the total category and B the
base category. We say for u : I → J in B that a morphism f : A → B in E is cartesian over u,
provided that i) P f = u, and ii) for all д : C → B in E and v : PC → I with Pд = u ◦ v there is
a unique h : C → A such that f ◦ h = д. For P to be a fibration, we require that for every B ∈ E
and u : I → PB in B, there is a cartesian morphism f : A→ B over u. Finally, a fibration is cloven,
if it comes with a unique choice for A and f , in which case we denote A by u∗ B and f by u B, as
displayed in the following diagram.

C

u∗ B B E

PC

I PB B

д

!h
u B

PPд

v
u

On cloven fibrations, we can define for each u : I → J in B a functor, the reindexing along u, as
follows. Let us denote by PI the category having objects A with P(X) = I and morphisms f : A→ B
with P(f) = idI . We call PI the fibre above I . The assignment of u∗ B to B for a cloven fibration
can then be extended to a functor u∗ : PJ → PI . Moreover, one can show that id∗I � IdPI and
(v ◦ u)∗ � u∗ ◦v∗. In this work, we are often interested in split fibrations, which are cloven fibrations
such that the above isomorphisms are equalities, that is, id∗I = IdPI and (v ◦ u)∗ = u∗ ◦v∗.

Example 2.4.2 (See [Jac99]). Important examples of fibrations arise from categories with pullbacks.
Let C be a category and C→ be the arrow category as in Section 2.2. We can then define a functor
cod : C→ → C by cod(f : X → Y) = Y . This functor turns out to be a fibration, the codomain
fibration, if C has pullbacks, where the fibre of cod above an object A ∈ C is isomorphic to the slice
category C/A. If we are given a choice of pullbacks, then cod is also cloven. ◀

The split variant of this construction is given by the category of set-indexed families over C.

24

2.5. Algebras, Coalgebras and Dialgebras

Example 2.4.3. Let Fam(C) be the category that has families {Xi }i ∈I of objects Xi in C indexed by
a set I . The morphisms {Xi }i ∈I → {Yj }j ∈J in Fam(C) are pairs (u, f) where u : I → J is a function
and f is an I -indexed family of morphisms in C with { fi : Xi → Yu(i)}i ∈I . It is then straightforward
to show that the functor p : Fam(C)→ Set, given by projecting on the index set, is a split fibration.

Since we will frequently use the fibration Fam(C) in illustrative examples, it is worthwhile to
introduce a special notation for its fibres. Let I be a set and define the the category of I -indexed
families by

SetI =

{
objects X = {Xi }i ∈I
morphisms f = { fi : Xi → Yi }i ∈I

.

It is fairly clear that each fibre of the family fibration over I ∈ Set is isomorphic to SetI . Note that
among the morphisms in SetI , we also have inclusions. We will use a special notation for these, by
adapting that for subset inclusion: X ⊑ Y ⇐⇒ ∀i ∈ I .Xi ⊆ Yi ◀

Other examples, that are important to us here, arise as so-called classifying fibrations of dependent
type theories. We will describe these in the guide to dependent type theory in Section 6.1.

A construction that appear often in category theory is that of products and coproducts. These
constructions can be abstractly described in fibrations, and even capture as such universal and
existential quantification, cf. [Awo10, Sec. 8.5] and [Jac99, Chap. 4].

Definition 2.4.4 ([Jac99, Def. 1.9.4]). Let P : E→ B be a fibration, u : I → J a morphism in B and
u∗ : PJ → PI a reindexing functor along u. We say that P has products (resp. coproducts) along u, if

(i) u∗ has a right adjoint
∏
u (resp. a left adjoint

⨿
u), and

(ii) the Beck-Chevalley condition holds: Given a pullback

K L

I J

v

r s

u

the canonical transformation

s∗
∏

u
⇒

∏
v
r ∗

(
resp.

⨿
v
r ∗ ⇒ s∗

⨿
u

)
is an isomorphism. ◀

Products and coproducts are discussed further in Section 6.1, whereas the Beck-Chevalley condition
will be treated in more detail in Section 6.5.

2.5. Algebras, Coalgebras and Dialgebras
We now come to some of the most central concepts in this thesis: algebras, coalgebras and their com-
mon generalisation to dialgebras. Let us start by briefly recalling the basic definitions of (co)algebras
and the unique mapping properties of initial algebras and final coalgebras. For more details, we
refer to [Geu92; Hag87; Jac16; JR11; Rut00].

25

Chapter 2. Preliminaries

Definition 2.5.1. Let C and D be categories and F ,G : C → D functors. An (F ,G)-dialgebra
is a morphism c : FA → GA in D, where A is an object in C. Given dialgebras c : FA → GA
and d : FB → GB, a morphism h : A→ B is said to be a (dialgebra) homomorphism from c to d , if
Gh ◦ c = d ◦ Fh. We can form a category DiAlg(F ,G) of (F ,G)-dialgebras and their homomorphisms.
A dialgebra is said to be initial (resp. final) if it is an initial (resp. final) object in DiAlg(F ,G).

A word about terminology: Given a dialgebra d : FB → GB, we call the unique homomorphism
from an initial (F ,G)-dialgebra into d the inductive extension of d . Dually, the unique homomorphism
into a final dialgebra is called the coinductive extension of d . ◀

Let us discuss an example of a dialgebra in the category of sets.
Example 2.5.2. Let F ,G : Set→ Set × Set be given by F = ⟨1, Id⟩ and G = ⟨Id, Id⟩, that is, F maps
a set X to the pair (1,X) in the product category. Similarly, G, the diagonal functor, maps X to
(X ,X). Now, let z : 1 → N and s : N → N be the constant zero map and the successor on natural
numbers, respectively. It is then easy to see that (z, s) : F (N)→ G(N) is an initial dialgebra. ◀

We will often need the case of dialgebras, in which F or G is the identity functor.
Definition 2.5.3. Let H : C → C be a functor. An algebra is a morphism a : HX → X in C and a
coalgebra is a morphism c : X → HX . The notion of homomorphism of algebras and coalgebras is the
same as for dialgebras with the choices G = Id and F = Id, respectively. We denote by Alg(H) and
CoAlg(H) the categories of algebras and coalgebras with their homomorphisms. These categories
may have initial (resp. final) objects, to which we refer as initial algebra (resp. final coalgebra). ◀

The following is an important result that shows the relation between initial algebras and least
fixed points, and final coalgebras and greatest fixed points in ordered structures like lattices.
Lemma 2.5.4 (Lambek). Let F : C → C be a functor. Every initial algebra α : FA → A and final
coalgebra ξ : B → FB is an isomorphism. In other words, the objects A and B are fixed points, in the sense
that FA � A and FB � B.

Now that we know that initial algebras and final coalgebras generalise fixed points, one may ask
how these can be constructed. The way that is most important to us here are the so-called initial
and final chain constructions.
Definition 2.5.5. Let F : C → C be a functor. If C has an initial object 0, then the initial chain is
the functor −→F : ω → C from the ordinal ω considered as a poset to C defined as in the following
diagram. Here, ! denotes the unique morphism out of 0.

−→
F : 0 F (0) F 2(0) F 3(0) · · ·! F (!) F 2(!) F 3(!)

More precisely, this means that −→F is defined on objects by
−→
F (0) = 0 −→

F (k + 1) = F
(−→
F (k)

)
and on morphisms by −→F (0 ≤ n) = ! : 0→ Fn(0) and −→F (k +1 ≤ n) = F

(−→
F (k ≤ n)

)
. Dually, if C has

a final object 1, then there is a functor ←−F : ωop → C, the final chain, as in the following diagram.
←−
F : 1 F (0) F 2(0) F 3(0) · · ·! F (!) F 2(!) F 3(!)

We say that the initial and final chain stabilise, if F
(
colim−→F

)
� colim−→F and F

(
lim←−F

)
� lim←−F . ◀

26

2.5. Algebras, Coalgebras and Dialgebras

From this construction, one obtains initial algebras and final coalgebras.

Lemma 2.5.6. If for a functor F : C → C the initial chain stabilises, then colim−→F is the carrier of an
initial algebra. Dually, lim←−F is the carrier of a final coalgebra, if the final chain stabilises.

These are standard constructions, issues of which are discussed for example by Worrell [Wor05].
Interestingly, this construction amounts to the usual fixed point construction in ordered structures,
which originates in the work of Kleene [CC79], a fact we will use in Section 5.2.2.

2.5.1. Coinductive Predicates and Up-To Techniques in Lattices
In this section, we give a brief overview over the theory of coinductive predicates and an enhancement
of the resulting proof methods in form of so-called up-to techniques. Since we only need the theory
for complete lattices, usually given by the power set of another set, we restrict attention to this
simpler case. It should be noted, however, that many of the developments can be generalised to
category theoretical settings, see [Bon+14; HJ97; Sta11], but some notions, like that of the companion,
are still being developed at that level of generality.

It is assumed that the reader is familiar with the notion of complete lattice. For the sake of
brevity, we usually refer to a complete lattice just by the underlying set and leave the order and
lattice structure implicit. Given a complete lattice L, the set Mon(L,L) of monotone maps is again
complete lattice with the order and lattice structure given point-wise. Usually, we denote the order
on Mon(L,L) by ⊑ and its join operator by

⊔
.

Let us begin by introducing what we actually mean by a “coinductive predicate”. This is easiest
done by taking for a moment a more abstract perspective. Recall that we introduced fibrations as a
way to talk abstractly about predicates, relations etc. Now we use this view to define coinductive
predicates over a given coalgebra for an arbitrary notion of predicate.

Definition 2.5.7 ([Has+13]). Let P : E→ B be a cloven fibration and F : B→ B an endofunctor. We
say that a functor G : E→ E is a lifting of F , if the following diagram commutes

E E

B B
P

G

P

F

and if G preserves Cartesian morphisms. Such a lifting G induces for each X ∈ B a functor

GX : PX → PFX .

Given a coalgebra c : X → FX in B, a G-invariant in c is a (GX ◦ c∗)-coalgebra in PX . Moreover, a
G-coinductive predicate in c is a final (GX ◦ c∗)-coalgebra in PX . We often denote the carrier of the
G-coinductive predicate in c by ν(GX ◦ c∗). ◀

All the examples of fibrations that we will encounter in this thesis will have the property that
each fibre is a complete lattice.

Definition 2.5.8. We say that a fibration P : E→ B is a fibre-wise complete lattice, if for each X ∈ B,
the fibre PX over X is a complete lattice. That is to say, there is a complete lattice L, such that PX
is the associated category. ◀

27

Chapter 2. Preliminaries

The importance of this definition comes from the fact that we can find by the Knaster-Tarski
theorem for any lifting to a fibre-wise complete lattice the corresponding coinductive predicate.

Proposition 2.5.9. Let P : E → B be a fibration that is a fibre-wise complete lattice. For any functor
F : B→ B, any lifting G of F and any coalgebra c : X → FX , the G-coinductive predicate in c exists.

We now restrict attention to a single complete lattice L and a monotone map Φ: L → L, which
should be thought of as being of the form GX ◦ c∗. The idea of Φ is that it allows us to describe
invariants. In particular, we obtain the following standard proof method for coinductive predicates:
If p ≤ Φ(p), that is, p is a Φ-invariant, then p ≤ νΦ. This is a useful proof method that has found
many applications. For instance, bisimilarity of transition systems can be described as coinductive
predicate, and the above proof method is then the standard bisimulation proof method [San11].

Often, we find ourselves that an invariant has to be chosen quite large, mostly with elements that
could be “automatically” added. To overcome this, up-to techniques were introduced in [Mil89] and
further developed in [Bon+14; Pou07; PS11; Rot15; San98]. A particular class of up-to techniques,
the so-called compatible ones, has emerged in this development. The significance of this class comes
from the fact that it is closed under composition and other lattice operations.

Definition 2.5.10. A Φ-compatible up-to technique is a monotone map T : Ln → Lm with T ◦Φ×n ⊑
Φ×m ◦T , where Φ×n : Ln → Ln is given by point-wise application of Φ to the elements in the product
lattice Ln . We say that p ∈ L is a Φ-invariant up to T , if p×m ⊑ Φ(T (p×n)).

The following result makes precise the importance of compatible up-to techniques that we men-
tioned above: They are sound enhancement of the coinductive proof method and they can be
composed. This result can be found, for example, in [Bon+14; Pou07; Rot+17].

Lemma 2.5.11.

1. If T : L→ L is Φ-compatible and p ∈ L is an invariant up to T , then p ≤ νΦ (Soundness).

2. If T1 : Ln → Lm and T2 : Lm → Lk are Φ-compatible, then so is their composition T2 ◦T1.

3. If T1 : Ln → Lm and T2 : Ln → Lm are Φ-compatible, then so is T1 ⊔T2.

4. Both the identity id : L→ L and Φ itself are Φ-compatible.

Proof. For the first item, one defines a monotone map Tω : L→ L of all finite iterations of T , which
is given by Tω =

⊔
n∈NT

n . It can then be shown that if p is an invariant up to T , then Tω(R) is
a Φ-invariant. For details see [Bon+14; Rot15]. The second and third item are given by an easy
calculation using compatibility and monotonicity:

(T2 ◦T1) ◦ Φ ⊑ T2 ◦ Φ ◦T1 ⊑ Φ ◦ (T2 ◦T1).

and for p ∈ Ln

((T1 ⊔T2) ◦ Φ)(p) = T1(Φ(p)) ∨T2(Φ(p)) ≤ Φ(T1(p)) ∨ Φ(T2(p))
≤ Φ(T1(p) ∨T2(p)) = (Φ ◦ (T1 ⊔T2))(p).

Finally, the compatibility of id is given by id ◦ Φ = Φ = Φ ◦ id, and the compatibility of Φ is
immediate by the definition of compatibility. □

28

2.6. 2-Categories

The advantage of compatible up-to techniques over other techniques that are merely sound, the
first property in Lemma 2.5.11, is that they can be composed. This allows us to break up proofs of
soundness into simpler techniques and then combine these techniques in the proof of an invariant.
A problem is though that we need to carefully set up the combination of up-to techniques before
starting the proof. We can resolve this issue by using a universal, compatible up-to technique, the
so-called companion [Pou16; PR17].

Definition 2.5.12. The companion of Φ is defined by

γΦ B
⊔

T ∈Mon(L,L)
T ◦Φ⊑Φ◦T

T .

The point of the companion is that it is the largest compatible up-to technique for Φ. Thus, we
can use in a proof of invariance the companion instead of having to establish explicitly all the up-to
techniques that we use in that proof. This is captured by the following lemma.

Lemma 2.5.13. The companion of Φ is the largest compatible up-to technique and idempotent:

• γΦ is Φ-compatible

• If T is Φ-compatible, then T ⊑ γΦ.

• γΦ ◦ γΦ ⊑ γΦ

Proof. That γΦ is the largest compatible functions, the first and second property, is given immediately
by definition, since the join ranges over all compatible maps. The third property follows from the
fact that compatible functions are closed under composition and the other two properties. □

2.6. 2-Categories
A useful tool for describing the difference between the computational behaviour and observable
behaviour of programs are 2-categories. The goal of this section is to carefully set up the terminology
of 2-category theory, which can be a bit confusing at times. We begin with the basic definition of
a (strict) 2-category, which can be found for example in [Bor08] or [Lei04].

Definition 2.6.1. A (strict) 2-category C is a category enriched over the category Cat of all categories.
This means that for all objects A and B of C there is a category of morphism C(A,B), and for all
objects A,B,C there are composition and unit functors

cABC : C(A,B) × C(B,C)→ C(A,C) and uA : 1→ C(A,A),

subject to the associativity and unit axioms in the following two diagrams.

C(A,B) × C(B,C) × C(C,D) C(A,B) × C(B,D)

C(A,C) × C(C,D) C(A,D)

Id×cBCD

cABC×Id cABD

cACD

29

Chapter 2. Preliminaries

1 × C(A,B) C(A,B) C(A,B) × 1

C(A,A) × C(A,B) C(A,B) C(A,B) × C(B,B)

uA×Id

� �

Id×uA
cAAB cABB

◀

The reason why the 2-categories we defined in Definition 2.6.1 carry the prefix “strict” is that
there exist various definitions of a category with 2-morphisms. Rather one is faced with a choice
in which form the composition of 1-morphisms is unital and associative. For a strict 2-category we
required that these take the form of equalities. However, one can also require instead that there
for all f ,д,h there merely are invertible 2-morphisms α : h ◦ (д ◦ f)⇒ (h ◦ д) ◦ f , γ1 : id ◦ f ⇒ f
and γ2 : f ◦ id ⇒ f , which satisfy some coherence conditions. Such a structure is then called a
bicategory or weak 2-category. For example, given a category C with pullbacks, there is a bicategory
Span(C) that has as objects the objects of C, spans A ←− B −→ C as morphisms and morphisms of
spans as 2-morphisms. Associativity cannot hold strictly in Span(C) because pullbacks are only
unique up-to isomorphism.

A strict 2-category C can equivalently be described algebraically as follows [Bor08]. First of all,
C consists of the following data:

• a collection of objects (0-cells), denoted by A,B, . . . ;

• 1-morphisms (1-cells) between objects, denoted by f : A→ B; and

• 2-morphisms (2-cells) between 1-morphisms, denoted by α : f ⇒ д.

Just like we can compose morphisms in ordinary categories, 1- and 2-morphisms can be composed
in 2-categories. Clearly, we have different ways of composing these though. So let us go through
the different kinds of compositions and their interactions.

Given 1-morphisms f : A→ B and д : B → C there is a morphism д◦ f : A→ C given by cABC (f ,д),
just as for ordinary categories. For 2-morphisms though there are two ways of composing them, as
indicated in the following diagrams.

A B

f

д

h

α

β
A B C

f1

д1

f2

д2

γ δ

In the left diagram we are able to compose α and β along the indicated 1-morphisms to β ◦1 α : f ⇒ h,
where the subscript 1 indicates that we compose along 1-morphisms. This is the so-called vertical
composition of α and β , and is given by composition in C(A,B). In the diagram on right we compose
along objects. This horizontal composition of γ and δ results from the action of cABC morphisms. It
is usually denoted by δ ◦0 γ : f2 ◦ f1 ⇒ д2 ◦ д1, where the 0 subscript indicates that we compose
along objects (0-cells). We often write γδ instead of δ ◦0 γ , which relates the horizontal composition
better to the geometry of diagrams.

Finally, all the above compositions are associative, the compositions ◦ and ◦1 are unital, and the
two compositions of 2-morphisms interact through the exchange law as follows.

30

2.6. 2-Categories

• For every object A there is an identity morphisms idA = uA(∗) that is neutral with respect to
composition, that is, idB ◦ д = д = д ◦ idA for all morphisms д : A→ B;

• For all 1-morphisms f , there are 2-morphisms idf that are neutral for ◦1;

• All the compositions of 1- and 2-morphisms are associative;

• The exchange law for the composition of 2-morphisms holds, that is, we have

(β2 ◦1 α2) ◦0 (β1 ◦1 α1) = (β2 ◦0 β1) ◦1 (α2 ◦0 α1),

for 2-morphisms as in the following diagram.

A B C

α1

β1

α2

β2

Since no other forms of 2-categories, like weak 2-categories or bicategories, do not appear in this
thesis, we follow Lack [Lac10] and refer to strict 2-categories just as 2-categories,

Example 2.6.2. We just list a few examples of 2-categories. Further examples, a discussion of
2-categories and more references can be found in [Lac10].

• We can extend the (large) category Cat of categories and functors with natural transformations
as 2-cells, which we denote by abuse of notation also as Cat. This is the prototypical example
of a 2-category.

• There is a sub-2-category of Cat, which has the same objects and morphisms, but the 2-
morphisms are only the natural isomorphisms.

• A similar example is the 2-category Adj that has again categories as objects, but now ad-
junctions as 1-morphisms and morphism between adjunctions, called conjugate pairs, as
2-morphisms.

• There are of course also examples of 2-categories that do not not just have categories as
objects. One of these is an extension of the category of topological spaces.
Let I be the unit interval of the real numbers. A homotopy between two continuous maps
f ,д : X → Y is a continuous map h : I × X → Y , such that h(0,−) = f and h(1,−) = д.
Such homotopies can be composed vertically and horizontally, and there is a homotopy that
takes the role of the identity. The only caveat is that associativity and the unit law for
composition only hold up-to a homotopy I × (I × X) → Y . So we end up with a 2-category
that has topological spaces as objects, continuous maps between spaces as 1-morphisms, and
homotopy-equivalence classes of homotopies between continuous maps as 2-morphisms. For
a few more details see [Bor08, Ex. 7.1.4].

31

Chapter 2. Preliminaries

• Another example is the category PreOrd that has pre-ordered sets (X , ≤X) as objects and
monotone functions as morphisms. A 2-cell f ⇒ д between two maps f ,д : X → Y exists in
PreOrd if f is point-wise smaller than д. Since morphisms are functions, their composition
and identity morphisms are immediate. For 2-cells, note that the vertical composition is
transitivity of the point-wise order, and the existence of identities for vertical composition
encodes that the point-wise order is reflexive. To define the horizontal composition, suppose
we have

X Y Z

f

f ′

≤

д

д′

≤

Then we can easily calculate from monotonicity of д that for all x ∈ X we have

д(f (x)) ≤Z д(f ′(x)) ≤Z д′(f ′(x)),

thus we can compose the inequalities horizontally to obtain д ◦ f ≤ д′ ◦ f ′.

In Section 4.2.2 we will see more concrete examples of 2-categories. There, 2-morphisms will allow
us to speak about a program equivalence in categorical terms while still retaining information about
computations. ◀

Since the collection of morphisms in a 2-category forms a category, we can talk about isomorphic
1-morphisms.

Definition 2.6.3. Let f ,д : A → B be 1-morphisms in a 2-category C. We say that f and д are
isomorphic, written f � д, if they are isomorphic as objects in Hom (A,B), that is, if there are
2-morphisms α : f ⇒ д and β : д⇒ f with α ◦1 β = id and β ◦1 α = id. ◀

Definition 2.6.1 might suggest that 2-categories could be studied just as an instance of enriched
category theory. The problem with this view is that it locks us into notions of functors and (co)limits
in 2-categories that are usually too strict. For instance, the notion of functor that arises from
enriched category theory requires that the composition of 1-morphisms is strictly preserved, that is,
F (д ◦ f) = F (д) ◦ F (f). As it will turn out, we instead need the weaker notion of pseudo-functors,
where we only have F (д ◦ f) � F (д) ◦ F (f).

Definition 2.6.4. LetC andD be 2-categories. A pseudo-functor F : C→ Dmaps the 0-, 1- and 2-cells
in C to those in D, such that 1-identities and the 1-composition are preserved up-to isomorphism,
and 2-identities and 2-compositions are strictly preserved. More precisely, let uC and uD be the
unit functors of C and D, respectively, and cC and cD the corresponding composition functors. The
pseudo-functor F consists of

• an object F (A) in D for each object A in C,

• a functor FA,B : C(A,B)→ C(FA, FB) for all objects A and B,

• a natural isomorphism FidA : u
D
FA ⇒ FA,A ◦ uCA for all A,

• a natural isomorphism FABC : c
D
FA,FB,FC ◦ (FA,B × FB,C)⇒ FA,C ◦ cCABC for all A, B and C .

32

2.6. 2-Categories

To improve readability, we write FidA instead of (FidA)∗ for ∗ ∈ 1 and F (д, f) instead of (FABC)(f ,д).
Finally, the following three coherence diagrams must commute for all suitable f , д and h.

F (f) ◦ idF (A) F (f)

F (f) ◦ F (idA) F (f ◦ idA)

idF (f)FidA
F (f , idA)

idF (B) ◦ F (f) F (f)

F (idB) ◦ F (f) F (idB ◦ f)

FidB idF (f)
F (idB,f)

F (h) ◦ F (д) ◦ F (f) F (h ◦ д) ◦ F (f)

F (h) ◦ F (д ◦ f) F (h ◦ д ◦ f)

idF (h)F (д,f)

F (h,д)idF (f)

F (h◦д,f)
F (h,д◦f)

We say that F is a strict 2-functor , if all the isomorphisms FidA and F (д, f) are identities.9 ◀

Just as for any ordinary category D there is a hom-functor D : Dop ×D→ Set, we note that there
is the corresponding analogue for 2-categories, see [Bor08, Ex. 7.2.4].

Example 2.6.5. For every 2-category C there is a strict 2-functor Cop ×C→ Cat, where C(A,B) is
the hom-category as in Definition 2.6.1, and for f : A′→ A and д : B → B′ the functor part is

C(f ,д) : C(A,B)→ C(A′,B′)
C(f ,д) = cA′BB′(−,д) ◦ cA′AB(f ,−),

that is, given by pre-composing with f and post-composing with д as for the ordinary hom-functor.

Proof. Since the composition c is a functor, C(f ,д) is a functor. So it remains to prove the preservation
of units and composition. It follows easily from the unit laws in Definition 2.6.1 that C(id, id) = id.
From the associativity law it also follows that cA′BB′(−,д) ◦ cA′AB(f ,−) = cA′AB′(f ,−) ◦ cABB′(−,д),
which in turn gives us for all f ′,д′ that C(f ′ ◦ f ,д ◦ д′) = C(f ,д) ◦ C(f ′,д′). □

2.6.1. Adjunctions, Products, Coproducts and Exponents in 2-Categories
Having introduced 2-categories and a notion of morphism between them (pseudo-functors), it is only
natural to study tighter connections between 2-categories, namely that of pseudo-adjunctions. These
pseudo-adjunctions will also allow us to introduce suitable generalisations of limits and colimits to
2-categories.

Unfortunately, the machinery to describe suitably weak adjunctions between 2-categories and
limits and colimits gets very technical because of the necessary coherence conditions that have to
be satisfied. On the positive side though, we have that many of the technicalities are still simpler in
comparison to what we would find in, for example, bicategories. We will always give some intuition
about how the weakened notions compare to those for ordinary categories. This should give at least
an idea to the reader what we are up to, so that the technicalities can be skipped for the most part.

Definition 2.6.6. Let F ,G : C→ D be pseudo-functors. A pseudo-natural transformation α : F ⇒ G
is given by the following data:

33

Chapter 2. Preliminaries

• a morphism αA : FA→ GA for every object A ∈ C, and

• for all objects A,B ∈ C a natural isomorphism

αA,B : C(αA, idGB) ◦GA,B ⇒ C(idFA,αB) ◦ FA,B ,

where C is the 2-functor obtained in Example 2.6.5.

Moreover, the following two coherence diagrams must commute.

αA idGA ◦ αA G(idA) ◦ αA

αA ◦ idFA αA ◦ F (idA)

GidA idαA

αidA
idαA FidA

Gд ◦Gf ◦ αA Gд ◦ αA ◦ F f αA ◦ Fд ◦ F f

G(д ◦ f) ◦ αA αA ◦ F (д ◦ f)

idGдαf

G(д,f)idαA

αд idGf

idαA F (д,f)
αд◦f

As before, we obtain a strict version by requiring that αA,B is the identity. ◀

Definition 2.6.7. A pseudo-adjunction between 2-categories C and D is a pair of pseudo-functors
F : C→ D and G : D→ C, such that for each A ∈ C and B ∈ D there is a equivalence of categories

D(FA,B) ≃ C(A,GB)

that is pseudo-natural in both A and B. We say that F is left pseudo-adjoint to G, and denote this
by F ⊣ G. ◀

Definition 2.6.8. We say that a 2-category C has binary pseudo-coproducts and pseudo-products, if
there is a left pseudo-adjoint + ⊣ ∆, respectively a right pseudo-adjoint ∆ ⊣ ×, to the diagonal
2-functor ∆: C → C × C. Moreover, a 2-category with pseudo-products C is said to have pseudo-
exponents if for each object A ∈ C, the one-sided product pseudo-functor (−) × A : C → C has a
right pseudo-adjoint (−) ×A ⊢ (−)A. Finally, an object ⊤ in C is said to be pseudo-final, if for every
object A in C we have C(A,⊤) ≃ 1, that is, the hom-category C(A,⊤) is equivalent to the final
category. ◀

Definition 2.6.8 is very compact and generalises directly adjunctions for ordinary categories, but
is also very dense at that. So let us unfold what the definition for pseudo-products actually says.
Let A and B be objects in C. Then there is an object A × B with projections π1 : A × B → A and
π2 : A × B → B, such that

• for all f : C → A and д : C → B there is an h : C → A × B with isomorphism π1 ◦ h � f and
π2 ◦ h � д, and

• for all h,k : C → A × B and 2-morphisms α : π1 ◦ h ⇒ π1 ◦ k and β : π2 ◦ h ⇒ π2 ◦ k , there is
a unique γ : h ⇒ k such that π1γ = α and π2γ = β .

34

2.6. 2-Categories

For pseudo-coproducts we have of course the dual situation. So let us instead spell out the
definition of pseudo-exponents. Let A be an object in C. We denote the functors that mediate the
hom-categories for the exponential objects by

αB,C : C(B ×A,C) ≃ C(B,CA) : βB,C .

The pseudo-naturality of α reads then for u : B′→ B, v : C → C ′ and k : B ×A→ C as

αB′,C ′(v ◦ k ◦ u ×A) = αB′,C ′(C(u ×A,v)(k))
� C(u,vA)(αB,C (k))
= vA ◦ α(k) ◦ u

(2.1)

We now have for each object B an evaluation morphism evB : BA × A→ B that is given by evB =
βBA,B(idBA). Moreover, for every f : B × A → C we find a morphism λ f : A → CB by putting
λ f = αB,C (f). This morphism has then the expected property, only weakening the usual one for
exponents:

evC ◦ (λ f ×A) � f .

To see this, we can just give the usual argument, only replacing identities with isomorphisms. First,
we have for д B αB,C (evC ◦ (λ f ×A))

д = αB,C (evC ◦ (λ f ×A))
= αB,C (β(id) ◦ (α(f) ×A)) by definition
� αB,C (β(id)) ◦ α(f) (2.1) with v = id,u = α(f),k = β(id)
� α(f) α , β form an equivalence.

This gives us now
evC ◦ (λ f ×A) � β(α(evC ◦ (λ f ×A))) � β(д) � f ,

as required. Using similar reasoning, we can now also show that the abstraction is unique up to
unique isomorphism, just as we have seen that the pairing for pseudo-products is unique up to
unique isomorphism.

2.6.2. Algebras and Coalgebras for Pseudo-Functors
Definition 2.6.9. Given a 2-category C and a pseudo-functor F : C → C, we call a morphism
c : X → FX an F -coalgebra. A pseudo-homomorphism of F -coalgebras c : X → FX and d : Y → FY
is a morphism h : X → Y , such that there is an 2-isomorphism φh : d ◦ h ⇒ Fh ◦ c . F -algebras and
their homomorphisms are given by duality, with the 2-isomorphism being denoted by θ . ◀

Lemma 2.6.10. Let C be a 2-category and F : C→ C be a pseudo-functor. There are 2-categories Alg(F)
and CoAlg(F) of algebras and, respectively, coalgebras and their pseudo-homomorphisms.

Proof. We carry out the proof for CoAlg(F), that for Alg(F) follows by duality. The 2-category
CoAlg(F) is given by

CoAlg(F) =

objects: pairs (X , c : X → FX) of objects and coalgebras in C
morphisms: pseudo-homomorphisms (X , c)→ (Y ,d)

2-cells: all 2-morphisms of C between pseudo-homomorphisms

35

Chapter 2. Preliminaries

Composition and identities are given as in C, so we only need to prove that pseudo-homomorphism
(the 1-morphisms of CoAlg(F)) are closed under composition and have identities. So let д : (X , c)→
(Y ,d) and h : (Y ,d)→ (Z , e) be pseudo-homomorphisms. Then we have the following situation.

X Y Z

FX FY FZ

c

д

d

h

φд
e

φh

Fд

F (h◦д)

Fh
F (h,д)

We can paste the given 2-isomorphisms together to obtain

F (h,д) ◦1 (φh ◦0 φд) : e ◦ (h ◦ д)⇒ F (h ◦ д) ◦ c,

which is again a 2-isomorphism and can thus be chosen for φh◦д . Hence, h ◦ д is again a pseudo-
homomorphism. As for the identity, we have

X X

FX FX

c

idX

cidFX

F (idX)

FidX

so that we can choose φidX = FidX , which makes the identity a pseudo-homomorphism c → c . □

Definition 2.6.11. Given a pseudo-functor F , a pseudo-final coalgebra is a pseudo-final object in
CoAlgF . Dually, a pseudo-initial algebra is a pseudo-initial object in Alg(F).

Note that similar to the more explicit description of pseudo-products we gave above, a pseudo-final
coalgebra is given by a coalgebra ω : Ω→ FΩ, such that for every coalgebra d : X → FX there is a
pseudo-homomorphism f : X → Ω that is unique up to unique isomorphism. That is to say, for every
pseudo-homomorphism д : X → Ω, there is a unique isomorphism h � д.

Notes
9 Sometimes pseudo-functors are also called weak 2-functors [Lei04]. Since this terminology is not so
commonly used, we opt for “pseudo-functor”. Note also that the definition of pseudo-functor can be
relaxed further by dropping the requirement that FidA and F (д, f) are isomorphisms, thus obtaining
the notion of lax functor, see [Lei04]. We will not need to make use of these in this thesis though.

36

CHAPTER 3

Inductive-Coinductive Programming

We can forgive a man for making a useful thing as long as he does not admire it. The only excuse for making
a useless thing is that one admires it intensely.

— Oscar Wilde, “The Picture of Dorian Gray”, 1891.

Though this thesis is about mixed inductive-coinductive reasoning, we first need something to
reason about. Given that the focus of this thesis lies on proofs that can be checked by computers,
a good starting point is the reasoning about programs. So the goal of this chapter is to establish
programming calculi that allow us manipulate inductive-coinductive data.

In Section 3.1, we introduce a typed λ-calculus λµν that has at its heart iteration and coiteration
schemes for defining functions out of inductive types and into coinductive types, respectively. This
calculus comes with a notion of computation that is defined through a reduction relation, which
allows us to execute programs on data. The reduction relation enjoys very good properties like
confluence, progression and strong normalisation. However, the calculus itself is difficult to use,
especially once we start mixing inductive and coinductive types.

This leads us to consider in Section 3.2 another calculus λµν= in which the iteration and coiteration
schemes are replaced by recursive equations. For example, we can define in λµν= the addition of
natural numbers simply by case distinction and recursion: 0+m =m and (sucn)+m = suc(n+m),
whereas in λµν we have to use higher-order iteration. This makes it much easier to specify programs
in the calculus, but we lose the property that all computations are terminating, that is, there are
programs on which the reduction relation associated with the calculus is not strongly normalising
anymore. We come back to this problem in Chapter 4.

In the last Section 3.3, we relate the two calculi by translating the terms of λµν to terms in λµν=.
This shows that the iteration and coiteration schemes can be emulated as recursive equations in
λµν=. Moreover, this also allows us to infer properties, like confluence, of λµν from those of λµν=.

Original Publication The calculus presented in Section 3.1 has not appeared in any of the author’s
publications but similar calculi can be found throughout the literature. We will discuss this in
Section 3.4 at the end of the chapter. The content of Section 3.2 is largely based on Basold and
Hansen [BH16], which considers a variation of the copattern calculus given by Abel et al. [Abe+13].

3.1. Programming with Iteration and Coiteration
In this section we give a first introduction to mixed inductive-coinductive programming by devising
a simply typed calculus that features both inductive and coinductive data types. The calculus is set
up so as to avoid issues related to program termination, something we will deal with in Section 3.2
and Section 4.1. For easier reference, we will refer to the calculus presented in this section as λµν
and that presented in Section 3.2 as λµν=.

37

Chapter 3. Inductive-Coinductive Programming

X ∈ Θ
Θ ⊩ X : Ty Θ ⊩ 1 : Ty

Θ ⊩ A : Ty Θ ⊩ B : Ty
Θ ⊩ A+ B : Ty

Θ ⊩ A : Ty Θ ⊩ B : Ty
Θ ⊩ A × B : Ty

⊩ A : Ty Θ ⊩ B : Ty
Θ ⊩ A→ B : Ty

Θ,X ⊩ A : Ty
Θ ⊩ µX .A : Ty

Θ,X ⊩ A : Ty
Θ ⊩ νX .A : Ty

Figure 3.1.: Type construction rules

3.1.1. Types and Terms of the Calculus λµν
We first introduce the types with respect to which the calculus will be typed.

Definition 3.1.1. Let TyVar be a countably infinite set of type variables, elements of which we
denote by X ,Y ,Z possibly with subscript indices. We say that A is a raw type if it is generated by
the following grammar.

A,B F X | 1 | A+ B | A × B | A→ B | µX .A | νX . B

To avoid ambiguities, we adopt the following common conventions for binding of type operators.
First of all, one may always use parentheses to disambiguate. Further, × binds stronger than →,
which binds stronger than +; × and + are left-associative; → is right-associative; and the binding
of fixed point types extends from the dot all the way to the right.

If a raw type A is strictly positive, that is, if type variables never occur left of an arrow, then A
is a type. More precisely, A is a type if for some sequence Θ of type variables, Θ ⊩ A : Ty can be
derived inductively from the rules in Figure 3.1. In case Θ is empty, we say that A is closed type.
The set of all closed types is denoted by Ty. Sometimes we have to be a bit more precise about the
variables that are actually used in a type. To this end, we define for a (raw) type A the set fv(A)
of free variables, by fv(X) = {X }, fv(1) = ∅ and in the other cases in the obvious way. Finally, we
call a map υ : Θ→ Ty a type substitution and denote the set of all such substitutions by TySubst(Θ).
The empty type substitution is denoted by (). ◀

Let us give a few examples of Definition 3.1.1.

Example 3.1.2. The first example is a type that is supposed to resemble the empty set:

0 B µX .X .

We will see that the idea of this type is that any potential inhabitant would have to represent
a non-terminating computation. Since we will exclude such computations, the type will have no
inhabitants, as required.

Dually to the empty type, we can define a type that corresponds to a singleton set by

1′ B νX .X .

In Example 3.1.6 we show that this type has an inhabitant, but it is only in Chapter 4 that we are
able to prove that this inhabitant is canonical, thus that 1′ is isomorphic to 1.

38

3.1. Programming with Iteration and Coiteration

A non-trivial example is the type of natural numbers, which is given by

Nat B µX . 1+ X .

As usual, the idea is that this type has two constructors, one for the number 0 and one for the
successor of a given number. We will see this in Example 3.1.7. Streams, on the other hand, are
characterised by the two destructors of taking the head (first element) of a stream and the tail (the
remaining stream after the head). So for a given type A, the type of streams over A is given by the
following coinductive type.

Aω B νX .A × X
We expose the head and tail destructors in Example 3.1.8. ◀

These are well-known, classical examples of inductive and coinductive types. Let us now come to
types that properly mix inductive and coinductive types.

Example 3.1.3. One example are streams over given typesA and B in which infinitely many elements
of type A occur, called left-fair streams. These streams can be defined as type by

LFairA B B νX . µY .A × X + B × Y .

Note that this type should be read as νX . (µY . ((A × X) + (B × Y))) according to the conventions
in Definition 3.1.1. Another example that illustrates nested fixed points are A-labelled, finitely-
branching, potentially infinite, nonempty trees, which are given by

TrA B νX .A × (µY . 1+ X × Y).

We will come back to these types in Section 3.2. ◀

Finally, non-examples of types are µX .X → X and µX . (X → 1) → 1. Both types are forbidden
because the type variable X occurs left of an arrow. The latter type is commonly referred to as a
(non-strictly) positive type because X occurs left of an even number of arrows. Positive types can
be acceptable from a computational perspective [Abe04; Gre92; Mat99; Men91; UV96]. However,
allowing non-strictly positive types would make a lot of the development in this thesis much harder,
especially that in Section 4.1. Thus, we rule out non-strictly positive types here. Note that the
first type would allow us to embed the untyped λ-calculus into the calculus we introduce below,
see [BDS13, Sec. 9.3], and thus would lead to the existence of non-normalising terms.

We now introduce the terms of the calculus λµν .

Definition 3.1.4. Let TeVar be a countably infinite set of term variables, the elements of which we
denote by x ,y, z,x1,x2, . . . The raw terms of λµν are generated by the following grammar.

s, t ,u F ⟨ ⟩ | κ1 t | κ2 t | α t | π1 t | π2 t | ξ t | t s | ⟨t , s⟩
| x | λx . t | {κ1 x 7→ s ; κ2 y 7→ t} u x ,y ∈ TeVar
| iterµX .A (x . t) s | coiterνX .A (x . t) s X ⊩ A : Ty

We adopt the usual convention that application is left-associative to again allow for disambiguation
of raw terms. This applies also to κ1,π1 etc.

39

Chapter 3. Inductive-Coinductive Programming

(x : A) ∈ Γ
(Proj)

Γ ⊢ x : A
(1-I)

Γ ⊢ ⟨ ⟩ : 1

i ∈ {1, 2} Γ ⊢ t : A1 ×A2 (×-E)
Γ ⊢ πi t : Ai

Γ ⊢ t1 : A Γ ⊢ t2 : B (×-I)
Γ ⊢ ⟨t1, t2⟩ : A × B

Γ ⊢ t1 : A→ B Γ ⊢ t2 : A (→-E)
Γ ⊢ t1 t2 : B

Γ,x : A ⊢ t : B (→-I)
Γ ⊢ λx .t : A→ B

i ∈ {1, 2} Γ ⊢ t : Ai (+-I)
Γ ⊢ κi t : A1 +A2

Γ,x : A ⊢ s : C Γ,y : B ⊢ t : C Γ ⊢ u : A+ B
(+-E)

Γ ⊢ {κ1 x 7→ s ; κ2 y 7→ t} u : C

Γ ⊢ t : A[µX .A/X]
(µ-I)

Γ ⊢ α t : µX .A

Γ,x : A[B/X] ⊢ t : B Γ ⊢ s : µX .A
(µ-E)

Γ ⊢ iterµX .A (x . t) s : B

Γ ⊢ t : νX .A (ν-E)
Γ ⊢ ξ t : A[νX .A/X]

Γ,x : B ⊢ t : [B/X] Γ ⊢ s : B
(ν-I)

Γ ⊢ coiterνX .A (x . t) s : νX .A

Figure 3.2.: Well-Typed Terms of λµν

A context Γ is a possibly empty sequence x1 : A1, . . . ,xn : An of variables xi ∈ TeVar annotated
with types Ai ∈ Ty. We write (x : A) ∈ Γ, if there is an i with x = xi and A = Ai . A raw term t
is said to be a term of λµν of type A in context Γ, if Γ ⊢ t : A can be derived inductively from the
rules in Figure 3.2. The set of all λµν-terms is denoted by Λ. ◀

Let us now go through the term constructors given in Definition 3.1.4 and explain their corres-
ponding meaning. In general, for each type we have means to introduce and eliminate terms of the
corresponding type, which is indicated in the names of the typing rules in Figure 3.2. Given a term
t of type A1 × A2, we can access its components πi t : Ai by using the projections πi , and thus a
term of type A1 ×A2 can be given by specifying its components as in ⟨t1, t2⟩. Dually, terms of type
A1 +A2 are given by applying one of the constructors κi , and terms of this type are eliminated by
using the case distinction {κ1 x 7→ s ; κ2 y 7→ t}u. It should be noted that the case distinction binds
the variables x and y in s and t , respectively. Next, terms of function type are, as usual, eliminated
by application (→-E) and introduced by λ-abstraction (→-I). Finally, the recursive types also have
a dual set of introduction and elimination principles. Given a type A with X ⊩ A : Ty, the terms
of least fixed point type µX .A are introduced through the constructor α and eliminated by means
of iteration iterµX .A (x . t) s . The term t with x : A[B/X] ⊢ t : B in this iteration should thereby be
thought of as an algebra for A in the category theoretical sense, so that iterµX .A (x . t) becomes the
homomorphism from µX .A to B. For the greatest fixed point we have the dual concepts, in the sense
that we can observe terms of νX .A by using the destructor ξ , and we can introduce terms by means
of coiteration on coalgebras. Since the type superscript of iter and coiter can hinder readability, we
leave it out whenever the type is understood from the context.

To further clarify the intention of the term constructors, let us give some example programs in
this calculus.

40

3.1. Programming with Iteration and Coiteration

Example 3.1.5. Recall that we have defined the empty type by 0 = µX .X . Let us now show how
this type resembles the empty set, at least from an abstract perspective, by showing that for any
type B there is map from 0 to B. To this end, we give a term E0B of type 0 → B, just like for any
set U there is a map ∅ → U . This term is given by

E0B B λx . iter0 (y.y) x ,

That E0B is well-typed can be seen by the following type derivation, where we use that X [B/X] = B.

(Proj)
x : 0,y : 0 ⊢ y : 0 (Proj)

x : 0 ⊢ x : 0
(µ-E)

x : 0 ⊢ iter0 (y.y) x : B
(→-I)

⊢ λx .iter0 (y.y) x : 0→ B

From a category theoretical perspective, 0 thus behaves almost like an initial object, only that E0B
does not have to be unique, see Lemma 4.2.6. However, it is unique under observational equivalence,
which we introduce in Section 4.1. See also Theorem 4.2.14. ◀

Example 3.1.6. Dually to Example 3.1.5, we have that the type 1′ = νX .X corresponds to a singleton
set. To show this, we define for every type B a term of type B → 1′ by

I1
′
B B λx . coiter1′ (y.y) x .

This term allows us to introduce terms of type 1. In particular, we can apply I1
(−) to the type

T = 1′→ 1′ and the identity idT with idT = λx . x on T to obtain

⟨ ⟩′ B I1
′

T idT ,

which is then clearly of type 1′. So 1′ has almost the property of being a final object, only that we
need to show that I1′B is unique. We come back to that in Section 4.2.2. ◀

Let us now come to some standard examples for functions on natural numbers.

Example 3.1.7. Recall that we defined the type of natural numbers to be Nat = µX . 1 + X . First,
note that for each t : Nat we can define its successor by

suc t B α (κ2 t).

To show that suc t is of type Nat, we use (1+ X)[Nat/X] = 1+ Nat in the following derivation.

Γ ⊢ t : Nat
Γ ⊢ κ2 t : 1+ Nat
Γ ⊢ α (κ2 t) : Nat

We can use suc to represent all natural numbers n ∈ N as terms n : Nat inductively as follows.
0 B α (κ1 ⟨ ⟩)

n + 1 B suc n

41

Chapter 3. Inductive-Coinductive Programming

Next, we define addition of natural numbers as the term plus : Nat→ Nat→ Nat by iteration.
д+ B λm. {κ1 y 7→m ; κ2 f 7→ suc (f m)} x

plus B λnm. iterNat (x .д+) nm

To see that this definition is type correct, we first show that

x : 1 + (Nat→ Nat) ⊢ д+ : Nat→ Nat

by means of the following derivation, where we use Γ = x : 1 + (Nat→ Nat),m : Nat.

Γ,y : 1 ⊢m : Nat
Γ, f : Nat→ Nat ⊢ f m : Nat

Γ, f : Nat→ Nat ⊢ suc (f m) : Nat Γ ⊢ x : 1 + (Nat→ Nat)
Γ ⊢ {κ1 y 7→m ; κ2 f 7→ suc (f m)} x : Nat

x : 1 + (Nat→ Nat) ⊢ λm. {κ1 y 7→m ; κ2 f 7→ suc (f m)} x : Nat→ Nat

Second, we use the type of д+ to show that plus is type correct:

n : Nat,m : Nat,x : 1 + (Nat→ Nat) ⊢ д+ : Nat→ Nat n : Nat,m : Nat ⊢ n : Nat
n : Nat,m : Nat ⊢ iterNat (x .д+) n : Nat→ Nat

n : Nat,m : Nat ⊢ iterNat (x .д+) nm : Nat
⊢ λnm. iterNat (x .д+) nm : Nat→ Nat→ Nat

Now that we have convinced ourselves that plus is well-typed, let us understand the idea of this
definition. Since the type of plus is Nat → (Nat → Nat), it immediately suggests itself to define
plus by iteration on the first argument. In turn, this means that the outcome of the iteration must
be a function. This type of iteration over a function space is sometimes referred to as higher order
iteration.10 The idea of the iteration itself is that we construction a function by induction on the first
argument n that corresponds to the n-fold application of the successor function to its argument m.
This is implemented in д+ as follows: in the base case we just returnm itself (0+m =m), and in the
step case we apply the successor to the result of the induction step ((sucn)+m = suc (n+m)). This
will become clearer once we understand the computational behaviour of д+ in Example 3.1.12. ◀

Note that in Example 3.1.7 we pulled д+ out of plus to make its definition easier to understand.
We can improve readability further by making use of an equational style of giving definitions, using
type annotations, and employing infix notation. The addition can then be represented as:

_+ _ : Nat→ Nat→ Nat
n +m = iterNat д+ nm

where
д+ : 1 + (Nat→ Nat)→ (Nat→ Nat)
д+ x m = {κ1 y 7→m ; κ2 f 7→ suc (f m)} x

It is clear that this style of defining terms can be reduced to terms in λµν , as long as there are no
cyclic references between definitions. In that case we can substitute the term corresponding to a
defined symbol for that symbol in all other terms, thus obtaining one big term in λµν . For example,

42

3.1. Programming with Iteration and Coiteration

we can substitute the right-hand side of the definition of д+ above into the definition of plus, thereby
obtaining one term that defines plus.

Let us now come to some standard examples for the coinductive type of streams.

Example 3.1.8. Recall that the type of streams over a type A is given by Aω = νX .A ×X . We will
use the following common notation for the head and tail of a stream term s : Aω .

hd s = π1(ξ s)

tl s = π2(ξ s)

Given an a : A, we can define a stream term aω that is equal to a in every position by coiteration
on the singleton state space:

aω : Aω

aω = coiterNatω дa ⟨ ⟩

where дa x = ⟨a,x⟩

Again using coiteration, point-wise addition of streams over natural numbers is given by

_ ⊕ _ : Natω → Natω → Natω

s ⊕ t = coiterNatω д⊕ (s, t)

where
д⊕ : Natω × Natω → Nat × (Natω × Natω)
д⊕ x =

⟨
hd (π1 x) + hd (π2 x), ⟨tl (π1 x), tl (π2 x)⟩

⟩
.

We can now give two different definitions of the stream of natural numbers.

nats1 : Natω

nats1 = coiterNatω д1 0

where
д1 : Nat→ Nat × Nat
д1 n = ⟨n,n + 1⟩

nats2 : Natω

nats2 = coiterNatω д2 0
ω

where
д2 : Natω → Nat × Natω

д2 s =
⟨
hd s, s ⊕ 1ω

⟩
The definition on the left is quite direct by using an accumulator, whereas nats2 corresponds to
the definition typically found in literature on behavioural differential equations [NR11]. Indeed, in
Example 3.1.13, we will see that both definitions have the expected computational behaviour. But
we will only be able to prove that these two definitions have the same observable behaviour in
Chapter 5. ◀

3.1.2. Computations in λµν
Since we have mentioned the computational behaviour of terms frequently in the above examples,
it is about time we actually say what we mean by that. Computations of terms are given by means
of a reduction relation, which we will define now. As preparation, we introduce some short-hand

43

Chapter 3. Inductive-Coinductive Programming

notation that will make the following development more readable. Let s and t be terms, then we
define the following terms, which resemble those commonly used for functions.

id B λx .x

t ◦ s B λx .t (s x)

t + s B λx .{κ1 x 7→ κ1 (t x) ; κ2 y 7→ κ2 (s y)} x
t × s B λx .

⟨
t (π1 x), s (π2 x)

⟩
The second ingredient we need in order to define a reduction relation on terms of λµν , is an action

of types C with X ⊩ C : Ty on terms, analogously to the action of a functor on morphisms. By that
we mean that we can derive from the type C and a term t : A→ B a term C[t] : C[A/X]→ C[B/X],
such that for any term s : C[A/X] the term C[t] s applies t to the parts of s where the type variable X
appears in the type of s , but leaves s otherwise intact. The need for this action on terms arises from
the fact that the reductions for iteration and coiteration follow the usual homomorphism diagrams
for algebras and coalgebras, respectively. For example, recall that the type of streams over A is given
by Aω = νX .A×X . The reduction relation on coiteration for streams will essentially implement the
diagram for (final) stream coalgebras:

B Aω

A × B A ×Aω
t

coiterAω t

ξ

id×coiterAω t

Thus, the action of A × X on terms will be given by (A × X)[t] = idA × t .
Formally, given a type C with X ⊩ C : Ty, we define for each term t a term C[t], such that the

following typing rule is fulfilled.

Γ ⊢ t : A→ B
Γ ⊢ C[t] : C[A/X]→ C[B/X]

(3.1)

In Section 4.2 we will see that the action of types on terms is more than a mere notational similarity
to functors and that terms given by (co)iteration are indeed homomorphisms under the reduction
relation.

Definition 3.1.9. Let C be a type with X1, . . . ,Xn ⊩ C : Ty, and #—
A = (A1, . . . ,An) be a tuple of

closed types. We put
C

[#—
A

]
B C

[#—
A

/ #—
X

]
.

Let #—
B = (B1, . . . ,Bn) be another tuple of closed types and #—

t = (t1, . . . , tn) terms with tk : Ak → Bk ,
which we denote by ϵ if n = 0. We define in Figure 3.3 a term

C
[

#—
t
]
: C

[#—
A

]
→ C

[#—
B

]
by induction on the construction of C , where we indicate the type of the produced term on the right.
Note that in the first case, we drop the arguments because C will never use them.11 Moreover, in
case of the function space, the type C1 must be closed (due to strict positivity), thus C1[

#—
A] = C1

and we only need to post-compose with C2[
#—
t] in this case. ◀

44

3.1. Programming with Iteration and Coiteration

C
[

#—
t
]
= idC : C → C if fv(C) = ∅

Xk
[

#—
t
]
= tk : Ak → Bk

1
[

#—
t
]
= id : 1→ 1

(C1 +C2)
[

#—
t
]
= C1

[
#—
t
]
+C2

[
#—
t
]

: C1

[#—
A

]
+C2

[#—
A

]
→ C1

[#—
B

]
+C2

[#—
B

]
(C1 ×C2)

[
#—
t
]
= C1

[
#—
t
]
×C2

[
#—
t
]

: C1

[#—
A

]
×C2

[#—
A

]
→ C1

[#—
B

]
×C2

[#—
B

]
(C1 → C2)

[
#—
t
]
= λ f .C2

[
#—
t
]
◦ f :

(
C1 → C2

[#—
A

])
→

(
C1 → C2

[#—
B

])
(µY .C)

[
#—
t
]
= λx . iter(µY .C)[

#—
A] (y. s) x :

(
µY .C

[#—
A

])
→ µY .C

[#—
B

]
s = α (C

[
#—
t , id

]
y)

(νY .C)
[

#—
t
]
= λx . coiter(νY .C)[

#—
B] (y. s) x :

(
νY .C

[#—
A

])
→ νY .C

[#—
B

]
s = C

[
#—
t , id

]
(ξ y)

Figure 3.3.: Action of Types on Terms in λµν

Let us show that the action of a type on terms fulfils the judgement advertised in (3.1).

Lemma 3.1.10. Let C be a type with X ⊩ C : Ty. Then the following judgement holds.

Γ ⊢ t : A→ B
Γ ⊢ C[t] : C[A]→ C[B]

Proof. One proves the more general statement that for a given type C with X1, . . . ,Xn ⊩ C : Ty,
and for every tuple of terms #—

t = (t1, . . . , tn) terms with tk : Ak → Bk , we have that C[#—
t] is of

type C[
#—
A] → C[

#—
B]. The proof of this is then an easy induction on C , which just uses the type

annotations we gave in Definition 3.1.9. □

We now define the reduction relation of λµν . This is done in two steps: First, we define a
contraction relation, which takes care of reductions on the outermost term constructors. Second,
we use contraction to define reductions in arbitrary positions in terms.

Definition 3.1.11. The contraction relation ≻ between terms, or just contraction of terms, in λµν is
is defined by the following clauses.

{κ1 x1 7→ t1 ; κ2 x2 7→ t2} (κi s) ≻ ti [s/xi]

πi ⟨t1, t2⟩ ≻ ti

(λx . t) s ≻ t [s/x]

iterµX .A (x . t) (α s) ≻ t
[
A
[
λy. iterµX .A (x . t) y

]
s
/
x
]

ξ
(
coiterνX .A (x . t) s

)
≻ A

[
λy.coiterνX .A (x . t) y

]
(t [s/x])

We say that a term t reduces to a term s in λµν , if t −→ s can be derived inductively from the
rules in Figure 3.4. The reduction relation of λµν −→ is said to be given as the compatible closure of
contraction. Finally, iterated reduction is defined as the reflexive, transitive closure of −→ and
convertibility ≡ as the equivalence closure of −→. ◀

45

Chapter 3. Inductive-Coinductive Programming

t ≻ s
t −→ s

t −→ s
πi t −→ πi s

t −→ t ′

⟨t , s⟩ −→ ⟨t ′, s⟩
s −→ s ′

⟨t , s⟩ −→ ⟨t , s ′⟩
t −→ t ′

t s −→ t ′ s
s −→ s ′

t s −→ t s ′

t −→ s
λx . t −→ λx . s

s −→ s ′

{κ1 x 7→ s ; κ2 y 7→ t} u −→ {κ1 x 7→ s ′ ; κ2 y 7→ t} u
t −→ t ′

κi t −→ κi t
′

t −→ t ′

{κ1 x 7→ s ; κ2 y 7→ t} u −→ {κ1 x 7→ s ; κ2 y 7→ t ′} u
t −→ t ′

α t −→ α t ′
t −→ t ′

ξ t −→ ξ t ′
u −→ u ′

{κ1 x 7→ s ; κ2 y 7→ t} u −→ {κ1 x 7→ s ; κ2 y 7→ t} u ′
t −→ t ′

(co)iter (x . t) s −→ (co)iter (x . t ′) s
s −→ s ′

(co)iter (x . t) s −→ (co)iter (x . t) s ′

Figure 3.4.: Compatible Closure of Contraction in λµν

Let us illustrate the reduction relation by means of addition on natural numbers and streams.

Example 3.1.12. We show that addition of natural numbers, defined in Example 3.1.7, has the
expected computational behaviour on zero and successors. For C = 1 + X , we have for any terms
u and t the following.

C[u] t = (1[u] + X [u]) t

= (id1 + u) t

= (λx . {κ1 y 7→ κ1 (id1 y) ; κ2 z 7→ κ2 (u z)} x) t
≻ {κ1 y 7→ κ1 (id1 y) ; κ2 z 7→ κ2 (u z)} t
−→ {κ1 y 7→ κ1 y ; κ2 z 7→ κ2 (u z)} t by id1 y ≻ y

(3.2)

Recall that д+ was defined in Example 3.1.7 by д+ = λm. {κ1 y 7→ m ; κ2 f 7→ suc (f m)} x .
Using this and (3.2), we get for any term t of type Nat that 0 + t t and hence 0 + t ≡ t by
the sequence of reduction steps in Figure 3.5, where we use R B λy. iter (x .д+) y as a short-hand
notation. Similarly, we get for s : Nat the reduction sequence in Figure 3.6. Now we note that

suc (iterNat (x .д+) s t)←− suc ((λnm. iterNat (x .д+) nm) s t) = suc (s + t),

so that (suc s) + t ≡ suc (s + t) as expected.12 ◀

Example 3.1.13. Similarly to the last example, we demonstrate that the terms given in Example 3.1.8
have the expected computational behaviour. For the constant streams we have

hd aω = hd (coiter дa ⟨ ⟩) ≡ π1 ((id × (coiter дa)) (дa ⟨ ⟩))
≡ π1 ((id × (coiter дa)) ⟨a, ⟨ ⟩⟩)
≡ π1 ⟨a, (coiter дa ⟨ ⟩)⟩
≡ a,

and
tl aω = tl (coiter дa ⟨ ⟩) ≡ · · · ≡ π2 ⟨a, (coiter дa ⟨ ⟩)⟩ ≡ coiter дa ⟨ ⟩ = aω .

46

3.1. Programming with Iteration and Coiteration

0 + t

= (λnm. iterNat (x .д+) nm) 0 t

≻ (λm. iterNat (x .д+) 0m) t

≻ iterNat (x .д+) 0 t

= iterNat (x .д+) (α (κ1 ⟨ ⟩)) t

−→ д+ [C[R] (κ1 ⟨ ⟩)/x] t iterNat (x .д+) (α (κ1 ⟨ ⟩)) ≻ . . .
−→ д+[{κ1 y 7→ κ1 y ; κ2 z 7→ κ2 (R z)} (κ1 ⟨ ⟩)/x] t by (3.2)
−→ д+[κ1 ⟨ ⟩/x] t {κ1 x 7→ κ1 x ; · · ·} (κ1 ⟨ ⟩) ≻ κ1 ⟨ ⟩
=

(
λm. {κ1 y 7→m ; κ2 f 7→ suc (f m)} (κ1 ⟨ ⟩)

)
t

≻ {κ1 y 7→ t ; κ2 f 7→ suc (f t)} (κ1 ⟨ ⟩)
≻ t

Figure 3.5.: Reduction Sequence for 0 + t in λµν

(suc s) + t = (λnm. iterNat (x .д+) nm) (α (κ2 s)) t

= · · ·
−→ д+[{κ1 y 7→ κ1 y ; κ2 z 7→ κ2 (iterNat (x .д+) z)} (κ2 s)/x] t
−→ д+ [κ2 (iterNat (x .д+) s)/x] t

=
(
λm. {κ1 y 7→m ; κ2 f 7→ suc (f m)} (κ2 (iterNat (x .д+) s))

)
t

≻ {κ1 y 7→ t ; κ2 f 7→ suc (f t)} (κ2 (iterNat (x .д+) s))

≻ suc (iterNat (x .д+) s t)

Figure 3.6.: Reduction Sequence for (suc s) + t in λµν

An easy calculation also shows that

hd (s ⊕ t) ≡ hd s + hd t and tl (s ⊕ t) ≡ tl s ⊕ tl t .

We can use these equivalences now to check the computational behaviour of the second definition
of the stream of natural numbers:

hd nats2 = hd (coiter д2 0ω) ≡ π1 ((id × coiter д2)(д2 0ω))
≡ π1 ((id × coiter д2)(hd 0ω , 0ω ⊕ 1ω)) ≡ 0.

Note that we can continue to explicitly check that the n-th position of nats2, given by hd (tln nats2),
is indeed n. We introduce in Chapter 5 the necessary machinery to prove this for all n. ◀

Let us now show that the reduction relation preserves types of terms, that is, if Γ ⊢ t : A and
t −→ s , then Γ ⊢ s : A. We say then that subject reduction holds for −→. The first step towards this
was Lemma 3.1.10, where we proved that the type action is type correct, which allows us to prove
subject reduction for the contraction relation introduced in Definition 3.1.11. This, in turn, gives
immediately that the reduction relation preserves types by its definition as compatible closure of
contraction.

47

Chapter 3. Inductive-Coinductive Programming

Theorem 3.1.14. The reduction relation of λµν preserves types.

Proof. We first show that the contraction relation preserves types. The cases for sum types, product
and function types are readily proved by a standard argument. For the contraction on recursive
types, we use Lemma 3.1.10 as follows. Suppose we have Γ,x : A[B/X] ⊢ t : B and Γ ⊢ s : A[µX .A/X],
so that Γ ⊢ iterµX .A (x . t) (α s) : B. The following derivation then shows that the right-hand side of
the contraction for iteration also has type B.

Γ ⊢ λy. iterµX .A (x . t) y : (µX .A)→ B

Γ ⊢ A
[
λy. iterµX .A (x . t) y

]
: A[µX .A]→ A[B] Γ ⊢ s : A[µX .A/X]

Γ ⊢ A
[
λy. iterµX .A (x . t) y

]
s : A[B]

Γ ⊢ t [A
[
λy. iterµX .A (x . t) y

]
s/x] : B

Similarly, for t : A[B/X] and s : B, we have that in the case of ν-types the type of the right side of
the contraction matches that of the left side. This is demonstrated by the following type derivation.

Γ ⊢ λy. coiterνX .A (x . t) y : B → νX .A

Γ ⊢ A
[
λy. coiterνX .A (x . t) y

]
: A[B]→ A[νX .A]

Γ ⊢ s : B
Γ ⊢ t [s/x] : A[B]

Γ ⊢ A
[
λy. coiterνX .A (x . t) y

]
(t [s/x]) : A[νX .A]

Second, since the contraction relation preserves types and the reduction relation is the compatible
closure of contraction, type preservation of reductions is immediate. □

This concludes our introduction into simple inductive-coinductive programming, and we move on
to a more practical language.13

3.2. Programming with Equations
In the previous section, we have introduced the simply typed calculus λµν for programming with
mixed inductive-coinductive types. It was fairly straightforward to set up the calculus and, as noted
in Note 13, all terms of that calculus are strongly normalising. However, since the calculus is based
on iteration and coiteration schemes, programming can become quite complicated. We have seen
this already in Example 3.1.7, but the complications become even more prevalent when iteration and
coiteration are mixed.

For example, suppose we want to define a map that projects a left-fair stream to its A-elements.
In λµν we can define such a map as follows.

Example 3.2.1. To define the projection proj : LFairAB → Aω , we put U = A× (LFairAB) + B ×Y
and let L = µY .U be the first unfolding of LFair. Then we define

proj = λx . coiterAω f x

f : LFairA B → A × LFairA B

f x = iterL д (ξ x)
д : U [A × LFairA B/Y]→ A × LFairA B

д x = {κ1 x 7→ x ; κ2 y 7→ π2 y} x

48

3.2. Programming with Equations

This is a short definition, but coming up with it, let alone understanding it, is rather difficult.

This situation can be improved by moving away from (co)iteration schemes and instead use
equational specifications, which allow recursive references to function symbols. This is essentially
how one writes programs in a functional language like Haskell. We will introduce in this section a
calculus, denoted by λµν=, that implements this idea by replacing the (co)iteration schemes of λµν
by recursive equations, patterns and so-called copatterns. This calculus is a variation of the copattern
calculus given by Abel et al. [Abe+13] . We discuss the differences and rationale for these changes
in Section 3.4. The calculus λµν= has been studied in [BH16]. Note, however, that in loc. cit. the
syntax is slightly different, in that the authors use a syntax similar to that of λµν for destructors
of products and ν-types. The choice of syntax in this section brings the calculus λµν= closer to
behavioural differential equations [Rut03], object oriented programming and the original syntax
in [Abe+13]. It also emphasises that function space types are coinductive, in that its destructor, the
function application, is also written in post-fix notation.

3.2.1. Types and Terms of the Calculus λµν=
The types for the calculus λµν= are exactly the ones we gave in Definition 3.1.1 for λµν . As for the
terms, the introduction rules for coproducts and µ-types are the same, whereas the elimination rules
for coinductive types (products, functions and ν-types) are now all written in post-fix notation. Also,
the elimination rules for inductive types (sums and µ-types) and introduction rules for coinductive
types will be replaced by patterns and copatterns, respectively, combined with recursive equations.
Such recursive equations can thereby be given via a binding construct rletΣ in t , where Σ contains
symbols and their definitions, and t is a term. The calculus is formally given by the following
definition.

Definition 3.2.2. Let TeVar and SigVar be countably infinite, disjoint sets of term variables x ,y, z, . . .
and signature variables f ,д,h, . . ., respectively. The raw terms s, t , patterns p, copatterns q, declaration
bodies D and declaration blocks Σ of λµν= are generated by the following grammar.

s, t F x ∈ TeVar | ⟨ ⟩ | κ1 t | κ2 t | α t | t .pr1 | t .pr2 | t .out | t s
| f ∈ SigVar | λD | rlet Σ in t

p F x ∈ TeVar | κi p | α p

q F · | q.pr1 | q.pr2 | q.out | q p
D F {q1 7→ t1 ; . . . ; qn 7→ tn}
ΣF f1 : A1 = D1, . . . , fn : An = Dn ◀

To resolve ambiguities, To increase readability, we adopt here the same conventions as for λµν
(application is left-associative and variables do not need parentheses) plus that application of de-
structors is also left-associative. For example, t .out.pr1 is to be read as (t .out).pr1. The analogous
conventions also hold for patterns and copatterns.

We now define what the (well-typed) terms of λµν= are.

Definition 3.2.3. A context Γ is a possibly empty sequence x1 : A1, . . . ,xn : An of variables
xi ∈ TeVar annotated with types Ai . A raw term t is said to be a term of λµν= of type A in context

49

Chapter 3. Inductive-Coinductive Programming

Γ using the declarations in Σ, if Γ;Σ ⊢ t : A can be derived inductively from the rules in Fig. 3.7. We
denote the set of all well-typed terms by Termsλµν=. The judgement for well-typed terms involves
the following judgements, which are defined in Fig. 3.7 as well.

• Γ;Σ ⊢bdy D : A, states that D is a declaration body of type A in the variable context Γ using
the declarations in Σ;

• Σ1 ⊢dec Σ2, states that Σ2 is a well-formed declaration block, using declarations in Σ1;

• Γ ⊢pat p : A, states that p is a pattern on the type A that binds variables in Γ; and

• Γ ⊢cop q : A⇒ B, states that q is a copattern, binding variables in Γ, such that for all evaluation
contexts e that match q, applying e to a term of type A results in a term of type B. ◀

(x : A) ∈ Γ
(Proj)

Γ;Σ ⊢ x : A

(f : A = D) ∈ Σ
(ProjSig)

Γ;Σ ⊢ f : A
(1-I)

Γ;Σ ⊢ ⟨ ⟩ : 1

Γ;Σ ⊢ t : Ai
(i = 1, 2) (+-I)

Γ;Σ ⊢ κi t : A1 +A2

Γ;Σ ⊢ t : A[µX .A/X]
(µ-I)

Γ;Σ ⊢ α t : µX .A

Γ;Σ ⊢ t : A1 ×A2 (×-E1)
Γ;Σ ⊢ t .pr1 : A1

Γ;Σ ⊢ t : A1 ×A2 (×-E2)
Γ;Σ ⊢ t .pr2 : A2

Γ;Σ ⊢ t : νX .A (ν-E)
Γ;Σ ⊢ t .out : A[νX .A/X]

Γ; Σ ⊢ t1 : A→ B Γ;Σ ⊢ t2 : A (→-E)
Γ;Σ ⊢ t1 t2 : B

Γ;Σ ⊢bdy D : A
(Abs)

Γ;Σ ⊢ λD : A

Σ1 ⊢dec Σ2 Γ;Σ1,Σ2 ⊢ t : A (Rlet)
Γ;Σ1 ⊢ rlet Σ2 in t : A

Γi ⊢cop qi : B ⇒ Ai Γ,Γi ; Σ ⊢ ti : Ai for all 1 ≤ i ≤ n

Γ;Σ ⊢bdy {q1 7→ t1; . . . ;qn 7→ tn} : B

∅; Σ1,Σ2 ⊢bdy D : A for all (f : A = D) ∈ Σ2

Σ1 ⊢dec Σ2

x ∈ Var
x : D ⊢pat x : D ⊢pat ⟨ ⟩ : 1

x : D ⊢pat p : Ai

x : D ⊢pat κi p : A1 +A2

x : D ⊢pat p : A[µX .A/X]

x : D ⊢pat α p : µX .A

∅ ⊢cop · : C ⇒ C

Γ ⊢cop q : C ⇒ A1 ×A2

Γ ⊢cop q.pr1 : C ⇒ A1

Γ ⊢cop q : C ⇒ A1 ×A2

Γ ⊢cop q.pr2 : C ⇒ A2

Γ ⊢cop q : C ⇒ νX .A

Γ ⊢cop q.out : C ⇒ A[νX .A/X]

Γ ⊢cop q : C ⇒ (A→ B) x : D ⊢pat p : A x < Γ
Γ,x : D ⊢cop q p : C ⇒ B

Figure 3.7.: Rules for forming terms, declaration bodies and blocks, and (co)patterns

50

3.2. Programming with Equations

Let us explain the typing rules in Definition 3.2.3. The main difference with the calculus λµν
is that we omit the iteration and coiteration schemes in favour of rlet-blocks. Such blocks allow
us to construct terms with recursive occurrences of symbols, that is, in a term rlet Σ2 in t , the
symbols defined in the declaration block Σ2 can be (directly or indirectly) self-referential. This can
be seen from the single rule for Σ1 ⊢dec Σ2 in Figure 3.7, where every declaration body in Σ2 is
checked with all declarations of Σ2 in scope. Note that there is no restriction on the recursive
occurrence of symbols, which means that it is possible to write non-terminating programs in λµν=,
see Example 3.2.21. On the other hand, this also allows us to write programs that are well-defined
but not obeying any syntactic restriction like guardedness [Gim95], see Example 4.1.6.

The declaration bodies form the heart of the calculus, as they allow us to define objects of
coinductive type by means of copatterns and functions out of inductive types by means of patterns.
For instance, to define a function of type A+ B → C , we may use pattern matching to distinguish
whether we get an element from A or B as input. Given terms s and t of type C , we can form the
declaration body D with D =

{
· (κ1 x) 7→ s ; · (κ2 y) 7→ t

}
, which covers the two cases of the sum

type. We may then use the abstraction rule to form the term λD of type A + B → C that allows
us to carry out the case distinction, see Example 3.2.4. Concerning coinductive types, we instead
specify the outcome of observations that can be made on a term through the use of destructors. For
example, given terms s and t respectively of type A and B, we can obtain the pair of these terms
by abstraction of the declaration body D defined by D =

{
· .pr1 7→ s ; · .pr2 7→ t

}
, which gives us

λD : A × B. Pairing for products is further explained in Example 3.2.5. The last example that we
discuss at this point are streams. To increase readability, we introduce some short-hand notations
for head and tail projections on streams:

.hd B .out.pr1 and .tl B .out.pr2. (3.3)

As one would expect, a stream is given by providing the terms for the head and tail, say s : A and
t : Aω , and bundling them in the body

{· .hd 7→ s ; · .tl 7→ t} : A ×Aω .

We will see in Example 3.2.9, Example 3.2.10 and Example 3.2.11 further specifications of streams.
Let us now explain patterns and copatterns in more broad terms. As we said above, copatterns

allow us to specify the outcome of observations on a term, while patterns allow us to analyse
arguments of inductive type. This idea is reflected in the interplay of the typing rules for declaration
bodies, patterns and copatterns. Generally, the judgement Γ ⊢cop q : C ⇒ B says that if we want to
form a declaration body of the form {q 7→ t} of type C , then t must be of type B and the abstraction
λ{q 7→ t} binds all the variables in Γ. Consider, for instance, the declaration body D =

{
· (α x) 7→ t

}
.

First of all, we expect that λD is a function that takes an argument of type µX .A for some type A
and returns something of type B. Second, λD should bind the variable x in t . Both requirements are
included in the typing of the copattern · (αx), which in turn is obtained by the following derivation.

∅ ⊢cop · :
(
(µX .A)→ B

)
⇒

(
(µX .A)→ B

) x : A[µX .A/X] ⊢pat x : A[µX .A/X]

x : A[µX .A/X] ⊢pat α x : µX .A

x : A[µX .A/X] ⊢cop · (α x) :
(
(µX .A)→ B

)
⇒ B

We can now read off from this that t can have a free variable of type A[µX .A/X], which is bound
in λD, that t must be of type B, and that the type of λD is then (µX .A) → B. In the course of

51

Chapter 3. Inductive-Coinductive Programming

the examples below, we will familiarise ourselves more with this interplay between the rules for
copatterns and declaration bodies.

There are two aspects of declarations that are worthwhile to discuss. First, we mentioned already
that the variables contained in copatterns are bound through declaration bodies. To avoid dependen-
cies between patterns in a body and the problems that spring from such dependencies, one usually
requires patterns of a declaration to be linear , that is, variables may occur at most once in them.
We ensure this here in the rule for copatterns of function application by checking, upon forming
the copattern q p, that the variable that appears in the argument pattern p does not occur already in
the copattern q. This guarantees that any variable occurs at most once in a copattern, which rules
out copatterns like “· (κ1 x) x”. Second, the reader might have noticed that neither the definition
of raw terms nor that of well-typed terms ensures that a declaration body has to cover all cases.
Consider for instance the term f given by f = λ

{
· (κ1 x) 7→ t

}
, which does not cover the case that

an argument may be of the form κ2 s . Thus, if we tried to evaluate f (κ2 s), then the computa-
tion would get stuck. So far, there is nothing in the calculus that ensures that a declaration body
covers all possible cases for (co)patterns. It even might happen that there are several cases for the
same copattern, which would make computations non-deterministic. We will discuss this further in
Example 3.2.23 and then address these issues when proving confluence in Proposition 3.2.32.

Let us now go through the remaining rules in Figure 3.7. We have already seen that (Rlet) allows
us to construct terms with recursively defined symbols. The rule (ProjSig) complements this, in
that it allows us to use any declared symbol as term. Sometimes, we would like to give a term in
the form of a declaration body without having to introduce a new symbol, see Example 3.2.5 below.
This can be done by using the rule (Abs). The other rules to construct terms correspond exactly to
those in λµν , except that the destructors appear in post-fix position.

We illustrate λµν= on some non-recursive examples, in which we recover notations from λµν . In
Section 3.3, we will properly study the relation between these two calculi.

Example 3.2.4. We have almost the same notation for case distinction on sums:

{κ1 x 7→ s ; κ2 y 7→ t} u B λ
{
· (κ1 x) 7→ s ; · (κ2 y) 7→ t

}
u

Let us check that this definition is well-typed. The first step is to assign types to the two copatterns
in the term on the right. This is done by the following two derivations.

⊢cop · : (A+ B → C)⇒ (A+ B → C)

x : A ⊢pat x : A

x : A ⊢pat κ1 x : A+ B

x : A ⊢cop · (κ1 x) : (A+ B → C)⇒ C

⊢cop · : (A+ B → C)⇒ (A+ B → C)

y : B ⊢pat y : B

y : B ⊢pat κ2 y : A+ B

y : B ⊢cop · (κ2 y) : (A+ B → C)⇒ C

Next, we check the type of the abstraction. For this, suppose that we have Γ,x : A ⊢ s : C and
Γ,y : B ⊢ t : C and Γ;Σ ⊢ u : A+ B. Using the short-hand notation U = A+ B → C , we can make

52

3.2. Programming with Equations

the following derivation.

x : A ⊢cop · (κ1 x) : U ⇒ C

y : B ⊢cop · (κ2 y) : U ⇒ C Γ,x : A ⊢ s : C Γ,y : B ⊢ t : C
Γ;Σ ⊢bdy

{
· (κ1 x) 7→ s ; · (κ2 y) 7→ t

}
: A+ B → C

Γ;Σ ⊢ λ
{
· (κ1 x) 7→ s ; · (κ2 y) 7→ t

}
: A+ B → C

Finally, we check the application to u:

Γ;Σ ⊢ λ
{
· (κ1 x) 7→ s ; · (κ2 y) 7→ t

}
: A+ B → C Γ;Σ ⊢ u : A+ B

Γ;Σ ⊢ λ
{
· (κ1 x) 7→ s ; · (κ2 y) 7→ t

}
u : C

Thus the definition of case distinction we gave above is well-typed. ◀

Next, we can also recover the notation for product types that we used in λµν .

Example 3.2.5. The projections on product types can be defined for u : A × B by

π1 u B u .pr1 and π2 u B u .pr2,

so that the pairing constructor is given by

⟨s, t⟩ B λ
{
· .pr1 7→ s ; · .pr2 7→ t

}
.

Let us again check that these definitions are well-typed. This is clear for the projections, so we
check just the pairing. Assume that Γ;Σ ⊢ s : A and Γ;Σ ⊢ t : B. Then we have

⊢cop · : A × B ⇒ A × B
⊢cop · .pr1 : A × B ⇒ A

⊢cop · : A × B ⇒ A × B
⊢cop · .pr2 : A × B ⇒ B

Γ;Σ ⊢bdy
{
· .pr1 7→ s ; · .pr2 7→ t

}
: A × B

Γ;Σ ⊢ λ
{
· .pr1 7→ s ; · .pr2 7→ t

}
: A × B

as required. ◀

Finally, we can also recover the usual notation for function spaces.

Example 3.2.6. Note that application of terms of function type is written in λµν= just as in λµν .
However, λ-abstraction is slightly more complicated:

λx . t B λ{· x 7→ t}.

Assuming that Γ,x : A; Σ ⊢ t : B, we can indeed derive the following.

⊢cop · : (A→ B)⇒ (A→ B)

⊢cop · x : (A→ B)⇒ B Γ,x : A; Σ ⊢ t : B
Γ;Σ ⊢bdy {· x 7→ t} : A→ B

Γ;Σ ⊢ λ{· x 7→ t} : A→ B

So the λ-abstraction is well-typed with the expected type. ◀

53

Chapter 3. Inductive-Coinductive Programming

Recall from Example 3.1.6 that we could represent in λµν a one-element set by the fixed point
type νX .X . This is again true in λµν=, except that the inhabitant ⟨ ⟩′ is easier to establish.

Example 3.2.7. Recall from Example 3.1.6 that we used the coiteration scheme of λµν on a function
type to get an inhabitant of the type 1′. In λµν= this inhabitant can be given much easier by

⟨ ⟩′ B rlet f : 1′ = {· .out 7→ f } in f .

Let us use the typing rules to show that ⟨ ⟩′ : 1′ indeed holds.

⊢cop · : 1′⇒ 1′

⊢cop · .out : 1′⇒ X [1′/X] f : 1′ ⊢ f : 1′

f : 1′ ⊢bdy {· .out 7→ f } : 1′

⊢dec f : 1′ = {· .out 7→ f } f : 1′ ⊢ f : 1′

⊢ ⟨ ⟩′ : 1′

In Section 4.1, it will turn out that also this inhabitant of 1′ is canonical. ◀

We have advertised the present calculus as being easier to program with. The next example
demonstrates this on the projection out of the left-fair streams. Since these streams are given by a
mixed inductive-coinductive type, the example combines patterns and copatterns.

Example 3.2.8. Recall the type LFair A B = νX . µY . (A × X + B × Y), consisting of streams over
A and B, such that elements of A occur infinitely often. We define a map that projects a left-fair
stream onto a stream over A as in Example 3.2.1. This can be done by defining maps pA and eraseB
by mutual recursion as follows.

projA B rlet
pA : LFairA B → Aω =

{
(· x).out 7→ eraseB (x .out)

}
eraseB : µY . (A × LFairA B) + B × Y)→ A ×Aω = {
· (α (κ1 u)) 7→ ⟨u .pr1, pA (u .pr2)⟩ ;
· (α (κ2 u)) 7→ eraseB (u .pr2)
}

in pA

Note that pA is defined coinductively, whereas eraseB is defined by induction.
We now derive the type of projA. For brevity, let us agree on the following short-hand notation.

F = LFairA B L = µY . (A × LFairA B) + B × Y)
V = F → Aω W = L→ A ×Aω

Σ = {pA : V , eraseB :W }

First, we find that the type of the copattern used in pA is V ⇒ A ×Aω :
⊢cop · : V ⇒ V u : F ⊢pat u : F

u : F ⊢cop · u : V ⇒ Aω

u : F ⊢cop (· u).out : V ⇒ A ×Aω
(3.4)

54

3.2. Programming with Equations

We can use this information then to check that the body of pA is type-correct:

(3.4)
u : F ; Σ ⊢ eraseB :W

u : F ; Σ ⊢ u : F

u : F ; Σ ⊢ u .out : L
u : F ; Σ ⊢ eraseB(u .out) : A ×Aω

Σ ⊢bdy
{
(· u).out 7→ eraseB (u .out)

}
: V

Similarly, we can type the body of eraseB . Putting these two derivations together, we can check
that Σ is well-formed.

...

Σ ⊢bdy
{
(· u).out 7→ . . .

}
: V

...

Σ ⊢bdy
{
· (α(κ1 v)) 7→ . . .

}
:W

⊢dec Σ (3.5)

Finally, we check the rlet-declaration that defines projA:

(3.5) Σ ⊢ pA : V

⊢ projA : LFairA B → Aω

Thus projA is a well-formed term.
Note that projA is defined by a single rlet-block, which declares a fresh symbol pA that defines

projA. Since this situation occurs quite frequently, we will usually leave out this rlet and present
its content as a set of equations, just like one would write programs in Haskell or how behavioural
differential equations are given. The above program is then given as follows.

projA : LFairA B → Aω

(projA x).out = eraseB (x .out)
eraseB : µY . (A × LFairA B) + B × Y)→ A ×Aω

eraseB (α (κ1 y)) = ⟨y.pr1, projA (y.pr2)⟩
eraseB (α (κ2 y)) = eraseB (y.pr2)

This lifts some notational burden and makes programs easier to read. ◀

The next example demonstrates the use of mixed induction-coinduction on streams over natural
numbers. Note that, in contrast to left-fair streams, this is a type in which least and greatest fixed
point types are separable but the function still mixes induction and coinduction.

Example 3.2.9. We define a function H of type Natω → Natω → Natω that maps streams s and t to
a stream r with r(n) = t(

∑n
i=0 s(i)) by mixing patterns and copatterns as in the following program.

We display the program in two forms: on the left in the formally correct notation of λµν= and on
the right in the more readable, Haskell-like notation that we introduced in Example 3.2.8.

55

Chapter 3. Inductive-Coinductive Programming

Formal notation (λµν= term):
H B rlet
h : Natω → Natω → Natω = {· s t 7→ f (s .hd) s t }
f : Nat→ Natω → Natω → Natω = {
(· 0 s t).hd 7→ t .hd
(· 0 s t).tl 7→ h (s .tl) t
· (n + 1) s t 7→ f n s (t .tl) }

in h

Haskell-like notation:
H : Natω → Natω → Natω

H s t = f (s .hd) s t
f : Nat→ Natω → Natω → Natω

(f 0 s t).hd = t .hd
(f 0 s t).tl = H (s .tl) t
f (n + 1) s t = f n s (t .tl)

The combination of patterns and copatterns is demonstrated in the declaration of f , which uses
pattern matching on the first argument, followed by specifying head and tail of f 0 s t . ◀

The following example defines a simple stream, which we will use later again.

Example 3.2.10. The stream of alternating bits can be given as follows, where we present again on
the left the formal term of λµν= and the more readable version on the right.

Formal notation (λµν= term):
alt B rlet
salt : Natω = {
salt.hd 7→ 0

salt.tl.hd 7→ 1

salt.tl.tl 7→ salt }
in salt

Haskell-like notation:

alt : Natω

alt.hd = 0

alt.tl.hd = 1

alt.tl.tl = alt

The reader will notice that we specified the first two entries of the stream alt directly. This is
not directly possible in other specification formats for streams, like stream differential equations
(SDE) [HKR17], because it cannot always be guaranteed that there exists a solution to SDE with
such deeper specifications, cf. ibid. We discuss this issue in Section 4.1. ◀

In the final example of this section we select entries from streams, which crucially uses a mixed
inductive-coinductive type. The definitions in the example are also a rich source of further examples
later on.

Example 3.2.11. The goal of this example is to define a function select that selects entries from a
stream. Its intended behaviour is visualised in the following diagram.

select

. . . , 1, 0, 1, 0, 1, 0

. . . ,a5,a4,a3,a2,a1,a0

. . . ,a5,a3,a1

In this diagram, we see that select has two inputs: a stream of 0s and 1, and the stream from
which we select entries. A 1 in the first stream marks thereby a position in the second stream that

56

3.2. Programming with Equations

should be kept, whereas 0s mark positions that shall be dropped. However, there is a problem if the
first stream consists only of 0s, as we would have to drop all entries of the second input and thus
would not be able to compute an output stream.

This problem is solved, if we only accept streams that contain infinitely many 1s or, equivalently,
in which all consecutive sequences of 0s are finite. We can guarantee this property by using stream
selectors instead of 0-1-streams, which are elements of the following type F .

F B νX . µY .X + Y

Fµ B µY . F + Y

Let us give some names to the constructors of Fµ to improve readability. For patterns Γ1 ⊢pat p1 : F
and Γ2 ⊢pat p2 : Fµ , we define the following patterns for the type Fµ .

pres p1 B α (κ1 p1)

drop p2 B α (κ2 p2)

The first pattern signifies that an entry should be preserved, which corresponds to a 1 in the intuitive
explanation of selectors above. On the other hand, we mark positions that shall be dropped by the
second pattern, the 0 in the bit sequence view. Using these notations, we can implement the select
function, mutually with an auxiliary function on Fµ , as follows.

select : F → Aω → Aω

select x = selectµ (x .out)
selectµ : Fµ → Aω → Aω

(selectµ (pres x) s).hd = s .hd
(selectµ (pres x) s).tl = select x (s .tl)
selectµ (drop u) s = selectµ u (s .tl)

The functions select and selectµ are typical examples of a mixed inductive-coinductive definition:
We define selectµ by induction on the first argument, and by coinduction in the base case pres x of
this induction. The role of select is to unfold the selector one step, so that we can calculate the next
element of the output stream.

Let us now also use the same notation for constructing elements of Fµ as we did for the patterns.
That is, given an element x of type F , we write pres x B α (κ1 x) : Fµ and similar for drop. This
allows us to concisely give a selector for the odd positions of a stream as follows.

oddF : F

oddF.out = drop (pres oddF)

Intuitively, this selector corresponds to the stream (0, 1, 0, 1, 0, 1 . . .) in the original picture. It allows
us to define the following function that drops all the even positions of streams over A.

odd : Aω → Aω

odd = select oddF

57

Chapter 3. Inductive-Coinductive Programming

We will see in Example 3.2.19 the computational behaviour of select. In Chapter 5 we will be able
to show that select indeed produces an output for any selector, and in the same chapter we prove
some further properties of select. Finally, in Chapter 7 we apply selectors and the select function in
the proof of a proposition. ◀

Let us discuss some interesting aspects of Example 3.2.11. First, Bertot [Ber05] uses selection from
streams by means of predicates to implement the sieve of Eratosthenes in Coq. Suppose that A is a
type, P a predicate14 on A and s : Aω a stream on A. Bertot then aims to define a stream select P s
that arises from s by keeping exactly those entries that fulfil the predicate P . However, it is clear
that such a stream does not exist for all combinations of predicates and streams, but only if the
predicate P holds on infinitely many entries of the stream s . If we say in this situation that P is fair
on s , then we can alternatively describe this fairness property as inductive-coinductive property: P
is fair on s if P eventually holds on some element in s and P is fair on the stream after that position.
We will make this definition precise in Section 7.5.3. Let us just say that this fairness of P on s
corresponds to the formula □^P (read: always, eventually P) in linear temporal logic. In contrast
to Bertot’s development, we have selected entries from streams in Example 3.2.11 by specifying the
positions that should be kept/dropped from a stream, so that a selector is independent of the stream
from which we select. However, these two approaches of selecting can be seen to be equivalent.

The second interesting aspect of entry selection is its relation to (uniform) continuity. Let us write
s ≈n t for n ∈ N and stream terms s, t : Aω , if s and t agree on the first n entries. More precisely,

s ≈n t B ∀k < n. (s .tlk .hd ≡ t .tlk .hd),

where .tlk is the k-fold application of .tl. This gives us a metric on stream terms [Smy92, Chap. 6]:

d(s, t) = inf{2−n | n ∈ N, s ≈n t}.

A term f : Aω → Aω is uniformly continuous with modulus of continuity M : N→ N, if for all n ∈ N

∀s, t : Aω .d(s, t) ≤ 2−M(n) =⇒ d(f s, f t) ≤ 2−n .

Note now that for a stream s the n-th element of odd s is the (2n+1)-th element of the input stream
s . Thus, we claim that odd is uniformly continuous with modulus M(n) = 2n + 1. Indeed, we can
define a map mod : F → Nat→ Nat that computes for x : F the modulus of continuity of select x :

mod x = modµ (x .out)
modµ : Fµ → Nat→ Nat
modµ (pres x) 0 = 0

modµ (pres x) (suc n) = suc (mod x n)
modµ (drop x) n = suc (modµ x n)

In Example 3.2.20, we show that mod oddF n computes 2n + 1. This will allow us to show that the
look-ahead of odd, that is, the number of entries that are read from an input to produce an output,
is bounded by mod oddF. In other words, odd is uniformly continuous with modulus mod oddF.15

58

3.2. Programming with Equations

3.2.2. Computations in λµν=
We now give a reduction relation on terms in λµν=. This reduction relation has at its heart again a
contraction relation, which essentially applies the defining equations as rewrite rules. For instance,
we will have

⟨ ⟩′.out = (rlet f : 1′ = {· .out 7→ f } in f).out
−→ rlet f : 1′ = {· .out 7→ f } in (f .out)
−→ rlet f : 1′ = {· .out 7→ f } in f

= ⟨ ⟩′.

Turning copattern equations into rewrite rules also ensures that the definitions in Example 3.2.4,
3.2.5 and 3.2.6 yield terms whose reductions coincide with their counterparts in λµν .

Definition 3.2.12. A substitution is a function σ : TeVar→ Termsλµν= that maps variables to terms.
We denote by dom(σ) the domain of σ , which is given by dom(σ) = {x | σ(x) , x}. Given a term
t ∈ Termsλµν=, the application t [σ] of σ to t is the term that results from replacing all variables
x ∈ dom(σ) that are unbound in t by σ(x) while renaming bound variables in t (α-renaming) to
avoid binding of variables in σ(x). For a context Γ, we denote by dom(Γ) the set of variables that
occur in Γ. We then say that a substitution σ is a Γ-substitution, if dom(Γ) ⊆ dom(σ). ◀

Definition 3.2.13. Given a copattern q with Γ ⊢cop q : A ⇒ B and a Γ-substitution σ , we call
e = q[σ] an evaluation context on type A with result in B and we say that q matches e . For terms t ,
we denote by e[t/·] the term obtained by replacing the hole · in q[σ] by t . ◀

Note that in Definition 3.2.13, if there is a context Γ′, such that Γ′ ⊢ t : A and Γ′ ⊢ σ(x) : Γ(x)
for all x ∈ dom(Γ), where Γ(x) is the type of the variable x in Γ, we have Γ′ ⊢ e[t/·] : B.

We use matching to define contraction and reductions of terms.

Definition 3.2.14. Given a term t : A and an evaluation context e , we say that the term e[t/·]
contracts to t ′ using declarations in Σ, if e[t/·] ≻Σ t ′ can be derived using the following rules:

qi 7→ ti ∈ D
qi [σ][λD/·] ≻Σ ti [σ]

e[λD/·] ≻Σ t ′ f : A = D ∈ Σ
e[f /·] ≻Σ t ′

For each declaration block Σ, we define the reduction relation of λµν= −→Σ on terms as the
compatible closure of contraction and the following rule, which makes declarations available in
reductions.

t −→Σ1,Σ2
t ′

rlet Σ2 in t −→Σ1
rlet Σ2 in t ′

Finally, we need that rlet-bindings interact well with the rest of the calculus. Thus, we have two
more rules for each evaluation context e and constructor c ∈ {κ1,κ2,α }.

e[rlet Σ2 in t/·] −→Σ1
rlet Σ2 in e[t/·] rlet Σ2 in (c t) −→Σ1

c (rlet Σ2 in t)

We denote the relation −→∅ by −→. As before, we write for the reflexive, transitive closure
of −→ and ≡ for the equivalence closure of −→ (convertibility). ◀

59

Chapter 3. Inductive-Coinductive Programming

Let us now show that we can recover the reductions of λµν on non-recursive types.

Example 3.2.15. Recall that we introduced in Example 3.2.4, 3.2.5 and 3.2.6 notation that resembled
the structure of non-recursive types of λµν in λµν=. We now show how in each of the three cases
Definition 3.2.14 applies and that the result of a reduction is the same as in λµν . Let Γ,x : A ⊢ s : C ,
Γ,y : B ⊢ t : C and Γ;Σ ⊢ a : A, so that we can form

{κ1 x 7→ s ; κ2 y 7→ t} (κ1 a) = λ
{
· (κ1 x) 7→ s ; · (κ2 y) 7→ t

}
(κ1 a)

in the notation of Example 3.2.4. If we now put q1 = · (κ1 x) and σ(x) = a, then

{κ1 x 7→ s ; κ2 y 7→ t} (κ1 a) = q1[σ][λ
{
· (κ1 x) 7→ s ; · (κ2 y) 7→ t

}
/·].

Thus, by the first rule in Definition 3.2.14 we have

{κ1 x 7→ s ; κ2 y 7→ t} (κ1 a) ≻Σ s[σ] = s[a/x],

which is exactly how we defined contraction for λµν on terms of sum type in Definition 3.1.11.
Similarly, we have for q1 = · .pr1 and the empty substitution (everywhere undefined function) σ

π1 ⟨s, t⟩ = λ
{
· .pr1 7→ s ; · .pr2 7→ t

}
.pr1

= q1[σ][λ
{
· .pr1 7→ s ; · .pr2 7→ t

}
/·]

≻Σ s[σ]

= s,

so that the projections on product types also work as expected.
Finally, also β-reduction on functions is recovered in λµν=:

(λx . t) s = (· x)[s/x][λ{· x 7→ t}/·] ≻Σ t [s/x]. ◀

Let us now give an example of computations on recursive type.

Example 3.2.16. Recall that we have defined in Example 3.1.8 constant streams by using coiter in
λµν . The definition of these constant streams for a : A in λµν= is even easier:

aω B rlet ca : Aω = {·.hd 7→ a ; ·.tl 7→ ca} in ca

If we put Σ = {ca : Aω = {·.hd 7→ a ; ·.tl 7→ ca}}, then we have

aω .hd = (rlet Σ in ca).hd = (· .hd)[rlet Σ in ca/·] −→ rlet Σ in ((· .hd)[ca/·]).

To proceed further, we use the first contract rule to obtain

((· .hd)[λ{·.hd 7→ a ; ·.tl 7→ ca}/·]) ≻Σ a,

from which we get by the second contraction rule that

((· .hd)[ca/·]) ≻Σ a.

60

3.2. Programming with Equations

Thus, by the reduction rule for rlet-blocks, we can continue the reduction by

rlet Σ in ((· .hd)[ca/·]) −→ rlet Σ in a.

It is now crucial to note that the last two reduction rules in Definition 3.2.14 give us that this
resulting term behaves exactly like a itself despite it sitting under a rlet-binding. For instance, we
can reduce the term further if a = 0:

rlet Σ in 0 = rlet Σ in α (κ1 ⟨ ⟩) −→ α (rlet Σ in (κ1 ⟨ ⟩)) −→ α (κ1(rlet Σ in ⟨ ⟩)) −→ α (κ1 ⟨ ⟩).

This means that we are not able to distinguish rletΣ in 0 from 0 inside λµν=. We make this precise
in Section 4.1. ◀

Convention 3.2.17. Since we were hiding outermost rlet-bindings in the Haskell-like notation, see
Example 3.2.8 and 3.2.9, it is convenient to do the same for terms like rletΣ in 0 in Example 3.2.16
above. Hence, we will usually denote rlet Σ in 0 by 0 instead.

We now use this convention to demonstrate the computational behaviour of H from Example 3.2.9
on the alternating bit stream.

Example 3.2.18. Using the computation 0ω .hd −→ 0 from Example 3.2.16, the definition of alt in
Example 3.2.10 and of H , we obtain the following computation.

(H 0ω alt).hd −→ (f (0ω .hd) 0ω alt).hd −→ (f 0 0ω alt).hd −→ alt.hd −→ 0

Thus, we have (H 0ω alt).hd 0 and (H 0ω alt).hd ≡ 0, see Definition 3.2.14. For simplicity, we
will usually just write ≡ whenever we carry out computation steps, as this allows us to abstract
away from the exact number of intermediate computation steps. We use this convention in the
following computation of the head of H 1ω alt.

(H 1ω alt).hd ≡ (f (1ω .hd) 1ω alt).hd ≡ (f 1 1ω alt).hd ≡ (f 0 1ω (alt.tl)).hd ≡ alt.tl.hd ≡ 1 ◀

Let us briefly come back to the selector example (3.2.11).

Example 3.2.19. Recall that we have defined odd : Aω → Aω to be odd = select oddF. We are going
to use odd with A = Nat and apply it to alt from Example 3.2.10. Since the intuition of odd is that
it only keeps the odd positions of a stream, counting from 0, we expect that odd alt is equal to 1 in
all positions. Indeed, the computational behaviour of odd alt is given as follows. First, we have

odd alt = select oddF alt
−→ selectµ (oddF.out) alt
−→ selectµ (drop (pres oddF)) alt
−→ selectµ (pres oddF) (alt.tl),

which can only be reduced further if we request the head or tail of odd alt, see the definition of
selectµ . For the head we get then the following reduction to 1, which is the element in the first odd
position of alt.

(selectµ (pres oddF) (alt.tl)).hd −→ alt.tl.hd −→ 1

61

Chapter 3. Inductive-Coinductive Programming

Upon requesting the tail of odd alt, we obtain

(selectµ (pres oddF) (alt.tl)).tl −→ select oddF (alt.tl.tl) −→ select oddF alt = odd alt.

Thus, if we read further positions by applying the tail repeatedly as in (odd alt).tln .hd, we would
always get 1 as output. So, as expected, odd alt is the constant stream 1ω . We will develop in
Section 4.1 a notion of program equivalence that allows us to formulate this statement precisely by
saying that odd alt and 1ω are observationally equivalent. ◀

Example 3.2.20. Recall that we have defined after Example 3.2.11 a map mod : F → Nat → Nat.
Let us first show that mod oddF n ≡ 2n + 1 by induction on n. In the base case we have

mod oddF 0 ≡mµ (drop (pres oddF)) 0
≡ suc (mµ (pres oddF) 0)
≡ suc 0
= 2 · 0 + 1

For the induction step, we assume that mod oddF n ≡ 2n + 1 holds and proceed by

mod oddF (n + 1) ≡mµ (drop (pres oddF)) (n + 1)

≡ suc (mµ (pres oddF) (suc n))
≡ suc (suc (mod oddF n))
≡ suc (suc (2n + 1))

= 2n + 1 + 2

= 2(n + 1) + 1,

which proves the induction step. Note that the last two steps are arithmetic identities on natural
numbers and are not given by conversion of terms.

It is now easy to see that mod oddF is the modulus of continuity of odd = select oddF, that is, for
all n ∈ N and s, t : Aω we have

d(s, t) ≤ 2−(mod oddF n) =⇒ d(odd s, odd t) ≤ 2−n .

More generally, select is continuous on the domain F ×Aω , see [BH16]. ◀

So far, we have only seen examples of computations that eventually end. Since λµν= is fairly
liberal in how equational specifications can be used, we can write non-terminating programs in
λµν=, that is, terms from which infinite reduction sequences originate.

Example 3.2.21. The following term Ω is a generic term for any type A that has no normal form,
which means that any reduction sequence from Ω is infinite.

ΩA B rlet ω : A = {· 7→ ω} in ω

With Σ = {ω : A = {· 7→ ω}}, we have

ω = ·[ω/·] ≻Σ ω,

62

3.2. Programming with Equations

thus ΩA −→ ΩA, which gives immediately the desired infinite reduction sequence.
The same mechanism also allows us to construct a fixed point of an arbitrary term f : A→ A:

fix f B rlet r : A = {· 7→ f r } in r .

Depending on the evaluation strategy and f , this term might have a normal form. We will not go
into this further here though. ◀

We will now prove some results about the reduction relation of λµν=, which are going to be
important in what follows. Let us first show that computations do not alter types of terms.

Theorem 3.2.22. The reduction relation −→Σ preserves types, that is, if Γ;Σ ⊢ t : A and t −→Σ s for
some term s , then Γ;Σ ⊢ s : A. In particular, −→ preserves types of closed terms.

Proof. The proof that −→Σ preserves types on the rules that do not involve rlet-blocks is immediate
by type preservation of the contraction relation ≻Σ, see [Abe+13]. Type preservation of reductions
that are given by the three rules involving rlet-blocks follows immediately from the fact that the
type of rlet Σ1 in t is given by the type of t . □

We have discussed after Definition 3.2.3 that nothing prevents us in λµν= from giving declaration
bodies that are not exhaustive or may even overlap in some case. The following example demonstrates
the computations on such terms.

Example 3.2.23. First, we note that there are terms from which no reduction is possible because their
behaviour is underspecified. An example is the term λ

{
·.pr1 7→ t

}
.pr2, since the body

{
·.pr1 7→ t

}
has no case for the second projection and thus there is no contraction possible. Second, from the
term λ

{
·.pr1 7→ t ; ·.pr1 7→ s

}
.pr1 there are two reductions possible: either to t or to s . If t and s

cannot be reduced to a common term, then the reduction is non-deterministic in this case. ◀

This example demonstrates that we need to ensure that a collection of copatterns covers all possible
cases (in which case we call it exhaustive) and does not lead to non-deterministic reductions (in
which case we call it non-overlapping). The former is important because we might otherwise get
stuck on a term of type Nat that cannot be reduced further and is neither a successor or zero. Non-
determinism, on the other hand, causes confluence of the reduction relation to fail. Since confluence
becomes important in Section 4.1, we need to rule out non-deterministic declaration bodies as well.
Collections of copatterns that are exhaustive and non-overlapping are said to be covering. Formally,
covering is given with respect to a type as in the following definition, which we adapt from [Abe+13].

Definition 3.2.24. A set of annotated copatterns is a set Q of triples (Γ;q;B), where Γ is a context,
q a copattern and B a type. We write Q↓ for the underlying set of copatterns:

Q↓ B {q | (Γ;q;B) ∈ Q}.

A set Q of copatterns covers a type A, if there is a set Q of annotated copatterns such that Q = Q↓

63

Chapter 3. Inductive-Coinductive Programming

and A ◁| Q can be derived inductively from the following rules.

A ◁| {(∅; ·;A)}
A ◁| Q ∪ {(Γ,x : 1;q;C)}
A ◁| Q ∪ {(Γ;q[⟨ ⟩/x];C)}

A ◁| Q ∪ {(Γ;q;B → C)}
A ◁| Q ∪ {(Γ,x : B;q x ;C)}

A ◁| Q ∪ {(Γ;q;B ×C)}
A ◁| Q ∪ {(Γ;q.pr1;B), (Γ;q.pr2;C)}

A ◁| Q ∪ {(Γ;q;νX . B)}
A ◁| Q ∪ {(Γ;q.out;B[νX . B/X])}

A ◁| Q ∪ {(Γ,x : B1 + B2;q;C)}
A ◁| Q ∪ {(Γ,xi : Bi ;q[κi xi/x];C) | i = 1, 2}

A ◁| Q ∪ {(Γ,x : µX . B;q;C)}
A ◁| Q ∪ {(Γ,y : B[µX . B/X];q[α y/x];C)} ◀

Note that a set of covering copatterns is constructed in Definition 3.2.24 by extending copatterns
on coinductive types and by refining patterns on inductive types. This can be seen by relating the
types used in the rules of the covering relation to the typing of copatterns:

Lemma 3.2.25. If A ◁| Q, then for all (Γ;q;B) ∈ Q we have Γ ⊢cop q : A⇒ B.

Proof. This follows easily by induction on the rules applied to obtain A ◁| Q. □

Let us give some example for covering and non-covering sets of copatterns.

Example 3.2.26. Let U = Fµ → Bω → Bω and

Q = {(· (pres x) s).hd, (· (pres x) s).tl, · (drop u) s},

which are the three copatterns used in the definition of selectµ : U in Example 3.2.11. We define
two contexts Γ1 = x : F , s : Aω and Γ2 = u : Fµ , s : A

ω , and use these to check that there is a set of
annotated copatterns that corresponds to Q and covers U :

U ◁| {(∅; ·; Fµ → Bω → Bω)}
U ◁| {(y : Fµ ; · y;Aω → Aω)}
U ◁| {(y : Fµ , s : A

ω ; · y s;Aω)}
U ◁| {(z : F + Fµ , s : A

ω ; · (α z) s;Aω)}
U ◁| {(x : F , s : Aω ; · (pres x) s;Aω), (u : Fµ , s : A

ω ; · (drop u) s;Aω)}
U ◁| {(Γ1; (· (pres x) s).out;A ×Aω), (Γ2; · (drop u) s;Aω)}

U ◁| {(Γ1; (· (pres x) s).hd;A), (Γ1; (· (pres x) s).tl;Aω), (Γ2; · (drop u) s;Aω)}

Thus Q covers the type U = Fµ → Bω → Bω . Non-examples are the sets {·.hd ; ·.tl ; ·.hd}, as these
copatterns are overlapping, and {(· 0).hd ; (· 0).tl}, as this set is not exhaustive. ◀

We can now use the definition of covering to define a class of terms that can be reduced to certain
normal forms (called values, see Definition 3.2.30) and on which the reduction relation is confluent.

Definition 3.2.27. A declaration body D = {q1 7→ t1; . . . ;qn 7→ tn} with Γ;Σ ⊢bdy D : A is said
to be well-covering, if {qi | i = 1, . . .n} covers A. We then call terms t and declaration block Σ
well-covering, if every declaration body in t and Σ is well-covering. ◀

64

3.2. Programming with Equations

Example 3.2.28. By Example 3.2.26, we have that selectµ is well-covering. ◀

Let us now put the covering relation to use. The class of terms that we have been advertising, on
which the reduction relation is well-behaved, is given by the following definition.
Definition 3.2.29. For a declaration block Σ and a type A, we define several sets of terms:

Λ=
Σ(A) B {t | ∅; Σ ⊢ t : A and t is well-covering}
Λ=
Σ B

∪
A∈Ty

Λ=
Σ(A)

Λ=(A) B Λ=
∅ (A)

Λ= B Λ=
∅

First, we show that every well-covering term is either a value or can be further reduced. The
notion of value is given in the following definition.
Definition 3.2.30. A term t of type A is a value if (i) A is an inductive type and t = c s for a
constructor c and a value s; (ii) A is coinductive; or (iii) t = x for some variable x . ◀

Lemma 3.2.31 (Progress). Let A be a type and Σ a well-covering declaration block. For every term
t ∈ Λ=

Σ(A), we have that either t is a value or that there is a t ′ with t −→Σ t ′.

Proof. The proof of this fact is easily adopted from [Abe+13, Sec. 5], where one crucially has to
appeal to the two rules that distribute evaluation contexts and constructors over rlet-bindings. □

On the same class of terms, we now also prove confluence. The details of the proof can be found
in Appendix A.
Proposition 3.2.32. For any type A and any well-covering Σ, −→Σ is confluent on Λ=

Σ(A) and, in
particular, −→ is confluent on Λ=.

Let us briefly discuss what the relevance of the progress result and confluence is in the context
of this thesis. First of all, confluence allows us to simplify the definition of convertibility to t1 ≡
t2 ⇐⇒ ∃t3. t1 t3 t2, see Section 2.1. More importantly, it ensures that constructors in head
position of terms are unique.
Lemma 3.2.33. If t ∈ Λ=(A1 +A2) and t κi t

′ for some i ∈ {1, 2}, then for all t ′′ with t κj t
′′

we must have that i = j.

Proof. By confluence, there must be a term s with κi t
′ s κj t

′′. Since reduction steps do
not change or remove constructors, it follows that s = κi s

′ with i = j. □

In combination with the progress lemma, we can find for every term of inductive type a weak head
normal form (WHNF) with unique constructors as follows. We denote the set family of all strongly
normalising terms by SN = {SNA}A∈Ty, whereby SNA = {t ∈ Λ=(A) | t ↓}, see Section 2.1.
Lemma 3.2.34 (Weak Head Normal Forms). Let t ∈ SNA be a strongly normalising term. IfA = µX . B,
then there is a t ′ ∈ SNB[µX . B/X] with t ≡ α t ′. Otherwise, if A = B1 + B2, then there is i ∈ {1, 2} and a
t ′ ∈ SNBi with t ≡ κi t ′, and for every s with t ≡ κj s we have i = j.

Proof. Since t is strongly normalising, there is a normal form u with t u. The claim follows by
applying Lemma 3.2.31 to u. For sums, uniqueness of i is the content of Lemma 3.2.33. □

65

Chapter 3. Inductive-Coinductive Programming

3.3. Relation Between λµν and λµν=
Let us comment on the relation between the two presented calculi. As we have seen, they embody
two different styles of recursion We can, however, emulate the recursion style of λµν in λµν=.
Definition 3.3.1. We simultaneously define by induction on the type A the following three term
constructors in λµν=.

1. Given a type A and a term t with X ⊩ A : Ty and Γ;Σ ⊢ t : B → C , we define a term
Γ;Σ ⊢ A[t] : A[B]→ A[C];

2. given a term r with Γ;Σ ⊢ r : A[B/X]→ B, we define an iterator Γ;Σ ⊢ Rµ r : µX .A→ B;

3. given a term r with Γ;Σ ⊢ r : B → A[B/X], we define a coiterator Γ;Σ ⊢ Rν r : B → νX .A.
The term A[t] is given literally as in λµν (Definition 3.1.9), only with iter replaced by Rµ and coiter
by Rν . For the iterator, we define

Rµ r B rlet f : µX .A→ B =
{
· (α x) 7→ r (A[f] x)

}
in f ,

and the coiterator, on the other hand, we define by

Rν r B rlet f : B → νX .A =
{
(· x).out 7→ A[f] (r x)

}
in f . ◀

We then obtain for the terms in Definition 3.3.1 the same typing rules as in λµν .
Lemma 3.3.2. The following typing rules hold in λµν= for the terms defined in Definition 3.3.1.

Γ;Σ ⊢ t : B → C

Γ;Σ ⊢ A[t] : A[B/X]→ A[C/X]

Γ; Σ ⊢ r : A[B/X]→ B

Γ;Σ ⊢ Rµ r s : µX .A→ B

Γ;Σ ⊢ r : B → A[B/X]

Γ; Σ ⊢ Rν r s : B → νX .A

These terms are, moreover, well-covering if r , s and t are.

Proof. The proof for the first rule is again carried out by induction on A, just like in Lemma 3.1.10.
That the typing rules of the iterator and coiterator hold is seen as follows. First, we show that the
bodies for the coiteration and iteration are well-typed, where we use the typing rule for A[t]. For
the case of Rν , we let Dν =

{
(· x).out 7→ A[f] (r x)

}
and Σ′ = Σ, (f : B → νX .A = Dν). Then we

can derive that D is well-typed as follows.
Γ;Σ′ ⊢ f : B → νX .A

Γ;Σ′ ⊢ A[f] : A[B]→ A[νX .A]

Γ; Σ′ ⊢ r : B → A[B] Γ; Σ′ ⊢ x : B

Γ,x : B; Σ′ ⊢ r x : A[B]

Γ,x : B; Σ′ ⊢ A[f] (r x) : A[νX .A]
Γ; Σ′ ⊢bdy

{
(· x).out 7→ A[f] (r x)

}
: B → νX .A

Similarly for the body of Rµ , we put Dµ =
{
· (α x) 7→ r (A[f] x)

}
and Σ′ = Σ, (f : B → νX .A = Dµ),

allowing us to carry out the following derivation.
Γ;Σ′ ⊢ f : µX .A→ B

Γ;Σ′ ⊢ A[f] : A[µX .A]→ A[B] Γ,x : A[µX .A]; Σ′ ⊢ x : A[µX .A]

Γ,x : A[µX .A]; Σ′ ⊢ A[f] x : A[B]

Γ,x : A[µX .A]; Σ′ ⊢ r (A[f] x) : B
Γ;Σ′ ⊢bdy

{
· (α x) 7→ r (A[f] x)

}
: µX .A→ B

66

3.4. Conclusion and Related Work

Since the bodies are well-typed, it is clear that Rµ r and Rν r have the required types.
Finally, well-covering follows also by a straightforward induction on the type A. We check, as

an example, that Rν r is well-covering. This requires us to construct an annotated set of copatterns
that corresponds to {(· x).out}, which can be constructed by the following derivation.

B → νX .A ◁| {(∅; ·;B → νX .A)}
B → νX .A ◁| {(x : B; · x ;νX .A)}

B → νX .A ◁| {(x : B; (· x).out;A[νX .A/X])}

Thus, {(· x).out} covers B → νX .A, as required, and Rν r is well-covering. □

This definition allows us to translate terms of λµν to terms in λµν=.

Definition 3.3.3. We define a function ⌜(−)⌝ : Λ→ Λ= by induction on the terms of λµν :

⌜⟨ ⟩⌝ = ⟨ ⟩

⌜κi t⌝ = κi ⌜t⌝

⌜α t⌝ = α ⌜t⌝

⌜πi t⌝ = ⌜t⌝.pri
⌜ξ t⌝ = ⌜t⌝.out

⌜s t⌝ = ⌜s⌝ ⌜t⌝

⌜x⌝ = x

⌜λx . t⌝ = λ{· x 7→ ⌜t⌝}
⌜⟨s, t⟩⌝ = λ

{
· .pr1 7→ ⌜t⌝ ; · .pr2 7→ ⌜s⌝

}
⌜iterµX .A (x . t) s⌝ = Rµ (λx . ⌜t⌝) ⌜s⌝

⌜coiterνX .A t s⌝ = Rν (λx . ⌜t⌝) ⌜s⌝

⌜{κ1 x 7→ s ; κ2 y 7→ t} u⌝ = λ{κ1 x 7→ ⌜s⌝ ; κ2 y 7→ ⌜t⌝} ⌜u⌝

Theorem 3.3.4. Definition 3.3.3 gives rise to a map ⌜(−)⌝ : Λ→ Λ=, in the sense that terms of λµν are
mapped to well-covering terms of λµν=. Moreover, it preserves types:

Γ ⊢ t : A =⇒ Γ ⊢ ⌜t⌝ : A.

Proof. Both well-covering and type preservation are proved by induction on terms. All cases, except
that for iter and coiter, are thereby immediate. That the translation of iter and coiter is well-covering
and type preserving has been proved in Lemma 3.3.2. □

3.4. Conclusion and Related Work
The purpose of this chapter was to give some understanding of how to program with inductive-
coinductive data. We chose here two calculi that employ different ways of dealing with inductive and
coinductive data, and compared their corresponding strengths and weaknesses: The first calculus
λµν is hard to use, but all terms are strongly normalising. On the other hand, λµν= is fairly easy
to use, but we can write non-terminating programs in it. Note that we have not proved strong
normalisation of λµν in this chapter, this will be rectified in Chapter 7. We tackle the problem of
non-termination in λµν= in the next chapter.

In Chapters 6 and 7, we will establish category theoretical and type theoretic extensions of the
simple calculus λµν to the setting of dependent types. This will allow us to intertwine programming
and reasoning. Also, we will give there further applications of inductive-coinductive programming.

67

Chapter 3. Inductive-Coinductive Programming

The calculi presented in this chapter have been discussed in one form or another in other places,
so let us clarify the relation to existing work. Possibly the earliest calculi with mixed inductive-
coinductive types were given by Mendler [Men87; Men91] and Hagino [Hag87]. Mendler combines
thereby the polymorphic λ-calculus with inductive and coinductive types, whereas Hagino bases his
calculus on the notion of dialgebra, something we will come back to in Chapter 7. Hagino’s iteration
and coiteration schemes match quite clearly with the ones we used in Section 3.1. Mendler [Men91],
on the other hand, models the iteration principle using constants

RµX .A : ∀Y .(∀Z .(Z → Y)→ A→ Y)→ µX .A→ Y .

If we note that the type ∀Z .(Z → Y) → A → Y corresponds with maps A[Y/X] → Y , then we
can read the type of RµX .A as “for every type Y and every A-algebra there is a map µX .A → Y ”.
Thus, also Mendler’s style of introducing iteration gives rise to the same iteration principle that
we were using in λµν , cf. Section 3.3 and [UV96]. Similarly, also his coiteration principle matches
that of λµν . Thus both calculi agree on the inductive and coinductive types, but Mendler’s calculus
also features (impredicative) polymorphism. This allows Mendler to obtain iteration and coiteration
principles without having to introduce explicitly the action of types on terms, see [UV96; UV02] for
a detailed discussion and [UV99a; Ven00] for a discussion from a category theoretical perspective.
To ensure strong normalisation, Mendler, of course, allows fixed points only of positive types. In
this respect, Mendler’s calculus [Men87; Men91] goes beyond λµν , as we only allow strictly positive
types. In principle, we could also extend λµν and λµν= to arbitrary positive types, see [Mat99] for
useful examples, but this would make the later developments in this thesis much harder. Similarly,
Greiner [Gre92] considered a language with positive inductive and coinductive types as well, but
restricts to top-level polymorphism. Finally, Howard [How92; How96a] proved confluence and strong
normalisation for a calculus that is essentially an extension of λµν to positive types, and implemented
this calculus in the Lemon language [How95]. Interestingly, Howard [How96a] extends his calculus
also with an operation force : νX .A → µX .A for, what he calls, pointed types. This operation
introduces full recursion into the calculus for pointed types, essentially by turning the category
associated to the calculus into an algebraically compact category à la Freyd [Fre90].

Besides calculi with mixed inductive-coinductive types, one can find in the literature many calculi
with just inductive types [BDS13; Con97; Gim95; Mat99; Wer94], only coinductive types [Møg14]
and calculi with one-layer inductive or coinductive types [Geu92]. Of these, most are based on
iteration/coiteration schemes to avoid termination issues. Since programming with equational defin-
itions is much more practical, as we have seen in Section 3.2, also calculi that support programming
with recursive equations have been proposed. The calculus in Section 3.2 is, as mentioned, based
on the work by Abel et al. [Abe+13]. The termination issue for such calculi is being dealt with by,
for example, Abel and Pientka [AP13], Atkey and McBride [AM13], Barthe et al. [Bar+04], Coquand
[Coq93], Giménez [Gim95], Sacchini [Sac13] and Xi [Xi01].

Finally, syntactic specification formats for elements of final coalgebras have been proposed in
several forms. The formats that are closest to the specifications that can be given in λµν= are
the behavioural differential equations (BDE) described, for example, by Hansen et al. [HKR17],
Kupke and Rutten [KR08] and Rutten [Rut03]. To guarantee (unique) solutions to BDEs, Kupke and
Rutten [KR08] define a notion of complete sets of equations. These correspond to covering sets of
copatterns, which we used to ensure that normalising terms have weak head normal forms with
unique constructors in head position (Lemma 3.2.34). An important difference between the systems

68

3.4. Conclusion and Related Work

of equations developed in [KR08] and copattern equations is that specifications in λµν= can only
be given on fixed point types, which correspond to final coalgebras. In contrast, the equations
in [KR08] can be given on so-called observational coalgebras, which are coalgebras for which the
map into the final coalgebra is injective. It would be interesting to study a type theory that allows
the specification of sub-types of largest fixed point types by specifying additional properties that
elements of that type must satisfy, see [Bas15b] for an example. Another approach to specifications
that do not force the use of iteration and coiteration schemes are cyclic proof systems and games.
These have, for example, been investigated by Cockett [Coc01] and Santocanale [San02a; San02b].

Notes
10 Note that the the addition of natural numbers can also be defined without iteration on functions by

using
д+ B λm. {κ1 y 7→m ; κ2 k 7→ suc k} x

plus B λnm. iterNat (x .д+m) n

instead. However, it is illustrative to see how the function space can be exploited in iteration. An
common example of a function that can only be defined with higher-order iteration is the Ackermann
function.

11 The extra case for types that do not use any variables in the definition of the action of types on
terms is needed in a very subtle way. Not only does this give us better computation rules, but it is
actually crucial in the proof of Proposition 4.1.9. An elegant way around this extra case would be to
use externally given monotonicity witnesses, as in [Mat99; UV02]. We will discuss other approaches
in the conclusion of this chapter.

12 It should be noted that programming just with iteration and coiteration schemes can be very chal-
lenging. For example, the predecessor on natural numbers or the construction of a stream from its
head and tail are surprisingly difficult to define. In the setting of initial algebras and final coalgebras
their definitions follow from Lambek’s lemma (Lemma 2.5.4), but in a syntactic calculus it takes a
bit of ingenuity to come up with their definitions. For the predecessor function this even lead to a
nice story about Kleene having an epiphany at the dentist of how to implement the predecessor in
pure λ-calculus [Cro75]. This problem can be remedied by generalising the concept of iteration and
coiteration that we used here, to that of primitive recursion and primitive corecursion, respectively,
see [BDS13; Geu92; Lei89; UV99c; Ven00; VU98]. We will not discuss this further though, as it not
relevant to us here, and since these problems do not occur in the calculus introduced in Section 3.2
below. Also the dependent type theory in Chapter 7 immediately admits primitive recursion.

13 One could continue to prove relevant properties about this calculus like subject reduction (types of
terms are preserved under reduction steps), confluence (any two reduction sequences originating at
the same term can be joined), progress (every term can be reduced to a value, where a value is a
term that has been constructed only by introduction rules, projection and weakening) and strong
normalisation (no term has an infinite reduction sequence). However, we refrain from doing so, as
(variations of) the calculus λµν have been extensively studied. Proofs of strong normalisation can,
for example, be found in [AA99; How92; Mat99], whereby confluence is also proven by Howard

69

Chapter 3. Inductive-Coinductive Programming

[How92]. We just note here that λµν can be encoded into other calculi presented in this thesis,
while preserving reduction steps. More specifically, λµν is a (strongly normalising) fragment of
the calculus considered in Section 3.2, from which we can obtain subject reduction, progress and
confluence, see Section 3.3. λµν is also a non-dependent fragment of the dependent type theory
studied in Chapter 7, from which we can obtain strong normalisation. Hence, we will not study the
properties of the present calculus in isolation.

14 We do not have a precise notion of predicate at this point, but we just assume an intuitive under-
standing that we can check whether a predicate holds for a given element of A.

15 We note that one can also define by iteration a function _@_ : Aω → Nat → A that, given a
stream s and an index n : Nat, returns the element s @ n at position n in s . Moreover, there
is a stream nats : Natω that enumerates the natural numbers. It is then fairly easy to see that
(select x s)@ n ≡ s @ (select x nats @ n) for every n ∈ N. From these considerations, it follows that
mod x n ≡ select x nats@n, which gives us a more direct way to express mod and a direct link with
select. To ease calculations, we stick here to the explicit definition of mod though.

70

CHAPTER 4

Observations

In this sense, meanings control us, inculcate obedience to the discipline inscribed in them. And this is by
no means purely institutional or confined to the educational process. […] The right word in a new situation
does not always readily present itself. Language sometimes seems to lead a life of its own. Words are unruly
“They’ve a temper, some of them”, Humpty Dumpty goes on to observe.

— Catherine Belsey, “Poststructuralism”, 2002.

In the last chapter, we defined the two calculi λµν and λµν=. The aim of this chapter is to make
some first steps towards reasoning principles for the programs of these calculi.

One of the most important ingredients in reasoning about programs is the ability to compare
their behaviour. So far, we are only able to compare programs on the basis of their computational
behaviour , which is given by the reduction relations on the terms of the two calculi. In particular,
these reduction relations give rise to convertibility as their equivalence closure. Convertibility can
readily be used to compare the computational behaviour of programs. However, this comparison is
often too fine-grained to be useful. For instance, the terms 1ω and odd alt are not convertible to
each other. But we have

1ω .hd ≡ 1 1ω .tl ≡ 1ω (Example 3.2.16)
odd alt .hd ≡ 1 odd alt .tl ≡ odd alt, (Example 3.2.19)

from which we would like to infer that the programs 1ω and odd alt produce the same stream
entries but arrive at them through different computations. The question is now how we can formally
characterise that they have “the same entries”?

An important notion that pervades reasoning about programs is that of observations, which determ-
ine in turn the observational behaviour of programs. For example, on streams the two fundamental
observations are taking the head and the tail of a stream. Functions, on the other hand, have
as many observations as they have possible arguments, since we can observe the outcome of the
application of a function to any argument. In a mixed inductive-coinductive setting, general ob-
servations on programs are more complex. For instance, what is the observational behaviour of
the term 1, or of the selector oddF from Example 3.2.11? In the former case, 1 is as a value, see
Definition 3.2.30, completely determined by its computational behaviour. However, for oddF we
have oddF.out ≡ drop (pres oddF), thus we should clearly consider the constructors drop and pres
as part of the observational behaviour of oddF. This raises the question of how to characterise
the observational behaviour for general inductive-coinductive programs. We will resolve this in
Section 4.1.2 by introducing a type-driven notion of observation in the form of a modal logic of
program tests, which will formally define what the observable behaviour of program is. Having
defined the observational behaviour of programs, we can also say that programs are observationally
equivalent, given that they show the same observational behaviour.

Despite the fact that comparing the observational behaviour of programs is often more useful, also
computational behaviour plays a role. For example, the coiteration on streams over A (Section 3.3)

71

Chapter 4. Observations

has the property that
(Rν r s).hd ≡ (r s).pr1,

where r : B → A × B and s : B. Since conversions that arise from iteration and coiteration can be
very complex and tedious to carry out by hand, it lifts a great burden from us if we can pass these
to a machine. This, however, requires that the conversion relation is computable, which would fail if
we had, for example, that Rν ≡ h for all homomorphisms h : B → Aω that fulfil h.hd ≡ (r s).pr1 and
h.tl ≡ h ((r s).pr2). Rather, we will say that Rν r and all such homomorphisms h are observationally
equivalent, which we write as Rν r ≡obs h.

Our goal in Section 4.2 is to analyse and compare both computational and observational behaviour
in a common framework, towards which we proceed in two steps. The first step in understanding
the difference between the two behaviours is the use of categories in which objects are types
and morphisms are equivalence classes of terms up-to convertibility. Thus, we first take only the
computational behaviour into account. In this setup, we can already identify some concepts that
resemble category theoretical constructions. For instance, we will find that product types are weak
products, in other words, they have projections and maps can be paired, but this pairing is not
unique. Next, we will extend these categories to 2-categories, where the objects and morphisms are
as before but 2-cells relate observationally equivalent terms. Setting up 2-categories in this way has
two effects. First of all, we can identify more precisely the structure that the types come with. For
example, we have that the product types give rise to pseudo-products, which in this case means
that the pairing is unique up-to observational equivalence. Secondly, we are able to distinguish
the computational from the observational behaviour, in the sense that computational equivalence is
given as equality of morphisms, while observational equivalence is situated at the level of 2-cells.
This has the effect that, for instance, the identity (Rν r s).hd = (r s).pr1 holds in the 2-category, but
in general we only have an isomorphism Rν r � h, see Definition 2.6.3, between the coiteration and
a homomorphism h. Thus, this 2-category theoretical setup allows to identify the properties and
differences of computational and observable behaviour of programs in λµν and λµν=.

The purpose of this chapter is to develop the fundamental ability to compare the behaviour of
programs, specifically programs of inductive-coinductive types. Towards the end of Section 4.1, we
are thus able to express interesting properties of programs in λµν and λµν=. In Chapter 5, we
will then provide techniques to prove such properties. Also the category theoretical description of
the types and terms will reappear in Chapter 6, although there we will deal with dependent types.
Finally, in Chapter 7, we will be able to compare programs in the there provided dependent type
theory, without having to resort to an external logic or set theory.

Original Publication Section 4.1 has been presented in [BH16]. In the same paper, a category
theoretical account of the calculus from Section 3.2 has also been given. However, the analysis we
gave there was not very precise, as we did not make any distinction between computations and
observations. This is remedied in Section 4.2.

4.1. Observational Equivalence and Normalisation
We have already come across the notion of observational behaviour of programs a couple of times.
The purpose of this section is to make this notion precise. In what follows, we introduce test formulas

72

4.1. Observational Equivalence and Normalisation

that allow us to carry out observations on terms of λµν and λµν=. We then use these test formulas
to define observational equivalence, which compares terms on the basis of their observational rather
than their computational behaviour. Moreover, we use test formulas to single out the observationally
normalising terms of λµν=, which are those terms that respond to any observation with a strongly
normalising term.

Test formulas are formulas of a multi-modal logic, where the modalities capture the observations
that can be carried out on terms of a given type. Thus, test formulas are themselves typed. These
formulas are closely related to the testing logic considered in [San11, Sec. 6.2], and the many-sorted
coalgebraic modal logics for polynomial functors studied, for example, by Jacobs [Jac01] and Kupke
[Kup06, Sec. 2.1.2]. Considering how the calculi in Chapter 3 were set up, the reader might have
guessed by now that the essential observations on terms of product- and ν-type are given by the
corresponding destructors π1, π2 and ξ , respectively. What needs clarification are observations on
terms of inductive type and on functions.

The distinguishing feature of inductive types are the constructors. This is reflected both in the
case distinction for sums and the recursion principle in λµν , and the covering of patterns in λµν=.
In both calculi, we construct programs on sum and µ-types from programs that cover all possible
constructor cases. These considerations lead us to use modalities in the testing logic that inspect
the constructor in the head position of terms, see Definition 4.1.19.

For tests on terms of function type we would expect that an observation amounts to function
application, thus there should be a modality for each possible argument. However, there is a caveat.
If we allow any argument, then we could inspect the computational behaviour of terms, which should
not be an observable property. Hence, it should also not be taken into account for observational
equivalence. Consider, for example, the following two terms f1, f2 : Nat→ Nat in λµν=.

f1 B λ
{
· 0 7→ 0 ; · (suc n) 7→ 1

}
f2 B λ

{
· 0 7→ 0 ; · (suc 0) 7→ 1 ; · (suc (suc n)) 7→ 1

}
Then for the non-terminating program Ω from Example 3.2.21, we have f1 (suc Ω) −→ 1, whereas
f2 (sucΩ) does not have a weak head normal form. Thus, we can distinguish f1 and f2 by applying
them to a term that does not have a normal form. If we restrict attention to strongly normalising
terms t though, then f1 t ≡ f2 t . For this reason, the modalities on function types will range only
over the observationally normalising terms of λµν=, see Definition 4.1.3.

Observationally normalising terms subsume both terminating computations of inductive type
and, what is usually called, productive programs of coinductive type. In the case of streams, the
requirement that a term t : Natω is observationally normalising will be defined as follows. First, the
head of t is a strongly normalising term of type Nat, that is, t .hd ≡ n for some n ∈ N. Second, its tail
t .tl is strongly normalising and again observationally normalising. What this gives us, is that we are
able to interpret t as a function t† : N → N in the set-theoretic sense by iteratively extracting the
entries of t , in other words we put t†(0) = n and t†(k + 1) = (t .tl)†(k). In general, the restriction
to observationally normalising terms allows us to interpret these as set-theoretic (total) functions.

4.1.1. Observational Normalisation
As we discussed in the introduction, we want to test terms of function type only on terms that
normalise under any observation. Thus, to be able to define tests for λµν=, our first task is to define

73

Chapter 4. Observations

the corresponding class of, what we call here, observationally normalising terms. The intention is
to capture the largest class of terms that can serve as an interpretation for types, which separates
inductive and coinductive types. In particular, this means that all terms in that class must be strongly
normalising, that is, correspond to terminating computations, and the class must be closed under
observations. For instance, given observationally normalising terms t and s with t : A → B and
s : A, also the application t a should be observationally normalising. Since we are interested in the
largest class of terms, the iterators and coiterators, which we introduced in Definition 3.3.1, should
also be in that class. The definition of observational normalisation and the proof that the iterators
and coiterators are observationally normalising are our concern in the remainder of the present
subsection. Closure under observations in proved in Theorem 4.1.17 in the next subsection.

Before we come to the definition of observational normalisation, we need to introduce some
notation. First of all, to define observational normalisation on open terms, we need to generalise
the notion of substitution that we used before, see Definition 3.2.12. Recall that a substitution is a
map σ that assigns to variables in TeVar terms in λµν or λµν=. Moreover, we denoted the type of
x in a context Γ by Γ(x).

Definition 4.1.1. Let U = {UA}A∈Ty be a family of sets indexed by types. For a context Γ, we
say that a substitution σ is U -Γ-closing, if dom(Γ) ⊆ dom(σ) and for every x ∈ dom(Γ) we have
σ(x) ∈ UΓ(x). We denote by Subst(U ; Γ) the set of all U -Γ-closing substitutions.

Secondly, we will define observationally normalising terms on open types, whose variables will
be interpreted as sets of terms. This leads us to the following definition.

Definition 4.1.2. Let Θ be a type variable context and υ a substitution of closed types for the
variables in Θ, see Definition 3.1.1. We denote by IΘ,υ be set of valuation functions V that map
variables X in Θ to subsets of Λ=

υ(X)
, that is,

IΘ,υ =
{
V : Θ→ P(Λ=)

�� V (X) ⊆ Λ=
υ(X)

}
.

Moreover, let us denote by ε the empty valuation. Finally, if V ∈ IΘ,υ , A ∈ Ty and U ⊆ Λ=
A , then we

write V [X 7→ U] for the updated valuation in I(Θ,X),υ[A/X]. ◀

Now we are in the position to define the set of observationally normalising terms. We do this
in three steps: First, we define by iteration on types an operator WD (“well-defined”) that takes
an open type and a valuation for the variables of that type as input. This first step is required to
define observationally normalising terms on fixed point types. Next, the set ON of observationally
normalising terms is given by evaluating WD on closed types. Finally, observational normalisation
on open terms is defined in terms ON and ON-closing substitutions. These three steps are captured
in the following definitions.

Definition 4.1.3. Let Θ be a type variable context, υ ∈ TySubst(Θ), and V ∈ IΘ,υ . Given a type A

74

4.1. Observational Equivalence and Normalisation

with Θ ⊩ A : Ty, we define WDυ,V
A ⊆ Λ=

A[υ] by iteration on A as follows.
WDυ,V

1 = SN1

WDυ,V
X = V (X)

WDυ,V
A1+A2

=
∪
i=1,2

{
s ∈ SN(A1+A2)[υ]

��� (∃s ′. s κi s
′) ∧

(
∀s ′. (s κi s

′) =⇒ s ′ ∈WDυ,V
Ai

)}
WDυ,V

A1×A2
=

{
s ∈ SN(A1×A2)[υ]

��� ∧
i=1,2

s .pri ∈WDυ,V
Ai

}
WDυ,V

A→B =
{
s ∈ SNA→B[υ]

��� ∀t ∈WD(),ε
A . s t ∈WDυ,V

B

}
WDυ,V

µX .A = µU .
{
s ∈ SN(µX .A)[υ]

��� (∃s ′. s α s ′)

∧
(
∀s ′. (s α s ′) =⇒ s ′ ∈WDυ[µX .A/X],V [X 7→U]

A

)}
WDυ,V

νX .A = νU .
{
s ∈ SN(νX .A)[υ]

��� s .out ∈WDυ[νX .A/X],V [X 7→U]

A

}
,

In this definitions, the fixed points are taken in the complete lattice of subsets of Λ=, which exist
because WDυ,V

A is clearly monotone in V in each case. For a closed type A, that is, if Θ is empty,
we define the set family ONA of observationally normalising terms of type A by16

ONA BWD(),ε
A .

Moreover, given a context Γ, we define ONΓ
A to be the set of all terms t such that t ∈ SN and

t [σ] ∈ ONA for any ON-Γ-closing substitution σ , see Definition 4.1.1. Finally, given a type A with
Θ,X ⊩ A : Ty, we define a monotone function

Ψυ,V
A : P

(
Λ=
A[µX .A/X][υ]

)
→ P

(
Λ=
A[µX .A/X][υ]

)
Ψυ,V
A (U) =

{
s
��� (∃s ′. s α s ′) ∧

(
∀s ′. (s α s ′) =⇒ s ′ ∈WDυ[µX .A/X],V [X 7→U]

A

)}
∩ SN,

so that WDυ,V
µX .A = µU .Ψυ,V

A (U). ◀

Before we continue, let us remark on the use of the least fixed point the definition of WD in
the case of µ-types. This least fixed point ensures that a term can only be finitely often unfolded,
which is crucial in ensuring that the iterator that we introduced in Definition 3.3.1 is observationally
normalising. This, in turn, will allow us to prove in Section 4.2 that in the category of observation-
ally normalising terms, all µ-types are initial algebras. Interestingly, in the calculus λµν= strong
normalisation and admitting only finitely many unfolding steps do not coincide, as the following
example shows.17

Example 4.1.4. Given a closed type A, we can define the type A∗ of lists over A to be µX . 1+A×X .
Suppose that we are given a term a of type A, then the following is a program in λµν=.

p : A ×A∗

p.pr1 = a

p.pr2 = α (κ1 p)

75

Chapter 4. Observations

Note that p.pr2 denotes an infinite list of a’s, but p.pr2 ∈ SNA∗ . However, one can show p.pr2 < ONA∗

by induction on a hypothetical proof of p.pr2 ∈ ONA∗ . ◀

As intended, strong normalisation is implied by observational normalisation.

Lemma 4.1.5. There is an inclusion ON ⊑ SN of set families, that is, ONA ⊆ SNA for all A ∈ Ty.

Proof. To prove that ON ⊑ SN holds, one shows for all types A with Θ ⊩ A : Ty, substitutions
υ ∈ TySubst(Θ) and valuations V ∈ IΘ,υ with V (X) ⊆ SNυ(X) that WDυ,V

A ⊆ SNA[υ] by induction
on A. This induction is then almost trivial, except for the cases of µ- and ν-types, in which we have
to use the fixed point properties. The result follows for closed types by definition of ON. □

In following example we illustrate that the definition of observational normalisation includes terms
that do not necessarily correspond to guarded recursive equations [Bar04] or guarded recursive
schemes [Gim95]. This example is intended for readers who are familiar with stream differential
equations (SDE) [HKR17] with the goal being an interpretation of some SDEs in λµν=.

Example 4.1.6. To simplify the development in this example, we restrict attention to SDEs over a
signature with two symbols, say f1 and f2, each of arity 2. Given a type A, let us denote the product
A ×A by A2. We can represent a signature with two symbols of arity 2 by the type

F B X 2 + X 2,

in the sense that the type F ∗ of terms over this signature with variables in Y is given by

F ∗ B µX . F + Y

with Y ⊩ F ∗ : Ty. Let us now fix a type V of four elements that we will use as stream variables:

V B (1+ 1) + (1+ 1).

We denote these variables by

x B κ1 (κ1 ⟨ ⟩) y B κ1 (κ2 ⟨ ⟩)

x′ B κ2 (κ1 ⟨ ⟩) y′ B κ2 (κ2 ⟨ ⟩).

The variables represent two streams x and y, and their tails x′ and y′ in the syntax of SDEs.
Let A ∈ Ty. A system of SDEs over F is given by four observationally normalising terms

hi : A
2 → A, i = 1, 2

di : A
2 → F ∗[V], i = 1, 2,

We interpret these terms as the following system of stream differential equations, see [HKR17].

fi (s, t).hd = hi (s .hd, t .hd)
fi (s, t).tl = di (s .hd, t .hd)[s/x, t/y, (s .tl)/x′, (t .tl)/y′]

(4.1)

These equations say that the head and tail of fi (s, t) are given by evaluating at the head of s and
t the maps hi and di , respectively. In the case of the tail, we also need to substitute the input

76

4.1. Observational Equivalence and Normalisation

streams s and t and their tails into the expression that results from di . The goal of this example is
to implement the substitution and the above system of SDEs in λµν=.

We first deal with substitution. Let I B V → Aω , which is the type of interpretations of the
variables inV over streams. The substitution operation we need is a map that, given an interpretation
u : I , replaces every variable v : V in a term in F ∗[V] by u v , thus obtaining a term in F ∗[Aω]. This is
in fact just given by F ∗[u] : F ∗[V]→ F ∗[Aω], see Definition 3.3.1. To simplify notation, we introduce
a term mkI : Aω ×Aω → I that allows us to construct the substitution in (4.1):

mkI u x = u .pr1 mkI u y = u .pr2
mkI u x′ = u .pr1.tl mkI u y′ = u .pr2.tl

The substitution in (4.1) is then given for stream terms s and t by mkI ⟨s, t⟩. We can now interpret
(4.1) in λµν= by mutual recursion:

⌊−⌋ : F [Aω]→ Aω

⌊κi u⌋ .hd = hi ((hd × hd) u) i = 1, 2

⌊κi u⌋ .tl =
⌊
F ∗[mkI u] (di ((hd × hd) u))

⌋
µ i = 1, 2

⌊−⌋µ : F ∗[Aω]→ Aω

⌊α (κ1 t)⌋µ = ⌊F [⌊−⌋µ] t⌋
⌊α (κ2 s)⌋µ = s

The way ⌊−⌋ corresponds to (4.1) is as follows. First of all, recall that the SDE term “fi (s, t)” is
given by the term κi ⟨s, t⟩ of type F [Aω]. Thus, the cases for head and tail in the definition of
⌊κi u⌋ correspond to the head and tail cases in (4.1). This also readily explains the definition of the
head of ⌊−⌋. However, the tail case needs a few more words of explanation. In (4.1), a substitution
and the complex SDE term di are used. The substitution is carried out in the definition of ⌊−⌋ by
applying F ∗[mkI u] to di . Afterwards, we use ⌊−⌋µ to give an interpretation of the SDE term, in
which variables have been replaced by elements of A and streams over A. Interpreting such a term
proceeds then by iteration, where each function symbol, denoted by t in the definition of ⌊−⌋µ , is
again interpreted by appealing to ⌊−⌋, and each stream variable is interpreted by its assigned stream.

Note that in the tail-case of ⌊−⌋ the outermost function is not ⌊−⌋ itself. Thus, the above definition
is not syntactically guarded and it is thus not immediately clear that it is well-defined. We claim,
however, that ⌊−⌋ ∈ ON. Since we first need that the action F ∗[−] on terms preserves observational
normalisation, we defer the proof.

It should also be noted that ⌊−⌋ can be implemented in Agda by using sized types. Sized types
allow the check for well-definedness of recursive equations through the use of a typing mechanism,
see for example [AP13]. We will not discuss this here further, but see [Bas16] for an implementation
of ⌊−⌋ over a general signature that uses sized types in Agda. ◀

Throughout the remainder of this section we show that the iterator and coiterator from Defini-
tion 3.3.1 are observationally normalising. This is what one would expect, as the encoding of the
calculus λµν into λµν= from Section 3.3 should restrict to ON because all the terms in λµν are
strongly normalising. However, the proof is fairly involved, since the iterator and coiterator are
defined simultaneously with the action of open types on terms. This forces us to prove also observa-
tional normalisation the iterators, coiterators and type actions simultaneously, see Proposition 4.1.9
below.

77

Chapter 4. Observations

In order to ease the following development, let us introduce a notation for the construction of sets
of terms of function type. This construction can be recognised as one that is used in, for example,
strong normalisation proofs to give an interpretation to function spaces.

Definition 4.1.7. Let A,B ∈ Ty, S ⊆ Λ=
A and T ⊆ Λ=

B . We define a set S ⇒ T ⊆ Λ=
A→B by

S ⇒ T B {t ∈ Λ=
A→B | ∀u ∈ S . t u ∈ T }. ◀

Note that with this notation we have that

WDυ,V
A→B =

(
ONA ⇒WDυ,V

B

)
∩ SNA→B[υ].

Throughout the proof of observational normalisation, we will need to maintain that valuations
are backwards closed under reductions. This is a technical, but unfortunately necessary, condition
that we cast into the following definition.

Definition 4.1.8. We say that a predicate S ⊆ Λ=
A backwards closed under reductions, if for all s, t

with s ∈ SN, s t and t ∈ S , we also have s ∈ S . A valuation is backwards closed, if it is point-wise
backwards closed under reductions. ◀

We are now in the position to formulate the main result of this section: the iterators and coiterators
from Definition 3.3.1 are observationally normalising, and the action of types on terms preserves
observational normalisation. Since we prove the result by induction on open types, we need to
formulate it more generally in terms of WD. The three parts of the following Proposition 4.1.9 are
then proved by mutual induction.

Proposition 4.1.9. Let Θ be a type variable context and υ,φ ∈ TySubst(Θ). Moreover, let V ∈ IΘ,υ
W ∈ IΘ,φ be backwards closed valuations with V (X) ⊆ ONυ(X) andW (X) ⊆ ONφ(X) for all X ∈ Θ.

(i) If C is a type with Θ ⊩ C : Ty and #—
t : Θ→ Λ= with #—

t (X) ∈ V (X)⇒W (X), then

C
[

#—
t
]
∈WDυ,V

C ⇒WDφ,W
C .

(ii) If C,D are types with Θ,Y ⊩ C : Ty and Θ ⊩ D : Ty, then

Rµ ∈
(
WD

υ[D[φ]/X],V
[
X 7→WDφ,W

D

]
C ⇒WDφ,W

D

)
⇒WDυ,V

µY .C ⇒WDφ,W
D

(iii) If C,D are types with Θ,Y ⊩ C : Ty and Θ ⊩ D : Ty, then

Rν ∈
(
WDυ,V

D ⇒WDφ[D[υ]/X],W [X 7→WDυ,VD]
C

)
⇒WDυ,V

D ⇒WDφ,W
νY .C

In particular, we have

(ii’) If A is a type with X ⊩ A : Ty, B ∈ Ty and r ∈ ONA[B/X]→B , then Rµ r ∈ ON(µX .A)→B .

(iii’) If A is a type with X ⊩ A : Ty, B ∈ Ty and r ∈ ONB→A[B/X], then Rν r ∈ ONB→νX .A. ◀

78

4.1. Observational Equivalence and Normalisation

In what follows, we prepare the proof of Proposition 4.1.9. First of all, we prove that WD is
backwards closed. This will be necessary, since we will interpret variables at fixed point types by
appealing to to WD.

Lemma 4.1.10. Suppose A is a type with Θ ⊩ A : Ty, υ a substitution and V ∈ IΘ,υ a backwards closed
valuation. Then also WDυ,V

A is backwards closed. In particular, for all B ∈ Ty, t ∈ ONB and s ∈ SN with
s t , we have s ∈ ONB .

Proof. Let A, υ and V be as assumed in the lemma. We show that WDυ,V
A is backwards closed by

induction on A.

• Note that WDυ,V
1 is backwards closed by definition, and that WDυ,V

X is backwards closed by
the assumption that V is backwards closed.

• In case of the sum types, suppose that t ∈ WDυ,V
A1+A2

and that s t . To prove that
s ∈WDυ,V

A1+A2
, we have to provide an i ∈ {1, 2}, such that there is an s ′ with s κi s

′ and
such that for any such s ′, we have s ′ ∈ WDυ,V

Ai
. Since t κi t

′ for some i ∈ {1, 2} and t ′,
we also have a weak head reduction s κi t . Thus, we can use s ′ = t ′. Suppose now that
s κi s

′ for some s ′. Then, by confluence, there is a t ′ with t κi t
′ κi s

′. Hence,
we also have s ′ t ′. Since t ∈WDυ,V

A1+A2
, we obtain t ′ ∈ t ∈WDυ,V

Ai
and, by the induction

hypothesis, that s ′ ∈WDυ,V
Ai

. Putting everything together, we have s ∈WDυ,V
A1+A2

.

• Similarly, the case of µ-types is proven by defining

S B
{
t ∈WDυ,V

µX .A

��� ∀s . (s t) =⇒ s ∈WDυ,V
µX .A

}
and then showing that WDυ,V

µX .A ⊆ S by appealing to the definition of WDυ,V
µX .A as a least

fixed point, confluence and the induction hypothesis.

• For function types, we have to show for given t ∈ WDυ,V
A→B and s t , that s ∈ SN and

that for all u ∈ ONA that s u ∈ WDυ,V
B . The former is given by assumption, while the latter

follows from the induction hypothesis from the fact that t u ∈ WDυ,V
B and because s t

induces s u t u.

• The case of products follows by a similar argument as in the case of function types.

• To prove the case of ν-types, one easily shows, by using the induction hypothesis and the
fact that WDυ,V

νX .A defined as a largest fixed point, that the set S given by

S B {s ∈ SNνX .A[υ] | s t}

is contained in WDυ,V
νX .A. The claim of the lemma then immediately follows. □

Next, we show that that WD is closed under identity maps, composition and the formation of
pattern matching and pairs. These results give us directly the proof of Proposition 4.1.9.(i) in the
case of function, sum and product types.

79

Chapter 4. Observations

Lemma 4.1.11. Let A,A1,A2 be types with Θ1 ⊩ A,A1,A2 : Ty, B,B1,B2 with Θ2 ⊩ B,B1,B2 : Ty, C
a type with Θ3 ⊩ C : Ty, υ, φ and ω substitutions for, respectively, Θ1, Θ2 and Θ3,V ∈ IΘ1,υ ,W ∈ IΘ2,υ ,
andU ∈ IΘ3,ω . Then the following holds.

(i) id ∈WDυ,V
A ⇒WDυ,V

A

(ii) If s ∈WDυ,V
A ⇒WDφ,W

B and t ∈WDυ,V
B ⇒WDφ,U

C , then t ◦ s ∈WDυ,V
A ⇒WDω,U

C .

(iii) If ti ∈WDυ,V
Ai
⇒WDφ,W

B for all i ∈ {1, 2} then

λ{κ1 x 7→ t1 x ; κ2 y 7→ t2 y} ∈WDυ,V
A1+A2

⇒WDφ,W
B .

(iv) If ti ∈WDυ,V
A ⇒WDφ,W

Bi
for all i ∈ {1, 2} then

λx . ⟨t1 x , t2 x⟩ ∈WDυ,V
A ⇒WDφ,W

B1×B2
.

(v) If ti ∈ WDυ,V
Ai
⇒ WDφ,W

Bi
for all i ∈ {1, 2} then t1 + t2 ∈ WDυ,V

A1+A2
⇒ WDφ,W

B1+B2
and

t1 × t2 ∈WDυ,V
A1×A2

⇒WDφ,W
B1×B2

.

Proof. (i) SinceWDυ,V
A is backwards closed by Lemma 4.1.10, id ∈WDυ,V

A ⇒WDυ,V
A immediately

follows from id u u for u ∈WDυ,V
A .

(ii) Again by using Lemma 4.1.10, closure of WD under composition follows directly from the
definition of WD and ⇒.

(iii) Closure under pattern matching is given as follows. To show λ{κ1 x 7→ t1 x ; κ2 y 7→ t2 y} ∈
WDυ,V

A1+A2
⇒WDφ,W

B , suppose s ∈WDυ,V
A1+A2

. Then there is an i ∈ {1, 2} and an s ′ ∈WDυ,V
Ai

,
such that s κi s

′. This gives us λ{κ1 x 7→ t1 x ; κ2 y 7→ t2 y} s ti s
′ and, by assumption,

that ti s ′ ∈ WDφ,V
B . Hence, by Lemma 4.1.10, λ{κ1 x 7→ t1 x ; κ2 y 7→ t2 y} s ∈ WDφ,V

B , and
thus λ{κ1 x 7→ t1 x ; κ2 y 7→ t2 y} ∈WDυ,V

A1+A2
⇒WDφ,W

B .

(iv) The case for pairing is analogous to that for pattern matching.

(v) This follows immediately from closure under composition, and from closure under pattern
matching and pairing, respectively. □

After all this preliminary setup, we can finally proceed to prove the main result of this section.

Proof of Proposition 4.1.9. We prove the three parts of the proposition mutually by induction on C .

(i) Let C be a type with Θ ⊩ C : Ty and #—
t with #—

t (X) ∈ V (X) ⇒W (X), as in the proposition.
To prove C

[
#—
t
]
∈WDυ,V

C ⇒WDφ,W
C , we proceed by distinguishing the cases for C .

• If C is closed or C = 1, then C
[

#—
t
]

= idC . The proof is then immediate from
Lemma 4.1.11.(i).

80

4.1. Observational Equivalence and Normalisation

• For variables, we have X [
#—
t] =

#—
t (X). By assumption, we have #—

t (X) ∈ V (X)⇒W (X)

and thus #—
t (X) ∈WDυ,V

X ⇒WDφ,W
X .

• The cases for sum, product and function types are given immediately by Lemma 4.1.11
and the induction hypothesis.

• For the case of least fixed point types, recall that

(µY .C)
[

#—
t
]
= Rµ

(
α ◦C

[
#—
t , id

])
,

which means we have to prove that

Rµ
(
α ◦C

[
#—
t , id

])
∈

(
WDυ,V

µY .C ⇒WDφ,W
µY .C

)
. (4.2)

We define new substitutions υ ′ = υ[µY .C[φ]/X] and φ ′ = φ[µY .C[φ]/X], and valuations
V ′ = V

[
X 7→WDφ,W

µY .C

]
and W ′ =W

[
X 7→WDφ,W

µY .C

]
. Note that V ′ and W ′ are back-

wards closed by Lemma 4.1.10, and that id ∈ V ′(X)⇒W ′(X) by Lemma 4.1.11. By the
induction hypothesis we have thus obtain

C
[

#—
t , id

]
∈WDυ′,V ′

C ⇒WDφ′,W ′

C .

Since composition with α preserves WD by definition, we also have

α ◦C
[

#—
t , id

]
∈WDυ′,V ′

C ⇒WDφ,W
µY .C .

Now we can apply (ii) by using D = µY .C to obtain (4.2).
• The case for ν-types is analogous to that of µ-types, only that we use here the induction

hypothesis (iii).

(ii) Let C,D be types with Θ,Y ⊩ C : Ty and Θ ⊩ D : Ty, as in the proposition. Put φ ′ = υ[D[φ]/Y]

and W ′ = V
[
Y 7→WDφ,W

D

]
. We have to show for all terms r ∈ WDφ′,W ′

C ⇒ WDφ,W
D and

s ∈WDυ,V
µY .C that Rµ r s ∈WDφ,W

D . To do so, we define S ⊆ Λ=
µY .C

S B
{
s ∈WDυ,V

µY .C

��� Rµ r s ∈WDφ,W
D

}
and prove that Ψυ,V

C (S) ⊆ S . This gives us by induction that WDυ,V
µY .C ⊆ S and therefore the

desired property.
Let s ∈ Ψυ,V

C (S). We have to show that s ∈ S , that is, s ∈WDυ,V
µY .C and Rµ r s ∈WDφ,W

D . First,
we obtain s ∈ WDυ,V

µY .C immediately from Ψυ,V
C (S) ⊆ Ψυ,V

C

(
WDυ,V

µY .C

)
= WDυ,V

µY .C . Moreover,
we get a term s ′ with s α s ′ and s ′ ∈WDυ[µY .C [υ]/Y],V [Y 7→S]

C . This gives us a reduction

Rµ r s r (C[υ][Rµ r] s
′).

By Lemma 4.1.10, it suffices now to prove that r (C[υ][Rµ r]s ′) ∈WDφ,W
D . Using the assumption

that r ∈ WDφ′,W ′

C ⇒ WDφ,W
D , we need to show that C[υ][Rµ r] s ′ ∈ WDφ′,W ′

C . If we put
υ ′ = υ[µY .C[υ]/Y] and V ′ = V [Y 7→ S], then this last step follows from (i) by the following
four observations:

81

Chapter 4. Observations

• V ′(Y) ⊆ ONυ′(Y) and W ′(Y) ⊆ ONφ′(Y);

• C[υ][Rµ r] = C[
#—id,Rµ r] because υ(X) is closed for all X ∈ Θ and by the first case in the

definition of the action of types on terms in Figure 3.3 on page 45;
• id ∈ V ′(X)⇒W ′(X) for all X ∈ Θ by the backwards closure of W ; and
• Rµ r ∈ V ′(Y)⇒W ′(Y) by definition of S .

Thus, (i) applies and we obtain C[υ][Rµ r] ∈ WDυ′,V ′
C ⇒ WDφ′,W ′

C . Hence, Rµ r s ∈ WDφ,W
D

and we have Ψυ,V
C (S) ⊆ S , as desired.

(iii) The proof of this part uses, dually to the proof of Proposition 4.1.9.(ii), the fact that WDφ,W
νY .C

is defined as a largest fixed point and the predicate

S B
{
Rν r s ∈ SN(νY .C)[φ]

��� s ∈WDυ,V
D

}
. □

This concludes our study of observational normalisation for now, and we can continue with the
discussion of program tests and the induced program equivalence.

4.1.2. Tests and Observational Equivalence
Since we will use tests for both calculi λµν and λµν=, we first give a definition of tests that is
parameterised in the arguments that can be used for observations on functions.

Definition 4.1.12. Let U = {UA}A∈Ty be any family of sets indexed by types. For a type A, we say
that ϕ is a test (formula) onA (over U), if ϕ :↓A can be inductively derived from the following rules.

⊤ :↓A ⊥ :↓A
ϕ1 :↓A1 ϕ2 :↓A2

[ϕ1,ϕ2] :↓A1 +A2

ϕ :↓A[µX .A/X][
α−1

]
ϕ :↓ µX .A

ϕ :↓A[νX .A/X]

[ξ]ϕ :↓ νX .XA
ϕ :↓Ai

[πi]ϕ :↓A1 ×A2

ϕ :↓ B v ∈ UA
[v]ϕ :↓A→ B

The set of all test formulas on A over U is denoted by

Tests(U)A B {ϕ | ϕ :↓A},

and the family of all tests over U consequently by Tests(U). ◀

The tests for the calculus λµν are easy to give, as termination is not an issue in λµν . Thus, we
can use any term as function argument, that is, any well-formed term in Λ (Definition 3.1.4).

Definition 4.1.13. The tests for λµν are given by Tests(λµν) B Tests(Λ).

Defining tests on terms of the calculus λµν= is a bit more complicated, as we need to restrict the
arguments used in tests on function types to observationally normalising terms. Thus, we need to
define observationally normalising terms. The first step towards this is to interpret tests as terms
in λµν=. Note that there is a type of Boolean values, which is given by

Bool B 1+ 1.

82

4.1. Observational Equivalence and Normalisation

J⊤KA = λx .true for all A ∈ TyJ⊥KA = λx .false for all A ∈ TyJ[ϕ1,ϕ2]KA1+A2
= λ

{
κ1 x 7→ Jϕ1KA1

x ; κ2 x 7→ Jϕ2KA2
x
}

J[α−1] ϕKµX .A = λ
{
α x 7→ JϕKA[µX .A/X] x

}
J[ξ]ϕKνX .A = λx .JϕKA[νX .A/X](ξ x)J[πi]ϕKA1×A2

= λx .JϕKAi (πi x)J[v]ϕKA→B = λ f .JϕKB(f v)
Figure 4.1.: Interpretation of tests as terms

This type has the expected truth constants (considered as terms in λµν=):

true B κ1 ⟨ ⟩ and false B κ2 ⟨ ⟩.

The interpretation of tests as well-covering (Definition 3.2.29) terms in λµν= is then given as follows.

Definition 4.1.14. Let U be a set family indexed by types, such that U ⊑ Λ=, that is, UA ⊆ Λ=(A)

for all A ∈ Ty.18 The interpretation of tests19 on a type A as terms in λµν= is given by the map

J−KA : Tests(U)A → Λ=(A→ Bool),

which is defined inductively in Figure 4.1. ◀

Having defined observationally normalising terms, we are now in the position to define tests for
the copattern calculus.

Definition 4.1.15 (Tests for λµν=). The collection of tests for λµν= is given by

Tests(λµν=) B Tests(ON) ◀

What makes observationally normalising interesting is that any observation on them is strongly
normalising. This is made precise in Theorem 4.1.17 below. To prove that theorem, we need the
following lemma.

Lemma 4.1.16. Let A be a type with Θ ⊩ A : Ty, υ a substitution and V ∈ IΘ,υ a valuation with
V (X) ⊆ ONυ(X). Then WDυ,V

A ⊆ ONA[υ].

Proof. Straightforward by induction on A. □

Theorem 4.1.17. Let A ∈ Ty and t ∈ ONA. Then for any test ϕ on A, JϕK t is strongly normalising.

Proof. Towards the proof of this lemma, we need to generalise the statement, similar to Lemma 4.1.5,
as follows. Let A be a type with Θ ⊩ A : Ty, υ a substitution and V ∈ IΘ,υ a valuation with
V (X) ⊆ ONυ(X). We now prove that if t ∈ WDυ,V

A , then for all ϕ :↓A[υ] we have (JϕK t) ∈ SNBool
by induction on ϕ. The result follows for closed types by definition of ON.

To prove this statement, we observe that for any test ϕ, the interpretation JϕK is a neutral term,
that is, there is no reduction originating at JϕK. This has the consequence that if JϕK t −→ s , then

83

Chapter 4. Observations

either s = JϕK t ′ with t −→ t ′, or JϕK t ≻ s . Since t ∈ SN by Lemma 4.1.5, we thus have that any
reduction sequence of JϕK t towards a normal form s is of the form

JϕK t JϕK t ′ ≻ s ′ s .

Using this property, all cases of the induction are straightforward, except for the case of least fixed
point types. Thus, we focus on this case: Suppose we are given a test

[
α−1

]
ϕ with ϕ :↓A[µX .A/X].

We define S ⊆ Λ=
µX .A by

S =
{
t ∈WDυ,V

µX .A

�� q[
α−1

]
ϕ
y
t ∈ SN

}
,

and show WDυ,V
µX .A ⊆ S . To prove this, we use the fixed point property of WDυ,V

µX .A. Thus, we
have to show Ψυ,V

A (S) ⊆ S . To this end, let t ∈ Ψυ,V
A (S), leaving us with having to prove thatq[

α−1
]
ϕ
y
t ∈ SN. By the property we mentioned in the beginning, we haveq[

α−1
]
ϕ
y
t

q[
α−1

]
ϕ
y
(α t ′) ≻ JϕK t ′. (4.3)

Recall that

Ψυ,V
A (S) =

{
s
��� (∃s ′. s α s ′) ∧

(
∀s ′. (s α s ′) =⇒ s ′ ∈WDυ[µX .A/X],V [X 7→S]

A

)}
.

From this and (4.3), we obtain t ′ ∈ WDυ[µX .A/X],V [X 7→S]
A . By Lemma 4.1.16, we can apply the

induction hypothesis and get JϕK t ′ ∈ SN. Thus,
q[
α−1

]
ϕ
y
t ∈ SN by the above-mentioned property.

Since this holds for any t ∈ S , we have Ψυ,V
A (S) ⊆ S . □

Let us illustrate how to use Theorem 4.1.17 to show that a certain stream term is not observationally
normalising. This shows that we cannot compute a stream from that term, thereby showing that
the stream term is not productive.

Example 4.1.18. Let x and even be given by

x : Natω

x .hd = 1

x .tl = even x

even : Natω → Natω

(even s).hd = hd s
(even s).tl = even (s .tl.tl)

(4.4)

To see that x is not observationally normalising, we apply the evaluation context e = ·.tl.tl.hd to x
and find that

e[x] = x .tl.tl.hd −→ (even x).tl.hd −→ (even (x .tl.tl)).hd −→ x .tl.tl.hd = e[x].

Hence, there is a diverging reduction sequence starting at e[x], from which we get by Theorem 4.1.17
that x is not in ON by using the test [tl] [tl] [hd]⊤, where the modalities [hd] and [tl] are defined in
the obvious way.

Recall that we defined the interpretation of stream terms as functions x† : N → N iteratively by
x†(0) = n for x .hd ≡ n and x†(k + 1) = (x .tl)†(k). Note that the divergence of e[x] implies that
there is no natural number n ∈ N, such that e[x] ≡ n. This in turn means that we cannot produce the
value of x†(2), hence we cannot construct x† by successively computing head and tail of x . We say
that x is not productive, see [End+10; EH11]. If we interpret (4.4) as a system of stream differential
equations, then there is no unique solution for the variable x in (4.4), cf. [HKR17, Sec. 8.4]. ◀

84

4.1. Observational Equivalence and Normalisation

Let us now evaluate tests on terms. We do this by introducing a satisfaction relation analogous
to the evaluation of formulas of modal logics over Kripke models, see [BRV01; BvB07].

Definition 4.1.19. Let t be a term in Λ(A) or Λ=(A) and ϕ ∈ Tests(U)A be a test on the type
A ∈ Ty with U = Λ or U = ON, respectively. We define t ⊨A ϕ, which is to be read as t satisfies
ϕ, by induction on ϕ as follows. Here, we write tt and ff for the Boolean constants for true and
false, so that t ⊨A ϕ holds iff t ⊨A ϕ = tt by the definition below. In the case of λµν=, we use the
notations π1 t B t .pr1, π2 t B t .pr2 and ξ t B t .out, see Section 3.3.

t ⊨A ⊤ B tt
t ⊨A ⊥ B ff
t ⊨A1+A2

[ϕ1,ϕ2] B ∃t ′. t ≡ κi t ′ and t ′ ⊨Ai ϕi

t ⊨µX . B
[
α−1

]
ϕ B ∃t ′. t ≡ α t ′ and t ′ ⊨B[µX . B/X] ϕ

t ⊨νX . B [ξ]ϕ B ξ t ⊨B[νX . B/X] ϕ

t ⊨A1×A2
[πi]ϕ B πi t ⊨Ai ϕ

t ⊨B→C [v]ϕ B t v ⊨C ϕ.

Two terms t1, t2 in Λ(A) or Λ=(A) are observationally equivalent, written t1 ≡Aobs t2, if they satisfy
the same tests:

t1 ≡Aobs t2 iff ∀ϕ :↓A. t1 ⊨A ϕ ⇔ t2 ⊨A ϕ.

Let U be either Λ or ON. We say that two open terms t1, t2 in λµν or, respectively, in λµν= with
Γ ⊢ t1, t2 : A are observationally equivalent, if for all U -Γ-closing σ we have that t1[σ] ≡Aobs t2[σ] and
denote this by Γ ⊢ t1 ≡Aobs t2. ◀

In what follows, we will frequently omit the type sub- and superscripts and simply write ⊨, J−K
and ≡obs whenever the typing can be inferred from the context.

Let us now demonstrate how tests can be used to distinguish the behaviour of terms.

Example 4.1.20. An example of a pair of terms that are, rightfully, distinguished by observational
equivalence is H 0ω : Natω → Natω and H 1ω : Natω → Natω , see Example 3.2.9. To see this, we
use tests ϕ=n :↓Nat, for testing equality to n ∈ N, that are given inductively by

ϕ=0 B
[
α−1

]
[⊤,⊥] :↓Nat

ϕ=n+1 B
[
α−1

]
[⊥,ϕ=n] :↓Nat.

We can then use the formula

ψ B [alt] [hd]ϕ=1 :↓Natω → Natω

to distinguish H 0ω and H 1ω , where alt is the alternating bit stream defined in Example 3.2.18.
Recall also from the same example that (H 0ω alt).hd ≡ 0 and (H 1ω alt).hd ≡ 1. This allows us to

85

Chapter 4. Observations

show that H 0ω does not satisfy ψ , while H 1ω does satisfy ψ , as we have

H 0ω ⊨ [alt] [hd]ϕ=1 ⇐⇒ H 0ω alt ⊨ [hd]ϕ=1

⇐⇒ (H 0ω alt).hd ⊨ ϕ=1

⇐⇒ 0 ⊨
[
α−1

]
[⊥,ϕ=0] by (H 0ω alt).hd ≡ 0

⇐⇒ κ1 ⟨ ⟩ ⊨ [⊥,ϕ=0]

⇐⇒ ⟨⟩ ⊨ ⊥
and

H 1ω ⊨ [alt] [hd]ϕ=1 ⇐⇒ · · · ⇐⇒ 1 ⊨ ϕ=1 ⇐⇒ · · · by (H 1ω alt).hd ≡ 1

⇐⇒ ⟨⟩ ⊨ ⊤.

So the terms H 0ω and H 1ω are distinguished by the test ψ . ◀

After having seen an example of how to distinguish terms, let us now consider an example where
we actually prove that two terms are observationally equivalent. This is typically done by induction
on tests.

Example 4.1.21. Recall that we gave in Example 3.2.7 another unit type 1′ = νX .X with a canonical
inhabitant ⟨ ⟩′. We now show that this term is actually unique up to observational equivalence. This
requires us to show for all terms t : 1′ that t ≡obs ⟨ ⟩′, which means by definition of observational
equivalence that we have to show for all tests ϕ ∈ Tests(λµν=)1′ that t ⊨ ϕ iff ⟨ ⟩′ ⊨ ϕ.

We proceed by induction on ϕ to prove for all terms t : 1′ that t ⊨ ϕ iff ⟨ ⟩′ ⊨ ϕ. Note that
the term t is universally quantified in the induction hypothesis. Let t : 1′ be a term. In the
base case, where either ϕ = ⊤ or ϕ = ⊥, we trivially have t ⊨ ϕ ⇐⇒ ⟨⟩′ ⊨ ϕ. For the
induction step, ϕ is of the form ϕ = [ξ]ψ with ψ ∈ Tests(λµν=)1′ . Since ⟨ ⟩′.out ≡ ⟨ ⟩′, see the
opening discussion of Section 3.2.2, ⟨ ⟩′ ⊨ [ξ]ψ ⇐⇒ ⟨⟩′ ⊨ ψ . Applying the induction hypothesis
to ψ , we have t .out ⊨ ψ ⇐⇒ ⟨⟩′ ⊨ ψ . Thus, by definition of the satisfaction relation, we have
t ⊨ [ξ]ψ ⇐⇒ ⟨⟩′ ⊨ [ξ]ψ , hence t ⊨ ϕ ⇐⇒ ⟨⟩′ ⊨ ϕ. So by induction, t and ⟨ ⟩′ satisfy the same tests
ϕ, thus are observationally equivalent. ◀

At this point, a reader versed in the area of transition systems, coalgebras and such might wonder
about the relation of observational equivalence to bisimilarity. Indeed, it would be natural to view ⟨ ⟩′

as a single state transition system and prove that any other term of type 1′ is bisimilar to that system.
The hope would then be that such a proof corresponds to showing that the term is observationally
equivalent to ⟨ ⟩′. In Section 5.1, we will show that one can define a general notion of bisimilarity
on terms of all inductive-coinductive types, which coincides with observational equivalence.

Another point of interest might be whether it is possible to automatically prove that two terms
are observationally equivalent. In fact, if there are no terms of function type involved, like in
Example 4.1.21, then observational equivalence is decidable. One might call the function-free frag-
ment of λµν= the data fragment, as we cannot carry out any computations, thus only construct
data, in that fragment. However, if we include functions, then observational equivalence becomes
undecidable. We discuss this in detail in Section 5.3.

The following example illustrates a, perhaps surprising, effect of the restriction to observationally
normalising function arguments in the definition of observational normalisation itself: There is a
well-defined function from the empty type 0 to any type A.

86

4.1. Observational Equivalence and Normalisation

Example 4.1.22. Recall the empty type from Example 3.1.2 was given by 0 = µX .X . We can give
for each type A a function E0A : 0→ A from 0 into A by20

E0A B rlet
f : 0→ A =

{
· (α x) 7→ f x

}
in f .

Note that there is no observationally normalising inhabitant of 0. This can be proved either by
contradiction to Lemma 4.1.5, or directly by induction. Since the latter is more elegant, let us prove
that ON0 = ∅ by induction. To this end, recall that ON0 = µU .Ψ

(),ε
X (U). Thus, we can prove

ON0 = ∅ by showing Ψ
(),ε
X (∅) ⊆ ∅. Suppose now that s ∈ Ψ

(),ε
X (∅), thus there is an s ′ with

s α s ′ and s ′ ∈ ∅. This means, however, that there is no such s ′ and thus also no such s . Hence,
Ψ

(),ε
X (∅) and ON0 are empty, as claimed. Since ON0 is empty and there are no reduction possible

on E0A, we have that E0A ∈ ON0→A. ◀

Recall that we have defined an interpretation J−K of tests as terms of type A → Bool in λµν=.
One might reasonably expect that this interpretation coincides with the satisfaction relation, in
the sense that for all tests and terms JϕK ≡ true iff t ⊨ ϕ. However, there is a subtle difference
on non-terminating terms: Let A be a type and put ϕ =

[
α−1

]
⊤, so that ϕ is a test on µX .A.

Recall that we defined in Example 3.2.21 a term ΩµX .A that only admits reduction steps of the form
ΩµX .A −→ ΩµX .A. This means then that neither JϕK(ΩµX .A) ≡ true nor JϕK(ΩµX .A) ≡ false. On
the other hand, we have ΩµX .A ⊨ ϕ ⇐⇒ ∃t ′.ΩµX .Aα t ′ and t ′ ⊨ ⊤. Since no such t ′ exists, we
conclude that ΩµX .A ⊭ ϕ. So the difference between the evaluation of JϕK(t) and t ⊨ ϕ lies in the
fact that the former requires that there must be a way to reduce JϕK(t) to true or false. We capture
this situation in the following proposition.

Proposition 4.1.23. If t ∈ Λ=(A) and ϕ :↓A, such that JϕK(t) has a normal form, then

JϕK(t) ≡ true iff t ⊨ ϕ.

Proof. This follows by an easy induction on ϕ. □

To put the above discussion into broader terms, if we accept the principle of excluded middle,
then for all tests ϕ :↓A

∀t ∈ Λ=(A). t ⊨ ϕ ∨ t ⊭ ϕ.
The example above shows however that in general ¬(∀t ∈ Λ=(A). JϕK(t) ≡ true ∨ JϕK(t) ≡ false).
More generally, we can evaluate tests by using J−K only on observationally normalising terms,
whereas on non-normalising terms J−K cannot assign a definite truth value to a test.

We finish this section by collecting some properties of observational equivalence. First, we show
that the definition of observational equivalence of open terms makes sense.

Lemma 4.1.24. For all x : A ⊢ ti : B with i = 1, 2, we have both in λµν and λµν=

x : A ⊢ t1 ≡Bobs t2 ⇔ λx .t1 ≡A→Bobs λx .t2 (4.5)

Proof. Since we have a common notation for function application and abstraction in both calculi,
we give the proof independent of the calculus at hand. Let us write ri = λx .ti .

87

Chapter 4. Observations

’⇒’ We need to show that r1 and r2 satisfy the same tests ϕ. If ϕ = ⊤ or ϕ = ⊥, this is trivial. If
ϕ = [v]ψ , we have by assumption

r1 ⊨ ϕ ⇐⇒ t1[v/x] ⊨ ψ ⇐⇒ t2[v/x] ⊨ ψ ⇐⇒ r2 ⊨ ϕ

’⇐’ Let U be either Λ or ON. To show that t1 ≡obs t2, we need to show that t1[σ] ≡Bobs t2[σ] for
every U -(x : A)-closing substitution σ . That is to say we need to show t1[v/x] ≡Bobs t2[v/x]
for every v ∈ U . But this follows immediately, as for every test ψ on B, we have

t1[v/x] ⊨ ψ ⇐⇒ r1 ⊨ [v]ψ ⇐⇒ r2 ⊨ [v]ψ ⇐⇒ t2[v/x] ⊨ ψ ,

just as for the other direction of the lemma. □

The next lemma states a number of properties of that we will need frequently.

Lemma 4.1.25. Observational equivalence ≡obs has the following properties.

(i) Substitutivity: Given terms r ∈ ONx :A
B and t1, t2 ∈ ONA such that t1 ≡Aobs t2, we have that

r [t1/x] ≡Bobs r [t2/x].

(ii) ≡obs is a congruence on ON, that is, ≡obs is an equivalence relation on ON and fulfils substitutivity
as in (i), see [Pit04, Def. 7.5.1].

(iii) If t1 ≡Aobs t2, then for all f with ⊢ f : A→ B we have f t1 ≡Bobs f t2.

(iv) ≡obs strictly contains convertibility (i.e., ≡ ⊂ ≡obs).

(v) ≡obs is extensional for terms of function type: if t1, t2 : A→ B and t1v ≡obs t2v for all v : A in ON,
then t1 ≡obs t2.

(vi) ≡obs contains η-equivalence: λx .tx ≡obs t , x < fv(t).

Most of these properties are straightforward to prove, only substitutivity (i) requires a bit more
work. The proof uses the following technical lemma.

Lemma 4.1.26. Let s ∈ ONx :A
B and let t ∈ ONA. For all tests ϕ :↓ B with s[t/x] ⊨ ϕ there are tests

ψ1, . . . ,ψn on A such that

(i) t ⊨ ψi for all 1 ≤ i ≤ n and

(ii) for all t ′ ∈ ONA, if t ′ ⊨ ψi for all 1 ≤ i ≤ n, then s[t ′/x] ⊨ ϕ.

This lemma states that we can find for each computation that s can make, formulas that characterise
inputs to s that lead to the same output as t . One can read this as a continuity property of s , in
the sense that finite observations on s[t/x] only depend on finite observations on t . We will not go
into this further here, but it is discussed in [BH16].

88

4.1. Observational Equivalence and Normalisation

Proof of Lemma 4.1.26. To prove the statement of the lemma, we need to generalise it a bit. This
generalisation becomes easier, if we use conjunctive tests, that is, tests that may contain conjunctions.
Given tests ϕ1,ϕ2 : A, their conjunction ϕ1 ∧ϕ2 is satisfied by t : A if t ⊨ ϕi for both i = 1 and i = 2.
Conjunctive tests allow us to simplify the formulation of Lemma 4.1.26 by replacing ψ1, . . . ,ψn by
ψ = ψ1 ∧ · · · ∧ψn .

More generally, we set out to prove the following. Let f ∈ ONΓ
A and let τ ∈ Subst(ON,Γ). For

all tests ϕ :↓A with f [τ] ⊨ ϕ there are conjunctive tests {ψx }x ∈dom(Γ) such that
(i) τ (x) ⊨ ψx for all x ∈ dom(Γ) and

(ii) for all σ ∈ Subst(ON,Γ), if σ(x) ⊨ ψx for all x ∈ dom(Γ), then f [σ] ⊨ ϕ.
We only sketch the proof of this generalised property. Since f is in ONΓ

A, JϕK(f [τ]) is strongly
normalising, thus there is a finite reduction sequence JϕK(f [τ]) N to a normal form. We obtain
the family {ψx } by induction on this reduction sequence. In this induction, two cases have to be
distinguished: either τ (x) is contracted within an evaluation context e , in which case ψx is extended
by the modalities given by e , or τ (x) is used as a function argument in a contraction. In the latter
case, we reduce the corresponding function to λD or a symbol д, and extend ψx by the pattern of
D or д that matched τ (x).21 □

Proof of Lemma 4.1.25. (i) To show that r [t1/x] ≡obs r [t2/x], we show that both terms simultan-
eously satisfy any test ϕ : B.
First, assume that r [t1/x] ⊨ ϕ. Lemma 4.1.26 gives us that for τ = [t1/x] there are tests
ψ1, . . . ,ψn on A, such that ∀1 ≤ i ≤ n. t1 ⊨ ψi and if ∀1 ≤ i ≤ n. t2 ⊨ ψi , then r [t2/x] ⊨ ϕ. Since
t1 ≡obs t2, both terms simultaneously satisfy all the ψi , thus r [t2/x] ⊨ ϕ.
Conversely, r [t2/x] ⊨ ϕ implies, in the same way, that r [t1/x] ⊨ ϕ. Summarising, the terms
r [t1/x] and r [t2/x] satisfy the same tests, hence are observationally equivalent.

(ii) This follows immediately from ≡ being an equivalence relation and from (i).

(iii) This is just the combination of (i) and Lemma 4.1.24.

(iv) The inclusion is proved by induction on tests. It is strict by appealing to item (v): For instance,
the terms λx . x and λ

{
· (α x) 7→ x

}
are not convertible but they are observationally equivalent

by extensionality.

(v) Trivially by the shape of tests on A→ B.

(vi) Let t : A → B be a term with x < fv(t). For every v ∈ ONA, we have (λx .(t x))v ≡ t v and
hence by (iv) and (v) the equivalence λx .(t x) ≡obs t follows. □

The last property of ≡obs we record is that the equational theory ≡obs is consistent.
Definition 4.1.27 (cf. [Bar85, Def. 2.1.30]). An equational theory for a family {UA}A∈Ty is a family
≈ of equivalence relations ≈A ⊆ UA ×UA. The equational theory is said to be consistent, if there is
A ∈ Ty and s, t ∈ UA with s 0A t .
Proposition 4.1.28. The equational theory ≡obs is consistent both for Λ and Λ=.

Proof. The terms true, false : Bool are not observationally equivalent, as they are distinguishable by
the test [⊤,⊥]. Hence ≡obs is consistent. □

89

Chapter 4. Observations

4.2. Category Theoretical Properties of λµν and λµν=
We have now seen two different calculi for programming with mixed inductive-coinductive types,
and we introduced a notion of program equivalence that is based on program observations for these
calculi. Moreover, we defined what it means for a program in the calculus λµν= to be observationally
normalising, using again the same notion of program observation. Basing program equivalence and
observational normalisation on observations is an intuitive approach, but we need to show how these
notions relate to properties that occur elsewhere in the description of program behaviour. Specifically,
we want to relate here to the usual category theoretical definition of inductive-coinductive objects
in terms of unique mapping properties. We proceed in two steps to clarify the relation. First, we
introduce in Section 4.2.1 the so-called classifying category for each of the calculi. Then we show that
the classifying categories indeed admit to some extent the categorical structures that are suggested
by the types. For instance, greatest fixed point types are weakly final coalgebras.

The problem with classifying categories is that we are trying to force the calculi into a cloak
that does not really fit them. Just to name one major issue: the action of types on terms, given in
Definition 3.1.9, looks like the definition of a functor on the classifying categories but it really is
not. Thus we are not even able to, for instance, form a category of coalgebras for open types.

We overcome these issues in a second step, where we refine the classifying categories by (1) re-
stricting the attention to only observationally normalising terms in the classifying category for
λµν=, and (2) augmenting the classifying categories with observational equivalence as 2-categorical
structure. The first step is important to properly classify inductive types (sums and least fixed
points), since non-termination leads to inhabitants of inductive types on which no observation is
possible, see the discussion before Proposition 4.1.23. Through the second step we obtain a precise
categorical classification of the types, in the sense that the action of a type on terms turns out to
be a pseudo-functor and largest fixed point types are pseudo-final coalgebras.

One might now raise the objection to the 2-categorical approach that we could just take a quotient
of the classifying 2-categories, which allows us to drop the prefix “pseudo” everywhere. However,
besides violating the abstract “principle of equivalence” [nLa16], we also lose some information by
forming a quotient category: we cannot distinguish anymore between term equivalences arising
from computations and those stemming from observational equivalence.

4.2.1. Simple Classifying Categories
The goal of this section is to describe the categorical structure that arises from the type structure
of the calculi λµν and λµν=. We begin by identifying properties of calculi for which we are able to
give classifying categories22, see Definition 4.2.2.

Definition 4.2.1. Let U be a set. We assume that there is a judgement of the form

x : A ⊢ t : B,

which is a relation between contexts x : A and elements t ∈ U, where A and B are types as in
Definition 3.1.1. The set U together with the relation ⊢ is called a classifiable calculus, if

1. Projection holds: TeVar ⊆ U, and for all x ∈ TeVar, the judgement x : A ⊢ x : A is valid;

2. Substitution exists: for every t , s ∈ U and x ∈ TeVar, there is an element t [s/x] ∈ U;

90

4.2. Category Theoretical Properties of λµν and λµν=

3. Substitution preserves typing: if x : B ⊢ t : C and x : A ⊢ s : B, then x : A ⊢ t [s/x] : C;

4. Substitution preserves identities: For all t , s ∈ U and x ∈ TeVar, x [t/x] = t and t [x/x] = t ;

5. Substitution lemma holds: For all t , s ∈ U and x ∈ TeVar,

t [s[r/x]/x] = t [s/x][r/x]. (4.6)

Given a classifiable calculus, we will refer to the elements of U as terms. ◀

A classifiable calculus allows us, as the name suggests, to construct its classifying category.23

Definition 4.2.2. Let U be a classifiable calculus. We denote by Cℓs (U) the simple classifying
category of U, given as follows.

Cℓs (U) =

{
objects: Types A
morphisms: t : A→ B is a term t ∈ U with x : A ⊢ t : B

An identity morphism A→ A is given by x : A ⊢ x : A and composition is defined by substitution:
t ◦ s = t [s/x]. That the composition is well-defined follows from type preservation. The identity law
is immediate by t [x/x] = t and x [t/x] = t , whereas associativity is given by (4.6). ◀

Lemma 4.2.3. Both Λ and Λ= are classifiable, thus their respective simple classifying categories Cℓs (Λ)
and Cℓs (Λ=) exist.

Proof. The judgement Γ,x : A ⊢ x : A is immediate by projection in both calculi. Equation (4.6) is
proved by a simple but tedious induction on terms, just like the other conditions. □

This description of the calculi allows us to state Theorem 3.3.4 more precisely.

Proposition 4.2.4. The map ⌜(−)⌝ : Λ→ Λ= extends to a functor Cℓs (Λ)→ Cℓs (Λ=).

Proof. We define ⌜(−)⌝ on types to be the identity. Then, by the type preservation in Theorem 3.3.4,
we have that for a morphism (a term) t : A→ B that ⌜t⌝ : ⌜A⌝ → ⌜B⌝. So it remains to prove that
the encoding preserves identities and composition. The former is immediate, since ⌜x⌝ = x . That
composition is preserved means that ⌜s[t/x]⌝ = ⌜s⌝[⌜t⌝/x], which is proved by induction on s . □

To establish further categorical structure on the simple classifying categories, we need to take
some term equivalences into account.

Definition 4.2.5. Suppose U is a classifiable calculus with an equivalence relation ≡ on terms that
respects substitution: if t ≡ t ′ and s ≡ s ′, then t [s/x] ≡ t ′[s ′/x]. Suppose further that ≡ is type
correct, that is, for all Γ ⊢ t : A and s , if t ≡ s then Γ ⊢ s : A. Then the simple classifying category
modulo computations Cℓ≡s (U) is the quotient category Cℓs (U)/≡, see Section 2.2. ◀

Many categorical constructions are described through universal mapping property (UMP). For in-
stance, the Cartesian product of two objects A1 and A2 is given by an object A1 × A2 and two
projections πi : A1 × A2 → Ai , such that for all f1 : C → A1 and f2 : C → A2 there exists a unique
д : C → A1 × A2 with πi ◦ д = fi . In the context of type theory one tries to model these UMPs

91

Chapter 4. Observations

as much as possible inside the syntactic theory. However, since the equivalence between terms is
usually restricted to α-equivalence and reductions, the uniqueness usually fails. This situation is
captured in the usual notion of weak product, which is an object A1 × A2 with the projections πi
and for which only the existence of д is ensured, but not its uniqueness. In general, weak limits
and weak colimits satisfy the existence property of limits and colimits, but the uniqueness property
does not necessarily hold.
Lemma 4.2.6. Both Cℓ≡s (Λ) and Cℓ≡s (Λ=) have finite weak products and weak coproducts. Moreover, for
all u, v , f and д the following diagram commutes in Cℓ≡s (Λ) and Cℓ≡s (Λ=).

A B1 × B2

C1 ×C2

⟨u,v ⟩

⟨f ◦u,д◦v ⟩ f ×д

Proof. We start with λµν . Clearly, the type 1 is a weakly final object, since for each type A, we
have x : A ⊢ ⟨ ⟩ : 1. The weak binary product of two types A1 and A2 is given by the product type.
Its projections are x : A1 × A2 ⊢ πi x : Ai , and pairing of terms gives the categorical pairing: Let
x : C ⊢ ti : Ai , then x : C ⊢ ⟨t1, t2⟩ : A1 ×A2. Finally, we have

πi ◦ ⟨t1, t2⟩ = (πi x)[⟨t1, t2⟩/x] = πi ⟨t1, t2⟩ ≡ ti .
Moreover, the distribution diagram is again given by reduction:

(f × д) ◦ ⟨u,v⟩ = ⟨f [π1⟨u,v⟩/x],д[π1⟨u,v⟩/x]⟩ ≡ ⟨f [u/x],д[v/x]⟩ = ⟨f ◦ u,д ◦v⟩.
It is similarly easy to show that binary weak coproducts in λµν are given by sum types. Lastly, the
weakly initial object of Cℓ≡s (Λ) is given by 0 and its elimination principle E0A as in Example 3.1.5.

For λµν= we have identified the same term constructors for sum and product types in the
Examples 3.2.4 and 3.2.5, respectively. Moreover, the reduction rules are precisely the same for
these terms. The unit type 1 is exactly the same as in λµν , and in Example 4.1.22 we have also
identified the empty type with its elimination principle. Thus, λµν= admits finite weak products
and coproducts. □

We can also give an abstract account of function types. This is a bit more complex though, as
with a naive approach to weakening the usual notion of exponential object is bound to run into the
problem that one requires η-equivalence for products, that is, we would need to have ⟨π1 t ,π2 t⟩ ≡ t .
Fortunately, there is an alternative, which has been proposed by Hayashi [Hay85, Thm. 2.3]. Note
that the terminology used there is that the binary product is semi-right-adjoint to the diagonal. We
refrain from using this terminology here, since it breaks down for coproducts.
Definition 4.2.7. A category C with (weak) binary products has weak exponential objectss, if for all
objects A and B, there is an object BA and a morphism evB : BA × A→ B, subject to the following
condition. For all h : B × A→ C there is a morphism λh : B → CA, such that for all u : D → B the
following two diagrams commute.24

D

CA ×A C

hλh×id
evC

D

B CA

u
λ(h◦(u×id))

λh

92

4.2. Category Theoretical Properties of λµν and λµν=

Lemma 4.2.8. Both Cℓ≡s (Λ) and Cℓ≡s (Λ=) have weak exponential objects.

Proof. For Cℓ≡s (Λ) the exponential object BA for types A and B is given by the function space A→ B
and the evaluation map evB by

x : BA ×A ⊢ (π1 x) (π2 x) : B.

Let t : B ×A→ C , that is, x : B ×A ⊢ t : C . We define λt : B → CA to be the term

x : B ⊢ λy. t [⟨x ,y⟩/x] : A→ C .

For terms x : D ⊢ u : B and x : D ⊢ v : A we now have
evC ◦ ⟨λt ◦ u,v⟩ = ((π1 x) (π2 x))[⟨λt ◦ u,v⟩/x]

≡ (λt ◦ u)v
= ((λy. t [⟨x ,y⟩)/x])[u/x])v
= (λy. t [⟨u,y⟩/x])v
≡ t [⟨u,v⟩/x]
= t ◦ ⟨u,v⟩

and
λ(t ◦ (u × id)) ≡ λ(t ◦ ⟨u ◦ π1,π2⟩)

= λ(t [⟨u[π1 x/x],π2 x⟩/x])
= λy. (t [⟨u[π1 x/x],π2 x⟩/x])[(x ,y)/x]
≡ λy. (t [⟨u[x/x],y⟩/x])
= λy. (t [⟨u,y⟩/x])
= (λy. (t [⟨x ,y⟩/x]))[u/x]
= λt ◦ u .

Thus Cℓ≡s (Λ) has weak exponential objects. That Cℓ≡s (Λ=) also has weak exponentials follows by
the same reasoning and using the notations introduced in Example 3.2.6. □

For the following proposition we need to relax our understanding of what algebras and coalgebras
are. Recall from Section 2.5 that an initial algebra for a functor F : C→ C is a morphism FA→ A
for some object A, such that for all algebras FB → B there is a unique homomorphism A→ B. The
concept of a final coalgebra is defined dually. We would like to understand fixed point types in
these terms. Just as in Lemma 4.2.6, we can drop the uniqueness constraint for the homomorphism
to obtain a notion of weakly initial algebras and weakly final coalgebras. However, already the very
usage of functors in the definition of (co)algebras poses a problem because the action of types on
terms that we gave in Definition 3.1.9 does not satisfy the laws of a functor. Thus, fixed point types
do not have a (co)algebra structure for a functor F in the usual sense, rather we can only require F
to be a map on objects and morphisms.

Definition 4.2.9. A pre-functor F : C→ D between categories C and D is a map that sends every
object X ∈ obD to an object F (X) ∈ obD, and every morphism f : X → Y in C to a morphism
F (f) : F (X)→ F (Y) in D.

93

Chapter 4. Observations

Pre-functors are the weakest possible mapping between categories. However, since they neither
preserve identities nor composition, there is no good general theory for pre-functors. The reason
why we are introducing them here nevertheless is to have a language for organising the properties
of fixed point types. By abuse of language, we will also talk about algebras, coalgebras and their
homomorphisms, even if we are only given a pre-functor instead of a functor, cf. Definition 2.5.3.

Definition 4.2.10. Let F : C → C be a pre-functor. A weakly final coalgebra for F is a morphism
c : X → FX in C, such that for every coalgebra d : Y → FY there is a coalgebra homomorphism
f : Y → X from d to c . Weakly initial algebras for F are defined dually.

Lemma 4.2.11. Let X ⊩ T : Ty, that is, let T be a type with a free type variable X , see Definition 3.1.1.
Then T gives rise to pre-functors Cℓ≡s (Λ)→ Cℓ≡s (Λ) and Cℓ≡s (Λ=)→ Cℓ≡s (Λ=) by putting

T (A) B T [A] = T [A/X] and T (t) B T [λx .t] x ,

usingT [−] as defined in Definition 3.1.9. Moreover, there is a weakly initial algebra δ : T (µX .T)→ µX .T
and a weakly final coalgebraω : νX .T → T (νX .T) both in Cℓ≡s (Λ) and Cℓ≡s (Λ=). This means that for any
morphisms a : T (A)→ A and c : A→ T (A) there are (not necessarily unique) morphisms a : µX .T → A
and c̃ : A→ νX .T , such that the following two diagrams commute.

T (µX .T) T (A)

µX .T A

δ

T (a)

a

a

A νX .T

T (A) T (νX .T)

c

c̃

ω

T (c̃)

Proof. To show that T gives rise to a map Cℓ≡s (Λ)→ Cℓ≡s (Λ) requires us to show that t ≡ s implies
T (t) ≡ T (s). This, in turn, follows from ≡ being a congruence and by a simple induction on T . Recall
that T (A) = T [A/X], so that

x : T (µX .T) ⊢ α x : µX .T and x : νX .T ⊢ ξ x : T (νX .T),

and the algebra and coalgebra structures are thus given by δ B α x and ω B ξ x . Next, given
y : T (A) ⊢ a : A and y : A ⊢ c : T (A), as in the assumption, we can define the inductive extension of a
by a B iterµX .T (y. a) y and the coinductive extension of c by c̃ B coiterνX .T (y. c) y, thus obtaining

y : µX .T ⊢ a : A and y : A ⊢ c̃ : νX .T .

Before we continue, let us briefly spell out the diagram for weakly final coalgebras in Cℓ≡s (Λ).
Since morphisms in Cℓ≡s (Λ) are (equivalence classes) of terms with a free variable for the domain,
we can picture the homomorphism diagram for c̃ as follows.

A νX .T

T (A) T (νX .T)

y : A ⊢ coiterνX .T (y . c) y : νX .T

x : A ⊢ c : T (A) x : νX .T ⊢ ξ x : T (νX .T)

x : T (A) ⊢ T (coiterνX .T (y . c) y) : T (νX .T)

≡

94

4.2. Category Theoretical Properties of λµν and λµν=

That this homomorphism diagram commutes follows directly from the definition of conversion:

ω ◦ c̃ = (ξ x)[coiterνX .T (y. c) y/x]

= ξ (coiterνX .T (y. c) y)

≡ T [λy.(coiterνX .T (y. c) y)](c[y/y])

= T [λy.(coiterνX .T (y. c) y)] c

= T
(
coiterνX .T (λy.c) y

)
[c/x]

= T (̃c) ◦ c,

and analogously for µX .T .
In Cℓs (Λ=) we find back exactly the same structure by putting

δ B α x and ω B x .out,

and
a B rlet f : µX .T → A = {· (α x) 7→ a[T (f x)/x]} in f x

c̃ B rlet f : A→ νX .T = {(· x).out 7→ T (f x)[c/x]} in f x .

That these are well-typed is checked as in Theorem 3.3.4. Note that the inductive extensions a and
the coinductive extensions c̃ resemble the rewriting steps as given by contraction for iter and coiter
in Definition 3.1.11. Hence that these are homomorphisms just follows as for λµν . □

4.2.2. Classifying 2-Categories
On the one hand, we have given in Section 4.2.1 a category theoretical account of the computational
behaviour of terms in the two calculi λµν and λµν=. On the other hand, we have described in
Section 4.1 the observational behaviour of terms. The purpose of the present section is to merge
these two views. This is achieved by augmenting the classifying categories Cℓ≡s (Λ) and Cℓ≡s (Λ=)
with a 2-categorical structure that encodes the information about observations. This allows us to
contrast the equality between morphisms in these categories, which relates terms with the same
computational behaviour , and 2-cells between the morphisms, which relates terms with the same
observational behaviour .

The 2-categories, which we obtain by adding 2-cells to the simple classifying categories, have
“pseudo” instead of “weak” categorical structure. For instance, the product types do not just have
projections πi and pairing, subject to the equations πi ◦ ⟨f1, f2⟩ = fi , but the pairing is additionally
unique up to isomorphism, see Definition 2.6.8. This stronger property allows us to show that the
action of types on terms gives rise to a pseudo-functor. Thus, we can form 2-categories of algebras
and coalgebras, whose pseudo-initial and, respectively, pseudo-final objects are given by fixed point
types.

When enhancing the results of Section 4.2.1, we will find that we get an even stronger result
than just pseudo-structures. Note that in the definition of pseudo-products, Definition 2.6.8, we
have that for all fi : C → Ai there is an h : C → A1 × A2 with πi ◦ h � fi . So there only needs
to be an isomorphism between πi ◦ h and fi . However, we have shown in Lemma 4.2.6 that in the

95

Chapter 4. Observations

classifying categories there is a (not necessarily unique) h, such that π ◦ h = fi . We will call such
a structures pseudo-products with strict choice. These characterise precisely the interplay of the
reduction relation of the calculi and observational equivalence.

We begin by casting this last discussion into definitions, thereby refining the definitions given in
Definition 2.6.8.

Definition 4.2.12. Let C be a 2-category. We say that C has finite pseudo-products with strict choice,
if it has finite pseudo-products, see Definition 2.6.8, such that for all A1, A2 and fi : C → Ai there
is an h : C → A1 × A2 with πi ◦ h = fi , where πi : A1 × A2 → Ai are the projections of the
pseudo-product. We denote this h by ⟨f1, f2⟩. Moreover, we have for all appropriate u, v , f , д
that (f × д) ◦ ⟨u,v⟩ = ⟨f ◦ u,д ◦ v⟩, cf. Lemma 4.2.6. Dually, C is said to have pseudo-coproducts
with strict choice, if it has pseudo-coproducts, with injections κi : Ai → A1 + A2, such that for
all morphisms fi : Ai → C , there is a morphism [f1, f2] : A1 + A2 → C with [f1, f2] ◦ κi = fi .
Finally, pseudo-exponents with strict choice in C are pseudo-exponents, such that the two identities
in Definition 4.2.7 are fulfilled.25 ◀

Let us now identify the concepts from Definition 4.2.12 in the calculi λµν and λµν=. To do that,
we first need to enrich their classifying categories with a 2-categorical structure that represents
observational equivalence.

Lemma 4.2.13. There are 2-categories Cℓ≡s,obs(Λ) and Cℓ≡s,obs(ON), where26

Cℓ≡s,obs(Λ) B

objects: types A
morphisms: [t]≡ : A→ B is the convertibility equivalence class of a term

t ∈ Λ with x : A ⊢ t : B
2-cells: t ⇒ s exists iff t ≡obs s .

and

Cℓ≡s,obs(ON) B

objects: types A
morphisms: [t]≡ : A→ B is the convertibility equivalence class of a term t ∈ ONx :A

B

2-cells: t ⇒ s exists iff t ≡obs s .

Proof. The vertical composition of 2-cells in Cℓ≡s,obs(Λ) is just given by transitivity of observational
equivalence: If γ : r ⇒ s and ρ : s ⇒ t , then r ≡obs s and s ≡obs t . By transitivity we have r ≡obs t ,
and thus there is a δ : r ⇒ t . Since 2-cells are unique in Cℓ≡s,obs(Λ), we can define ρ ◦1 γ = δ .

Horizontal composition arises in a situation like the following.

A B C

t

t ′

≡obs
s

s ′

≡obs

By (i) of Lemma 4.1.25 and the definition of observational equivalence on open terms we have

s[t/x] ≡obs s[t ′/x] ≡obs s ′[t ′/x],

96

4.2. Category Theoretical Properties of λµν and λµν=

so that we can compose these two equivalences horizontally. Finally, note that since there is at most
one 2-cell between two terms, the exchange law is automatically validated.

For Cℓ≡s,obs(ON) we note that observationally normalising terms are closed under composition, so
that restricting to ON-terms gives at least a category. The 2-categorical structure is then given just
as for Cℓ≡s,obs(Λ). □

Note that, since 2-cells in the classifying 2-categories are given by observational equivalence, two
morphisms [s]≡ and [t]≡ are isomorphic, see Definition 2.6.3, if only if s and t are observationally
equivalent. Since by Lemma 4.1.25.(iv) the choice of the representatives s and t does not matter
when reasoning about observational equivalence, we will identify equivalence classes like [s]≡ with
the representing term s , and consider s as a morphism in the corresponding classifying 2-category.

Let us extend the results about the classifying categories in the last section to take the observational
behaviour of terms into account. More precisely, we show that the categorical structures that
we identified as weak in Cℓ≡s (Λ) and Cℓ≡s (Λ=) now become pseudo-structures with strict choice in
Cℓ≡s,obs(Λ) and Cℓ≡s,obs(ON). Spelling this out for, for instance, for product types, we have for
t1 : C → A1, t2 : C → A2 and h : C → A1 ×A2 in Cℓ≡s,obs(Λ) with πi ◦ h � ti that h � ⟨t1, t2⟩, that is,
πi ◦h ≡obs ti implies h ≡obs ⟨t1, t2⟩. Moreover, the choice of ⟨t1, t2⟩ is strict because the computation
rules imply the identity πi ◦ ⟨t1, t2⟩ = ti of equivalence classes.

Theorem 4.2.14. Both the 2-categories Cℓ≡s,obs(Λ) and Cℓ≡s,obs(ON) have finite pseudo-products, finite
pseudo-coproducts and pseudo-exponents with strict choice.

Proof. We have seen in the Lemmas 4.2.6 and 4.2.8 that the classifying categories have the necessary
structures. That is, they have weak product, coproduct and exponent objects, projections, injections
and application, and pairing, copairing and abstraction, which fulfil the necessary identities. Note that
in the case of λµν=, Cℓ≡s,obs(ON) is closed under pairing, copairing and abstraction by Lemma 4.1.11.

Thus it remains to prove that pairing, copairing and abstraction are unique up to isomorphism.
We prove this in full detail in Cℓ≡s,obs(Λ), the case of Cℓ≡s,obs(ON) is essentially the same. Recall
that the pairing of t1 : C → A1 and t2 : C → A2 was given by x : C ⊢ ⟨t1, t2⟩ : A1 × A2. Now let
h : C → A1 ×A2 with πi ◦ h � ti , that is, πi h ≡obs ti .27 We have for i = 1, 2

πi h ≡obs ti ≡ πi ⟨t1, t2⟩,

which can easily seen to imply h ≡obs ⟨t1, t2⟩ and so h � ⟨t1, t2⟩. The analogous reasoning also works
for the copairing [t1, t2] = {κ1 x 7→ t1 ; κ2 x 7→ t2} x and the abstraction λt = λy.t [⟨x ,y⟩/x]. □

Similarly, we can identify the observational behaviour of algebras and coalgebras.

Definition 4.2.15. A pseudo-final coalgebra with strict choice is a pseudo-final coalgebra c : X → FX ,
see Definition 2.6.9, such that for all d : Y → FY there is a (not necessarily unique) homomorphism
d̃ : Y → X for which the 2-cell φd̃ : c ◦ d̃ ⇒ Fd̃ ◦ d is the identity. Dually, a pseudo-initial algebra
a : FA→ A, see Definition 2.6.9, has a strict choice, if for every algebra b : FB → B there is a pseudo-
homomorphism b : A→ B, such that the mediating 2-cell θb : b ◦ a ⇒ b ◦ Fb is the identity. ◀

Next, we prove that for each type A the action of A on terms, see Definition 3.1.9, gives rise to a
pseudo-functor on the classifying categories. Moreover, we show that fixed point types are pseudo-
initial algebras or pseudo-final coalgebras with strict choice for these pseudo-functors. These two

97

Chapter 4. Observations

results are proved my mutual induction, since pseudo-initial algebras and pseudo-final coalgebras
are used to define functors from fixed point types, and conversely, pseudo-functoriality is needed to
obtain pseudo-initial algebras and pseudo-final coalgebras for smaller types.

We start the mutual induction by showing that the type action indeed gives a pseudo-functor.

Lemma 4.2.16. Let T be a type with X1, . . . ,Xn ⊩ T : Ty.28 If all fixed point types occurring in T
are pseudo-initial algebras and pseudo-final coalgebras, then the maps of categories associated with T
in Lemma 4.2.11 can be extended to pseudo-functors of arity n: T (−) :

(
Cℓ≡s,obs(Λ)

)n → Cℓ≡s,obs(Λ) and
T (−) :

(
Cℓ≡s,obs(ON)

)n → Cℓ≡s,obs(ON).
Proof. To show that that T (−) is a pseudo-functor, we need to extend T (−) to 2-cells and prove that
T (−) preserves identity morphisms and composition up to isomorphism, that is, up to observational
equivalence. First, recall that for a tuple #—

t of terms we defined T (
#—
t) = T [

—

λx . t] x in Lemma 4.2.11.
By the definition of the type action in Definition 3.1.9, we have that T [−] substitutes #—

t into an
observationally normalising context. Thus, if #—

t ≡obs
#—

t ′ , we have by Lemma 4.1.25(i) that also
T
(#—
t
)
≡obs T

(#—

t ′
)
. This in turn means, that we can send a 2-cell in

(
Cℓ≡s,obs(Λ)

)n , which says that all
the terms in #—

t and #—

t ′ are observationally equivalent, to the unique 2-cell in Cℓ≡s,obs(Λ) that expresses
that T

(#—
t
)
and T

(#—

t ′
)
are observationally equivalent. So T also has a well-defined action on 2-cells.

It remains to prove that T fulfils the law of a pseudo-functor. We proceed by induction on T . In
the base case T = Xi , we note that Xi [−] is the ith projection from the product category, hence a
pseudo-functor.

To prove the induction step, we need to show that for compound types T , T (−) is a pseudo-
functor, provided that its components are pseudo-functors. Concretely, we need to show that the
pseudo-functor laws hold for the compound types T1 +T2, T1 ×T2 and T1 → T2, provided the laws
hold for T1 and T2. This is a routine calculation by using Theorem 4.2.14.

The case for fixed point types is essentially an adoption of the standard proof that the point-wise
existence of final coalgebras gives rise to a functor [Kim10], but we have to replace equality between
morphisms by observational equivalence. We give the details for νX .T , the case for least fixed point
types is analogous. Consider the fixed point type νX .T . The induction hypothesis is in this case
for X1, . . . ,Xn ,X ⊩ T : Ty that T (−) :

(
Cℓ≡s,obs(Λ)

)n+1 → Cℓ≡s,obs(Λ) is a pseudo-functor. Now let
#—
t :

#—
A → #—

B be a morphism in
(
Cℓ≡s,obs(Λ)

)n . By Lem. 4.2.18 below, the pseudo-functors T (#—
A ,−)

and T (
#—
B ,−) of type Cℓ≡s,obs(Λ) → Cℓ

≡
s,obs(Λ) have as pseudo-final coalgebras ξ #—

A and ξ #—
B , and we

take (νX .T)(
#—
t) to be the coinductive extension (Lemma 4.2.11) of

νT (
#—
A ,−)

ξ #—A−−→ T (
#—
A ,νT (

#—
A ,−))

T (
#—
A , id)

−−−−−−→ T (
#—
B ,νT (

#—
A ,−)),

cf. Definition 3.1.9. The pseudo-functor laws follow from uniqueness up to isomorphism of coin-
ductive extensions on pseudo-final coalgebras, see Section 2.6.2.

In case of Cℓ≡s,obs(ON), one proceeds in exactly the same way, only that we have to use Proposi-
tion 4.1.9.(i) to ensure that the functorial action of T is a morphism in Cℓ≡s,obs(ON). □

The following technical lemma is used in the proof of Lemma 4.2.18. It allows us to construct for
each coalgebra c and each test ϕ on the unfolding of largest fixed point types, a “universal” term t

98

4.2. Category Theoretical Properties of λµν and λµν=

that cannot be distinguished from any homomorphism from c into the largest fixed point up to the
observation depth given by ϕ.

Lemma 4.2.17. Let T be a type with X ⊩ T : Ty.

1. For every coalgebra c : A → T [A] in one of the classifying 2-categories, every (observationally
normalising) term u : A and every test ϕ :↓T [νX .T], there is a term t with x : A ⊢ t : T [νX .T],
such that for any T -coalgebra pseudo-homomorphism h : A→ νX .T from c to ω = ξ x , we have

t [u/x] ⊨ ϕ ⇐⇒ (ξ h)[u/x] ⊨ ϕ.

2. For every algebra a : T [A] → A in one of the classifying 2-categories, every (observationally nor-
malising) term u : T [A] and every test ϕ :↓ A, there is x : T [µX .T] ⊢ t : A, such that for any
pseudo-homomorphism h : µX .T → A from δ = α x to a, we have

t [u/x] ⊨ ϕ ⇐⇒ h[α u/x] ⊨ ϕ.

Proof. We only sketch the proof of 1, the proof of 2 is given by duality. Since h is a pseudo-
homomorphism, we have (ξ h)[u/x] ⊨ ϕ ⇐⇒ (T [h] c)[u/x] ⊨ ϕ hence it suffices to prove the
existence of a t with t [u/x] ⊨ ϕ ⇐⇒ (T [h] c)[u/x] ⊨ ϕ. We do this by proving the following.

For any sub-expression S of T ,29 any x : A ⊢ c ′ : T [A], any u ′ ∈ ONA and any test ψ :↓ S[νX .T]
there is x : A ⊢ t : S[νX .T], such that for any T -coalgebra pseudo-homomorphism f from c ′ to
ω = ξ x the equivalence t [u ′/x] ⊨ ψ ⇐⇒ (S[f] c ′)[u ′/x] ⊨ ψ holds. The result then follows by
taking c ′ = c and ψ = ϕ. The claim itself is proved by induction on ψ . □

The following lemma is needed in the induction step for fixed points in the proof of Lem. 4.2.16.

Lemma 4.2.18. For any typeT withX ⊩ T : Ty, if the associated map of classifying categories defined in
Lemma 4.2.11 is a pseudo-functor, then δ : T (µX .T)→ µX .T is a pseudo-initial algebra andω : νX .T →
T (νX .T) a pseudo-final coalgebra with strict choice.

Proof. We already proved in Lemma 4.2.11 that δ and ω are weakly initial and final, respectively.
Thus we already have a choice of strict (co)inductive extensions, which are also morphisms in
the corresponding classifying categories by Proposition 4.1.9. It only remains to prove that these
extensions are unique up to isomorphism.

The argument for µX .T is completely analogous to that for νX .T , so we only prove that the latter
is pseudo-final. So let c : A→ T (A) be a coalgebra and h : A→ νX .T be a pseudo-homomorphism
into ω : νX .T → T (νX .T), that is to say, with ξ h ≡obs T [h] c . We have to show h ≡obs c̃ .

Since h and c̃ are open terms, we need to show that for any (observationally normalising) term
u : A and every test ψ :↓ νX .T , h[u/x] ⊨ ψ ⇐⇒ c̃[u/u] ⊨ ψ . If ψ is ⊤ or ⊥, then this is
clear. So suppose ψ = [ξ]ϕ for some test ϕ :↓T (νX .T). By Lemma 4.2.17 there is a t , such that,
x : A ⊢ t : T (νX .T) and for which we have

h[u/x] ⊨ ψ ⇐⇒ (ξ h)[u/x] ⊨ ϕ Def. ⊨
⇐⇒ t [u/x] ⊨ ϕ Lem. 4.2.17
⇐⇒ (ξ c̃)[u/x] ⊨ ϕ

⇐⇒ c̃[u/u] ⊨ ψ .

99

Chapter 4. Observations

Since this holds for any u and ϕ, we have that h ≡obs c̃ , as required. Thus ω is a pseudo-final
coalgebra with strict choice. □

From Lem. 4.2.16 and Lem. 4.2.18 the main result of this section follows.

Theorem 4.2.19. For all typesT withX ⊩ T : Ty, the pseudo-functorT has a pseudo-initial algebra with
strict choice on the carrier µX .T , and a pseudo-final coalgebra with strict choice on the carrier νX .T .

All the statements and proofs in this section were given both for the classifying 2-category of λµν
and λµν=. To do so, we have often carried out proofs just for Cℓ≡s,obs(Λ) and treated Cℓ≡s,obs(ON) by
analogy. This can be made more precise by defining observational normalisation and observational
equivalence for certain 2-categories, where the 2-cells are intended to be rewriting steps. We would
then extend the simple classifying categories Cℓs (Λ) and Cℓs (Λ=) with the structure of a 2-category,
where a 2-cell t ⇒ s exists if t s . One could then characterise strongly normalising terms, define
tests and observational normalisation, and carry out the rest of the development in this section in
these categories. The properties of these 2-categories that are needed to do that are basically the
content of the Lemmas 4.2.6, 4.2.8 and 4.2.11. The only difference is that computation steps in these
categories are given by 2-cells instead of equality, since in the above-mentioned lemmas we used
quotients of Cℓs (Λ) and Cℓs (Λ=). The problem with this approach is that, while being very general,
it is also very technical. So we will not pursue this further here.

4.3. Conclusion and Related Work

Summary
In the present chapter we have set the scene for the remainder of this thesis by defining a notion
of observation for programs, and we gave some first reasoning principles for programs.

In the course of this, we identified two important aspects of programs: observational normalisation
and observational equivalence. Observational normalisation is only relevant in the case of the calculus
λµν=, as in the calculus λµν all terms are strongly normalising to begin with. The reason for singling
out observationally normalising terms is that we needed a class of terms that normalise under all
observations to give a reasonable notion of tests on terms of function types. Further, observationally
normalising terms were precisely the class of terms that allowed us to construct a 2-category of
terms that admits initial algebras and final coalgebras on µ- and ν-types.

The second notion we studied was observational equivalence, which is induced by observation on
programs. First, we defined observations for programs of mixed inductive-coinductive type uniformly
through program tests. This logic is interesting because it makes the usual slogan that “inductive
types are defined by their constructors and coinductive types are defined by their destructors”
precise. Moreover, this definition of observation opens up the possibility to take a coalgebraic view
on observational equivalence. We discuss will this in Section 5.1.2.

The reasoning principles for programs come about as mapping principles of pseudo-products
etc. In particular, we can show that programs are observationally equivalent by using induction
and coinduction, that is, by establishing that programs are homomorphisms, respectively, out of an
inductive or into a coinductive type. Moreover, the established 2-categories allowed us to distinguish
computational and observational behaviour of programs, in the sense that convertible terms are equal,

100

4.3. Conclusion and Related Work

whereas observationally equivalent terms are merely isomorphic. This is captured by showing that
the pseudo-structure of the 2-categories Cℓ≡s,obs(Λ) and Cℓ≡s,obs(ON) come with a choice of a strict
morphism.

In the next chapter, we will devise more reasoning methods for observational normalisation and
observational equivalence. This improves on the category theoretical reasoning about programs in
three ways. First, observational normalisation cannot be proven for general terms by means of the
(2-)categories we have given. Second, proving equivalences in Cℓ≡s,obs(ON) is limited to terms that
arise through recursion and corecursion, which takes away the usefulness of the copattern calculus
λµν=. Third, reasoning in the basic language of (2-)categories is very hard. This is why one usually
associates to a category an equational theory or a logic, which captures the essential properties of
that category, see [Gol84; LS88].

Related Work
There is an enormous body of work on program equivalences, and the category theoretical view on
programs and their properties. So let us clarify the relation to existing work and novelties in each
section.

Observational Equivalence and Normalisation Productivity and well-definedness of programs
have also been studied in other settings than type theory. For instance, conditions for productivity
of stream programs have been provided in [EGH08; End+10; HKR14]. For more general programs,
abstract formats for ensuring productivity can be obtained from the framework of (abstract) GSOS
[Kli11; TP97], and from the guardedness condition of [AMV11]. Some steps towards less syntactic,
more general conditions for ensuring productivity have recently been made in [EH11] by using
infinitary rewriting techniques.

Interestingly, the definition of observational normalisation is very similar to the interpretation
of types as saturated sets in proofs of strong normalisation, see for instance [AA99]. Also the
proofs that, for instance, the iterator and coiterator are strongly normalising have the same flavour.
However, a major difference to [AA99] is that in the present setting we use impredicative definitions
of fixed points. It would be interesting to study a predicative definition as in loc. cit., but we shall
leave that for the future.

Another possibility to study inductive and coinductive types in type theory is via an encoding
into the (impredicative) polymorphic λ-calculus, see e.g. Geuvers [Geu92]. Using this approach,
Plotkin and Abadi [PA93] and Hasegawa [Has94] have shown that parametricity schemes induce an
equivalence which yields initial algebras and final coalgebras. However, since these parametricity
results are external to the polymorphic λ-calculus it is hard to devise induction and coinduction
schemes inside a calculus based on the impredicative encoding. This issue becomes even more
important in dependently typed languages, see Chapter 7. There has been some recent progress by
Ghani et al. [GFO16] in making parametricity available inside the theory, but this naturally becomes
highly complicated. Thus we avoid such an encoding into an impredicative language entirely.

Program equivalence in a dependent type theory is formalised in Altenkirch et al. [AMS07] via
a propositional equality type called observational equality. This equality type is defined inductively
over types in a manner similar to ours, but they do not need to require (an analogue of) observational
normalisation as their term language contains only restricted forms of λ-abstraction and recursion
which ensures that all terms are strongly normalising. In particular, their system has no coinductive

101

Chapter 4. Observations

types. In contrast, our approach has a more flexible term language that allows definitions via systems
of copattern equations.

The notion of observational equivalence is similar to the contextual equivalence of Plotkin [Plo77]
and Milner [Mil77], since test formulae can be interpreted as certain program contexts. Similar
in spirit is also Zeilbergers’s observational equivalence [Zei09], as he considers programs to be
equivalent if they yield the same, what he calls, result in all environments. Interestingly, he starts
by considering only the designated result that a program diverges, and then observes that, in order
to get a useful equivalence, he needs to have a second possible result. This is similar to the fact that
our test language has two basic tests, namely the everywhere true and the everywhere false test.
Without these, we would get a trivial equivalence.

The observational congruence of Pitts [Pit00] characterises contextual equivalence for an extension
of PCF as the greatest relation with certain properties. This is similar to the characterisation of
observational equivalence as bisimilarity that we will give in Section 5.1.2. We can show that
observational equivalence is contained in Pitts’ observational congruence when suitably adopted to
our setting. However, the precise connection is not clear.

For inductive types and abstractions, observational equivalence is also closely related to the notion
of applicative bisimilarity in the lazy λ-calculus by Abramsky [Abr90]. Applicative bisimilarity
compares terms by reducing to a weak head normal form (with a λ in head position) and comparing
the results of function application. It is possible to extend applicative bisimilarity in a natural way
to all our terms, but the resulting notion will differ from observational equivalence. In particular,
applicative bisimilarity is weaker on diverging terms, as also discussed in [Gor95].

Our work is closest in spirit to the work by Howe [How89; How96b] and Gordon [Gor95].
Howe [How89; How96b] studies coinductive proof principles for reasoning about equivalence in a
general class of lazy languages with binding, and discusses applications in intuitionistic type theory
and the Nuprl theorem prover. Unique mapping properties are not considered. Gordon [Gor95]
gives a bisimulation characterisation of contextual equivalence in the language FPC, and studies
up-to techniques. Again, coinductive types are not part of FPC, and unique mapping properties are
not investigated.

Category Theoretical Properties of λµν and λµν= Category theoretical properties of type the-
ories have been discussed in various forms. A rigorous account has been given by Lambek and
Scott [LS88], where simply typed calculi with a natural numbers object are treated. Similar to that,
Jacobs [Jac99] describes several type theories without recursive types and studies their properties
through the use of category theory. Also calculi with non-nested inductive and coinductive types
have been related to categorical concepts, see for example [Geu92; GP07; How96a; UV99a; Ven00].
However, to the best of my knowledge, the 2-categorical view in Section 4.2.2, which gives a precise
distinction between computational and observable behaviour, has not been investigated anywhere
else. All category theoretical descriptions of calculi use either similar structures as in Section 4.2.1
or quotients of the term sets, which makes the differences between observations and computations
invisible.

Contributions
Having discussed the related work, let us clarify the contributions made in this chapter. First
of all, the uniform definition of a program equivalence for typed, recursive programs through a

102

4.3. Conclusion and Related Work

testing logic has not been studied before. The testing logic builds thereby on the definition of
observationally normalising terms, which are terms on which all observations are computable, that
is, any observation results in a strongly normalising term and least fixed point types only admit
finitely many consecutive unfolding steps. To my knowledge, such a notion has not been studied on
calculi that allow non-terminating programs, although the definition of observational normalisation is
closely related to the saturated sets semantics of types in strong normalisation proofs, see e.g. [AA99]
and Chapter 7. More interesting, however, are the proof principles for observational equivalence
that we will establish in Chapter 5.

The second contribution in this chapter is the study of observational equivalence through the eye
of 2-categories. More specifically, we constructed 2-categories, whose objects are types, morphisms
are equivalence classes of terms of λµν or λµν= under conversion, and 2-cells are given by the
observational equivalence of terms. This setup allowed us to characterise, for instance, product
types as pseudo-products with strict choice. In particular, this means that on the product type there
are projections and one can pair morphisms. The crucial property of the paired morphism is that
its composition with the projections is strictly equal to the components, while the pairing itself is
unique only up to isomorphism. Since strict equality corresponds to conversion and isomorphisms
correspond to observational equivalence, the notion of pseudo-product with strict choice captures
and distinguishes precisely the computational and observational behaviour of product types. Thus,
the main contribution in Section 4.2 is this 2-category theoretical characterisation of computational
and observational behaviour of all types in the two calculi.

Future Work
There is always room for improvements, but let us highlight one particular possibility for extending
the 2-category view in Section 4.2.2. Recall that we defined a 2-category Cℓ≡s,obs(ON) that has only
observationally normalising terms of λµν= as morphisms. We can drop this restriction and obtain a
2-category Cℓ≡s,obs(Λ

=) that has all λµν=-terms as morphisms. It seems that all proofs in Section 4.2.2
can be adapted to this 2-category, so that also Cℓ≡s,obs(Λ

=) has pseudo-products, pseudo-coproducts
etc. This raises of course the question what the relation is between Cℓ≡s,obs(Λ

=) and Cℓ≡s,obs(ON).
Clearly, there is an inclusion 2-functor I : Cℓ≡s,obs(ON) ↪→ Cℓ

≡
s,obs(Λ

=). Now note that Cℓ≡s,obs(ON)
only consists of total functions, whereas Cℓ≡s,obs(Λ

=) also contains partial functions. Thus, we would
expect there to be a relation like the adjunction between the categories of sets with total functions
and sets with partial functions. In this classical case, a partial function f : X ⇀ Y is sent to a total
function д : X + 1→ Y + 1, and the adjunction property expresses that a partial function f : X ⇀ Y
corresponds to exactly one total function д : X → Y + 1:

X −−⇀ Y in Setpar

X −−→ Y + 1 in Set

However, the definition of д from f requires the law of excluded middle, because one defines
д(x) = κ1(f (x)) if x ∈ dom(f) and д(x) = κ2(∗) otherwise. Thus, it is not possible to write д as a
program, since termination is not decidable in general.

Fortunately, an alternative to represent partial functions is offered by the so-called type of partial
elements, which was first introduced by Capretta [Cap05]. For any type A ∈ Ty the type of partial

103

Chapter 4. Observations

A-elements is given in our type system by Aν B νX .A, where we obtain A by replacing every type
variable Y in A by X +Y . The idea is that every recursion step can now be captured through the type
Aν . One needs to show that (−)ν can be extended to a functor Cℓ≡s,obs(Λ

=) → Cℓ≡s,obs(ON), which
is moreover right-adjoint to the inclusion. I conjecture that this can be done by instrumenting a
program so that every computation step is recorded in Aν . For instance, recall from Example 4.1.22
that the type 0 = µY .Y has no normalising inhabitant. However, we can define the term B = α B
of type 0 in λµν=. This term can be transformed into B̌ : 0ν with 0ν = νX . µY .X + Y by putting

B̌.out = α (κ1 B).

The aim is thus to assign to each t with x : A ⊢ t : B an observationally normalising term ť
with x : A ⊢ ť : Bν by means of such an instrumentation. Conversely, we can erase the partiality
annotation from x : A ⊢ s : Bν by defining a term called extract of type Bν → B by induction on
B. We can use extract to define a term ŝ with x : A ⊢ ŝ : B by putting ŝ B extract s . These two
constructions should give us then a correspondence

A −→ B in Cℓ≡s,obs(Λ
=)

A −→ Bν in Cℓ≡s,obs(ON)

which is one-to-one up to observational equivalence. In other words, I conjecture that there is a
pseudo-adjunction as in the following diagram.

Cℓ≡s,obs(ON) Cℓ≡s,obs(Λ
=)

I

(−)ν

⊣

The difficulty is the definition of the instrumented term ť . I claim that ť is computable, since it
seems to be possible to define the instrumentation by induction on the term structure, cf. [Cap05,
Sec. 4]. This in contrast to the classical approach, which requires us to decide termination. But
as the instrumentation is also a tedious process, I leave this for the future. One final note on
this instrumentation: One might be tempted to use directly the delay monad from [Cap05]. This,
however, would not allow us to define the above advertised adjunction. For instance, if we use
0ν = νX . 0 + X instead, then the only way to define B̌ is by B̌.out = κ2 B̌, from which we cannot
recover a term that is observationally equivalent to B. This is the reason for the more complicated
instrumentation, which allows us to preserve the observational behaviour of terms.

Following the program of Lambek and Scott [LS88], it would be natural to show that the classifying
2-category of the calculus λµν is initial among all 2-categories that have the same closure properties,
that is, which have all finite pseudo-products etc. This should not be a too difficult task, but it is left
open for now. More intricate is to show that there is also a functor from the classifying 2-category
of the observationally normalising terms in λµν= to the classifying 2-category of λµν . The difficulty
lies in the fact that systems of equations need to be reduced to iteration and coiteration. We also
need to leave this reduction open for now.

104

4.3. Conclusion and Related Work

Notes
16 We could have called terms in ON persistently strongly normalising, in analogy with the similar

notion of the typed λ-calculus [BDS13, Sec. 17.2]. However, we favour the name observationally
normalising since it emphasises that terms in ON must be strongly normalising under all possible
observations.

17 The fact that strong normalisation and the non-existence of infinite unfoldings on least fixed point
types do not coincide is actually an oversight in [BH16]. I would like to thank Andreas Abel for
pointing this problem out to me, and preventing it therefore from slipping into my thesis.

18 See Example 2.4.3 for notation regarding families of sets.
19 The interpretation in Definition 4.1.14 of tests on A as terms of type A→ Bool is similar to the notion

of observation from the λ-calculus [BDS13, Sec. 3.5]. However, there observations on function types
allow any term as argument, whereas we restrict to observationally normalising terms. This has the
effect that we identify terms of function type on the basis of their observational rather than their
computational behaviour, see the discussion in the introduction of this chapter. This connection with
the λ-calculus is one reason for the name “observational equivalence”, another is that our notion is
an instance of the coalgebraic notion of observable behaviour, as we will see in Section 5.1.

20 The notation E0A is used here because under the propositions-as-types interpretation, see Section 6.1, 0
can be seen as the formula denoting falsum. Under this interpretation, the term E0A is the elimination
principle for 0.

21 Note that λD and д are similar to what Abramsky [Abr90] calls principal weak head normal forms.
22 Usually, classifying categories are given for terms in arbitrary contexts. In that case, a classifiable

calculus would also have to satisfy weakening and exchange. However, the remaining development
in this section does not require a general notion of classifying categories, and in fact is simpler in
the way it is presented. Note also that one could directly assume a calculus to be given in form of
a classifying category. But since the existence of such a category has to be proved in one way or
another, we prefer the given presentation, which allows us to give a general existence proof.

23 Note that the notion of classifying category that we use here is a simplification of the classifying
categories in [Jac99].

24 Hayashi [Hay85] uses a slightly more complicated definition. The version that we use here is
equivalent to the original one under the assumption of the distributivity law for products that we
established in Lemma 4.2.6. This simplification was suggested to me by Andreas Abel.

25 It should be noted that pseudo-products, pseudo-coproducts, and pseudo-exponents with strict choice
are stronger than their weak counterparts. The reason is that we can alternatively define, for example,
pseudo-products with strict choice as weak products, such that the pairing is unique up to a unique
2-isomorphism.

26 In the proof of Lemma 4.2.13 we see that the coherence between vertical and horizontal composition
are automatically fulfilled, since in the classifying 2-categories there is at most one 2-cell between

105

Chapter 4. Observations

morphisms. In other words, the classifying 2-categories Cℓ≡s,obs(Λ) and Cℓ
≡
s,obs(ON) are order-enriched

(or even more specific: enriched over equivalence relations), cf. Definition 2.6.1. Such 2-categories
are also called “locally posetal” by Lack [Lac10]. This property of the classifying 2-categories is going
to very useful in the following, as we always just have to prove that two terms are observationally
equivalent but we can save ourselves from proving any coherence conditions.

27 Note that πi ◦ h is a statement in the 2-category Cℓ≡s,obs(Λ). Recall that πi : A1 × A2 → Ai was
defined, by abuse of notation, to be the term πi x . Thus πi ◦ h = (πi x)[h/x] = πi h.

28 Definition 3.1.9 and Lemma 4.2.16 can both be given more generally for types T in which variables
Xi occur in either negative position or in positive position. However, since we restrict attention to
strictly positive types, the current formulation suffices.

29 Sub-expressions of syntactic (Kripke-)polynomial functors are called ingredients by, for example,
Kupke [Kup06].

106

CHAPTER 5

Inductive-Coinductive Reasoning

Here comes the argument
Here comes the argument
Here comes the argument
Folderol

— Fugazi, “Argument”, 2001.

In the last chapter we have constructed two languages that allow us to program with mixed
inductive-coinductive types. Moreover, we have established a common notion of observational
equivalence on terms and, for the second language, singled out a class of observationally normalising
terms. The goal of this chapter is to establish methods of reasoning about inductive-coinductive
programs, in particular methods for proving that programs are observationally equivalent. We will
study three quite different proof methods, each having its own advantages and disadvantages, as we
will see.

In the remainder of this introduction we will discuss further the different proof methods that
we advertised above. In Section 5.1, we obtain a proof technique for observational equivalence
from a transition system that represents the observations that can be made on programs. We
show that observational equivalence coincides with the canonical notion of bisimilarity that can be
obtained by applying coalgebraic methods to the transition system. As such, the proof technique
is readily usable but often requires the construction of annoyingly complicated relations. This can
be improved drastically through the use of up-to techniques, which we will demonstrate as well.
As an illustration of the bisimulation proof method, we show that the substream relation, which
we defined in Example 5.1.13, is transitive. Lastly, we also discuss the possibility of characterising
observational normalisation as a coinductive predicate.

The proof techniques we have established up to here are fairly easy to prove correct and can
be used immediately. However, since they are cast in naive set theory, it becomes difficult to
automatically show, for instance, that a relation is a bisimulation because the description of that
relation can be arbitrarily complex. Moreover, already the need to come up with an invariant that
describes a bisimulation is a huge burden and is unnecessary. In fact, the so-called bisimulation game
allows one to prove or disprove bisimilarity of processes interactively. The only problem with plays
of a bisimulation game is that their correctness is difficult to ensure in general because of global
parity conditions that have to be checked. All three issues, automatic verification, upfront guessing
and global correctness conditions, will be remedied by the syntactic proof systems for observational
equivalence in Section 5.2.

The syntactic proof system in Section 5.2 allows us to prove formulas of a first-order predicate
logic with an internal equality that models observational equivalence. Since the aim of the proof
system is to allow for easy discovery of proof steps along the way, in contrast to having to guess a
bisimulation relation upfront, we opt for a recursive proof system. Such a proof system allows us
to refer back to proof steps that we encountered before. To ensure that recursive references give
rise to well-defined proofs, we use the so-called later modality [Nak00], which allows us to control

107

Chapter 5. Inductive-Coinductive Reasoning

where recursion steps can occur. In contrast to cyclic proof systems, our proof system allows proofs
to be checked locally at every proof step. We describe this in detail in Section 5.2.

The two proof methods for observational equivalence that we discussed up to this point require
some ingenuity in constructing proofs of program equivalences. In Section 5.3 we show that this is
unavoidable, since observational equivalence is undecidable, as one would expect. More positively,
we also establish there a fragment of the languages, on which observational equivalence is decidable.

Original Publication For the most part, the content of Section 5.1 has been presented in [BH16],
but without the extensive example and the up-to technique for carrying out induction in a bisimu-
lation proof in Section 5.1.3. In the same paper, also the results in Section 5.3 have been published.
The logic FOL▶ in Section 5.2 is, on the other hand, completely new. However, in [Bas18a] a general
approach for constructing a logic for coinductive predicates, which is based on the later modality,
from a logic given in form of a fibration is presented. This subsumes, in principle, the development
in Section 5.2, see the discussion [Bas18a].

5.1. Program Properties as Coinductive Predicates
Since observational equivalence is defined in terms of tests, the only way to prove that two programs
are equivalent is so far by induction on tests. In this section we develop a set-based proof technique
for observational equivalence, which is simpler and more intuitively usable than induction on tests.
This proof technique is centred around the idea that observations on programs give rise to a labelled
transition system on programs. We introduce this transition system in Section 5.1.1. Associated to
such a transition system is the usual notion of bisimilarity. In Section 5.1.2 we show that observational
equivalence coincides with this notion of bisimilarity. This allows us to prove that programs are
observationally equivalent by establishing a bisimulation relation containing these terms, instead
of having to proceed by induction on tests. We demonstrate the use of this proof method on an
extensive example in Section 5.1.3.

The description of observational equivalence as coinductive predicate gives us a powerful proof
technique. However, this proof technique is also very tedious to use in its basic form, which leads
us to consider up-to techniques that can drastically reduce the complexity of equivalence proofs. We
give in Section 5.1.2 several general up-to techniques, that can be used in any proof of observational
equivalence. In the example in Section 5.1.3, we also develop an up-to technique that allows us to
use induction inside bisimulation proofs.

5.1.1. Terms as Transition System
Towards coinductive proof principles for observational equivalence and observational normalisation,
the first step is to establish a labelled transition system (LTS), in which the states are terms of λµν=.
The labels in this transition system are the observations that are given by the modalities of the
testing logic in Definition 4.1.12. Given such a label, the successors of a term t are all those terms
that can be reached after making the observation given by that label.

The transition system on terms is defined by composing two relations. One relation, denoted by
, represents the observations that can be made. For example, a possible observation on a term t

of type A× B is the first projection, which leads us to have a transition t
π1 π1 t in the transition

108

5.1. Program Properties as Coinductive Predicates

system. On an inductive type like A1 + A2 we can observe a constructor on terms of the form
κi s for some term s of type Ai , in which case there is a transition κ1 s

κi s . Note that such a
transition is only possible on terms in weak head normal form (Lemma 3.2.34). Thus, to avoid that
the transition system gets stuck, we also need to take reductions into account. We can achieve this
by adding transitions to all terms that are reachable by reductions after making an observation on
a term of coinductive type and before observing terms of inductive type. The transition relation we
obtain from combining and reductions is denoted by .

The observation relation l
A ⊆ Λ=(A) × Λ=(A) is given by the following rules. Note that the

relation is annotated with the type of the term on the left-hand side. This is necessary to decide
when to make a reduction step in the definition of below.

t ∈ Λ=(A1 ×A2) i ∈ {1, 2}

t
πi

A1×A2
t .pri

t ∈ Λ=(νX .XA)

t
ξ

νX .A t .out

t ∈ Λ=(A→ B) u ∈ ONA

t u
A→B t u

t ∈ Λ=(Ai)

κi t
κi

A1+A2
t

t ∈ Λ=(A[µX .A/X])

α t α
µX .A t

The labelled transition relation l
A ⊆ Λ=(A) × Λ=(A) is then defined by composing the labelled

observation relation with the reduction relation, as follows. Here ; denotes relation composition
and is the reflexive, transitive closure of the reduction relation −→, see Definition 3.2.14.30

l
A=

; l

A if A is inductive
l

A ; if A is coinductive

If the type A is clear from the context, we shall drop the subscript of this relation.
Let us give some examples of transitions that can be taken in the above LTS. The first example

illustrates the need for reduction steps in between observations.

Example 5.1.1. Let A,B,C be types, and s and t be terms with s : A and t : C , so that we can form
⟨κ1 s, t⟩ : (A+ B) ×C . There is now an observation step

⟨κ1 s, t⟩ π1 ⟨κ1 s, t⟩.pr1
to a term of type A+ B. However, we cannot make any further observations, since the term on the
right-hand side has no constructor in head position. So the observation relation gets stuck. This
leads us to use the reduction relation to obtain

⟨κ1 s, t⟩.pr1 κ1 s,

from where we can again take an observation step

κ1 s
κ1 s .

Thus the following sequence of steps is possible in the transition system.

⟨κ1 s, t⟩ π1 κ1 s
κ1 s . ◀

109

Chapter 5. Inductive-Coinductive Reasoning

Let us give some further and more concrete examples of possible transitions.

Example 5.1.2. We give several snapshots of the transition system, both on inductive and coinductive
types. A full circle represents hereby a state of the transition system, whereas a dashed circle
represents intermediate states.

1. The term ⟨ ⟩′ of type 1′ was defined in Example 3.2.7 so that ⟨ ⟩′.out ⟨ ⟩′. This leads to the
loop displayed in the following diagram.

⟨ ⟩′ ⟨ ⟩′.out
ξ

It is noteworthy that we cannot extract any further information about ⟨ ⟩′, since ξ is the
only observation we can make on ⟨ ⟩′. In fact, this is what allowed us to show that 1′ is a
pseudo-terminal object in Theorem 4.2.14.

2. We display some transitions that start in the encoding 1 : Nat of 1. Recall that Nat = µX . 1+X ,
and that the encoding was defined in Example 3.1.7 by 0 = α (κ1 ⟨ ⟩) and 1 = α (κ2 0).

1 κ2 0 0 κ1 ⟨ ⟩ ⟨ ⟩
α κ2 α κ1

3. Of course, there are also terms in λµν= that have no outgoing transition because they do not
have a WHNF. For example, recall from Example 3.2.21 that we can define for any type A a
term ΩA = rlet f : Nat = {· 7→ f } in f , which has no normalising reductions. If we now
instantiate this term for an inductive type, like for instance Nat, then ΩNat has no WHNF.
This is to say that there is no term t : 1+ Nat with ΩNat α t . Thus there is no transition
originating from ΩNat in the LTS.

4. The final example is concerned with terms of coinductive types. Recall that we have defined
in Example 3.2.9 a function term H : Natω → Natω → Natω . So for any observationally
normalising term u of type Natω there is a step H u H u possible. In particular, we can
use a term nats ∈ ONNatω that represents the stream (0, 1, 2, . . .) of natural numbers, see
Example 3.1.8. We show in the diagram in Figure 5.1 a part of the transition system, starting
at H . It is important to note that we only display a fraction of the possible transitions, as
there is, for example, a transition originating from H for every term in u ∈ ONNatω and to
every term t with H u t . ◀

We now give a description of the labelled transition relation (Λ=,) as a coalgebra on terms.
This will allow us to apply coalgebraic techniques to define bisimilarity on this labelled transition
system. An integral part of the transition relation on terms is that it is type-driven, which
in turn enforces that only terms of the same type can be related by a bisimulation relation. We
implement this typing constraint in a coalgebra, which represents the transition system, by using
the set family of terms indexed by their types. Thus, we consider Λ= as an element in SetTy, the
category of set families indexed by types, see Example 2.4.3, and the transition system as a coalgebra
for a functor F : SetTy → SetTy. This functor describes the branching type of the transition system:
for X ∈ SetTy and C ∈ Ty, F (X)C is the set that can be inspected by tests on type C , see the rules for

above. Formally F and the coalgebra representing the transition system are given as follows.

110

5.1. Program Properties as Coinductive Predicates

H nats H

H nats nats f 0 nats nats hd (f 0 nats nats)

tl (f 0 nats nats)H nats (tl nats) 0

1 H (tl nats) (tl2 nats)
...

nats

· · · u nats

hd

tl

hd tl

Figure 5.1.: A few transitions in the LTS on terms originating at H

Definition 5.1.3. Let F : SetTy → SetTy be the functor given by

F (X)C =

1, C = 1⨿
i ∈{1,2} P(XAi) + 1, C = A1 +A2

P(XA[µX .A/X]) + 1, C = µX .A∏
i ∈{1,2} P(XAi), C = A1 ×A2

P(XA[νX .A/X]), C = νX .A

P(XB)ONA , C = A→ B

where P(−) is the covariant powerset functor, and for a set U , (−)U is the function space functor.
F acts on morphisms in the obvious way. We define the coalgebra on terms δ : Λ= → F (Λ=) by

δ1(t) = ∗

δA1+A2
(t) =

{
ιi ({t ′ : Ai | t κi t

′}), ∃t ′. t κi t
′

∗, otherwise

δµX .A(t) =

{
{t ′ : A | t α t ′}, ∃t ′. t α t ′

∗, otherwise

δA1×A2
(t)(i) = {t ′ : Ai | πi t t ′}

δνX .A(t) = {t ′ : A | ξ t t ′}
δA→B(t)(u) = {t ′ : C | t u t ′}

Note that uniqueness of WHNFs, Lemma 3.2.33, ensures that δ is well-defined on sum types.31 ◀

111

Chapter 5. Inductive-Coinductive Reasoning

Of course, we would expect the transition system and the coalgebra δ to be equivalent. To
show this, let us introduce another functor G : SetTy → SetTy. In the definition of G, we use the
constructors and projections as labels in the index of the corresponding coproducts and products.
The reason for using F rather than G in the course of this chapter is that G is complicated. However,
it simplifies the construction of a coalgebra from the transition system.

G(X)C =

⨿
κi ∈{κ1,κ2 } P(XAi) + 1, C = A1 +A2

1, C = 1⨿
l ∈{α } P(XA[µX .A/X]) + 1, C = µX .A∏
πi ∈{π1,π2 } P(XAi), C = A1 ×A2∏
l ∈{ξ } P(XA[νX .A/X]), C = νX .A∏
u ∈ONA

P(XB), C = A→ B

Note that for fixed point types there is only one label, thus G(X)C is in these cases isomorphic to
F (X)C . Similarly, we can rename the labels κi in the sum case to 1 and 2 and obtain thereby an
isomorphism G(X)A1+A2

� F (X)A1+A2
. Analogously, G(X)C and F (X)C are also isomorphic for all

other types C . Since these isomorphisms are natural in X , we obtain an isomorphism F � G. We
can now associate a G-coalgebra (Λ=,d) with the rule-based transition system:

d : Λ= → G(Λ=)

dA(t) = ιℓ
({
t ′

�� t ℓ
A t ′

})
, A inductive and ∃t ′. t ℓ

A t ′

dA(t) = ∗, A inductive and ¬(∃t ′. t ℓ
A t ′)

dA(t)(ℓ) =
{
t ′

�� t ℓ
A t ′

}
, A coinductive

Note that d is again well-defined on inductive types due to uniqueness of WHNFs. It is hopefully
clear that d is a G-coalgebraic representation of the relation . We now show that the F -coalgebra
δ and the G-coalgebra d essentially define the same transition system.

Proposition 5.1.4. The transition systems defined by the F -coalgebra δ and by the G-coalgebra d are
equivalent in the sense that the following diagram commutes.

F (Λ=)

Λ=

G(Λ=)

δ

d

�

Proof. Let f be the isomorphism G(Λ=) → F (Λ=). We proceed by case distinction in A ∈ Ty to
show that δA = fA ◦ dA.

112

5.1. Program Properties as Coinductive Predicates

• For sum types A1 +A2, we have for every t : A1 +A2 that either there is i ∈ {1, 2}, such that

fA1+A2
(dA1+A2

(t)) = fA1+A2
(ικi {t ′ | t

κi
A1+A2

t ′}) by ∃t ′. t κi
A1+A2

t ′

= ιi {t ′ | t κi
A1+A2

t ′} by definition of f

= ιi {t ′ | t κi t
′ κi

A1+A2
t ′} by ∃t ′. t κi t

′ κi
A1+A2

t ′

= ιi {t ′ | t κi t
′} by ∃t ′. t κi t

′

= δA1+A2
(t),

or fA1+A2
(dA1+A2

(t)) = fA1+A2
(∗) = ∗ = δA1+A2

(t).

• For function types A→ B we have for every u ∈ ONA

fA→B(dA→B(t))(u) = dA→B(t)(u)

= {t ′ | t u
A→B t ′}

= {t ′ | t u
A→B t u t ′}

= {t ′ | t u t ′}
= δA→B(t)(u).

All other cases are treated analogously. Thus δ = f ◦ d , as required. □

5.1.2. Observational Equivalence as Bisimilarity
We will now establish that observational equivalence coincides with the usual notion of bisimilarity
on the F -coalgebra δ . Since observational equivalence is defined as logical equivalence by the testing
logic given in Section 4.1, this means that the testing logic is adequate (or expressive) for bisimilarity
on the term coalgebra δ .

We define bisimulations on δ vial a relation lifting of the functor F (Definition 2.5.7). We now
introduce the necessary terminology.
Definition 5.1.5. Given an index set I , the category of relations over families indexed by I is defined
as follows. Here, ⊑ is the index-wise set inclusion, see Example 2.4.3.

RelI =
{
objects: (X ,R) with X ,R ∈ SetI and R ⊑ X × X
morphisms: f : (X ,R)→ (Y , S) is given by f : X → Y , s.t. (f × f)(R) ⊑ S

This category is the total category of a fibration P I : RelI → SetI induced by P I (X ,R) = X . Each
fibre of P I is given by

RelIX =

{
objects: R with R ⊑ X × X
morphisms: R → S ⇐⇒ R ⊑ S

,

which forms a complete lattice, see Definition 2.5.8. Reindexing on RelI along f : X → Y is described
in terms of taking preimages:

f ∗ : RelIY → RelIX
f ∗(R) =

{
(fi × fi)

−1(Ri)
}
i ∈I

113

Chapter 5. Inductive-Coinductive Reasoning

We will omit I in the superscripts of Rel and P , if it is understood from the context. ◀

Recall from Definition 2.5.7 that a lifting H to RelI of a functor L : SetI → SetI restricts for each
X ∈ SetI to a functor HX : RelIX → RelILX on fibres, and that we can model for a given coalgebra
c : X → LX relational properties of c as final coalgebras for the functor Hc : RelIX → RelIX , where

Hc B c∗ ◦HX .

In particular, it is well-known that bisimulations for δ : Λ= → F (Λ=) are exactly the post-fixed
points of F δ , where F is the canonical relation lifting of F , see [Sta11].

Definition 5.1.6. The canonical relation lifting F : RelTy → RelTy of F is given by

F (X ,R) = (FX , ⟨F (π1), F (π2)⟩(FR)).

Let Φ: RelTyΛ= → RelTyΛ= be the monotone map

Φ B F δ = δ ∗ ◦FX .

An observational bisimulation is a Φ-invariant (or F -bisimulation on δ), see Definition 2.5.7, that is,
a relation R ∈ RelTyΛ= on terms, such that

R ⊑ Φ(R). ◀

Notation 5.1.7. In the remainder of this chapter, we will only use type-indexed relations. So to
keep the notation simple, we omit the superscript in RelTy and just write Rel. ◀

Let us describe the canonical lifting of F and the monotone operator Φ, more concretely. Suppose,
we are given R ∈ RelΛ= . Then for all (U1,U2) ∈ F (Λ=)A × F (Λ=)A, we have

(U1,U2) ∈ F (R)A ⇐⇒ ∃U ∈ F (R)A.U1 = (Fπ1)A(U) and U2 = (Fπ2)A(U).

Thus we have
Φ(R)A = {(t1, t2) ∈ Λ=(A)2 | (δA(t1),δA(t2)) ∈ F (R)A}.

Let us now give an explicit description of the properties that a relation has to fulfil in order to be
an observational bisimulation. The easiest case to spell out the requirements on an observational
bisimulation is if we do not have to take explicit reduction steps into account. This is captured in
the following lemma, for which we recall that ≡ denotes the convertibility relation, Definition 3.2.14.

Lemma 5.1.8. Let R ∈ RelΛ= and assume that R is ≡-closed, that is, for all (s, t) ∈ RA, s ≡ u and t ≡ v ,
the pair (u,v) is also in RA. Then R is an observational bisimulation if and only if the following conditions
are fulfilled.

• If (s, t) ∈ RA1+A2
, then either neither of s and t has a WHNF, or there is an i ∈ {1, 2} with s ≡ κi s ′,

t ≡ κi t ′ and (s ′, t ′) ∈ RAi .

• If (s, t) ∈ RµX .A, then either neither of s and t has a WHNF, or s ≡ α s ′, t ≡ α t ′ and (s ′, t ′) ∈
RA[µX .A/X].

114

5.1. Program Properties as Coinductive Predicates

• If (s, t) ∈ RA1×A2
, then (s .pr1, t .pr1) ∈ RA1

and (s .pr2, t .pr2) ∈ RA2
.

• If (s, t) ∈ RA→B , then for all u ∈ ONA we must have (s u, t u) ∈ RB .

• If (s, t) ∈ RνX .A, then (s .out, t .out) ∈ RA[νX .A/X].

Proof. Let R ∈ RelΛ= be ≡-closed. We need to show that R ⊑ Φ(R) if and only if the above conditions
hold. So let A be a type and (s, t) ∈ RA. That (s, t) ∈ Φ(R)A is equivalent to the corresponding
condition for each type A ∈ Ty is shown by case distinction on A. We only demonstrate these
equivalences on function types and least fixed point types, since the other cases are dealt with
analogously.

• Suppose that (s, t) ∈ Φ(R)A→B . We need to show that this is equivalent to saying that
∀u ∈ ONA. (s u, t u) ∈ RB . First, we can rewrite the condition (s, t) ∈ Φ(R)A→B to clauses
that are familiar from labelled transition systems without using the fact that R is ≡-closed:

(s, t) ∈ Φ(R)A→B
⇐⇒ (δA→B(s),δA→B(t)) ∈ F (R)A→B
⇐⇒ ∃U ∈ P(RB)ONA . δA→B(s) = (Fπ1)(U) ∧ δA→B(t) = (Fπ2)(U)

⇐⇒ ∃U ∈ P(RB)ONA . ∀u ∈ ONA.

∀s ′ ∈ δA→B(s)(u). ∃t ′. (s ′, t ′) ∈ U (u) ∧ ∀(s ′, t ′) ∈ U (u). s ′ ∈ δA→B(s)(u)
∧ ∀t ′ ∈ δA→B(t)(u). ∃s ′. (s ′, t ′) ∈ U (u) ∧ ∀(s ′, t ′) ∈ U (u). t ′ ∈ δA→B(t)(u)

⇐⇒ ∀u ∈ ONA. ∀s ′ ∈ δA→B(s)(u). ∃t ′ ∈ δA→B(t)(u). (s ′, t ′) ∈ RB
∧∀t ′ ∈ δA→B(t)(u). ∃s ′ ∈ δA→B(s)(u). (s ′, t ′) ∈ RB

⇐⇒ ∀u ∈ ONA. ∀s ′. (s u s ′) =⇒ (∃t ′. t u t ′ ∧ (s ′, t ′) ∈ RB)
∧∀t ′. (t u t ′) =⇒ (∃s ′. s u s ′ ∧ (s ′, t ′) ∈ RB)

Since R is closed under conversions, we obtain then the desired property:

(s, t) ∈ Φ(R)A→B
⇐⇒ ∀u ∈ ONA. ∀s ′. (s u s ′) =⇒ (∃t ′. t u t ′ ∧ (s ′, t ′) ∈ RB)

∧∀t ′. (t u t ′) =⇒ (∃s ′. s u s ′ ∧ (s ′, t ′) ∈ RB)
see above

⇐⇒ ∀u ∈ ONA. ∀s ′. (s u s ′) =⇒ (s ′, t u) ∈ RB
∧∀t ′. (t u t ′) =⇒ (s u, t ′) ∈ RB

R ≡-closed

⇐⇒ ∀u ∈ ONA. (s u, t u) ∈ RB ∧ (s u, t u) ∈ RB R ≡-closed
⇐⇒ ∀u ∈ ONA. (s u, t u) ∈ RB .

Therefore, we have that (s, t) ∈ Φ(R)A→B ⇐⇒ ∀u ∈ ONA. (s u, t u) ∈ RB , and thus, on
function types, R ⊆ Φ(R)A→B is equivalent to

∀(s, t). (s, t) ∈ R =⇒ ∀u ∈ ONA. (s u, t u) ∈ RB .

115

Chapter 5. Inductive-Coinductive Reasoning

• For the case of least fixed point types we proceed similarly:

(s, t) ∈ Φ(R)µX .A

⇐⇒ (δµX .A(s),δµX .A(t)) ∈ F (R)µX .A

⇐⇒ δµX .A(s) = ∗ = δµX .A(t)∨(∀s ′ ∈ δµX .A(s). ∃t ′ ∈ δµX .A(t). (s
′, t ′) ∈ RA[µX .A/X]

∧ ∀t ′ ∈ δµX .A(t). ∃s ′ ∈ δµX .A(s). (s
′, t ′) ∈ RA[µX .A/X]

)
⇐⇒ neither s nor t has a WHNF ∨(∀s ′. (s α s ′) =⇒ (∃t ′. t α t ′ ∧ (s ′, t ′) ∈ RA[µX .A/X])

∧ ∀t ′. (t α t ′) =⇒ (∃s ′. s α s ′ ∧ (s ′, t ′) ∈ RA[µX .A/X])
)

From this, we obtain

(s, t) ∈ Φ(R)A→B
⇐⇒ neither s nor t has a WHNF ∨

∃s ′, t ′. s ≡ α s ′ ∧ t ≡ α t ′ ∧ (s ′, t ′) ∈ RA[µX .A/X],

just as we did in the case of function types. □

Let us now formulate the main result of this section.32

Theorem 5.1.9. Observational equivalence is the largest observational bisimulation.

Proof. The proof consists of two steps: We need to show that ≡obs is actually an observational
bisimulation and that it is the largest one with respect to ⊑. We begin by showing that ≡obs is an
observational bisimulation, thus we need to show that ≡obs ⊑ Φ(≡obs). So we let t1 ≡Aobs t2 for some
type A and show that (t1, t2) ∈ Φ(≡obs)A.

• For A = 1, the proof is trivial.

• For A = A1 +A2, we distinguish three cases.
i) The term t1 has a WHNF, i.e., there are i ∈ {1, 2} and t ′1 with t1 κi t

′
1. But then there

is a t ′2 with t2 κi t
′
2, for otherwise one of the tests [⊤,⊥] or [⊥,⊤] would distinguish t1

and t2, contradicting t1 ≡obs t2. Thus t2 has a WHNF, too.
We show that for all t ′1 and t ′2 with tk κi t

′
k for all k ∈ {1, 2} that t ′1 ≡obs t ′2 must

hold. In the case i = 1, assume there is a test ϕ distinguishing t ′1 and t ′2. Then [ϕ,⊥]
distinguishes t1 and t2, contradicting t1 ≡obs t2. Thus we must have t ′1 ≡obs t ′2. The case
of i = 2 is symmetric. We put U =

{
(t ′1, t

′
2)

�� ∀k ∈ {1, 2}. tk κi t
′
k

}
and by the two

arguments above, we have ιi (U) ∈ F (≡obs)A and δ(tk) = ιi (πk (X)) for all k ∈ {1, 2}, thus
(t1, t2) ∈ Φ(≡obs)A.

ii) Conversely, if t2 has a WHNF, then (t1, t2) ∈ Φ(≡obs)A using a symmetric argument.
iii) If neither t1 nor t2 has a WHNF, then δ(tk) = ∗ for k = 1, 2 and, since (∗, ∗) ∈ F (≡obs)A,

we have that (t1, t2) ∈ Φ(≡obs)A.

116

5.1. Program Properties as Coinductive Predicates

• The case A = µX . B is proved analogously.

• If A = B → C , we have for each u ∈ ONB and t ′k with tk u t ′k and k ∈ {1, 2} that
t ′1 ≡obs t ′2. Assume that t ′1 and t ′2 could be distinguished by a test ϕ, then the test [u]ϕ would
distinguish t1 and t2, which contradicts t1 ≡obs t2. Thus, t ′1 ≡obs t ′2 for all such t ′1 and t ′2.
Now let X (u) = {(t ′1, t ′2) | ∀k ∈ {1, 2}. tk u t ′k }. By the above discussion, X ∈ F (≡obs)A,
and by definition, also πk (X (u)) = δ(tk)(u) for all {1, 2} and for all u ∈ ONB , hence
(t1, t2) ∈ Φ(≡obs)A.

• The cases for products and greatest fixed point types can be proved analogously.

Having proved that ≡obs is an observational bisimulation, it remains to prove that ≡obs is the largest
such bisimulation. So let R ∈ RelΛ= be such that R ⊑ Φ(R). We show that R ⊑ ≡obs by showing that
for all A ∈ Ty, all (t1, t2) ∈ RA and all ϕ : A that t1 ⊨ ϕ ⇔ t2 ⊨ ϕ holds. The proof is by induction
on ϕ. The base case for the trivial tests ⊤ and ⊥ is immediate. We prove the induction step by case
distinction in A.

• If A = A1 + A2, then, since R is a bisimulation, either δ(t1) = δ(t2) = ∗ or there is an
i ∈ {1, 2} such that

∀t ′1. (t1 κi t
′
1) =⇒ (∃t ′2. t2 κi t

′
2 ∧ (t ′1, t

′
2) ∈ RAi) (5.1)

∀t ′2. (t2 κi t
′
2) =⇒ (∃t ′1. t1 κi t

′
1 ∧ (t ′1, t

′
2) ∈ RAi) (5.2)

We use this to show that t1 and t2 satisfy ϕ simultaneously. If there is k ∈ {1, 2} such that
δ(tk) = ∗, then tk does not have a WHNF and both t1 and t2 do not satisfy ϕ. Otherwise, we
use that the test ϕ must be of the form [ψ1,ψ2] with ψi :↓ Bi . By definition, t1 ⊨ ϕ ⇔ t ′1 ⊨ ψi
for t1 ≡ κi t ′1. The existence of t ′1 with t1 ≡ κi t ′1 implies that there is a t ′′1 with t1 κi t

′′
1 .

By (5.1), there is a t ′2 with t2 κi t
′
2 and (t ′′1 , t

′
2) ∈ RAi . Finally, by the induction hypothesis,

t ′1 and t ′2 simultaneously satisfy ψi , hence t2 ⊨ ϕ. Using (5.2), we prove analogously that t2 ⊨ ϕ
implies t1 ⊨ ϕ.

• We proceed analogously for least fixed point types.

• If A = B → C , then the assumption RA ⊆ Φ(R)A says that for all u ∈ ONB

∀t ′1. (t1 u t ′1) =⇒ (∃t ′2. t2 u t ′2 ∧ (t ′1, t
′
2) ∈ RC) (5.3)

∀t ′2. (t2 u t ′2) =⇒ (∃t ′1. t1 u t ′1 ∧ (t ′1, t
′
2) ∈ RC) (5.4)

This allows us to show that t1 ⊨ ϕ ⇔ t2 ⊨ ϕ. The test ϕ must be of the form [u]ψ for some
u ∈ ONB and ψ :↓C . By (5.3), there is a t2 u t ′2 with (t1 u, t

′
2) ∈ RC , which implies by

induction that t1 u and t ′2 simultaneously satisfy ψ . Moreover, t2 u t ′2 implies that t2 u and
t ′2 simultaneously satisfy ψ . Hence t1 u ⊨ ψ ⇒ t2 u ⊨ ψ and thus t1 ⊨ ϕ ⇒ t2 ⊨ ϕ. Analogously,
we prove t2 ⊨ ϕ ⇒ t1 ⊨ ϕ by (5.4), thus t1 and t2 simultaneously satisfy ϕ.

• The case for products and greatest fixed points is proved analogously.

Thus ≡obs is the largest observational bisimulation, hence it is final for Φ. □

117

Chapter 5. Inductive-Coinductive Reasoning

Theorem 5.1.9 gives us a bisimulation proof principle for observational equivalence. That is to
say, we can prove that two terms are observationally equivalent by establishing an observational
bisimulation relation that contains these two terms. This is an improvement over proofs by induction
on tests in two ways: First, bisimulation proofs are usually easier to give. More importantly though,
we can enhance the bisimulation proof principle very easily with up-to techniques, see Section 2.5.1.

Up-to techniques allow us to overcome two major problems that the plain bisimulation proof
principle from Theorem 5.1.9 has. Note that the transition system on terms has transitions to all
terms to which reductions are possible. This forces observational bisimulations to be closed under
reductions, which makes them unnecessarily complicated. Another problem is that we cannot easily
use equivalences we have already proved. Both problems can be solved by closing a bisimulation
candidate under observational equivalence.

We make use of Lemma 2.5.11 in the following to establish an up-to technique that solves the
above problems of the bisimulation proof principle. For R ∈ RelΛ= , we denote by R≡obs ∈ RelΛ= the
closure of R under observational equivalence, that is,

R≡obs B ≡obs ; R ; ≡obs . (5.5)

Since F is the canonical lifting of F to relations, we get from [Bon+14] that up-to bisimilarity, that
is up-to ≡obs, is Φ-compatible. Furthermore, we denote by Eq the diagonal relation and by ⊔ the
index-wise union. Then we have the following result.

Proposition 5.1.10. The functor Cobs : RelΛ= → RelΛ= given by

Cobs(R) = (R ⊔ Eq)≡obs

is Φ-compatible.

Proof. Since Eq ⊑ Φ(Eq), we have that the constant functor mappping to Eq is compatible [Bon+14,
Prop. 1]. By the same proposition, also (−)≡obs and ⊔ are compatible. Hence the composition Cobs

is compatible. □

Recall from Definition 2.5.10 that an observational bisimulation (i.e., a Φ-invariant) up to p : Rel→
Rel is a relation R, such that R ⊑ Φ(p(R)). This allows us to simplify proofs of observational
normalisation in the following. Note also that Φ itself is trivially Φ-compatible (Lemma 2.5.11). This
might seem like a useless up-to technique. However, it becomes handy if a term only reduces under
repeated observations. We will use this, for example, when proving properties of streams. These
are usually given by specifying head and tail, which are combined observations: .hd = .out.pr1 and
.tl = .out.pr2. Similarly, functions with multiple arguments usually reduce only if all arguments are
provided.

Let us put the bisimulation proof principle and up-to techniques to work, starting with a simple
example.

Example 5.1.11. In Example 3.2.19 we conjectured that selectoddFalt would have the same behaviour
as 1ω . We prove select oddF alt ≡obs 1ω now by showing that R with

RNatω = {(select oddF alt, 1ω)}
RA = ∅, A , Natω

118

5.1. Program Properties as Coinductive Predicates

is an observational bisimulation up to Φ ◦ Cobs. Recall from Example 3.2.19 that

(select oddF alt).hd ≡ 1

(select oddF alt).tl ≡ select oddF alt
and

(1ω).hd ≡ 1

(1ω).tl ≡ 1ω

Since (1, 1) ∈ Cobs(R)Nat and (select oddF alt, 1ω) ∈ RωNat ⊆ Cobs(R)Natω , we have

((select oddF alt).out, (1ω).out) ∈ Φ(Cobs(R))Nat×Natω

and hence
(select oddF alt, 1ω) ∈ Φ(Φ(Cobs(R)))Natω .

So R is indeed an observational bisimulation up to Φ ◦ Cobs. ◀

Example 5.1.11 shows that it requires some ingenuity to combine up-to techniques in the correct
order for a proof to go through. So it would be useful if there was a way to introduce up-to
techniques in a proof whenever necessary without the need to correctly specify the order of use
beforehand. Fortunately, this can be achieved by using the companion of Φ that we introduced
in Definition 2.5.12. For instance, the companion allows us to close a relation backwards under
observations, as the following lemma shows.

Lemma 5.1.12. Let R ∈ RelΛ= . The companion γΦ of Φ, see Definition 2.5.12, fulfils the following
backwards closure conditions.

• If for all u ∈ ONA we have (s u, t u) ∈ γΦ(R)B , then (s, t) ∈ γΦ(R)A→B .

• If for all i ∈ {1, 2} we have (πi s,πi t) ∈ γΦ(R)Ai , then (s, t) ∈ γΦ(R)A1×A2
.

• If (s .out, t .out) ∈ γΦ(R)A[νX .A/X], then (s, t) ∈ γΦ(R)νX .A.

Proof. We only prove the case for functions, the other cases are analogous. Recall from Lemma 5.1.8
that ∀u ∈ ONA. (s u, t u) ∈ γΦ(R)B is equivalent to (s, t) ∈ Φ(γΦ(R))A→B . Since Φ is compatible, we
have Φ(γΦ(R)) ⊑ γΦ(R). Thus, (s, t) ∈ γΦ(R)A→B follows. □

5.1.3. An Extensive Example: Transitivity of the Substream Relation
We will now study an elaborate example that demonstrates the use of the bisimulation proof method,
up-to techniques and the companion. In this example, we show that the following substream relation
is transitive.

Example 5.1.13. Recall that a stream selector was given as element of the type F , where F =
νX . µX .X + Y . Let s, t : Natω be stream terms in We say that s is substream of t , written s ≤ t , if
there is a selector x ∈ ONF such that select x s ≡obs t . Symbolically, we define

s ≤ t B ∃x ∈ ONF . s ≡obs select x t . ◀

To prove transitivity, we observe that if r ≤ s by x1 and s ≤ t by x2, then

t ≡obs select x2 s ≡obs select x2 (select x1 r). (5.6)

119

Chapter 5. Inductive-Coinductive Reasoning

We thus expect to be able to relate r and t directly by some form of composition of selectors. Indeed,
we can compose selectors in λµν= as follows, where Fµ = µX .X + F .

comp : F → F → F

(comp x y).out = compµ (x .out) (y.out)
compµ : Fµ → Fµ → Fµ

compµ (pres x) (pres y) = pres (comp x y)
compµ (pres x) (dropv) = drop (compµ (x .out)v)
compµ (drop u)v = drop (compµ u v)

Note that comp is defined coinductively, whereas compµ is defined first by iteration on the first
argument, and then in the base case of the first argument by iteration on the second argument. Let
us introduce some more visually appealing notation for the composition of selectors:

y • x B comp x y y •µ x B compµ x y.

If we can show that
select (y • x) ≡obs select y ◦ select x , (5.7)

then we can continue the chain of equations in (5.6) with

t ≡obs select x2 (select x1 r) ≡obs select (x2 • x1) r .

Hence, the selector that witnesses r ≤ t is given by composing the selectors that witness r ≤ s and
s ≤ t , respectively.

The rest of this subsection is devoted to proving (5.7). A first step towards this is to prove an
induction principle that allows us to prove observational equivalence of maps out of Fµ . This requires
the characterisation of the elements in Fµ , which is the content of the following lemma.

Lemma 5.1.14. For all u ∈ ONFµ there are n ∈ N and x ∈ ONF , such that u ≡ dropn (pres x).

Proof. Since u ∈ ONFµ ⊆ SNFµ , by Lemma 3.2.34 there is an i ∈ {1, 2} and an observationally
normalising u ′ with u α (κi u

′). If i = 1, then α (κi u
′) = pres u ′, thus u ≡ drop0 (pres u ′).

Hence, the claim holds with x = u ′. Otherwise, if i = 2, then α (κi u
′) = drop u ′. As u ′ is a finite

term and strongly normalising, we get by induction on the reduction steps towards a normal form
of u ′ that there are x ∈ ONF and k ∈ N, such that u ′ ≡ dropk (pres x). Hence, the claim holds in
this case with n = k + 1, that is, we have u ≡ dropk+1 (pres x). □

Given the characterisation of elements in Fµ , we now construct an operator that closes a relation
under the application to arguments in Fµ . The idea is that whenever there are terms s and t related
by RFµ→A, then we would like to extend R, such that s u and t u are related for all u ∈ Fµ . In general,
this is not sound as an up-to technique. However, if we assume that s u and t u are related by RA in
the base case where u ≡ pres x for some x : F , and that R is closed under induction steps, then we
can safely build a closure of R that contains all pairs (s u, t u). This closure is given in the following
definition.

120

5.1. Program Properties as Coinductive Predicates

Definition 5.1.15. We define H : [RelΛ= ,RelΛ=] → [RelΛ= ,RelΛ=], where [RelΛ= ,RelΛ=] is the set
of monotone functions on RelΛ= , as follows by using the closure under convertibility (−)≡.

H(T)(R)A = {(s u, t u) |(s, t) ∈ RFµ→A ∧ u ∈ ONFµ ∧ x ∈ ONF ∧ u ≡ pres x
∧ (s (pres x), t (pres x)) ∈ RA}

∪ {(s u, t u) |(s, t), (s ′, t ′) ∈ RFµ→A ∧ u,u ′ ∈ ONFµ

∧ s (drop u ′) ≡ s ′ u ′ ∧ t (drop u ′) ≡ t ′ u ′

∧ (s ′ ′, t ′u ′) ∈ T (R)≡A}

The Fµ -closure is the least fixed point µH : RelΛ= → RelΛ= of H . ◀

We show that the inductive closure µH is sound as an up-to technique, by proving that it is
contained in the companion of Φ. Thus, we can use µH in all proofs of bisimilarity up to γΦ.

Lemma 5.1.16. µH is contained in the companion of Φ: µH ⊑ γΦ.

Proof. To show that µH ⊑ γΦ, we need to prove that µH(R)A ⊆ γΦ(R)A for all R ∈ RelΛ= and
A ∈ Ty. Since µH is a fixed point of H , it suffices to prove H(µH)(R)A ⊆ γΦ(R)A. So let (s u, t u) ∈
H(µH)(R)A for some (s, t) ∈ RFµ→A by one of the clauses of H . We proceed by induction on n for
u ≡ dropn (pres x), see Lemma 5.1.14.

• If n = 0, then the first case of H applies and we have (s (pres x), t (pres x)) ∈ RA. Thus also
(s (pres x), t (pres x)) ∈ γΦ(R)A. Since Cobs is compatible by Proposition 5.1.10, it is contained
in the companion, which means that the companion is ≡-closed. Thus, (s u, t u) ∈ γΦ(R)A.

• If n = k +1, then by the second case of H we get (s ′, t ′) ∈ RFµ→A, such that s (dropu ′) ≡ s ′u ′,
t (drop u ′) ≡ t ′ u ′ and (s ′ u ′, t ′ u ′) ∈ µH(R)A, where u ′ = dropk (pres x). By the induction
hypothesis for k , we thus obtain (s ′ u ′, t ′ u ′) ∈ γΦ(R)A. Appealing again to the ≡-closure of
γΦ, we thus have (s u, t u) ∈ γΦ(R)A, as required.

Hence, µH(R)A = H(µH)(R)A ⊆ γΦ(R)A for all R and A, and so µH ⊑ γΦ. □

It is fairly hard to use the definition of µH directly in a bisimilarity proof because it is not clear
which conditions R needs to satisfy in order for µH(R)A to contain (s u, t u) for all (s, t) ∈ RFµ→A
and u ∈ ONFµ . In the lemma below, we establish such conditions on a given relation R and the
terms related by RFµ→A, which leads to a proof principle that allows us to easily apply µH . These
conditions essentially require that RA relates terms in the base case of Fµ and that R is closed under
computations in the induction step.33

Lemma 5.1.17. Let R ∈ RelΛ= and A ∈ Ty. Suppose that for all (s, t) ∈ RFµ→A and all monotone
T : RelΛ= → RelΛ= the following conditions hold:

i) ∀x ∈ ONF . (s (pres x), t (pres x)) ∈ RA and

ii) ∀u ∈ ONFµ . ∃(s ′, t ′) ∈ RFµ→A. (s ′ u, t ′ u) ∈ T (R)A =⇒ (s (drop u), t (drop u)) ∈ T (R)≡A
Then for all u ∈ ONFµ and all (s, t) ∈ RFµ→A we have (s u, t u) ∈ µH(R)A.

121

Chapter 5. Inductive-Coinductive Reasoning

Proof. Let R andA be given as required by the lemma. Suppose now that u ∈ ONFµ . By Lemma 5.1.14,
there is an n ∈ N and an x ∈ ONF , such that u ≡ dropn (pres x). We proceed by induction on n to
prove for all (s, t) ∈ RFµ→A that (s u, t u) ∈ µH(R)A.

• If n = 0, then u ≡ pres x . Condition i) gives us that (s (pres x), t (pres x)) ∈ RA. By definition
of H (Definition 5.1.15), we thus have (s u, t u) ∈ H(µH)(R)A, and by µH being a fixed point
of H hence (s u, t u) ∈ µH(R)A.

• If n = k +1, then u ≡ dropu ′ for u ′ = dropk (presx). From condition ii), we get with T = µH
a pair (s ′, t ′) ∈ RFµ→A, such that, (s ′u ′, t ′u ′) ∈ µH(R)A would imply (s (dropu ′), t (dropu ′)) ∈
µH(R)≡A. Since by induction we have for any (s ′, t ′) ∈ RFµ→A that (s ′ u ′, t ′ u ′) ∈ µH(R)A, we
thus obtain (s (drop u ′), t (drop u ′)) ∈ µH(R)≡A. By definition of H , this implies (s u, t u) ∈
H(µH)(R)A. Hence, again by µH being a fixed point, it follows that (s u, t u) ∈ µH(R)A.

This induction on n shows for all (s, t) ∈ RFµ→A that (s u, t u) ∈ µH(R)A, as required. □

The induction principle that we devised in Lemma 5.1.17 is readily usable, if we want to prove that
two functions with one argument in Fµ are observationally equivalent. However, (5.7) requires us
to prove an equivalence between functions with two arguments in Fµ , see Proposition 5.1.19 below
for details. We could apply Lemma 5.1.17 twice in this situation, but note that compµ does not do
any further pattern matching on the second argument in the last case of its definition. Hence, we
only need to distinguish three cases: both arguments are given by the pres-constructor; the first is
a pres- and the second drop-constructor; and the first is given by the drop-constructor, while the
second argument is arbitrary. The following lemma applies Lemma 5.1.17 twice to obtain a mutual
induction principle that captures exactly this situation.34

Lemma 5.1.18. Let R ∈ RelΛ= and A ∈ Ty. Suppose that for all (s, t) ∈ RFµ→Fµ→A and all monotone
T : RelΛ= → RelΛ= the following conditions hold:

i) ∀x ,y ∈ ONF . (s (pres x) (pres y), t (pres x) (pres y)) ∈ RA,

ii) ∀v ∈ ONFµ . ∃(s ′, t ′) ∈ RFµ→Fµ→A.

(∀u ∈ ONFµ . (s
′ u v, t ′ u v) ∈ T (R)A)

=⇒ ∀x ∈ ONF . (s (pres x) (dropv), t (pres x) (dropv)) ∈ T (R)≡A
iii) ∀u,v ∈ ONFµ . ∃(s ′, t ′) ∈ RFµ→Fµ→A.

(s ′ u v, t ′ u v) ∈ T (R)A =⇒ (s (drop u)v, t (drop u)v) ∈ T (R)≡A
Then for all (s, t) ∈ RFµ→Fµ→A and all u,v ∈ ONFµ we have (s u v, t u v) ∈ γΦ(R)A.
Proof. The proof proceeds by applying Lemma 5.1.17 to the second argument to show that we have
(λu . s u v, λu . t u v) ∈ µH(γΦ(R))Fµ→A for all v ∈ ONFµ . Two cases arise from this: First, we need
to prove for all y ∈ ONF that (λu . s u (pres y), λu . t u (pres y)) ∈ γΦ(R)Fµ→A, and, second, that for
all operators T and all v ′ ∈ ONFµ also (λu . s u (drop v ′), λu . t u (drop v ′)) ∈ T (γΦ(R))Fµ→A. Both
cases are tackled by appealing to Lemma 5.1.12, so that we have to prove for all u ∈ ONFµ that
(s u (pres y), t u (pres y)) ∈ γΦ(R)Fµ→A, and (s u (drop v ′), t u (drop v ′)) ∈ T (γΦ(R))Fµ→A. Finally,
both cases are resolved by applying in each of them the inductive closure from Lemma 5.1.17 to u.
The first case cases uses thereby the first and third assumption of the lemma, whereas the second
case requires the second and third assumption. □

122

5.1. Program Properties as Coinductive Predicates

Having all this machinery of up-to techniques set up, we are finally in the position to prove that
select is a homomorphism from selector composition to function composition, that is, we can prove
select (y • x) ≡obs select y ◦ select x for all x ,y ∈ ONF , see Equation (5.7). The idea of the proof is
that we first show that selectµ is a homomorphism from •µ to function composition, in other words,
we have for all u,v ∈ ONF that selectµ (v •µ u) ≡obs selectµ v ◦ selectµ u. We prove this equation by
proving that the abstractions λu v . selectµ (v •µ u) s and λu v . selectµ v (selectµ u s) of the involved
terms are observationally equivalent. This allows us to apply the induction principle that we derived
in Lemma 5.1.18. The identity (5.7) follows then by definition of select in terms of selectµ .

Proposition 5.1.19. The relation R ∈ RelΛ= , given by

RFµ→Fµ→Aω =
{(
λu v . selectµ (v •µ u) s, λu v . selectµ v (selectµ u s)

) �� s ∈ ONAω
}

RAω = {(selectµ ((pres y) •µ (pres x)) s, selectµ (pres y) (selectµ (pres x) s)) |
s ∈ ONAω ,x ,y ∈ ONF }

is an observational bisimulation up to γΦ. In particular, for all x ,y ∈ ONF the equation (5.7), that is
select (y • x) ≡obs select y ◦ select x , holds.
Proof. We first show that for all (f ,д) ∈ RFµ→Fµ→Aω and u,v ∈ ONFµ that

(f u v,д u v) ∈ γΦ(R)Aω . (5.8)

So let (f ,д) ∈ RFµ→Fµ→Aω , that is, f = λu v . selectµ (v •µ u) s and д = λu v . selectµ v (selectµ u s)
for s ∈ ONAω . From Lemma 5.1.18, we obtain (f u v,д u v) ∈ γΦ(R)Aω , by proving the following
three conditions.

i) Let x ,y ∈ ONF , then (f (pres x) (pres y),д (pres x) (pres y)) ∈ γΦ(R)Aω , by definition of R
and id ⊑ γΦ.

ii) For the second condition, let v ∈ ONFµ . Given x ∈ ONF , we first note that we have the
following computations:

f (pres x) (dropv) ≡ selectµ (compµ (pres x) (dropv)) s
≡ selectµ (drop (compµ (x .out)v)) s
≡ selectµ (compµ (x .out)v) (s .tl)
≡ (λu v . selectµ (v •µ u) (s .tl)) (x .out)v

and
д (pres x) (dropv) ≡ selectµ (dropv) (selectµ (pres x) s)

≡ selectµ v ((selectµ (pres x) s).tl)
≡ selectµ v (select x (s .tl))
≡ selectµ v (selectµ (x .out) (s .tl))
≡ (λu v . selectµ v (selectµ u (s .tl))) (x .out)v .

Thus, we can pick f ′ B λu v . selectµ (v •µ u) (s .tl) and д′ B λu v . selectµ v (selectµ u (s .tl)),
which are related by RFµ→Fµ→Aω . Assume that (f ′ u v,д′ u v) ∈ T (R)Aω for all u ∈ ONFµ .
Then by the above computations, (f (pres x) (drop v),д (pres x) (drop v)) ∈ T (R)≡Aω for all
x ∈ ONF . Thus, also the second condition of Lemma 5.1.18 is fulfilled.

123

Chapter 5. Inductive-Coinductive Reasoning

iii) Let u,v ∈ ONFµ . We note now that
f (drop u)v = (λu v . selectµ (v •µ u) s) (drop u)v

≡ selectµ (v •µ (drop u)) s
= selectµ (compµ (drop u)v) s
≡ selectµ (drop (compµ u v)) s
≡ selectµ (compµ u v) (s .tl)
≡ (λu v . selectµ (v •µ u) (s .tl)) u v

and
д (drop u)v = (λu v . selectµ v (selectµ u s)) (drop u)v

≡ selectµ v (selectµ (drop u) s)
≡ selectµ v (selectµ u (s .tl))
≡ (λu v . selectµ v (selectµ u (s .tl))) u v

Since s ∈ ON, also s .tl ∈ ON. Thus, if we define terms f ′ B λu v . selectµ (v •µ u) (s .tl) and
д′ B λuv . selectµ v (selectµ u (s .tl)), then by the above reasoning (f ′uv,д′uv) ∈ T (γΦ(R))Aω
implies that (f (drop u) v,д (drop u) v) ∈ T (γΦ(R))

≡
Aω . Hence, also the third condition of

Lemma 5.1.18 is fulfilled.
Since all conditions of Lemma 5.1.18 are fulfilled for all (f ,д) ∈ γΦ(R)Fµ→Fµ→Aω and u,v ∈ ONFµ ,
we obtain that (f u v,д u v) ∈ γΦ(R)Aω .

We now prove that R ⊑ Φ(γΦ(R)). For the case (f ,д) ∈ γΦ(R)Fµ→Fµ→Aω , we have shown above that
(f u v,дu v) ∈ γΦ(R)Aω for all u,v ∈ ONFµ . It follows by Lemma 5.1.12 that (f u,дu) ∈ γΦ(R)Fµ→Aω
for all u ∈ ONFµ , hence (f ,д) ∈ Φ(γΦ(R))Fµ→Fµ→Aω .

It remains to prove that (t1, t2) ∈ RAω implies (t1, t2) ∈ Φ(γΦ(R))Aω . Let (t1, t2) ∈ RAω , so
that we have for s ∈ ONAω and x ,y ∈ ONF that t1 = selectµ ((pres y) •µ (pres x)) s and
t2 = selectµ (pres y) (selectµ (pres x) s). We now need to show that (t1.hd, t2.hd) ∈ γΦ(R)A and
(t1.tl, t2.tl) ∈ γΦ(R)Aω . Note first that we have the following computations for t1:

t1 ≡ selectµ (compµ (pres x) (pres y)) s
≡ selectµ (pres (comp x y)) s
≡ selectµ (pres (y • x)) s

Since
t1.hd ≡ s .hd

≡ (selectµ (pres x) s).hd
≡ (selectµ (pres y) (selectµ (pres x) s)).hd
≡ t2.hd,

we obtain (t1.hd, t2.hd) ∈ γΦ(R)A. Next, we have

t1.tl ≡ select (y • x) (s .tl)
≡ selectµ ((y • x).out) (s .tl)
≡ selectµ ((y.out) • (x .out)) (s .tl)

124

5.2. A First-Order Logic for Observational Equivalence

and
t2.tl ≡ (selectµ (pres y) (selectµ (pres x) s)).tl
≡ select y ((selectµ (pres x) s).tl)
≡ select y (select x (s .tl))
≡ selectµ (y.out) (select x (s .tl))
≡ selectµ (y.out) (selectµ (x .out) (s .tl))

Combining this with (5.8) we thus obtain (t1.tl, t2.tl) ∈ γΦ(R)Aω . Applying Lemma 5.1.12 to the result
that (t1.hd, t2.hd) ∈ γΦ(R)A and (t1.tl, t2.tl) ∈ γΦ(R)Aω , we finally obtain that (t1, t2) ∈ Φ(γΦ(R))Aω .
Hence, R is an observational bisimulation up to γΦ. So for all s ∈ ONAω

λu v . selectµ (v •µ u) s ≡obs λu v . selectµ v (selectµ u s). (5.9)

Finally, we need to show for x ,y ∈ ONF that select (y • x) ≡obs select y ◦ select x holds. Since

select (y • x) ≡ selectµ ((y • x).out) ≡ selectµ ((y.out) •µ (x .out))

and
select y ◦ select x ≡ selectµ (y.out) ◦ selectµ (x .out),

we obtain by (5.9) that select (y •x)s ≡obs (selecty ◦ selectx)s for all s ∈ ONAω . Thus, the equivalence
select (y • x) ≡obs (select y ◦ select x) follows from extensionality (Lemma 4.1.25.(v)). □

5.2. A First-Order Logic for Observational Equivalence
In Section 5.1.2, we have described a proof method for observational equivalence that is based on
bisimulation relations. There are several problems with this approach. For one, we have to explicitly
use several up-to techniques to be able to give reasonable bisimulations. This can be somewhat
improved by using the companion, see Definition 2.5.12, but even then we have to establish that
each up-to technique, which appears in a proof, is compatible or contained in the companion, see
Lemma 5.1.16. Even worse, general bisimulations and the explicit use of up-to techniques does not
lend itself very well to automatically verifiable proofs. The other problem with this approach is that
we need to come up with a bisimulation of which we know beforehand that it proves the desired
identity. This is not an easy task, as we have seen in Proposition 5.1.19, but it can be simplified by
the use of parametrised coinduction [Hur+13]. Since we aim for automatically verifiable proofs, we
now take a more syntactic approach for proving observational equivalence.

More specifically, we will establish in this section a first order logic together with a proof sys-
tem for observational equivalence, to which we will refer as FOL▶ . This logic has the standard
propositional and first order connectives, and a binary relation that represents observational equi-
valence. The proof system supports both inductive and coinductive reasoning, that is, we can carry
out proofs by induction on inductive data types and prove identities on coinductive types. Induc-
tion and coinduction are usually introduced by means of induction and coinduction schemes, see
for example [Bla+14; Gim95]. Though it is in principle possible to use the explicit induction and
coinduction schemes to prove most theorems [Wir04], such proofs are notoriously hard to set up

125

Chapter 5. Inductive-Coinductive Reasoning

because one needs to guess the induction and coinduction hypotheses beforehand. Thus, we will
not rely on the standard induction and coinduction schemes in the proof system.

A more natural approach are cyclic proofs, that is, proofs that repeat arguments by referring back
to a step made before in the proof. Famous examples of cyclic proofs are the proof of irrationality
of the square root of two by an infinite descent argument [Wir04], the proof that the Ackermann
function is total, and generally proofs by well-founded induction. It is important to note that cyclic
proofs are finite representations of infinite proofs [DHL06; NW96; Stu08], where the latter cannot
be automatically verified and are also frequently rejected for philosophical reasons. Cyclic proofs
have been extensively studied for purely inductive proofs [Bae09; Bro05; BBC08; BDP11; BG14;
BGP12; BS07; BS11; RB17; Sim17; SD03; Wir04], to some extent for coinductive proofs [RL09] and
in specific cases for mixed inductive-coinductive proofs [SD03]. Cockett [Coc01] and Santocanale
[San02a] have used cyclic proof systems to define maps on inductive and coinductive types, and
in the former also to reason about the thus defined maps. We will discuss the relation to all these
systems in Section 5.4. Moreover, cyclic proofs have made an implicit appearance through game
semantics [NW96] and in parametrised coinduction [Hur+13]. That cyclic proofs are a promising
approach is witnessed by the fact that the structural induction principle is subsumed by, sometimes
even equivalent to, cyclic proofs [Bro05; Sim17].

A problem of cyclic proofs is that we need to ensure that a proof is actually correct, most
importantly, the verification that a cycle leads to a well-defined proof. The various approaches
to deal with this problem include trace conditions [Bro05; Sim17], parity conditions [San02a] and
size-based termination [AP13; Bar+04; LJB01; SD03; Xi01]. Since these conditions are either global,
that is they are conditions on the whole proof object, or require non-trivial constraint solving, both
soundness and proof checking are difficult to establish for the above mentioned systems. For this
reason, we will use another approach in this exposition.

An elegant way to ensure correctness of recursive definitions (or cyclic proofs in the context of
logics) was introduced by Nakano [Nak00]. We adapt this approach here by annotating formulas
with a so-called later modality. This later modality stems originally from the provability logic,
or Gödel-Löb logic, which characterises transitive, well-founded Kripke frames [Sol76], and thus
allows one to carry out induction without an explicit induction scheme [Bek99]. Later, Nakano’s
approach was further developed by Appel et al. [App+07], Atkey and McBride [AM13], Bizjak et al.
[Biz+16b] and Møgelberg [Møg14], mostly with the intent to replace syntactic guardedness checks
(cf. Example 4.1.6) for coinductive definitions by type-based checks of well-definedness. We will use
the later modality in a similar way to control the use of an induction or coinduction hypothesis
in a proof, which leads to easily verifiable proofs. In particular, we introduce a logic FOL▶ with
a Gentzen-style intuitionistic sequent calculus that internalises the rules of provability logic and
combines these with rules that enable step-wise reasoning about observational equivalence, as we
briefly explain now.

The intuition behind the logic FOL▶ and especially the interplay of the later modality and the
equality relation is the following. Given two terms s and t in λµν=, there is a formula s ∼ t in
FOL▶ , which should be read as s and t are observationally equivalent. To be more precise, it means
that s and t are related by every step in the ωop-chain that can be used to construct the relation
≡obs, cf. Theorem 5.1.9 and Section 2.5. Using this interpretation of the equality relation, we can
understand the role of the later modality in FOL▶ . Given a formula s ∼ t , we can obtain another
formula ▶(s ∼ t), which should be read as “s and t are later observationally equivalent”, that is, a

126

5.2. A First-Order Logic for Observational Equivalence

proof of ▶(s ∼ t) is a promise that we can prove s ∼ t later. We will make this intuition a bit more
precise now.

Recall from Definition 2.5.5 that the ωop-chain to approximate the greatest fixed point of a mono-
tone map F : RelX → RelX is given by the chain of inclusions

1 F (1) F 2(1) · · · ,⊇ ⊇ ⊇

where 1 is the full relation on X . We will denote this chain by←−F with←−F (n) = Fn(1). The semantics
of the relation ∼ is given by instantiating F in this construction with the operator Φ, which we used
to characterise observational equivalence as largest bisimulation in Section 5.1.2. A formula s ∼ t

is then interpreted at n ∈ N by (s, t) ∈ ←−Φ(n). To make sense of a formula ▶(s ∼ t), we define the
chain ▷←−Φ by (▷

←−
Φ)(0) = 1 and (▷

←−
Φ)(n + 1) =

←−
Φ(n), which corresponds to the following picture.

▷
←−
Φ : 1 1 Φ(1) Φ2(1) · · ·⊇ ⊇ ⊇ ⊇

The reason why we introduce the later formula is that the implication ▶(s ∼ t) → s ∼ t will be
interpreted at n ∈ N as

(s, t) ∈ (▷←−Φ)(n) =⇒ (s, t) ∈ ←−Φ(n). (5.10)
We can depict this implication by the following diagram.

▷
←−
Φ : (s, t) ∈ 1 (s, t) ∈ 1 (s, t) ∈ Φ(1) (s, t) ∈ Φ2(1) · · ·

←−
Φ : (s, t) ∈ 1 (s, t) ∈ Φ(1) (s, t) ∈ Φ2(1) (s, t) ∈ Φ3(1) · · ·

Starting with (s, t) ∈ 1, which is always true, we can move in a zig-zag from left to right through
the diagram, thereby proving that (s, t) ∈ ←−Φ(n) for all n ∈ N, cf. Lemma 2.3.5. Thus, we can infer
from the implication (5.10) that s and t are observationally equivalent. This proof principle is called
Löb induction and is captured by the following rule, which is part of the proof system for FOL▶ in
a more general form, see Definition 5.2.4.

▶(s ∼ t) ⊢ s ∼ t
⊢ s ∼ t

Besides this rule, there are also rules that allow us to state that if we later have a proof for an
equivalence between the observations on terms of a fixed point type, then we get a proof now of the
equivalence between the original terms. For instance, we can derive the following rule for streams
in FOL▶ , see Example 5.2.12.

⊢ hd s ∼A hd t ⊢ ▶(tl s ∼Aω tl t)
⊢ s ∼Aω t

Note the similarity of this rule with the bisimulation proof principle for streams, cf. Example 5.1.11.
The power of the proof system comes, as one might imagine, from the combination of these two
rules. The interested reader might want to compare the bisimulation-based proof in Example 5.1.11
with the syntactic proof in Example 5.2.12 below. Further details on the interpretation of the logic
are given in Section 5.2.2.

127

Chapter 5. Inductive-Coinductive Reasoning

5.2.1. The Logic FOL▶
In this section, we introduce the formulas of the logic FOL▶ and its proof system, we prove some
basic properties of the logic, and we demonstrate the use of FOL▶ in some example applications.
All the examples in this section have been checked automatically in the prototype implementation
of a proof checker for FOL▶ .

For the remainder of this section, we restrict attention to terms of λµν=. Recall that we wrote
Γ ⊢ t : A, whenever t is a term of type A in context Γ. For clarity, we will henceforth add a supscript
Ty to the judgement and write instead

Γ ⊢Ty t : A.

Definition 5.2.1. The formulas of FOL▶ are given by

ϕ,ψ F ⊥ | t �A s | t ∼A s | ▶ϕ | ϕ ∨ψ | ϕ ∧ψ | ϕ → ψ | ∀x : A.ϕ | ∃x : A.ϕ,

where A ranges over all types in Ty. To disambiguate formulas, we will use parentheses and adapt
a few conventions concerning the binding of connectives: The later modality binds stronger than
all other logical connectives; the implication is right associative; binding of quantifiers extends from
the dot towards the end of the formula; and implication binds stronger than conjunction, which
again binds stronger than disjunction. We say that ϕ is a well-formed formula in context Γ, if Γ ⊩ ϕ
can be derived inductively from the following rules.

Γ ⊩ ⊥
Γ ⊢Ty s, t : A
Γ ⊩ s �A t

Γ ⊢Ty s, t : A
Γ ⊩ s ∼A t

Γ ⊩ ϕ
Γ ⊩ ▶ϕ

Γ ⊩ ϕ Γ ⊩ ψ � ∈ {∧,∨,→}
Γ ⊩ ϕ �ψ

Γ,x : A ⊩ ϕ
Γ ⊩ ∀x : A.ϕ

Γ,x : A ⊩ ϕ
Γ ⊩ ∃x : A.ϕ

If the type A is clear from the context, we usually drop the subscript in �- and ∼-formulas, and
write s ∼ t instead of s ∼A t . A finite sequence of formulas ∆ is said to be well-formed in context
Γ, if Γ ⊩ ϕ for all ϕ in ∆. We denote this by Γ ⊩ ∆ as well. ◀

The reader will have noticed that there are two binary relations on terms among the formulas
of FOL▶ . Besides the relation ∼, which reflects observational equivalence in the logic, there is a
relation �. This relation will be interpreted as the conversion relation ≡. A formula of the form
s � t is then usually paraphrased as s and t are definitionally equal [Mar75a]. For the most part,
definitional equality can be ignored, we only need it to be able to talk about weak head normal
forms inside the logic.

When giving the axioms and later the semantics of FOL▶ we need to be able to substitute terms for
variables in formulas. The following definition introduces substitutions and accompanying notations
for the formulas in FOL▶ .

Definition 5.2.2. The term substitution of λµν= extends to formulas in the expected way by defining
(s ∼ t)[u/x] = s[u/x] ∼ t [u/x], (ϕ ∧ψ)[u/x] = ϕ[u/x] ∧ψ [u/x] etc. We denote for a formula ϕ with
Γ ⊩ ϕ and a substitution σ ∈ Subst(Λ=; Γ) by ϕ[σ] the result of substituting for all variables in ϕ the
corresponding term in σ . Given a type A and a term t ∈ Λ=(A), we write σ [x 7→ t] for the updated
substitution in Subst(Λ=; Γ,x : A) that is the same as σ but additionally substitutes t for x . Finally,
if the variable x is understood from the context, then we write ϕ[t] for ϕ[t/x]. ◀

128

5.2. A First-Order Logic for Observational Equivalence

The following result allows us to switch the order of substitutions, similar to the substitution
Lemma 4.2.3 for terms.

Lemma 5.2.3. If Γ,x : A,y : B ⊩ ϕ, Γ ⊢Ty s : A and Γ,x : A ⊢Ty t : B, then we have that the equation
ϕ[t/y][s/x] = ϕ[s/x][t [s/x]/y] holds.

Proof. This follows by induction on ϕ from the substitution lemma for λµν=, see Lemma 4.2.3. □

We now define the syntactic proof system for FOL▶ .

Definition 5.2.4. Let ϕ be a formula and ∆ a sequence of formulas. We say ϕ is provable in context
Γ under the assumptions ∆, if Γ | ∆ ⊢ ϕ holds. The provability relation ⊢ is thereby given inductively
by the rules in the Figures 5.2, 5.3, 5.4, 5.5 and 5.6. ◀

Γ ⊩ ∆,ϕ
(Proj)

Γ | ∆,ϕ ⊢ ϕ
Γ | ∆ ⊢ ϕ Γ ⊩ ψ

(Weak)
Γ | ∆,ψ ⊢ ϕ

Γ ⊩ ϕ Γ | ∆ ⊢ ⊥
(⊥-E)

Γ | ∆ ⊢ ϕ
Γ | ∆ ⊢ ϕ Γ | ∆ ⊢ ψ

(∧-I)
Γ | ∆ ⊢ ϕ ∧ψ

Γ | ∆ ⊢ ϕ1 ∧ ϕ2 i ∈ {1, 2}
(∧i -E)

Γ | ∆ ⊢ ϕi
Γ | ∆ ⊢ ϕi Γ ⊩ ϕ j j , i

(∨i -I)
Γ | ∆ ⊢ ϕ1 ∨ ϕ2

Γ | ∆,ϕ1 ⊢ ψ Γ | ∆,ϕ2 ⊢ ψ (∨-E)
Γ | ∆,ϕ1 ∨ ϕ2 ⊢ ψ

Γ | ∆,ϕ ⊢ ψ
(→-I)

Γ | ∆ ⊢ ϕ → ψ

Γ | ∆ ⊢ ϕ → ψ Γ | ∆ ⊢ ϕ
(→-E)

Γ | ∆ ⊢ ψ

Γ,x : A | ∆ ⊢ ϕ
(∀-I)

Γ | ∆ ⊢ ∀x : A.ϕ

Γ | ∆ ⊢ ∀x : A.ϕ t ∈ ONΓ
A (∀-E)

Γ | ∆ ⊢ ϕ[t/x]

t ∈ ONΓ
A Γ | ∆ ⊢ ϕ[t/x]

(∃-I)
Γ | ∆ ⊢ ∃x : A.ϕ

Γ ⊩ ψ Γ,x : A | ∆,ϕ ⊢ ψ
(∃-E)

Γ | ∆,∃x : A.ϕ ⊢ ψ

Figure 5.2.: Intuitionistic Rules for Standard Connectives

Γ ⊢Ty t , s : A t ≡ s
(Def)

Γ | ∅ ⊢ t �A s

Γ | ∆[s/x] ⊢ ϕ[s/x] Γ | ∆ ⊢ s �A t
(�-Repl)

Γ | ∆[t/x] ⊢ ϕ[t/x]

Figure 5.3.: Rules for Definitional Equality

The rules are grouped as follows. In Figure 5.2, we find the standard proof rules for an intuitionistic
first-order logic. The rules for definitional equality are given in Figure 5.3. They are the standard
rules for equality, see for example [Jac99, Chap. 3]. The rules in Figure 5.4 describe how equivalences
of programs can be proven. Those rules that can be applied in both directions are thereby denoted
by a double line. None of these rules should come at a surprise, except for (ν-Ext) and (µ-Cong).
In these rules, the later modality makes its appearance to control the use of hypotheses that can
be introduced through the Löb (or fixed point) rule (Löb) in Figure 5.5. The rule (ν-Ext) should be
read as “to prove an equivalence between two programs on a ν-type, it suffices to give a proof later

129

Chapter 5. Inductive-Coinductive Reasoning

Γ ⊢Ty t , s : A t ≡ s
(Refl)

Γ | ∅ ⊢ t ∼A s

Γ | ∆ ⊢ s ∼A t (Sym)
Γ | ∆ ⊢ t ∼A s

Γ | ∆ ⊢ s ∼A t Γ | ∆ ⊢ t ∼A r (Trans)
Γ | ∆ ⊢ s ∼A r

Γ,x : A | ∆ ⊢ f x ∼B д x (→-Ext)
Γ | ∆ ⊢ f ∼A→B д

Γ | ∆ ⊢ s .pr1 ∼A t .pr1 Γ | ∆ ⊢ s .pr2 ∼B t .pr2 (×-Ext)
Γ | ∆ ⊢ s ∼A×B t

Γ | ∆ ⊢ ▶(s .out ∼A[νX .A/X] t .out)
(ν-Ext)

Γ | ∆ ⊢ t ∼νX .A s

Γ | ∆ ⊢ s ∼Ai t (+-Cong)
Γ | ∆ ⊢ κi s ∼A1+A2

κi t

Γ | ∆ ⊢ ▶(s ∼A[µX .A/X] t)
(µ-Cong)

Γ | ∆ ⊢ α s ∼µX .A α t

Figure 5.4.: Rules for Equality

Γ | ∆ ⊢ ϕ
(Nec)

Γ | ∆ ⊢ ▶ϕ
Γ | ∆ ⊢ ▶(ϕ → ψ)

(K)
Γ | ∆ ⊢ ▶ϕ → ▶ψ

Γ | ∆, ▶ϕ ⊢ ϕ
(Löb)

Γ | ∆ ⊢ ϕ

Figure 5.5.: Rules for the Later Modality

for their unfoldings”, see the examples below. Next, the rules in Figure 5.5 are the standard rules of
provability logic35 [Sol76] that also turn ▶ into an applicative functor with a fixed point operator,
see e.g. [AM13]. Finally, the rules in Figure 5.6 allow us to refine elements of inductive types.

We note that if a formula is provable, then the formula and assumptions are well-typed.

Lemma 5.2.5. If we have for a formula ϕ and a sequence∆ of formulas that Γ | ∆ ⊢ ϕ holds, then Γ ⊩ ∆
and Γ ⊩ ϕ.

Proof. This is proved by a straightforward induction on the proof tree for Γ | ∆ ⊢ ϕ. □

One might expect there to be a truth constant in the logic, just like the primitive falsity proposition
⊥.36 It turns out that it is not necessary to explicitly add such a constant, as we can easily represent
it in FOL▶ as follows.

Definition 5.2.6. We define the truth formula in FOL▶ by ⊤ B 0 ∼ 0. ◀

The formula ⊤ has is the expected property that it is provable without further assumptions.

Lemma 5.2.7. We have Γ | ∆ ⊢ ⊤ in FOL▶for any Γ and ∆.

Proof. Γ | ∆ ⊢ ⊤ follows from (Refl) and weakening. □

Before we give some examples, let us derive some general rules that will prove useful. First,
just as convertibility is included as relation in observational equivalence, we have that definitional
equality implies observational equivalence in FOL▶ .

130

5.2. A First-Order Logic for Observational Equivalence

Γ | ∆[⟨ ⟩/x] ⊢ ϕ[⟨ ⟩/x]
(1-Ref)

Γ,x : 1 | ∆ ⊢ ϕ

Γ,y : A | ∆[κ1 y/x] ⊢ ϕ[κ1 y/x] Γ,y : B | ∆[κ2 y/x] ⊢ ϕ[κ2 y/x] (+-Ref)
Γ,x : A+ B | ∆ ⊢ ϕ

Γ,y : A[µX .A/X] | ∆[α y/x] ⊢ ϕ[α y/x]
(µ-Ref)

Γ,x : µX .A | ∆ ⊢ ϕ

Figure 5.6.: Refinement Rules

Lemma 5.2.8. The following rule can be derived in FOL▶ for all terms s and t with Γ ⊢Ty s, t : A.

Γ | ∆ ⊢ s �A t

Γ | ∆ ⊢ s ∼A t

Proof. We put ϕ B s ∼ x , so that Γ,x : A ⊩ ϕ and Γ | ∅ ⊢ ϕ[s/x] by (Refl). Note that ∆[t/x] = ∆,
as x is not in ∆. Through repeatedly applying (Weak), we obtain Γ | ∆ ⊢ ϕ[s/x]. Finally, we use
(�-Repl) and Γ | ∆ ⊢ s �A t to deduce Γ | ∆ ⊢ ϕ[t/x]. Since ϕ[t/x] = s ∼ t , we get Γ | ∆ ⊢ s ∼ t . □

Second, we can obtain a few structural rules related to terms and term variables.37

Lemma 5.2.9. In FOL▶ weakening for term variables is derivable for any type A ∈ Ty:

Γ | ∆ ⊢ ϕ
Γ,x : A | ∆ ⊢ ϕ

Moreover, the following substitution rule is derivable.

Γ,x : A | ∆ ⊢ ϕ Γ ⊢Ty u : A
(Subst)

Γ | ∆[u/x] ⊢ ϕ[u/x]

We also have the following exchange rule:

Γ | ∆1,ϕ1,ϕ2,∆2 ⊢ ψ (Exch)
Γ | ∆1,ϕ2,ϕ1,∆2 ⊢ ψ

Finally, we can derive the following conversion rule, which is a weak form of replacement.

Γ | ∆[s/x] ⊢ ϕ[s/x] s ≡ t
(Conv)

Γ | ∆[t/x] ⊢ ϕ[t/x]

Proof. All the rules weakening, substitution, exchanges and conversion, are derived by induction on
the proof trees. Most steps in these induction proofs are direct, so we only go through the critical
cases here. For weakening, (Refl) is the crucial case, in which we use that the underlying term
language has weakening as follows. If Γ | ∅ ⊢ t ∼B s is given by (Refl) from Γ ⊢Ty t , s : B and t ≡ s ,
then also Γ,x : A ⊢Ty t , s : B and Γ,x : A | ∅ ⊢ t ∼B s by (Refl). For (Subst), the (Refl) rule is again
the crucial case, where we use that s ≡ t implies s[u/x] ≡ t [u/x]. For proving (Exch), on the other

131

Chapter 5. Inductive-Coinductive Reasoning

hand, the important cases are (Proj), (→-I) and (Löb). Each of them is dealt with by using (Weak)
in a standard manner. Finally, for the conversion rule (Proj), (Def) and (Refl) are the critical cases.
In the (Proj)-case, we use that the reduction relation preserves types (Theorem 3.2.22), whereas both
the (Def)- and (Refl)-case are given by transitivity of conversion. This concludes the proof of all
four derived rules. □

In many proofs, we will need that the later modality interacts well with other results that can be
proven in FOL▶ . For instance, if we derived an entailment ϕ ⊢ ψ , then this entailment should also
hold later, that is, ▶ϕ ⊢ ▶ψ should be derivable as well. This is formulated in the following lemma
in a more general way, together with some useful consequences like the distribution of the later
modality over the universal quantifier.

Lemma 5.2.10. The following rule, which makes ▶ an applicative functor in the sense of [AM13], is
derivable in FOL▶ .

Γ | ∆ ⊢ ▶(ϕ → ψ) Γ | ∆ ⊢ ▶ϕ
(Appl)

Γ | ∆ ⊢ ▶ψ
More generally, the later modality can be distributed over rules: Let Γ,∆, ϕ1, . . . ,ϕn andψ be given, such
that for every ∆′ the following is derivable

Γ | ∆,∆′ ⊢ ϕ1 · · · Γ | ∆,∆′ ⊢ ϕn
Γ | ∆,∆′ ⊢ ψ

(5.11)

in FOL▶ , then also the following is derivable

Γ | ∆ ⊢ ▶ϕ1 · · · Γ | ∆ ⊢ ▶ϕn
Γ | ∆ ⊢ ▶ψ

(5.12)

In particular, the later modality distributes over ∀-quantification and (×-Ext):

Γ | ∆ ⊢ ▶(∀x : A.ϕ)

Γ | ∆ ⊢ ∀x : A. ▶ϕ
(5.13)

Γ | ∆ ⊢ ▶(π1 s ∼A π1 t) Γ | ∆ ⊢ ▶(π2 s ∼B π2 t)
Γ | ∆ ⊢ ▶(s ∼A×B t)

(5.14)

Proof. We first derive (5.12) from an arbitrary proof (R) of (5.11). Let Γ, ∆, ϕ1, . . . ,ϕn andψ be given
as in the assumption. We put ∆′ B ϕ1, . . . ,ϕn , and derive from (5.11) and repeated applications of
(→-I), (K) and (→-E) the following proof.

(Proj)
Γ | ∆,∆′ ⊢ ϕ1 · · · Γ | ∆,∆′ ⊢ ϕn(R)

Γ | ∆,∆′ ⊢ ψ
(→-I)

Γ | ∆ ⊢ ϕ1 → · · · → ϕn → ψ
(Nec)

Γ | ∆ ⊢ ▶(ϕ1 → · · · → ϕn → ψ)
(K)

Γ | ∆ ⊢ ▶ϕ1 → · · · → ▶ϕn → ▶ψ Γ | ∆ ⊢ ▶ϕ1 · · · Γ | ∆ ⊢ ▶ϕn(→-E)
Γ | ∆ ⊢ ▶ψ

132

5.2. A First-Order Logic for Observational Equivalence

Both (Appl) and (5.14) are then given by instantiating (5.12) with (→-E) and (×-Ext), respectively.
Finally, (5.13) is given by

Γ,x : A | ∆ ⊢ ▶(∀x : A.ϕ)
(∗)

Γ,x : A | ∆ ⊢ ▶ϕ
(∀-I)

Γ | ∆ ⊢ ∀x : A. ▶ϕ

where (∗) is obtained from instantiating (5.12) with (∀-E). □

We now demonstrate the proof system of FOL▶ on some examples. To make proofs more readable
and to clarify the use of the later modality in combination with the fixed point rule, we will use two
types of arrows to connect parts of a proof. Solid arrows connect two proof trees that could be just
one tree, but have been split because of size constraints. On the other hand, dashed arrows point
from where a hypothesis is used to the proof step where this hypothesis is introduced through the
(Löb)-rule. This latter graphical notation makes it to easier grasp where hypotheses are used and
introduced.

Example 5.2.11. In this first example, we will prove that the addition of natural numbers is com-
mutative. Recall that we have defined in Example 3.1.7 the addition in λµν by iteration on the first
argument. Analogously, we can define the addition in λµν= as follows.

_+ _ : Nat→ Nat→ Nat
0 +m =m

(suc n) +m = suc (n +m)

The goal is now to prove the formula ∀n,m.n +m ∼m + n in FOL▶ .
Towards this goal, we begin by proving four intermediate results. Recall that Nat was defined

as µX . 1 + X , and that 0 and the successor were defined in terms of the constructors for the least
fixed point and the sum. Thus, our first result is a combination of the congruence rules for sums
and least fixed points in the case of the natural numbers:

Γ | ∆ ⊢ ▶(n ∼Nat m)
(+-Cong)

Γ | ∆ ⊢ ▶(κ2 n ∼1+Nat κ2m)
(µ-Cong)

Γ | ∆ ⊢ suc n ∼Nat sucm

 (suc-Cong)

Similarly, the second result is a combination of refinement steps for the natural numbers. Note that
ϕ[suc n/n] = ϕ[α y/n][κ2 n/y] for some fresh variable y, and similarly for ϕ[0/n] and ∆. Thus, we
can apply (+-Ref) and (µ-Ref) as follows.

Γ | ∆[0/n] ⊢ ϕ[0/n] Γ,n : Nat | ∆[suc n/n] ⊢ ϕ[suc n/n]
(+-Ref)

Γ,y : 1+ Nat | ∆[α y/n] ⊢ ϕ[α y/n]
(µ-Ref)

Γ,n : Nat | ∆ ⊢ ϕ

 (Nat-Ref)

Third, we note that, by definition, the successor distributes over + to the left summand:

⊢ ∀n,m. (suc n) +m ∼ suc (n +m) (5.15)

133

Chapter 5. Inductive-Coinductive Reasoning

by the following proof in FOL▶ .

(suc n) +m ≡ suc (n +m)
(Refl)

n,m : Nat | ∅ ⊢ (suc n) +m ∼ suc (n +m)
(∀-I)⊢ ∀n,m. (suc n) +m ∼ suc (n +m)

Lastly, the analogous property for the right summand, that is

⊢ ∀n,m.n + (sucm) ∼ suc (n +m), (5.16)

also holds as follows. First, we note that the definition of + gives us the following computations.

0 + sucm ≡ sucm ≡ suc (0 +m) (5.17)
(suc n) + (sucm) ≡ suc(n + (sucm)) (5.18)
suc ((suc n) +m) ≡ suc (suc (n +m)) (5.19)

The proof of the successor distribution to the right is our first proof that uses the (Löb)-rule. As
discussed, we indicate the recursion step by a dashed arrow in the proof. We put Γ B n,m : Nat
and ∆ B ▶(∀n,m.n + (sucm) ∼ suc (n +m)), and prove (5.16) by induction on n as follows.

(5.17)

(Proj), (∀-E)
Γ | ∆ ⊢ ▶(n + (sucm) ∼ suc (n +m))

(suc-Cong)
Γ | ∆ ⊢ suc (n + (sucm)) ∼ suc (suc (n +m)) (5.18), (5.19)

(Conv)
Γ | ∆ ⊢ (suc n) + (sucm) ∼ suc ((suc n) +m)

(Nat-Ref)
Γ | ∆ ⊢ n + (sucm) ∼ suc (n +m)

(∀-I)
n : Nat | ∆ ⊢ ∀m.n + (sucm) ∼ suc (n +m)

(∀-I)
∆ ⊢ ∀nm.n + (sucm) ∼ suc (n +m)

(Löb)⊢ ∀nm.n + (sucm) ∼ suc (n +m)

Finally, we can put the above results together to prove commutativity of addition. In the proof
below we use the assumptions ∆ and the context Γ, given by ∆ B ▶(∀n,m.n +m ∼ m + n) and
Γ B n,m : Nat, respectively. The proof of commutativity is given as follows.

Γ | ∆ ⊢ 0 + 0 ∼ 0 + 0

(Proj), (5.13), (∀-E)
Γ | ∆ ⊢ ▶(0 +m ∼m + 0)

(suc-Cong)
Γ | ∆ ⊢ suc (0 +m) ∼ suc (m + 0)

(5.16), (Trans), (5.15)
Γ | ∆ ⊢ 0 + (sucm) ∼ (sucm) + 0

(Nat-Ref)
Γ | ∆ ⊢ 0 +m ∼m + 0

Γ | ∆ ⊢ 0 +m ∼m + 0

(Proj), (5.13), (∀-E)
Γ | ∆ ⊢ ▶(n +m ∼m + n)

(suc-Cong)
Γ | ∆ ⊢ suc (n +m) ∼ suc (m + n)

(5.15), (Trans), (5.16)
Γ | ∆ ⊢ (suc n) +m ∼m + (suc n)

(Nat-Ref)
Γ | ∆ ⊢ n +m ∼m + n (Löb) + (∀-I)⊢ ∀n,m.n +m ∼m + n

134

5.2. A First-Order Logic for Observational Equivalence

Note that we used two recursion steps in this proof, as the proof proceeds by induction both on n
and on m. Traditionally, this proof would be broken up into two separate induction proofs to fit
the usual induction scheme. However, in the present setup we can just follow the natural steps that
arise in the proof. ◀

Let us now use FOL▶ to prove some equivalences on coinductive types. In the first example, we
look again at the stream equivalence that we proved in Example 5.1.11. This allows us to demonstrate
how proofs by coinduction arise from combining the extensionality rules for products and greatest
fixed points, and the (Löb)-rule.

Example 5.2.12. Recall from Example 3.2.11 that we have defined a map that selects the odd
positions of a stream, and that we have proved in Example 5.1.11 that the application of this map to
the alternating bit stream results in a constant stream. In Example 5.1.11, we used the bisimulation
proof method to show this equivalence. We will now prove it again but this time around in FOL▶ .
That is, we show that the formula select oddF alt ∼ 1ω is derivable in FOL▶ .

Intuitively, to show that two streams are equivalent, we need to show that their heads match
and their tails continue to be equivalent. This extensionality principle for streams can be derived in
FOL▶ , similarly to the refinement rule for natural numbers:

Γ | ∆ ⊢ s .hd ∼A t .hd(Nec)
Γ | ∆ ⊢ ▶(s .hd ∼A t .hd) Γ | ∆ ⊢ ▶(s .tl ∼Aω t .tl)

(5.14)
Γ | ∆ ⊢ ▶(s .out ∼ t .out)

(ν-Ext)
Γ | ∆ ⊢ s ∼Aω t

 (Aω -Ext)

Combined with the fixed point rule (Löb), this extensionality principle allows us to prove stream
equivalences, as we will demonstrate now.

We want to show that select oddFalt ∼ 1ω is derivable. This is accomplished by the following proof,
in which we use ∆ given by ∆ B ▶(select oddF alt ∼ 1ω), and the following two computations.

(select oddF alt).tl ≡ select oddF alt (5.20)
1ω .tl ≡ 1ω (5.21)

∆ ⊢ (select oddF alt).hd ≡ 1ω .hd
∆ ⊢ (select oddF alt).hd ∼A (1ω).hd

(Proj)
∆ ⊢ ▶(select oddF alt ∼ 1ω) (5.20), (5.21)

(Conv)
∆ ⊢ ▶((select oddF alt).tl ∼ 1ω .tl)

(Natω -Ext)
∆ ⊢ select oddF alt ∼ 1ω

(Löb)⊢ select oddF alt ∼ 1ω

This proof should be compared to Example 5.1.11, where we proved that the relation R, which was
given by RNatω = {(select oddF alt, 1ω)}, is an observational bisimulation up-to. However, there we
had to use a clever combination of up-to techniques, whereas in the present proof the steps that we
have to take arise naturally in the construction of the proof. It should be noted though that up-to
techniques still play an important role in the semantics of FOL▶ , see Section 5.2.2. ◀

In the next example we prove that addition of streams is commutative. This demonstrates coin-
duction for streams on a quantified formula.

135

Chapter 5. Inductive-Coinductive Reasoning

Example 5.2.13. Recall that streams of natural numbers are given by Natω = νX .Nat × X , see Ex-
ample 3.1.2, and from Example 3.1.8 that stream addition is defined from addition on Nat by

_ ⊕ _ : Natω → Natω → Natω

(s ⊕ t).hd = s .hd+ t .hd
(s ⊕ t).tl = s .tl ⊕ t .tl

To show that ⊕ is commutative, we first observe that by commutativity of addition on natural
numbers (Example 5.2.11) we have for all s, t : Natω

(s ⊕ t).hd ≡ s .hd+ t .hd ∼ t .hd+ s .hd ≡ (t ⊕ s).hd, (5.22)

and from the definition of stream addition we obtain

(s ⊕ t).tl ≡ s .tl ⊕ t .tl and t .tl ⊕ s .tl ≡ (t ⊕ s).tl (5.23)

Let ∆ B ▶(∀s, t : Natω . s ⊕ t ∼ t ⊕ s) and Γ B s, t : Natω , then the following is a proof in FOL▶ .

(5.22)
Γ | ∆ ⊢ (s ⊕ t).hd ∼ (t ⊕ s).hd

(Proj), (5.13)
Γ | ∆ ⊢ ∀s, t : Natω . ▶(s ⊕ t ∼ t ⊕ s)

(∀-E)
Γ | ∆ ⊢ ▶(s .tl ⊕ t .tl ∼ t .tl ⊕ s .tl)

(Conv), (5.23)
Γ | ∆ ⊢ ▶((s ⊕ t).tl ∼ (t ⊕ s).tl)

(Natω -Ext)
Γ | ∆ ⊢ s ⊕ t ∼ t ⊕ s (∀-I)

∆ ⊢ ∀s, t : Natω . s ⊕ t ∼ t ⊕ s (Löb)⊢ ∀s, t : Natω . s ⊕ t ∼ t ⊕ s

This shows that ⊕ is commutative. ◀

In the final example of this section we derive the FOL▶-version of the induction principle for
natural numbers.

Example 5.2.14. Recall from Definition 5.2.2 that for formula ϕ with Γ,n : Nat ⊩ ϕ, we denote for
t : Nat the formula ϕ[t/n] by ϕ[t]. Usually, the induction principle for natural numbers reads like

Γ ⊢ ϕ[0] Γ,m : Nat | ϕ[m] ⊢ ϕ[sucm]

Γ,n : Nat ⊢ ϕ

In the context of the logic FOL▶ , we cannot derive the rule in this form but we need to introduce
a later modality on the induction hypothesis:

Γ | ∆ ⊢ ϕ[0] Γ | ∆ ⊢ ∀n : Nat. ▶ϕ[n]→ ϕ[suc n]
(Nat-Ind)

Γ | ∆ ⊢ ∀n : Nat.ϕ

This rule can be derived by using the fixed point rule and the refinement rules as in the following

136

5.2. A First-Order Logic for Observational Equivalence

proof, in which we let ∆′ B ∆, ▶ ∀n.ϕ, and use that ∆′[0/n] = ∆′ and ∆′[suc n/n] = ∆′.

Γ | ∆′ ⊢ ∀n : Nat. ▶ϕ[n]→ ϕ[suc n]
(∀-E)

Γ,m : Nat | ∆′ ⊢ ▶ϕ[m]→ ϕ[sucm]

(Proj)
Γ,m : Nat | ∆′ ⊢ ▶ ∀n.ϕ

(5.13)
Γ,m : Nat | ∆′ ⊢ ∀n. ▶ϕ

(∀-E)
Γ,m : Nat | ∆′ ⊢ ▶ϕ[m]

(→-E)
Γ,m : Nat | ∆′ ⊢ ϕ[sucm]

Γ | ∆′ ⊢ ϕ[0] Γ,m : Nat | ∆′ ⊢ ϕ[sucm]
(Nat-Ref)

Γ,n : Nat | ∆′ ⊢ ϕ
(∀-I)

Γ | ∆, ▶ ∀n.ϕ ⊢ ∀n.ϕ
(Löb)

Γ | ∆ ⊢ ∀n.ϕ
Towards the end of this section, we will see that such an induction principle holds in FOL▶ for a
more general class of types. ◀

5.2.2. A Model, Soundness and Incompleteness
Having an intuitive understanding of the logic FOL▶ is all nice and well, but to make the logic
actually useful, we need to show that the derivable formulas are also sensible in the interpretation
we intend to give them. For instance, we should prove that if s ∼ t is derivable in FOL▶ , then s ≡obs t .
To this end, we construct a model, in which we can interpret the formulas and for which the axioms
are sound. This model follows largely the idea described in the introduction of this section, namely
we will interpret formulas relative to a natural number that denotes a stage of the approximation
of observational equivalence. As such, we obtain a Kripke-style semantics, in which the worlds of
a frame are given by natural numbers.

There are, however, two things that we have to tweak on the naive semantics that we gave in
the introduction of this section. First of all, it should be noted that the type-specific rules for the
equality in Figure 5.4 on page 130 only use the later modality at fixed point types. As we will see
in Lemma 5.2.28, the later modality is used to control the application of the operator Φ that defines
observational equivalence. Thus, a naive interpretation of ∼ as approximation of ≡obs would require
us to use the later modality in all rules of Figure 5.4. Since this is not desirable, we first give an
alternative way to prove and construct observational equivalence, which allows us to leave the later
modality out at non-fixed point types. Second, we need to interpret the first-order connectives of
FOL▶ . For the sake of an accessible exposition, we will interpret them as Boolean connectives. As it
turns out, the easiest way to then give an interpretation to formulas is by assigning to each formula
ϕ a decreasing chain JϕK ∈ [ωop,B] over the booleans B, since this presheaf category supports all
the Boolean connectives that we require, see Lemma 2.3.3.

The idea to interpret a formula as a decreasing chain in [ωop,B] follows the ideas of Birkedal
et al. [Bir+11] and Appel et al. [App+07], who give an interpretation of a type theory with a later
modality in terms of chains in [ωop, Set]. In contrast, our interpretation is based on relation- and
Boolean-valued presheafs in [ωop,RelΛ=] and [ωop,B], respectively. This makes for a more accessible
interpretation than casting the model in [ωop, Set], where we would have to work with specific sets
that represent truth-values, cf. the proof of Lemma 2.3.3.

137

Chapter 5. Inductive-Coinductive Reasoning

Notation 5.2.15. Since we focus on terms in the copattern calculus λµν= in this chapter, we abuse
notation and write Rel instead of RelΛ= for the complete lattice of (type-indexed) binary relations
over terms in λµν=.

In what follows, we need to characterise the components of closed types.

Lemma 5.2.16. Let A be a closed type. Then either there are closed types B and C , such that A = B ×C ,
A = B +C or A = B → C , or there is X ⊩ B : Ty and ρ ∈ {µ,ν } with A = ρX . B. In the first case, we
refer to B and C as the components of A.

Proof. This follows directly by induction on the derivation of ⊩ A : Ty. □

As we mentioned already above, we need a different way of proving observational equivalence
that allows us to leave out intermediate steps in a bisimulation. For example, if we want to prove
that R is an observational bisimulation at the type of streams over A, then the results in Section 5.1.2
require us to show for all (s, t) ∈ RAω that (s .out, t .out) ∈ Cobs(R)A×Aω . Typically, we are only
interested in the head and tail of streams though. Thus, it would be more natural to leave out the
intermediate step and only require that (s .hd, t .hd) ∈ Cobs(R)A and (s .tl, t .tl) ∈ Cobs(R)Aω . We can
achieve this simplification by using the following notion of compressed bisimulation. Note that the
use of compressed bisimulations is very similar to the use of Φ as an up-to technique.

Definition 5.2.17. Let Φc : Rel→ Rel be the operator defined by

Φc (R)A =

{
Φ(R)A, A = ρX . B, ρ ∈ {µ,ν }
Φ(Φc (R))A, otherwise.

A compressed observational bisimulation, Φc -bisimulation for short, is a relation R ∈ Rel, such that
R ⊑ Φc (R). ◀

Note that Φc in Definition 5.2.17 is well-defined because in the second clause A is a product, a
sum or a function space, hence Φ only refers to the components of these types, see Definition 5.1.6
and Lemma 5.1.8. For instance, if A = B → C , then we have that

Φc (R)B→C = Φ(Φc (R))B→C = {(t1, t2) | (δ(t1),δ(t2)) ∈ F (Φc (R))B→C }
= {(t1, t2) | (δ(t1),δ(t2)) ∈ ⟨F (π1), F (π2)⟩(F (Φc (R)))B→C }

and since F (Φc (R))B→C = P(Φc (R)B)
ONA , the definition of Φc (R)B→C only depends on Φc (R)B . By

Lemma 5.2.16 we eventually arrive at the first case.
As one might expect, a compressed observational bisimulation can be completed to an actual

observational bisimulation. For instance, in the stream example we can add all pairs (s .out, t .out),
for which (s, t) ∈ R, (s .hd, t .hd) ∈ Cobs(R)A and (s .tl, t .tl) ∈ Cobs(R)Aω . Instead of constructing such
a bisimulation, we can show directly that a Φc -bisimulation is a Φ-bisimulation up to γΦ, where
γΦ is the companion of Φ from Definition 2.5.12. This approach significantly simplifies the proof
because the construction of a Φ-bisimulation from a Φc -bisimulation is quite involved.

Lemma 5.2.18. If R is a Φc -bisimulation, then R is a Φ-bisimulation up to γΦ. Thus, if two terms s and
t are related by R, then s ≡obs t .

138

5.2. A First-Order Logic for Observational Equivalence

Proof. Let R be a Φc -bisimulation. We prove RA ⊆ Φ(γΦ(R))A by induction on A, see Lemma 5.2.16.
If A is a fixed point type, that is, if A = ρX . B, then

RA ⊆ Φc (R)A = Φ(R)A ⊆ Φ(γΦ(R))A,

by the assumption that R is a Φc -bisimulation, the definition of Φc and id ⊑ γΦ (Lemma 2.5.13).
Otherwise, if A is not a fixed point type, then

RA ⊆ Φc (R)A = Φ(Φc (R))A ⊆ Φ(Φ(γΦ(R)))A ⊆ Φ(γΦ(R))A,

by definition of Φc , the induction hypothesis that RB ⊆ Φ(γΦ(R))B for components B of A, and
Φ ⊑ γΦ (Lemma 2.5.13). Thus, R ⊑ Φ(γΦ(R)) as required. □

We are now in the position to construct a model for the logic FOL▶ . Since formulas of the form
s ∼ t will be interpreted in the approximations of Φc -bisimilarity, the first step is to define these
approximations.

Definition 5.2.19. The chain of approximations of compressed observational bisimilarity is the
sequence ←−−Φc ∈ [ωop,Rel] defined inductively by

←−−
Φc (0) B I B Λ= × Λ=

←−−
Φc (n + 1) B Φc

(←−−
Φc (n)

)
.

Note that this is indeed an ωop-chain because ←−−Φc (I)(n) ⊒
←−−
Φc (I)(n + 1) for all n ∈ N by I ⊒ Φ(I)

and monotonicity of Φc . ◀

The crucial result is now that we can prove observational equivalence of two terms by proving
that they are related by every approximation of Φc -bisimilarity.

Lemma 5.2.20. Let A be a type in Ty and s, t terms in Λ=(A). If (s, t) ∈ ←−−Φc (n)A for all n ∈ N, then
s ≡obs t .

Proof. One first proves that Φc is ωop-continuous, that is, for any family {Ri }i ∈N of ≡-closed relations
Ri ∈ Rel with Ri+1 ⊑ Ri , we have Φc (

d
i ∈N Ri) =

d
i ∈NΦc (Ri). This follows easily from the

characterisation of Φ in Lemma 5.1.8, where care has to be taken only in the case of inductive types.
There, the limit preservation crucially requires confluence of the reduction relation in λµν=. Since
Φc is ωop-continuous, the chain ←−−Φc stabilises, see Definition 2.5.5. Thus, by Lemma 2.5.6, we get
that the largest fixed point νΦc ∈ Rel of Φc is given as νΦc =

d
n∈N
←−−
Φc (n), see also [CC79; San09].

Thus, s and t are related by νΦc if and only if they are related by ←−Φ(n) for every n. Since νΦc is a
Φc -bisimulation, we obtain s ≡obs t from Lemma 5.2.18. □

Recall from Lemma 2.3.3 that B = {tt, ff} is the two-valued Boolean algebra and that [ωop,B] is
Cartesian closed, complete and cocomplete (Proposition 2.3.2). For brevity, we denote this category
by

T B [ωop,B] . (5.24)

139

Chapter 5. Inductive-Coinductive Reasoning

Given a set I , we denote the I -indexed product and coproduct by
∧
· I : TI → T and

∨· I : TI → T,
respectively. If I is a two element set, then we denote the resulting binary product and coproduct
by ∧· and ∨· . Completeness and cocompleteness also give rise to initial and terminal objects that are
given by

∀n ∈ N. 0(n) = ff and 1(n) = tt.

Finally, the exponential in T is denoted by ⇒ : Top × T→ T, see the discussion after Lemma 2.3.3.
To make the semantics of the logic more readable, we interpret the membership for pairs of terms

in the chain ←−−Φc as a chain in T as follows.

Definition 5.2.21. For a type A ∈ Ty and terms s, t ∈ Λ=(A), we define a chain s ≈c t ∈ T:

∀n ∈ N. (s ≈c t)(n) B (s, t) ∈ ←−−Φc (n)A. (5.25)

That s ≈c t is a chain in T follows directly from the fact that ←−−Φc ∈ [ωop,Rel]. ◀

The model of FOL▶ is now given by the following Kripke-style semantics. Here, ▷ : T→ T is the
functor with (▷ ζ)(0) = tt and (▷ ζ)(k + 1) = ζ (k) that we introduced in Lemma 2.3.4. Moreover,
we denote by λλ the introduction of a set-theoretic function.

Definition 5.2.22. Let ϕ be a formula of FOL▶ with Γ ⊩ ϕ, see Definition 5.2.1. We define for
σ ∈ Subst(ON; Γ) a chain JϕK(σ) ∈ T by induction on ϕ.

J⊥K(σ) B 0Js � tK(σ) B λλn. s[σ] ≡ t [σ]Js ∼ tK(σ) B s[σ] ≈c t [σ]J▶ϕK(σ) B ▷JϕK(σ)Jϕ ∧ψ K(σ) B JϕK(σ) ∧· Jψ K(σ)Jϕ ∨ψ K(σ) B JϕK(σ) ∨· Jψ K(σ)Jϕ → ψ K(σ) B JϕK(σ)⇒ Jψ K(σ)J∀x : A.ϕK(σ) B ∧
· t ∈ONAJϕK(σ [x 7→ t])J∃x : A.ϕK(σ) B ∨· t ∈ONAJϕK(σ [x 7→ t])

Suppose ∆ is a sequence of formulas with Γ ⊩ ∆. Given n ∈ N, a formula ϕ and σ ∈ Subst(ON; Γ),
we write

σ ;n ⊨ ϕ B JϕK(σ)(n),
and say that ϕ is satisfied at stage n and σ . Next, given a sequence ∆ of formulas we say that ϕ is
satisfied under the assumption in ∆ at σ , if whenever all the formulas in ∆ are satisfied, then ϕ is
satisfied:

∆;σ ;n ⊨ ϕ B if (∀ψ ∈ ∆. σ ;n ⊨ ψ), then σ ;n ⊨ ϕ.

Finally, we say that ϕ is satisfied under the assumptions in ∆, if ∆;σ ;n ⊨ ϕ holds for all σ :

Γ | ∆;n ⊨ ϕ B ∀σ ∈ Subst(ON; Γ).∆;σ ;n ⊨ ϕ ◀

140

5.2. A First-Order Logic for Observational Equivalence

We note for ζ ∈ T that ∀n ∈ N. ζ (n) holds if and only if there exists a morphism 1 → ζ in T.
Thus, we frequently use the equivalence

∀n ∈ N.n ⊨ ϕ holds iff the hom-set T(1, JϕK) is inhabited.

The following proposition provides a more general formulation of this fact.

Proposition 5.2.23. Given a sequence ∆ of formulas, a formula ϕ and a substitution σ , we have that

there is a morphism
(∧
· ψ ∈∆Jψ K(σ)) → JϕK(σ) in T iff ∀n ∈ N.∆ |;σ ;n ⊨ ϕ. □

We now show in a series of lemmas that the axioms of FOL▶ are sound for the interpretation in
Definition 5.2.22. The final result we aim for is the following theorem.

Theorem 5.2.24. The axioms of FOL▶ are sound for the interpretation in Definition 5.2.22, in the sense
that for all formulas ϕ,

if Γ | ∆ ⊢ ϕ, then ∀n ∈ N. Γ | ∆;n ⊨ ϕ.

In particular, if ⊢ s ∼ t , then s ≡obs t .

The first step towards proving Theorem 5.2.24 is to show the validity of the rules that make ∼
an equivalence relation. We prove this by appealing to the following result that allows us to infer
properties of the approximations ←−Φ from compatible up-to techniques, for which we recall from
Definition 2.5.10 that Φ×mc : Lm → Lm is given by point-wise application of Φc .

Lemma 5.2.25. Let T : Relm → Rel be Φc -compatible, that is T ◦ Φ×mc ⊑ Φc ◦ T . Then we have
T (
←−−
Φc (n)

m) ⊑ ←−−Φc (n) for all n ∈ N.

Proof. We proceed by induction on n. If n = 0, then ←−−Φc (0) = I and the claim holds trivially.
Otherwise, assume that T (←−−Φc (n)

m) ⊑ ←−−Φc (n) holds for n ∈ N, and we prove T (
←−−
Φc (n + 1)m) ⊑

←−−
Φc (n + 1). Indeed, we have

T (
←−−
Φc (n + 1)m) = T (Φc (

←−−
Φc (n))

m)

⊑ Φc (T (
←−−
Φc (n)

m)) by compatibility

⊑ Φc (
←−−
Φc (n)) by IH and monotonicity of Φc

=
←−−
Φc (n + 1)

Thus, by induction, T (←−−Φc (n)
m) ⊑ ←−−Φc (n) holds for all n ∈ N. □

Since we have already investigated some up-to techniques for Φ, we wish to reuse these techniques
for compressed bisimulations. The following result allows us to transfer compatibility of up-to
techniques for Φ to Φc , if the up-to technique in question is given on each type separately.

Lemma 5.2.26. LetT : Relm → Rel beΦ-compatible and assume thatT factors through a family of maps
{SA : RelmΛ=(A) → RelΛ=(A)}A∈Ty, in the sense that for any m-tuple of relations

#—
R , we have T

(#—
R

)
A =

SA
(# —
RA

)
. Under these conditions, T is also Φc -compatible.

141

Chapter 5. Inductive-Coinductive Reasoning

Proof. We show that for any m-tuple #—
R of relations and type A that T

(
Φ×mc

(#—
R

))
A ⊆ Φc

(
T

(#—
R

))
A by

induction on A. If A = ρX . B, then

T
(
Φ×mc

(#—
R

))
A = SA

(
Φ×mc

(#—
R

)
A

)
by factorisation of T

= SAΦ
×m (#—

R
)
A by definition of Φc

= T
(
Φ×m

(#—
R

))
A by factorisation of T

⊆ Φ
(
T
(#—
R

))
A by compatibility

= Φc
(
T

(#—
R

))
A by definition of Φc .

Otherwise, if A is not a fixed point type, then we have

T
(
Φ×mc

(#—
R

))
A = SA

(
Φ×mc

(#—
R

)
A

)
= SA

(
Φ×m

(
Φ×mc

(#—
R

))
A

)
= T

(
Φ×m

(
Φ×mc

(#—
R

)))
A by factorisation T

⊆ Φ
(
T
(
Φ×mc

(#—
R

)))
A by compatibility

⊆ Φ
(
Φc

(
T

(#—
R

)))
A by induction Hyp.

= Φc
(
T

(#—
R

))
A by definition of Φc .

Thus T
(
Φ×mc

(#—
R

))
A ⊆ Φc

(
T

(#—
R

))
A holds for all #—

R and A, hence T is Φc -compatible. □

We now use Lemma 5.2.25 to obtain soundness of the rules (Refl), (Sym) and (Trans).

Lemma 5.2.27. The chain ≈c is an equivalence relation and is closed under conversion at each stage.
More precisely, for all A ∈ Ty and r , s, t ,u ∈ Λ=(A), there are the following morphisms in T.

1. 1→ t ≈c t (Reflexivity);

2. s ≈c t → t ≈c s (Symmetry);

3. r ≈c s ∧ s ≈c t → r ≈c t (Transitivity); and

4. s ≈c t → r ≈c u, if r ≡ s and t ≡ u (Conversion closure).

Proof. We prove 1–4 by formulating these properties so that we can apply Lemma 5.2.25. This is
achieved by using the maps Refl : 1→ Rel, Sym : Rel→ Rel, _ ;_ : Rel×Rel→ Rel and C≡ : Rel→ Rel,
where Refl maps constantly to the diagonal relation Eq, Sym maps a relation to its inverse, _ ; _
is the composition of relations, and C≡ closes a relation under conversion. The statement of 1–
4 is then equivalent to saying for all n ∈ N that Refl

(←−−
Φc (n)

)
⊑ ←−−Φc (n), Sym

(←−−
Φc (n)

)
⊑ ←−−Φc (n),

←−−
Φc (n) ;

←−−
Φc (n) ⊑

←−−
Φc (n) and C≡

(←−−
Φc (n)

)
⊑ ←−−Φc (n). It remains to show that the maps Refl, Sym,

_ ; _ and C≡ are Φc -compatible, since we then can appeal to Lemma 5.2.25 to obtain the above
inclusions. Towards this end, one first shows that these maps are Φ-compatible. Compatibility of
reflexivity, symmetry and composition has been proved in [Bon+14, Sec 4.2], which uses that Φ is
the canonical relation lifting of F , see Definition 5.1.6 and that F preserves weak pullbacks. Weak
pullback preservation follows directly from the definition of F in terms of products, coproducts, and
the power set functor, see [GS00]. For compatibility of the ≡-closure we use that for any relation

142

5.2. A First-Order Logic for Observational Equivalence

C≡(R) ⊑ C≡obs(R) and that C≡obs is compatible, see Proposition 5.1.10. Finally, Φc -compatibility of
the maps follows from Lemma 5.2.26, as the maps Refl, Sym, _ ; _ and C≡ are defined on each type
separately. □

The next step is to establish the soundness of the extensionality and congruence rules for ∼. Since
the rules (ν-Ext) and (µ-Cong) involve the later modality, we first show how this modality can be
interpreted over [ωop,Rel] and how it can be used to “guard”, cf. [BM13], the unfolding of ←−−Φc .

Lemma 5.2.28. Let Φc : [ωop,Rel] → [ωop,Rel] be given by Φc (S)(n) B Φc (S(n)). We have for the
functor ▷ : [ωop,Rel]→ [ωop,Rel] defined in Lemma 2.3.4 that

←−−
Φc = ▷(Φc (

←−−
Φc)). (5.26)

Proof. To show that ←−−Φc = ▷(Φc (
←−−
Φc)) for the ←−−Φc from Definition 5.2.19, let n ∈ N. Then by

Lemma 2.3.4

▷
(
Φc (
←−−
Φc)

)
(n) =

{
I, n = 0

Φc (
←−−
Φc)(k), n = k + 1

=

{
I, n = 0

Φc (
←−−
Φc (k)), n = k + 1

=

{
I, n = 0
←−−
Φc (k + 1), n = k + 1

=
←−−
Φc (n).

Thus, ▷(Φc (
←−−
Φc))(n) =

←−−
Φc (n) for all n ∈ N and so ←−−Φc = ▷(Φc (

←−−
Φc)). □

Lemma 5.2.29. The rules (→-Ext), (×-Ext), (ν-Ext), (+-Cong) and (µ-Cong) are sound for the inter-
pretation in Definition 5.2.22. More precisely, the following are isomorphisms in T.

(s ≈c t) �
∧
·

u ∈ONA

s u ≈c t u ∀s, t : A→ B

(s ≈c t) � (π1 s ≈c π1 t) ∧ (π2 s ≈c π2 t) ∀s, t : A × B
(s ≈c t) � ▷(t .out ≈c s .out) ∀s, t : νX .A

(κi s ≈c κi t) � (t ≈c s) ∀i ∈ {1, 2} and s, t : Ai
(α s ≈c α t) � ▷(t ≈c s) ∀s, t : A[µX .A/X]

Proof. We show that the premises of the rules imply the corresponding conclusion in each case.

• For function typesA→ B, we first note that for s, t ∈ Λ=(A→ B) the existence of an isomorph-
ism (s ≈c t) �

∧
· u ∈ONA s u ≈c t u simply means that for all n ∈ N, (s, t) ∈ ←−−Φc (n)A→B ⇐⇒

∀u ∈ ONA. (s u, t u) ∈
←−−
Φc (n)B . For 0 this is trivial since ←−−Φc (0) = I. On the other hand, for

n ∈ N we have
←−−
Φc (n + 1)A→B = Φc (

←−−
Φc (n))A→B = Φ(Φc (

←−−
Φc (n)))A→B = Φ(

←−−
Φc (n + 1))A→B .

By Lemma 5.1.8 (s, t) ∈ Φ(←−−Φc (n + 1))A→B is equivalent to ∀u ∈ ONA. (s u, t u) ∈
←−−
Φc (n + 1)

because ←−−Φc is ≡-closed, see Lemma 5.2.27. Thus the desired isomorphism exists.

143

Chapter 5. Inductive-Coinductive Reasoning

• The proof of soundness for (×-Ext) and (+-Cong) is analogous to that for (→-Ext).

• To prove soundness of (ν-Ext) and (µ-Cong), we appeal to the identity ←−−Φc = ▷
(
Φc (
←−−
Φc)

)
from Lemma 5.2.28 as follows. Suppose we are given s, t ∈ Λ=(νX .A) and n ∈ N. Then we
have

(s, t) ∈ ▷
(
Φc (
←−−
Φc)

)
(n)νX .A ⇐⇒

{
(s, t) ∈ IνX .A, n = 0

(s, t) ∈ Φ(←−−Φc (k))νX .A, n = k + 1

⇐⇒
{
(s .out, t .out) ∈ IA[νX .A/X], n = 0

(s .out, t .out) ∈ ←−−Φc (k)A[νX .A/X], n = k + 1
(∗)

⇐⇒ (s .out, t .out) ∈ (▷←−−Φc)(n)A[νX .A/X],

where we can apply Lemma 5.1.8 in the second case of (∗), since ←−−Φc is closed under convert-
ibility. Combining this relation with (5.26) from Lemma 5.2.28, we obtain

(s ≈c)(n) ⇐⇒ (s, t) ∈ ←−−Φc (n)

⇐⇒ (s, t) ∈
(
▷Φc (

←−−
Φc)

)
(n) by (5.26)

⇐⇒ (s .out, t .out) ∈ (▷←−−Φc)(n) see above
⇐⇒ ▷(s .out ≈c t .out)(n)

which shows that (ν-Ext) is sound.

• Similarly, one shows for s, t ∈ Λ=(A[µX .A/X]) and n ∈ N that

(α s,α t) ∈
(
▷Φc (

←−−
Φc)

)
(n) ⇐⇒ (s, t) ∈ (▷←−−Φc)(n),

from which we obtain soundness of (µ-Cong) by the same reasoning as for (ν-Ext). □

Now that we have proven that the axioms for ∼ are correct, we are left with the task to show
soundness of the axioms for the later modality (Figure 5.5 on page 130) and of the refinement rules
(Figure 5.6, page 131). The rules (K) and (Nec) for the later modality are instances of the functoriality
of ▷ and the next operator in Lemma 2.3.4 for the category T. The soundness of the fixed point rule
(Löb) has been proven in Lemma 2.3.5.

To prove the refinement rules correct, we first show that we can replace convertible terms in
formulas without affecting their validity. Conveniently, this also proves soundness of the replacement
rule for definitional equality.

Lemma 5.2.30. Let ϕ be a formula with Γ ⊩ ϕ and σ ,τ ∈ Subst(ON; Γ). If σ ≡ τ , that is σ(x) ≡ τ (x)
for all x ∈ dom(Γ), then JϕK(σ) � JϕK(τ).
Proof. We proceed by induction on the formula ϕ. By applying Lemma 5.2.27 to s[σ] ≡ s[τ] and
t [σ] ≡ t [τ], we have for all terms s and t that Js ∼ tK(σ) � Js ∼ tK(τ), which proves the claim in the
base case ϕ = s ∼ t . All the other cases follow immediately by induction from functoriality of the
operations that we used in the definition of J−K in Definition 5.2.22. □

144

5.2. A First-Order Logic for Observational Equivalence

Lemma 5.2.30 allows us now to replace terms of inductive type by their weak head normal forms,
which allows us to obtain soundness for the refinement rules.

Lemma 5.2.31. The rules (1-Ref), (+-Ref) and (µ-Ref) are sound for the interpretation in Defini-
tion 5.2.22, that is, for all n ∈ N we have

i) if Γ | ∆[⟨ ⟩/x];n ⊨ ϕ[⟨ ⟩/x], then Γ,x : 1 | ∆;n ⊨ ϕ;

ii) if Γ,yi : Ai | ∆[κi yi/x];n ⊨ ϕ[κi yi/x] for all i ∈ {1, 2}, then Γ,x : A1 +A2 | ∆;n ⊨ ϕ;

iii) if Γ,y : A[µX .A/X] | ∆[α y/x];n ⊨ ϕ[α y/x], then Γ,x : µX .A | ∆;n ⊨ ϕ.

Proof. Suppose that ϕ is a formula with Γ,x : A1 + A2 ⊩ ϕ, and let us assume for all n ∈ N that
Γ,yi : Ai | ∆[κi yi/x];n ⊨ ϕ[κi yi/x] holds for all i ∈ {1, 2}. We need to show that Γ,x : A1 + A2 |
∆;n ⊨ ϕ holds for all n ∈ N. Thus, by Proposition 5.2.23, we need to show that if for all i ∈ {1, 2}
and all τ ∈ Subst(ON; Γ,x : Ai), there are morphisms

∧
· ψ ∈∆Jψ [κi yi/x]K(τ)→ Jϕ[κi yi/x]K(τ), then

for all σ ∈ Subst(ON; Γ,x : A1 +A2), there is
∧
· ψ ∈∆Jψ K(σ)→ JϕK(σ).

So let σ ∈ Subst(ON; Γ,x : A1 +A2). Since σ(x) ∈ ONA1+A2
, there is an i ∈ {1, 2} and a t with

σ(x) ≡ κi t . We then define τ B σ [x 7→ κi t] and γ B σ [yi 7→ t], so that ∆[κi yi/x][γ] = ∆[τ] and
ϕ[κi yi/x][γ] = ϕ[τ]. From the assumptions and Lemma 5.2.30 we then obtain∧

·
ψ ∈∆

Jψ K(σ) � ∧
·

ψ ∈∆
Jψ K(τ) � ∧

·
ψ ∈∆

Jψ [κi yi/x]K(γ)→ Jϕ[κi yi/x]K(γ) � JϕK(τ) � JϕK(σ),
as required. The proofs for (1-Ref) and (µ-Ref) are completely analogous. □

We can now put everything together to show soundness of FOL▶’s proof system.

Proof of Theorem 5.2.24. To prove that Γ | ∆ ⊢ ϕ implies Γ | ∆;n ⊨ ϕ for all n ∈ N, one proceeds by
induction on the proof tree that witnesses Γ | ∆ ⊢ ϕ. The cases for the standard rules of intuitionistic
logic in Figure 5.2 are thereby given by the properties of the Boolean algebra B, see Proposition 2.3.2
and Lemma 2.3.3. It only should be noted that these rules are sound because of the way we
handle variables in FOL▶ and because there is no strengthening rule, see the discussions [LS88, p.
131] and [Jac99, p. 231]. Soundness of the rules for definitional equality (Figure 5.3) are given by
Lemma 5.2.30 and by convertibility being an equivalence relation. Next, soundness for the ∼-rules in
Figure 5.4 is given by Lemma 5.2.27 and Lemma 5.2.29. The rules for the later modality in Figure 5.5
are valid by Lemma 2.3.4 and Lemma 2.3.5. Finally, the rules in Figure 5.6 are proved correct in
Lemma 5.2.31. The special case for ϕ = s ∼ t gives us that ⊢ s ∼ t implies (s, t) ∈ ←−−Φc (n) for all
n ∈ N. By Lemma 5.2.20 we then obtain s ≡obs t , as required. □

Now that we have established a model for the logic FOL▶ ,38 one might ask whether we can
prove any observational equivalence. In other words, we may ask whether FOL▶ is complete for
observational equivalence. We answer this question negatively in the following example.

Example 5.2.32 (Incompleteness). We define for each type A ∈ Ty a term δ : Nat→ Aω → Aω that
iteratively takes the tail of an input stream:

δ 0 s = s

δ (suc n) s = δ n (s .tl)

145

Chapter 5. Inductive-Coinductive Reasoning

Note that the first argument of inductive type (Nat) introduces an observation on a coinductive type
in the second case of δ ’s definition. This leads to the a problem if we want to prove properties of
δ in FOL▶ . For example, we clearly have (δ n s).tl ≡obs δ n (s .tl) for all n ∈ ONNat and s ∈ ONAω ,
because n ≡m for some m ∈ N and thus

(δ n s).tl ≡ (δ m s).tl ≡ (s .tlm).tl ≡obs (s .tl).tlm ≡ δ n (s .tl).

If we try to prove this in FOL▶ we encounter the following problem though. Let ϕ be the formula
∀n. ∀s . (δ n s).tl ∼ δ n (s .tl), which we aim to prove. We can start a proof for ϕ:

(δ 0 s).tl ≡ s .tl ≡ δ 0 (s .tl)
▶ϕ ⊢ (δ 0 s).tl ∼ δ 0 (s .tl)

⁇
n : Nat, s : Aω | ▶ϕ ⊢ (δ n (s .tl)).tl ∼ δ n (s .tl.tl)

n : Nat, s : Aω | ▶ϕ ⊢ (δ (suc n) s).tl ∼ δ (suc n) (s .tl)
n : Nat, s : Aω | ▶ϕ ⊢ (δ n s).tl ∼ δ n (s .tl)

▶ϕ ⊢ ϕ
⊢ ϕ

The problem arises if we try to fill the question marks. By instantiating the quantifiers with n and
s .tl, we can obtain by (5.13) and (∀-E) from ▶ϕ only

▶
(
(δ n (s .tl)).tl ∼ δ n (s .tl.tl)

)
,

from which we have to remove the later modality to fill the question marks. But since this is not
sound, ϕ cannot be proven in this way. Indeed, the problem is that we have to prove ϕ by using
induction on n, but the resulting later modality does not interact well with the tail observation on
the coinductive type of streams. In other words, we are not able to carry out proofs by induction
on elements coinductive types. ◀

Let us finish this section with remarking on our use of the terms “induction” and “coinduction”
in reference to proofs in FOL▶ . One can show that the usual induction and coinduction schemes
are derivable in FOL▶ , only with the difference that the later modality appears in the induction and
coinduction hypotheses. More precisely, one first defines for a type39 A with X ⊩ A : Ty a predicate
lifting A and a relation lifting Ã that are subject to the following two rules. In these rules, A[−] is
the action of the type A as in Definition 3.3.1.

Γ,x : B ⊩ ϕ

Γ,x : A[B] ⊩ A(ϕ)

Γ,x : B ×C ⊩ ϕ
Γ,x : A[B] ×A[C] ⊩ Ã(ϕ)

The definition of these liftings follows thereby the definition of liftings by Hermida and Jacobs [HJ97]
for polynomial functor.

Given a formula ϕ on the least fixed point type µX .A, that is, with Γ,x : µX .A ⊩ ϕ, one can show
that the following induction principle for ϕ is derivable in FOL▶ .

Γ | ∆ ⊢ ∀y : A[µX .A].A(▶ϕ)[y]→ ϕ[α y]

Γ | ∆ ⊢ ∀(x : µX .A).ϕ

To establish a coinduction principle, let B ∈ Ty and C ∈ Ty, and let c : B → A[B] and d : C → A[C]
be coalgebras. Moreover, assume that we are given a relation between B and C in form of a formula

146

5.3. (Un)Decidability of Observational Equivalence

ϕ with Γ,x : B ×C ⊩ ϕ. One can then show that the following coinduction principle holds in FOL▶ ,
where Rν is the coiterator from Definition 3.3.1.

Γ,x : B,y : C | ∆ ⊢ ϕ[⟨x ,y⟩]→ ▶ Ã(ϕ)[⟨c x ,d y⟩]
Γ,x : B,y : C | ∆ ⊢ ϕ[⟨x ,y⟩]→ Rν c x ∼ Rν d y

We will not go into the details of how to prove that the induction and coinduction principles are
derivable in FOL▶ , since they are of limited use and merely show that the proof system subsumes
the standard principles.

5.3. (Un)Decidability of Observational Equivalence
In this section, we present two results concerning decidability of observational equivalence. The first
just makes precise the intuitive assertion that, in general, observational equivalence is undecidable.
The second result, however, establishes a fragment of λµν= on which observational equivalence
actually becomes decidable. This fragment is admittedly rather small, but still an interesting start.
Since this fragment contains non-terminating terms, the algorithm that checks observational equi-
valence has to check at the same time for observational normalisation. We thereby show that also
observational normalisation is decidable in this fragment of λµν=.

5.3.1. Observational Equivalence is Undecidable
Proposition 5.3.1. Observational inequivalence is semi-decidable on ON-terms.

Proof. Let t1, t2 be two terms in ONA. To decide whether t1 ̸≡obs t2 we can enumerate all tests on A
and check for each of them whether t1 and t2 do not satisfy it simultaneously. This gives a procedure
that terminates, if t1 ̸≡obs t2. We now show that it is impossible to give a general algorithm that
checks observational inequivalence via an encoding of Post’s correspondence problem (PCP). This
shows that observational equivalence is undecidable.

Let A be a finite alphabet with at least two letters, and w = (w1, . . . ,wN) and v = (v1, . . . ,vN)
sequences of words over A. A solution to the PCP for ⟨w,v⟩ is a finite sequence (ik)1≤k≤K such
that for all k ∈ {1, . . . ,K}, 1 ≤ ik ≤ N , and

wi1 · · ·wiK = vi1 · · ·viK . (5.27)

It is known to be undecidable whether a solution exists for any given ⟨w,v⟩. The idea of the encoding
of the PCP, which we are about to give, is to define a decidable predicate on finite sequences that
contains all lists for which (5.27) holds. This is carried out in the following way.

We begin by defining the relevant data structures as types, and basic functions on them. Let
A have n letters, so that we can encode A as the sum A = 1+ · · ·+ 1︸ ︷︷ ︸

n

. Words over A are given

by lists A∗ = µX . 1 + A × X , thus a word w can be written as a sequence of constructors, and
concatenation of lists · can be defined inductively in the usual way. We can also define predicates
eqA : A × A→ Bool and eqL : A∗ × A∗ → Bool that are computable on observationally normalising
arguments, such that

eqA x ≡ ⊤ iff x .pr1 ≡ x .pr2 and
eqL y ≡ ⊤ iff y.pr1 ≡ y.pr2.

147

Chapter 5. Inductive-Coinductive Reasoning

Finally, we encode the set of numbers {0, . . . ,N − 1} with the type N̂ = 1+ · · ·+ 1︸ ︷︷ ︸
N

and finite,

non-empty sequences of them by N̂+ = µX . N̂ + N̂ × X .
To reduce an instance ⟨w,v⟩ of PCP to observational equivalence, we define a map h which given

a sequence u = (ik)1≤k≤K computes the pair (wi1 · · ·wiK ,vi1 · · ·viK), a predicate P which tests
whether a sequence is a solution, and the empty predicate P⊥ by

h : N̂+ → A∗ ×A∗

h i = ⟨wi ,vi ⟩
h (i : u) =

⟨
wi · ((h u).pr1),vi · ((h u).pr2)

⟩
P : N̂+ → Bool P⊥ : N̂+ → Bool
P = eqL ◦ h P⊥ u = ⊥

Hence, for u : N̂+, P u ≡ ⊤ if and only if u solves the PCP for ⟨w,v⟩, and P is clearly computable
for ON terms. Moreover, since observational inequivalence is witnessed by tests, P ̸≡obs P⊥ means
that there is a ϕ ∈ TestsN̂+→Bool such that P ⊨ ϕ and P⊥ ⊭ ϕ. We may assume that such a ϕ is of
the form ϕ = [u] [⊤,⊥] for some u : N̂+ so that P u ≡ ⊤, and u is a solution to the PCP. Thus, if we
can find ϕ, we can solve the PCP. In other words, P ̸≡obs P⊥ if and only if the PCP for ⟨w,v⟩ has a
solution.

In summary, if for all terms t1, t2 it is decidable whether there is a test that distinguishes t1 and
t2, then the PCP is decidable, hence observational equivalence cannot be decidable. □

5.3.2. Decidability on a Language Fragment

Even though observational equivalence is undecidable on the full language, there is a fragment of
the language on which we can decide it. Analysing the encoding of Post’s correspondence problem,
we find that the encoding crucially requires functions. Indeed, once we forbid terms of function
type, observational equivalence becomes decidable.

More precisely, we fix a declaration block Σ, and consider terms that are well-typed within Σ in
the following restricted syntax:

t F f | κi t | α t | t .pr1 | t .pr2 | t .out

D F
{
·.pr1 7→ t1 ; ·.pr2 7→ t2

}
| {·.out 7→ t}.

That is, in this restricted calculus we cannot form terms of function type, copatterns have only one
layer, and λ-abstraction is excluded. It should be noted that one-layer copatterns and excluding
λ-abstraction do not pose any limitations, as we can first unroll nested copatterns into nested λ-
abstractions and then introduce for each λ-abstraction a new symbol into the signature. These
transformations preserve observational equivalence.

In this restricted calculus, Algorithm 1 decides whether two terms are observationally equivalent,
returning a witnessing test if they are not or a bisimulation up-to convertibility if they are. The

148

5.3. (Un)Decidability of Observational Equivalence

Algorithm 1: Decide whether two terms are observationally equivalent
CheckBisim(t1, t2 ∈ ONA, R ∈ RelΛ=) : Tests+ RelΛ=

Invariant: If t1 RA t2, then R is a bisimulation up-to convertibility.
if t1 RA t2 then return R
Add (t1, t2) to R
Bring t1 and t2 into WHNF
case ti = fi with (fi : A = Di) ∈ Σ do

case D1 =
{
·.pr1 7→ r1 ; ·.pr2 7→ r2 7→ ·.pr2 7→ r2

}
and

D2 =
{
·.pr1 7→ s1 ; ·.pr2 7→ s2 7→ ·.pr2 7→ s2

}
do

R′← UpdateTest(λλϕ. [π1]ϕ, CheckBisim(r1, s1, R))
UpdateTest(λλϕ. [π2]ϕ, CheckBisim(r2, s2, R′))

case D1 = {·.out 7→ r } and D2 = {·.out 7→ s} do
UpdateTest(λλϕ. [ξ]ϕ, CheckBisim(r , s , R))

case t1 = κi t
′
1 and t2 = κj t

′
2 do

if i , j then return [⊤,⊥]
UpdateTest(CoprodTest(i), CheckBisim(t ′1, t

′
2, R))

case t1 = α t ′1 and t2 = α t ′2 do
UpdateTest(λλϕ. α−1ϕ, CheckBisim(t ′1, t

′
2, R))

end
UpdateTest(f : Tests→ Tests,U ∈ Tests+ RelΛ=) : Tests+ RelΛ=

case U is a test ϕ do return f(ϕ)
case U is a relation R do return R

end
CoprodTest(i , ϕ)

if i = 1 then return [ϕ,⊥] else return [⊥,ϕ]
end

notation we use in the algorithm is similar to that of monadic Haskell-code, where we treat Tests+(−)
as a monad and we use the left-arrow notation.1

Informally, the algorithm works as follows. It compares recursively the given terms according to
what it requires to fulfil the same tests. If that fails, it builds up a test witnessing this, while returning
from the recursion. Otherwise, it puts the given pair of terms in the bisimulation candidate R and
tries to close R recursively. Once it arrives at a pair that has already been compared, it returns the
constructed relation, which is closed at that point.

Termination of the algorithm is ensured by the fact that a term t in the fixed declaration block Σ
essentially generates a finite subsystem of the term transition system, as we explain now. Modulo
reduction to WHNF, the only way of creating a term of inductive type is by a finite sequence of
constructors, hence we can remove only finitely many such. For coinductive types, on the other
hand, a WHNF must be a symbol in Σ, hence we must eventually reach a pair of symbols that are
already in the relation, as there are only |Σ|2 such pairs. Therefore, the algorithm terminates.

We will now make these arguments precise.

1Implementation: https://github.com/hbasold/ObservationalEquiv/blob/master/DecideEquiv

149

https://github.com/hbasold/ObservationalEquiv/blob/master/DecideEquiv

Chapter 5. Inductive-Coinductive Reasoning

Theorem 5.3.2. Let t1, t2 ∈ ONA be in the restricted language. Then the following holds.

(i) If CheckBisim(t1, t2, ∅) returns a test ϕ, then (t1 ⊨ ϕ) , (t2 ⊨ ϕ).

(ii) If CheckBisim(t1, t2, ∅) returns a relation R, then R is a bisimulation up-to convertibility and we
have (t1, t2) ∈ RA.

(iii) CheckBisim(t1, t2, ∅) terminates.

Proof. (i) This is very easy to see, as we only stop with a test if the constructors for elements of
a sum type do not match and then trace back the observations we made to get to the sum
constructors.

(ii) We prove the invariant given at the beginning of CheckBisim: If t1 and t2 are related by R, then
R is already a bisimulation up-to convertibility. Since ∅ fulfils this and we return R without
further changes, the statement of the theorem follows.
So assume that t1 and t2 are not yet related by R, in which case the pair is added and we continue
on the WHNF of these terms. In all cases, we recurse on elements of δ(t1) and δ(t2), where
δ is the transition system that we defined in Section 5.1.1. This means that, in the recursion
step, if these elements are already in R, we indeed have found a bisimulation. For example, if
A = B1 × B2 and ti = fi with (fi : A = Di) ∈ Σ, then δ(ti)(j) = {t ′ : Bj | t ′ ≡ πj t} for j = 1, 2
and, in particular, r j ∈ δ(f1)(j) and sj ∈ δ(f2)(j). Since, as a result of CheckBisim(r1, s1,R), R′
is a bisimulation up-to convertibility and contains (r1, s1), the result of CheckBisim(r2, s2,R′)
contains (r1, s1), (r2, s2) and is a bisimulation up-to convertibility as well. Therefore, the
invariant is preserved.

(iii) We use the following two termination measures: n, the maximum of the sizes of the terms
t1 and t2, and m = |Σ|2 − #pairs of symbols in R. On the recursive calls of CheckBisim for
inductive types, n strictly decreases and for coinductive types, m strictly decreases (though
n might increase in this case). Thus m becomes eventually 0, meaning that all symbols of Σ
have been related with each other. From here on, n must decrease until it becomes 1, at which
point t1 and t2 must be symbols from Σ and are thus related. Hence, CheckBisim stops and
returns R. □

After having proved that we can decide observational equivalence on observationally normalising
terms, one might ask whether observational normalisation is a decidable property. The answer to
this question is indeed yes and we describe the idea for a decision procedure in the following.

We have seen that ON is the largest predicate that is contained in SN and is closed under δ -steps.
This can be leveraged, just as we did for observational equivalence, by constructing recursively a
predicate that contains strongly normalising terms, giving, again as before, a terminating procedure,
if we can decide strong normalisation. In the restricted calculus, we only need to decide whether
there is a WHNF though, since

1. there is always a unique reduction sequence and

2. we check strong normalisation by continuing to check recursively for observational normal-
isation under constructors.

150

5.4. Discussion

So we are left with the task to decide whether a term has a WHNF. This can be done by trying
to reduce the term to a WHNF and storing every term in the reduction sequence in a predicate that
witness whether a term has no WNHF. If we reach a term a second time in the reduction sequence,
we know that there can be no WHNF. For the same reasons as before, this eventually terminates
due to the fact that terms can make only finitely many transitions.

We illustrate this with an example of a term that has no WHNF.

Example 5.3.3. Let Σ be the following declaration block.

grow : Nat × Natω

grow.pr1 = 0

grow.pr2 = grow.pr2.out.pr2

The term grow.pr2 leads to the following reduction sequence

grow.pr2 −→ grow.pr2.out.pr2 −→ grow.pr2.out.pr2.out.pr2 −→ · · ·

which is obviously diverging. We can show this with the following predicate that the decision
procedure constructs.

PNatω = {grow.pr2, grow.pr2.out.pr2}
PNat×Natω = {grow.pr2.out}
PC = ∅, all other types C

That P indeed proves that grow.pr2 has no WHNF is seen as follows. In order to reduce grow.pr2,
we need to reduce grow.pr2.out.pr2, thus we need to make a reduction step on grow.pr2.out, which
in turn needs a reduction of grow.pr2. Since all of these terms are in P , we have found a loop in
the reduction sequence, hence grow.pr2 has no WHNF. □

This procedure to decide the (non-)existence of a weak head normal form can also be found in
the above mentioned implementation.

5.4. Discussion
The purpose of the present chapter was to find better ways of proving observational equivalence for
λµν=-programs than mere induction on tests. This led us to study three very different approaches:
a coinduction proof principle, a syntactic proof system and automatic proofs for a fragment of λµν=.
We obtained the first method, the coinduction principle, by showing that there is a labelled transition
system on terms, for which the largest bisimulation relation is given by observational equivalence.
A major advantage of the coinduction principle over the test induction is that the former can be
drastically improved by using so-called up-to techniques. In Section 5.1.3, we demonstrated on
an example how the coinduction principle and up-to techniques can be used to prove complex
properties.

The example in Section 5.1.3 showed also that, even if observational equivalence can be charac-
terised coinductively, equivalences between functions with inductive domain require an induction

151

Chapter 5. Inductive-Coinductive Reasoning

principle for inductive types. In that example, we implemented such an induction principle in form
of an up-to technique, but this came at the cost of largely obscuring the proof. We found that the
reason for this obscurity is that the program equivalence in Section 5.1.3 would naturally be shown
by a mutual coinduction and two induction proofs. This mutual proof is, however, stratified in the
approach that we took by implementing induction as an up-to technique for the coinduction prin-
ciple. Such a stratification leads then to complicated proof goals, which take away from the actual
result we set out to prove. Thus, the next step is to find a proof method that supports induction
and coinduction equally well.

In Section 5.2, we introduced the logic FOL▶ for observational equivalence that has two important
features: it treats induction and coinduction on a par, and it allows the discovery of proof goals in
the proof construction. The need for the former was discussed above. Discovering proof goals while
constructing a proof, on the other hand, lifts another burden of the usual coinduction principle,
namely that one has to guess a bisimulation relation beforehand. This can be a tricky task, as we
have seen in the extensive example. The need for guessing a bisimulation can be overcome by using
so-called parameterised coinduction, but we refrain here from introducing another complication.
Instead, we endowed the logic FOL▶ with a proof system, which allows us to refer back to previous
steps in a proof and thereby removing the need for guessing proof goals up-front, similarly to what
cyclic proof systems achieve.

An interesting aspect of the logic FOL▶ , or actually its soundness proof, is that up-to techniques
are still used “under the hood”, in the sense that we use up-to techniques in order to show that
the axioms of the logic are sound for observational equivalence, see Lemma 5.2.27. The difference
between the axioms in the logic and the up-to techniques is that in the former case we do not need
to explicitly assemble the up-to techniques that are used in a proof, see also the discussion after
Example 5.1.11. In Section 5.1.3 we avoided the explicit assembly of compatible up-to techniques
by using the companion instead. Appealing to the companion in a proof is of course fine as far
as correctness is concerned, but one loses any sense of what the actual content of that proof is.
More specifically, the companion is defined impredicatively, that is, the companion itself is already
included in the join that defines the companion, see Definition 2.5.12. This fact is what makes it
impossible to extract from proofs that involve the companion a bisimulation. Thus, such proof “feel
magical” and lose any constructive content. The proof trees of FOL▶ , on the other hand, implicitly
record all uses of up-to techniques, since each proof step is annotated by the corresponding proof
rule, which in turn might refer to an up-to technique through the soundness proof. Thus, we can
recover from a proof tree all up-to techniques that appear in a proof, without having to explicitly
assemble an up-to technique for that proof.

In Section 5.3, we concerned ourselves with the question whether observational equivalence can
be automatically proven. We showed there that observational equivalence is indeed decidable on a
fragment of the calculus λµν=, by exhibiting an algorithm that outputs either a bisimulation or a
counterexample. Moreover, we also proved that observational equivalence is in general undecidable,
which shows the limit of the automatic approach to proving observational equivalence.

Related Work
Program Properties as Coinductive Predicates In Chapter 4, we discussed some work that
relates to our notion of observational equivalence. One particular piece of work that we discussed
there is also relevant here: Abramsky [Abr90] introduces, what he calls, applicative bisimilarity

152

5.4. Discussion

to reason about the equivalence of λ-terms. What is interesting about his work, is that Abramsky
defines applicative bisimilarity using the ωop-chain construction, which appears here in Lemma 5.2.20,
and then shows that applicative bisimilarity coincides with a notion of contextual equivalence. This
approach is very similar to the result of Section 5.1.2, namely that observational equivalence is the
largest observational bisimulation. However, it is clear that we are dealing with a different notion
of (program) context, since Abramsky compares programs in any context, whereas we restrict to
those contexts that arise from tests. In particular, we only allow observationally normalising terms
as function arguments, whereas in the contextual equivalence in [Abr90] any term is allowed as
function argument.

There is another crucial difference with Abramsky’s work: In order to prove two λ-terms M,N to
be applicative bisimilar, one tries to reduce both terms to a λ-abstraction, say λx .M ′ and λx .N ′, and
then shows that for any term P that M ′[P/x] and N ′[P/x] are applicative bisimilar. If we adopt this
definition to our setting, then this leads to another notion of equivalence because we then also take
weak head normalisation for terms of function type (or more generally, of coinductive type) into
account. That is to say, to show that terms s, t of type A→ B are applicative bisimilar, we first try
to reduce s to either λ{· x 7→ s ′} or to f with (f : A→ B = {· x 7→ s ′}) ∈ Σ, and similarly for t and
some t ′. Having found these WHNFs, we require then that for all u ∈ ONA that s ′[u/x] and t ′[u/x]

are again applicative bisimilar.40 It is clear that this leads to a different notion of equivalence because
first of all we take normalisation of function to WHNFs into account. But more importantly, this
way of observing the behaviour of terms is not part of the language λµν=, thus it might be possible
to show that up-to-context is a sound up-to technique for this notion of applicative bisimilarity,
cf. Note 33.

Some evidence that supports this conjecture is provided by the work of Sangiorgi et al. [SKS11],
where applicative bisimilarity is replaced by so-called environmental bisimilarity. An environmental
bisimulation is thereby a relation between terms relative to a set of possible arguments for the
related terms (the environment). The bisimulation condition is very similar to that for applicative
bisimilarity, namely that one first tries to find a WHNF and then substitute arguments, only that the
arguments in this case come from the corresponding environment. This definition allows Sangiorgi
et al. to show that environmental bisimilarity is a congruence and that up-to-context is a sound
up-to technique.

Another notion of bisimilarity between terms has been studied by Sumii and Pierce [SP07]. The
intention there was to find an alternative to logical relations [Pit00] for languages with recursive
types. Also here, the same differences arise from comparing terms on the basis of weak head normal
forms, as we discussed above for applicative and environmental bisimilarity.

This also gives us the opportunity to discuss logical relations as another way of reasoning about
program equivalence or, more specifically, contextual equivalence. These were introduced by Pitts
[Pit00] because properties of contextual equivalence are hard or even impossible to prove by induction
on contexts. For the polymorphic lambda calculus λ2 (or System F) [Gir72; Rey74], logical relations
have turned out to be a valuable proof tool. However, logical relations cannot be used that easily
for systems with recursive types because logical relations are usually defined by induction on types,
which is impossible for recursive types. There has been some work to overcome this problem,
see [BH99; CH07] and the discussion in [SP07], but it seems that bisimulations are a better choice
to reason in the presence of recursive types. Moreover, the definition of what a bisimulation on
terms is can be varied, depending on which kind of observations on programs one is interested,

153

Chapter 5. Inductive-Coinductive Reasoning

cf. [San11].
Apart from studies specifically about program equivalences, the work on bisimilarity, and coin-

ductive predicates in general, is relevant here. Especially useful were to us coalgebras and general
notions of bisimilarity [Has+13; HJ97; Rut00; Sta11] and the investigations on up-to techniques,
both lattice theoretically [Pou07; Pou16; PS11] and category theoretically [Bon+14; PR17; Rot+17].
The usefulness of the coalgebraic approach to defining and proving program properties stems from
its wide applicability, which arises because coalgebras and the accompanying notions are defined
independently of any programming language or semantics. However, we have also seen that there
are currently limits to the applicability of existing tools, see in particular Note 33 and Note 32.

A First-Order Logic for Observational Equivalence Let us now discuss the work that is related
to our logic FOL▶ for observational equivalence. First of all, since the logic contains intuitionistic
first order logic and has a Gentzen-style sequent calculus as proof system, the corresponding pieces
of work like [Gen35] and [TvD88, Chap. 10] apply. Similarly relevant is also the literature about
the provability logic of Löb as origin of the later modality as it was used by Nakano [Nak00] and
later by Appel et al. [App+07] for (semantical) type construction and type checking. In particular,
the correspondence between the Löb logic and transitive, well-founded Kripke-frames [SV82; Smo85;
Sol76] is of interest here. This correspondence tells us that the Löb logic characterises (well-founded)
induction [Bek99] and even fixed points [Smo85, Thm. 3.15] in a parameter-free way.

But let us be a bit more specific in the comparison. Upon discussing coinductive proof systems
that are not based on explicit bisimulations, the most prominent example that comes to mind is the
system Circ by Roşu and Lucanu [RL09]. When it comes to universally quantified equivalences, Circ
is likely to be as expressive as FOL▶ . The more complicated first-order formulas that are available
in FOL▶ are not expressible in Circ. Also, induction was not available in the original system but
has been added later to the implementation [Gor+11]. Interestingly, this induction principle also
arises in Circ through the same so-called freezing mechanism as coinduction does. This suggests
that freezing is strongly related to the way we use the later modality in FOL▶ . In particular, it seems
that the rule [Derive] in [RL09] is a combination of our (Löb)-rule with (ν-Ext). However, there is
a major difference between the two approaches: the soundness proof for Circ is monolithic in the
sense that one can only show that a completed proof is correct. In contrast, in FOL▶ the correctness
of a proof is ensured locally for each proof rule, thereby allowing for a modular soundness proof,
see Section 5.2.2, and easier proof checking, see Definition 5.2.4.

More generally, the proof system of FOL▶ shares with cyclic proof systems that it has no explicit
induction or coinduction scheme, see also in the introduction, therefore proof discovery becomes
much more natural. On the other hand, FOL▶ has the advantage over cyclic proof systems that there
is no global correctness condition on proofs, rather each derivation step ensures the correctness of
a proof locally. This drastically simplifies the soundness proof and proof checking for FOL▶ , as we
have discussed above in the comparison to Circ.

Another approach to proving properties about programs and to logic in general is (dependent)
type theory. This view on logic is going to be the subject of the next two chapters, thus we postpone
a further discussion of this approach for now. Let us just mention Agda [Agd15] as implementation
of an advanced type theory, in which transitivity of the substream relation has a short and crisp
proof, in contrast to our development in Section 5.1.3. There are several reasons for that. First of
all, we had to develop an induction principle from scratch, which is already part of Agda’s type

154

5.4. Discussion

theory. Second, Agda carries out all the computations automatically that we had to derive by hand
in the proof of Proposition 5.1.19. Finally, the stratification of induction and coinduction makes
the bisimulation-based proof more involved than necessary. Despite the deficits of the approach in
Section 5.1.3, this should be seen of a study of the principles behind mixed inductive-coinductive
reasoning, which should enable us to develop useful and well-understood proof techniques.

On the semantical side, Dreyer et al. [DAB11] have used approximations of logical relations
that are indexed by their corresponding approximation depth. This solves the problem, which we
mentioned above, that logical relations cannot be directly used to prove contextual equivalence for
programs in languages with recursive types. Dreyer et al. then go ahead and devise a syntax for a
logic that encompasses first-order logic over term and type variables, second order logic for (logical)
relations, and fixed points of relation transformers. They ensure thereby that the fixed points of
relation transformers are well-defined by requiring that the fixed point variable only occurs under
a later modality. This guarantees that the relation transformer is contractive, which in turn allows
the approximation of its fixed point through an ωop-chain construction. The outcome of the efforts
in [DAB11] is then a collection of inference rules that hold on the semantics of these formulas. These
rules are close to that of FOL▶ , only that they are tailored towards capturing contextual equivalence,
cf. the discussion above.

In later work, Birkedal et al. [Bir+11] developed the approach of step-indexing further to give
an axiomatic description of domain theoretic constructions by using the later modality. Based on
this, Birkedal and Møgelberg [BM13] and Møgelberg [Møg14] developed programming languages, in
which well-definedness of recursive definitions is ensured through type-annotations. In [Biz+16b],
this language was then extended to a dependent type theory. Since a dependent type theory can
serve as a vehicle for intuitionistic logic, one might expect that our logic FOL▶ could be construed
in the theory of Bizjak et al. [Biz+16b]. However, there is a crucial point that prevents this. Take
for example the type of streams over A and observational equivalence on that type. Recall that we
have defined streams to be given by the type νX .A × X , thus the obligations for proving s ∼Aω t
were that s .hd ∼A t .hd and ▶(s .tl ∼Aω t .tl), see Example 5.2.12. In contrast in the type theory
proposed ibid., streams over A are given by the type StrA with StrA = fixX .A × ▶X , where fix is a
general fixed point operator and ▶ is the type theoretical equivalent of the later modality that we
used here. For an extension of the type theory [Bir+16], it was then shown that the identity type
on streams (cf. Chapter 7), which is denoted by IdStrA(s, t) for s and t of type StrA, is isomorphic to
IdA(hd s, hd t) × Id▶ StrA(tl s, tl t). This resembles our Lemma 5.2.29 with the slight, but very crucial,
difference that here the later modality is pushed into the underlying data type, whereas the later
modality stays in our setting on the level of propositions about that data type. Thus, these extensions
of dependent type theory by Birkedal et al. cannot be applied directly here.

Since we just came across the result in Lemma 5.2.29, we should briefly mention that similar
correspondences, for example, between the equality on a product type and the conjunction of
equality on the product components appear also in other places. Undoubtedly, this correspondence
between equality proofs can be found in many places, but let us just mention two instances here.
An example is of course the obligatory reference to homotopy type theory with the univalence
axiom [Uni13]. But already in observational type theory [AMS07], this correspondence is taken to
be the definition of equality on product types.

155

Chapter 5. Inductive-Coinductive Reasoning

Contributions

It should be clear by now that there is plenty of work closely related to both the bisimulation proof
method and FOL▶ . So a clarification of the contributions made in this chapter is in order.

Since observational equivalence for the inductive-coinductive calculus λµν= has not been studied
before, also the characterisation in terms of bisimulations is new. The real novelty is though the use
of an up-to technique that enables the use of induction in a bisimulation proof. To my knowledge,
such an up-to technique has not been studied before. Another contribution is the more organised
approach that was taken here to characterise observational equivalence by choosing a transition
system that encodes the relevant observations, from which observational equivalence is obtained
as the canonical notion of bisimulation. This facilitates the reuse of existing work on, for example,
up-to techniques.

The logic FOL▶ is, as far as I know, the first logic for mixed inductive-coinductive programs that
supports proof discovery, without requiring the user to find an induction or coinduction hypothesis
upfront. Moreover, due to the local proof correctness condition, the proof rules and the soundness
proof are fairly easy to understand. This is in contrast to cyclic proof systems, which have global
correctness criteria.

Finally, the approach to automatically prove program equivalences by constructing a bisimulation
up-to is a novel instance of a similar technique that has been studied for finite automata and finite
transition systems [Bon+13; BP13; CH89]. In the setting of inductive-coinductive programs, these
techniques were not used before to devise algorithms for equivalence checking.

Future Work

There are plenty of open questions concerning the material of this chapter. I will list a few that
strike me as important, but surely the attentive reader will find more.

First of all, there is some general improvement that can be made on the different notions of
bisimulation for (higher-order) languages by Sumii and Pierce [SP07] and Sangiorgi et al. [SKS11].
Recall that we have worked with bisimulations indexed by types in Section 5.1.2, which allowed us
to define observational bisimulations very smoothly by appealing to standard coalgebraic machinery.
This definition also enabled us to reuse existing work on up-to techniques to improve the bisimulation
proof method. Up-to techniques are also used in [SKS11], but the notion of compatibility has not been
used there yet, and all the soundness proofs for these up-to techniques are quite ad-hoc. Concerning
[SP07], the situation is even worse, since a bisimulation there is not just a relation between terms but
between terms, type contexts and assignments of types to type variables. This leads to the problem
that bisimulations in [SP07] are not even closed under unions, which prevents the construction of a
largest bisimulation. In both cases, one can work instead with binary relations between terms that
are indexed by environments. Such environments are assignments of terms to variables in the case
of [SKS11] and assignments of types to type variables for [SP07]. By using indexed binary relations,
it becomes then possible to use standard coalgebraic methods like compatible up-to techniques for
these notions of bisimulation, just like we did in Section 5.1.

An obvious deficit of FOL▶ , which we discussed in Example 5.2.32, is its incompleteness in mixed
inductive-coinductive cases. The problem here is that the later modality allows us to derive an
induction principle for inductive types only because observational equivalence on such a type can
equivalently be characterised inductively. This claim is supported by the exhaustive set of the tests

156

5.4. Discussion

on natural numbers that we gave in Example 4.1.20. So to prove the property in Example 5.2.32, we
either need to add an explicit induction principle to the logic or we need to devise another way of
using the later modality to obtain a true induction principle. Adding an explicit induction principle
is possible and should be sound, since we can obtain an up-to technique that models induction for
(separable) types, just as we did in Section 5.1.3 for the substream example. However, adding an
induction principle is also unsatisfactory because this breaks proof discovery, a proof method that
we embraced when constructing FOL▶ . So it would be better, if we could obtain instead the missing
induction principle by revisiting the way we use the later modality. A possibility might be to have
several later modalities, as proposed by Atkey and McBride [AM13], so as to control the use of the
(Löb)-rule in different parts of a proof.

Overcoming the lack of a proper induction principle leads also to the question of whether the
techniques we developed to prove soundness apply to more general predicates and relations. It
should certainly be possible to construe logics for general coinductive predicates like we did here for
observational equivalence. If the sets over which such predicates are constructed have some inductive
flavour, then this will be reflected in the logic, as we have seen for observational equivalence on
inductive types. What about inductive or even mixed inductive-coinductive predicates though? The
problem here is of course that these are not constructed as ωop-chains but as ω-chains, thus as
increasing rather than decreasing chains. However, both forms of chains are given by induction on
natural numbers. Therefore, the fact that the provability logic characterises well-founded induction,
see the discussion above, should enable us to construct a logic, possibly with several later modalities,
that also accounts for inductively defined predicates.

Another direction for extending FOL▶ is to allow more general (coinductive) predicates that
cannot be constructed as ωop-chain, but which require transfinite induction instead, cf. the proof
of Lemma 5.2.20. Also here, the remark that provability logic characterises well-founded frames
applies. Thus, it should not even be necessary to change the logic but just the interpretation, in the
sense that a model has general ordinals as index rather than just natural numbers.

Finally, it would be interesting to see how far the language fragment of λµν= of Section 5.3.2 can
be extended so that observational equivalence is still decidable on that fragment. A possible source
of inspiration can be here the work on higher order model checking by Kobayashi and Igarashi
[KI13], Ong [Ong15], and others.

Notes
30 One can see the reduction steps, which can occur in between observations in the above transition

system, as internal computations. By this we mean computation steps that are not labelled and
therefore not visible from outside the system. Thus, the above definition of from and

is the so-called saturation of a transition system that has two types of transitions: the labelled
transitions given by , and unlabelled transitions given by reduction steps through −→. Under
this reinterpretation of the transition system given by , the notion of bisimilarity, which we will
study in Section 5.1.2, is actually weak bisimilarity in this alternative transition system, cf. [San11,
Sec. 4.2].

31 One may object to this way of casting the transition system into the coalgebra δ for two
reasons. First, it seems to obscure that fact that δ comes from a labelled transition system. However,

157

Chapter 5. Inductive-Coinductive Reasoning

just having one set of labels is problematic, because the labels that the transition system may take
dependent on the type of the terms from which a transition originates. Second, the (−) + 1 part of
the functor F might be seen as superfluous, as in the case that a term has no WHNF one may also
choose the empty set for the outgoing transitions. The problem with this approach is that in the
case of sum types we cannot choose whether to use the empty set in P(Λ=(A1)) or P(Λ=(A2)).

32 We already mentioned that Theorem 5.1.9 is often referred to as expressiveness of the testing logic for
bisimilarity. Klin [Kli07] proves a general result that allows one to derive expressiveness of a logic
for bisimilarity from some conditions on the transition system and logic at hand. More specifically,
one has to establish that the logic and the transition system interact through a so-called distributive
law. There is a way, albeit rather complex, to describe the testing logic in the appropriate form and
give the necessary distributive law. However, this distributive law violates the injectivity condition
that is required in [Kli07].

Another approach to obtain adequacy results is the bialgebra framework of Turi and Plotkin
[TP97]. Unfortunately, also their results do not apply here, see Note 33 for a discussion.

33 The reader might be wondering why we need a complicated up-to technique that essentially acts
like a contextual closure, namely by extending a relation R for each pair (s, t) ∈ RFµ→A and each
u ∈ ONFµ by (s u, t u). We remarked earlier that without further conditions on R, such a closure is
not sound for observational bisimulation proofs. This can be seen as follows.

Suppose there is a general, Φ-compatible contextual closure Cctx : RelΛ= → RelΛ= . Now for any
two types A,B ∈ Ty and terms s, t : A → B, we can form the relation RA→B = {(s, t)}. The
contextual closure gives us for all u ∈ ONA that the pair (s u, t u) is related by Cctx(R)B . We then
also have that (s u, t u) ∈ Cobs(Cctx(R))B . Since Cobs is ≡-closed, we obtain from Lemma 5.1.8 that
(s, t) ∈ Φ(Cobs(Cctx(R)))B . By Φ-compatibility of Cctx, we find that R is an observational bisimulation
up to Cobs ◦ Cctx, hence s ≡obs t . Because s and t are arbitrary terms and since by Proposition 4.1.28
there are terms that are not observationally equivalent, it cannot be the case that Cctx is a compatible
up-to technique.

It now follows that there can be no bialgebraic description, in the style of Turi and Plotkin [TP97],
of the transition system in Section 5.1.1: Suppose we had such a description. It would then follow that
there is a compatible contextual closure, see [Bon+14, Cor. 3]. Therefore, such a description cannot
exist by the above argument. Analysing the above argument further, we see that the deeper reason is
that the term language of λµν= contains the observations of the transition system as operations. It is
known [Kli11] that specifications that allow observations on the underlying transition system need
to be given through so-called coGSOS specifications (the dual of Generalised Operational Semantics).
As the language λµν= also allows complex terms as output, we need to combine coGSOS with GSOS
specifications, see [Kli11]. Thus, to express the transition system in Section 5.1.1 as bialgebra, we
would need a format for operational semantics that accommodates both GSOS and coGSOS. However,
this combination fails in general, as shown by Klin [Kli11] and Klin and Nachyla [KN14]. Also the
tyft/tyxt formats [GV92; Sta08] for operational semantics do not help in this case, as reduction steps
in the transition system involve complex terms as source. So to summarise, it is not clear whether
there is a way to express the transition system from Section 5.1.1 by using bialgebras, in such a way
that some results, like congruence, can be derived from more general results, cf. Note 32.

34 It might help the reader to compare Lemma 5.1.18 to the following mutual induction principle for

158

5.4. Discussion

predicates on natural numbers. Suppose that ϕ(n,m) is a first order formula over pairs of natural
numbers. If the following three conditions, corresponding to those in Lemma 5.1.18, are fulfilled,
then ϕ(n,m) holds for all natural numbers n,m ∈ N:

i) ϕ(0, 0) holds;

ii) If m ∈ N and ∀n.ϕ(n,m) holds, then ϕ(0,m + 1) holds; and

iii) If n,m ∈ N and ϕ(n,m) holds, then ϕ(n + 1,m) holds.

One then shows that ϕ(n,m) holds for all m,n ∈ N through proving by induction on m that
the formula ψ (m) with ψ (m) B ∀n.ϕ(n,m) holds. This corresponds to the outer induction that we
employed in the proof of Lemma 5.1.18. Both, ψ (0) and ψ (m+1) are then again proved by induction
on n, where one uses the corresponding conditions on ϕ.

35 A reader who is familiar with modal logic, and with provability logic in particular, will have noticed
that both the necessitation rule (Nec) and the implication introduction rule (→-I) are part of FOL▶ .
Hence, we can derive ⊢ ϕ → ▶ϕ for any formula ϕ. In the usual provability logic [Sol76], this
implication would not be valid, only the sequent ϕ ⊢ ▶ϕ is valid there. The reason is that the
sequent is external in the provability interpretation, that is, we can prove that if ϕ is a theorem, then
there is a proof of ϕ in the logic under consideration. In contrast, the implication means that inside
the considered system we can show that if ϕ holds, then ϕ is provable. Clearly, this does not hold
in a consistent logic, see [Smo85, Rem. 14, p. 66] for a discussion. The reason why we can allow the
implication here is because we choose a specific model, see Section 5.2.2, which is different from
the provability interpretation and which fulfils this implication.

36 Negation and Inequality One might be tempted to introduce falsity, similarly to how we introduced
⊤ in Lemma 5.2.7, by defining ⊥′ B 0 ∼ 1. However, we cannot derive the elimination scheme
⊥′→ ϕ for an arbitrary formula ϕ. This can be seen as follows. Let us use the usual definitions of
negation ¬ϕ B ϕ → ⊥ and inequality s ≁ t B ¬(s ∼ t). Then, in fact, one of the axioms of Peano
arithmetic is 0 ≁ 1, which reads as ⊥′ → ⊥ for the above definition of ⊥′. This axiom, in turn, is
independent of the other axioms in Peano arithmetic. Since the present system does not connect
⊥ and ∼ other than through (⊥-E), it is likely that ⊥′ → ⊥ cannot be derived, just as it cannot be
derived in Peano arithmetic.

We might expect at least though that the above definition of ⊥′ allows us to derive for s : A and
t : B the implication κ1 s ∼A+B κ2 t → ⊥′. This, however, is again not possible because s and t are
fixed, thus we cannot infer from κ1 s ∼ κ2 t any information about 0 ∼ 1. As the same problem
is shared by ⊥ in FOL▶ , we could remedy this problem by adding a new rule that generalises the
axiom 0 ≁ 1 of Peano arithmetic:

Γ ⊢Ty s : A Γ ⊢Ty t : B
Γ | ∆ ⊢ κ1 s ≁ κ2 t

This rule allows us to directly derive both ⊥′→ ⊥ and κ1 s ∼ κ2 t → ⊥′.
The addition of this rule would be fine in a classical logic, since there we would be able to derive
¬(s ≁ t)→ s ∼ t by appealing to the law of excluded middle. If, however, we want to have a robust
set of axiom and thus stick to the intuitionistic axioms we used to so far, then we need to have

159

Chapter 5. Inductive-Coinductive Reasoning

a different way of dealing with inequality. The common way to do so is to introduce a so-called
apartness relation into the logic, see [TvD88]. In the setting of FOL▶ , we would introduce for any
two terms s, t a formula s # t , which should be read as “s and t are apart”. As an intuition, one can
think of s # t as stating that there is a test that distinguishes s and t . The axiom that makes the
apartness relation work, is then ¬(s # t) ↔ s ∼ t . We will comment on the possible semantics of
the apartness relation and the validity of the axiom in Note 38.

37 It is important to note that both the rules (�-Repl) in Figure 5.3 and (Conv) in Lemma 5.2.9
only work for definitionally equal and convertible terms, respectively, and not for observationally
equivalent terms. The reason is that, if we were be able to derive the more general replacement rule

Γ | ∆[s/x] ⊢ ϕ[s/x] Γ | ∆ ⊢ s ∼ t
Γ | ∆[t/x] ⊢ ϕ[t/x]

then the proof system would be inconsistent. This can be seen as follows.

First, we can derive from the hypothetical replacement rule that ∼ is a congruence on function
terms, that is, for all terms u,v : A and f : A→ B, u ∼A v implies f u ∼B f v . Suppose now that
we are given s, t : Aω . By using f = λx .(x .tl) we can, in combination with (K), derive in FOL▶ that
▶(s ∼ t) implies ▶(s .tl ∼ t .tl). We can combine this with (5.14) and (ν-Ext), see also Example 5.2.12
below, to prove that ▶(s ∼ t) implies s ∼ t . So, finally, we can apply (Löb) to obtain s ∼ t . Since
s and t are arbitrary streams, we obtain from the (hypothetical) replacement rule that the proof
system would become inconsistent relative to the desirable property that 0 ≁ 1. This property holds
in the model that we give in Section 5.2.2, thus a general replacement rule would be unsound for
this model.

38 Recall from Note 36 that we discussed a possible replacement for inequalities s ≁ t , namely an
apartness relation s # t . This relation ought to fulfil the axiom ¬(s # t) ↔ s ∼ t . We also hinted
in Note 36 at a possible interpretation: s and t are considered to be apart if there is a test that
distinguishes them. Given the development in this section, we can define

n ⊨ s #A t B (s, t) <
←−−
Φc (n).

One then has to prove for n ∈ N that (s, t) ∈ ←−−Φc (n) is the same as saying that s and t cannot be
distinguished by any test that makes at most n observations on fixed point types, cf. Theorem 5.1.9,
Lemma 5.2.18 and Definition 5.2.19. For example, the tests ϕk :↓ Nat, which we devised in Ex-
ample 4.1.20, makes at most k observations on fixed point types. Let us write ℓ(ϕ) ≤ n, if ϕ makes
at most n observations on fixed point types. This characterisation of (s, t) ∈ ←−−Φc (m) allows us to
equivalently give semantics to s # t by

n ⊨ s #A t = ∃ϕ ∈ TestsA. ℓ(ϕ) ≤ n ∧ ¬(s ⊨ ϕ ⇐⇒ t ⊨ ϕ).

160

5.4. Discussion

Since s ⊨ ϕ is decidable for any term and test, we can now derive

n ⊨ ¬(s #A t) = ¬(∃ϕ ∈ TestsA. ℓ(ϕ) ≤ n ∧ ¬(s ⊨ ϕ ⇐⇒ t ⊨ ϕ)) (∗)
= ∀ϕ ∈ TestsA.¬(ℓ(ϕ) ≤ n) ∧ (¬(¬(s ⊨ ϕ ⇐⇒ t ⊨ ϕ)))

= ∀ϕ ∈ TestsA. ℓ(ϕ) > n ∧ (s ⊨ ϕ ⇐⇒ t ⊨ ϕ) (∗∗)

= ∀m > n. (s, t) ∈ ←−−Φc (m) (∗)

= (s, t) ∈ ←−−Φc (n) (∗ ∗ ∗)
= n ⊨ s ∼ t ,

where the identities (∗) hold by the above discussion, (∗∗) holds because s ⊨ ϕ ⇐⇒ t ⊨ ϕ is decidable,
and (∗ ∗ ∗) is obtained from the fact that ←−−Φc is an ωop-chain (i.e., n < m implies ←−−Φc (m) ⊑ ←−−Φc (n)).
This proves that the desired axiom ¬(s # t)↔ s ∼ t indeed holds.

39 The class of type for which the induction and coinduction principles can be derived has actually to
be restricted to non-mutual fixed point types. The reason for this is that FOL▶ does not have fixed
point formulas, which would be necessary to formulate the induction and coinduction hypotheses
for mutual types.

40 In general, we have to deal with more complicated copatterns, but we shall ignore this technicality
for the present discussion.

161

CHAPTER 6

Categorical Logic Based on
Inductive-Coinductive Types

The greatest art in theoretical and practical life consists in changing the problem into a postulate; that way
one succeeds.

— J. W. von Goethe in a letter to C. F. Zelter.41

In the previous chapters we have studied mixed inductive-coinductive programs and some reas-
oning principles for those programs. A prototypical example is the stream filtering program from
Example 3.2.11. What is more, we have also used this program in Example 5.1.13 to define the
substream relation, which is a mixed inductive-coinductive relation, as we have have seen in Sec-
tion 5.1.3. Thus, we need a language for expressing more general inductive-coinductive predicates
and relations, and reason with them.

One could extend the logic FOL▶ with fixed point operators that would allow us to express
inductive-coinductive predicates, cf. Note 39. This is a route that has been taken by Aho and Ullman
[AU79] and Gurevich and Shelah [GS86] with the goal that inductive predicates, like the transitive
closure of a relation, can be expressed in an extended first-order logic without having to invoke
full second-order logic. The problem with this approach is that we would have to repeat the type
structure of the languages λµν and λµν= in the formulas and the proofs. That is to say, we will
have on the one hand a calculus with fixed point types and the corresponding term formation rules,
and on the other hand a logic with fixed point formulas, which come again with a set of proof rules.
Since both, term formation and proof rules, would look essentially the same, we would repeat all
the work that we did for the calculus λµν again for the logic over that calculus. Thus, it would save
us a lot of work, if we can unify programming and reasoning into one system, as we then only need
to give one set of rules that subsume term formation and proof rules. This is where dependent type
theory enters the picture.

In a dependent type theory, one allows terms to occur inside types. Thus, it would be more
precise to say that a dependent type theory is a theory of types that can depend on terms. But what
does this actually mean and how can such a theory be useful? We will answer these questions in
the introductory Section 6.1, and thereby lay the foundation for the remainder of this thesis. Before
that, let us see how the actual content of this chapter is structured though.

Structure of the Chapter
As we mentioned above, the aim of this and the following chapter is to develop a theory of dependent
inductive-coinductive types. It turns out that inductive and coinductive types are enough to account
for propositional and first-order connectives, hence the title “Categorical Logic Based on Inductive-
Coinductive Types”. In this chapter, we first develop dependent inductive-coinductive types in the
context of category theory. This allows us to hide many difficulties arising from a syntactic approach,
which we still have to face in Chapter 7, such as the need for variable renaming or reduction relations.

163

Chapter 6. Categorical Logic Based on Inductive-Coinductive Types

The basic idea to describe dependent inductive-coinductive types is to extend the approach of
Hagino [Hag87] from simple to dependent types. Hagino gave in his seminal paper a calculus of,
what he called, categorical data types. These types correspond to initial and final dialgebras for
functors that determine the type of the constructors and destructors, respectively, of data types.
More specifically, an inductive type with n constructors is category theoretically given in [Hag87] as
an initial (F ,∆)-dialgebra, where F ,∆: C→ ∏n

i=1 C are functors, of which ∆ is the diagonal and
F determines the domain of each constructor. This setup allows Hagino to represent coproduct and
product as inductive and coinductive types, respectively. For example, he uses that the coproduct
is left-adjoint to the diagonal functor, so that for the choice F : C→ C × C with F (X) = (A,B), we
have that A+ B ∈ C is an initial (F ,∆)-dialgebra. Since dependent types can be seen as objects in
fibres of a fibration, we just replace the category C with the fibres of a given fibration P : E → B.
For example, inductive types that are indexed by I ∈ B arise then as initial (F ,Gu)-dialgebras for
functors F ,Gu : PI → PJ1 × · · · × PJn , where Gu generalises the diagonal functor to reindexing as
follows. If u = (u1, . . . ,un) are morphisms u : Jk → I in B, then Gu is given by reindexing along all
these morphisms: Gu = ⟨u∗1, . . . ,u∗n⟩. How this allows us to describe dependent types and thereby
generalises Hagino’s idea is the subject of the first Section 6.2. The outcome of this endeavour is the
notion of dependent recursive type closed categories (µPCC), which allow the interpretation of (strictly
positive) dependent inductive-coinductive types.

Throughout the remainder of the chapter we study µPCCs further. In Section 6.3, we show how
to construct types in locally Cartesian closed categories from only initial algebras of polynomial
functors. We obtain thereby a class of models for dependent recursive type closed categories. This
result extends the work of Abbott [Abb03], Abbott et al. [AAG05] and Gambino and Kock [GK13]
to the fairly general dependent types that are the subject of the present chapter.

With a dependent type theory comes naturally a first-order logic, as we will see in Section 6.1.
Thus, we go ahead in Section 6.4 and analyse this logic further. We do so by constructing a fibration
of predicates over types of a µPCC. In this fibration, we show that the validity of the induction
principle for inductive types is equivalent to having strong coproducts. This result is not surprising,
given the development in [FGJ11; HJ97], but it puts the strong elimination for sum types in a broader
perspective, as its validity has been discussed in the past.42 Similarly, we show that coinductive types
always come with a bisimulation proof principle in µPCCs, which is again not very surprising as
these types come about as final dialgebras. These two results give us the basic principles to reason
about inductive-coinductive types in the logic that arises from data type closed categories.

To interpret sum and product types over a fibration, one has to require the so-called Beck-
Chevalley condition to hold, see Definition 2.4.4. This condition allows us to move reindexing
functors over products and coproducts, which ensures that, respectively, all products and coproducts
are essentially the same throughout the fibres. As such, this condition corresponds to the expected
definition of substitution on sum types: (Σx : A[y]. B[x ,y])[t/y] = Σx : A[t]. B[x , t], where x and y
are distinct variables. We generalise in Section 6.5 the Beck-Chevalley condition to the inductive-
coinductive types that we introduce in Section 6.2. Moreover, we show that our Beck-Chevalley
condition is equivalent to the usual one for products and coproducts, and that binary products,
binary coproducts and final objects are fibred if we construct these as data types that satisfy the
Beck-Chevalley condition.

164

6.1. Hitchhiker’s Guide to Dependent Type Theory

Original Publication The sections 6.2 and 6.3 are based on [Bas15a], but have been expanded
in explanation and detail. Another difference is that the terminology has been changed slightly to
something more accurate: Data type complete categories are now called dependent recursive type
complete categories, µP-complete categories for short, and data type closed categories are accordingly
now called dependent recursive type closed categories (µPCC instead of DTCC). Both sections 6.4
and 6.5 stem from unpublished notes.

6.1. Hitchhiker’s Guide to Dependent Type Theory
I will try to give here a short overview over what dependent type theory is, the various perspectives
on dependent types in programming, logic and category theory, and the origins of dependent types.
If the reader is familiar with all of this, then she might wish to skip ahead to Section 6.2.

Dependent Types in Programming
Our first stop is the use of dependent types in programming. As an example, suppose we want to
write a program involving lists. Upon implementing the function head : A∗ → A, which shall return
the first element of the input list, we find that this function is undefined on the empty list. We
can solve this by aborting the program, if “head” gets applied to the empty list. But this leaves us
with potential run-time errors, if we are not careful in using head. Another example that we might
encounter is the function zipWith : (A→ B → C)→ A∗ → B∗ → C∗, which is intended to combine
two lists entry-wise with a given function. The problem here is that if the input lists do not have
the same length, then the output can only be as long as the shorter of the two input list. Such
behaviour can easily lead to bugs in programs, since in this form zipWith silently discards parts of
the input. A possible way to prevent both faulty and unexpected behaviour is the use of dependent
types, as we will explain in what follows.

Before getting into dependent types, let us briefly digress to discuss another way to deal with the
above problems. In functional programming, one often alters the return type of head and zipWith,
as to allow the function caller to handle possible errors. For example, one can give head the type
A∗ → A+ 1 and return κ2 ⟨ ⟩ in case the input list is empty. For zipWith we face a choice however:
Do we use C∗ + 1 as return type to allow signalling an error, or do we use C∗ × (1 + A∗ + B∗) to
give the user the opportunity to handle the remainder of the longer list, if the inputs do not have
the same length? Since possible errors have to be handled explicitly, altering the return type clearly
leads to more complex code, which one might want to avoid. This is what we can achieve by using
dependent types.

So how can dependent types be helpful to prevent software bugs? A common slogan in typed
programming is that programs that type check “can never go wrong”. The actual content of this
statement depends, however, on the expressiveness of the type system at hand. For instance, the
type system of the programming language C can be utilised to make some guarantees, but of course
a lot of things still go wrong because they are not captured by the type system: wrong indexing
into an array, memory leaks, etc. In a dependent type theory, terms may appear in types, thus we
are able to use arbitrary run-time information during type checking. This is what makes dependent
types such a powerful tool to specify aspects of run-time behaviour through types and capture errors
during type checking.

165

Chapter 6. Categorical Logic Based on Inductive-Coinductive Types

Let us employ dependent types to capture the possible errors that might occur from the use of the
list functions, which we described above. Suppose that for n : Nat there is a type “ListA n” of lists
that have exactly length n, also known as vectors of length n. Then the situation regarding the use
of head and zipWith can be improved by implementing for all values n : Nat, functions headn and
zipWithn of type ListA (n + 1)→ A and (A→ B → C)→ ListA n → ListB n → ListC n, respectively.
These types say that headn can only be applied to non-empty lists, and zipWith expects lists of the
same length as input and also returns a list of that length. This reading allows us to implement
headn so that it is well-defined for every input, and zipWithn so that it does not discard any input.

Of course, we do not want to implement for each n : Nat the functions head and zipWith separately,
but rather have in each case one function for all n : Nat. This can be achieved by using dependent
products as follows. Consider for a set I and a family X of sets {Xi }i ∈I the usual set-theoretic
product of X given by ∏

i ∈I
Xi =

{
f : I →

∪
i ∈I

Xi

��� ∀i ∈ I . f (i) ∈ Xi }.
To obtain the dependent product of a type, we mimic this definition by a type as follows. Suppose
that A is a type, and that the variable x occurs freely in the type B[x] and ranges over A. We denote
this situation for the moment by x : A ⊢ B[x] : Type. The intuition for the dependent product,
written as Πx : A. B[x], is thus that it consists of functions f , such that for all t : A we have f t : B[t],
where B[t] is the type B[x] in which t is substituted for x , cf. Definition 5.2.2. This dependent product
type allows us to assign general types to head and zipWith:

head : Πn : Nat. ListA (n + 1)→ A

zipWith : (A→ B → C)→ (Πn : Nat. ListA n → ListB n → ListC n).

For example, we can apply head to 2 : Nat to obtain the function head 2 : ListA 3 → A, which we
called head2 above.43

It is interesting to note that if B[x] does not use the variable x , then this type family is constant.
Hence for f : Πx : A. B[x], we have that f t : B for all t : A, which is to say that f is a function
of type A→ B. More generally, we can define for types A and B, where x does not occur in B, the
function type A→ B to be given by Πx : A. B.44

Continuing our programming journey, we may find that we have to maintain invariants in the
program and ensure through appropriate interfaces that these invariants are never violated. The
following example from [Jac99] illustrates how dependent types allow us to utilise the type checker
to enforce such invariants. Suppose our program may involve date calculations, so we want to
represent dates as a type. The typical approach would be to use triples of type Nat × Nat × Nat, in
which the components are year, month and day. The problem with this representation is that there
are invalid combinations, since a year has only twelve months and also the day of a month is limited.
Even worse, the number of days depend on the month and the year. A way to enforce the invariant
that all date triples are valid can be achieved, for example, with interfaces in object oriented languages
or with polymorphism in functional languages [Pie02]. In both cases, we as programmers must still
be disciplined enough to ensure that the invariant is never violated inside the implementation of
the interface for the date type. Therefore, it would be better if the programming language provided
a mechanism to enforce the correctness invariant on the type itself. What we actually would like to
have in the above example is that for n : Nat there is a type Pos n of positive numbers bounded by

166

6.1. Hitchhiker’s Guide to Dependent Type Theory

n. Then the correct type for months would be Pos 12. However, what do we do with the day? The
answer to this lies in using types that mimic coproducts of set families. Recall that the coproduct
of an I -indexed family X is given by⨿

i ∈I
Xi = {⟨i,x⟩ | i ∈ I ,x ∈ Xi }.

The types that correspond to the coproduct in dependent type theory are the dependent sum types.
These are denoted for a type B[x] with x : A ⊢ B[x] : Type by Σx : A. B[x]. Elements of a sum type
are dependent pairs, that is, given s : A and t : B[s], there is an element ⟨s, t⟩ of type Σx : A. B[x].
In the case of dates, the type we are after is given by

Σy : Nat.Σm : Pos 12. Pos (days ym),

where “days y m” computes the numbers of days in the month m of the year y. As required, any
element of this type is now a valid date, and the promise that computations on dates only return
valid dates can be validated through type checking.

There are many more examples that underpin the usefulness of dependent types to ensure more
complex correctness properties of programs. As such, dependent types appear in an increasing
number of programming languages: Extensions of Haskell allow the simulation of some aspects of
dependent types; Agda [Agd15] was designed in the first place as a total programming language;
and Idris [Idr17] combines, just like Epigram [AMM05], partial programs with dependent types.
Lastly, dependent types also allow the verification of correctness properties of hardware specific-
ations [BMH07; HDL90; PS15]. So we may say that dependent types have proven to be a useful
programming tool.

However, as we all know, there is no such thing as a free lunch. In the case of dependent type
theories, the express power comes at the cost that type checking becomes more difficult because we
may have to evaluate some computations in the process. For instance, we claimed above that head 2
is of type ListA 3 → A, whereas, strictly speaking it is of type ListA (2 + 1) → A. Thus, we first
need to compute 2 + 1 to be able to apply head 2 to a list of type ListA 3. We will see in Chapter 7
how this works in a concrete type theory. Other problem that come with moving to dependent
type theories is that deciding whether a type is inhabited is in general undecidable. This is not so
surprising though, as dependent type theories correspond to first-order logic, as we will see.

We this, it is now time to move on to the second use of dependent types, and their actual origin
as a correspondence with first-order logic.

Dependent Types in Intuitionistic Logic
Logical reasoning and the axiomatic method had been known already by the ancient Greek, but it
was only by the turn of the 20th century that logic became an independent branch of mathematics.
This was caused by the need for a rigorous foundation of mathematics to avoid the contradictions in
arguments and paradoxes that were discovered around that time. The development of mathematical
logic led to several logical systems but also to the philosophical question of what we accept as
reasoning principles. Most famously, we distinguish today between classical and constructive logic,
where the latter requires proofs to have a certain constructive content. For example, constructivists
therefore reject the principle of excluded middle and the axiom of choice. Requiring proofs to be
given by explicit constructions was an idea that already lurked around in algebra and analysis by

167

Chapter 6. Categorical Logic Based on Inductive-Coinductive Types

the end of the 19th century45, but it was only in the work of Brouwer and his successors that this
idea was put into shape [Tro11].

These days, we associate with constructive logic the so-called Brouwer-Heyting-Kolmogorov in-
terpretation (BHK-interpretation), which encapsulates the idea that a proof is given by an explicit
construction. For instance, a proof of the formula ∀x : A. ∃y : B.ϕ(x ,y) is a procedure that for
any a in A constructs an element b in B, such that ϕ(a,b) holds, cf. [TvD88, Sec. 1.3]. With the
advent of the study of recursion and computable arithmetic, this interpretation of proofs was pushed
even further to require that proofs are machine computable constructions. One of the most famous
instances of the use of recursion is the encoding used by Gödel in his incompleteness proof, but
also realisability of proofs and Markov’s principle arose from there, see [TvD88, Chap. 4]. This idea,
the computability of proofs, is today the main driving force behind the type theoretic approach to
the BHK-interpretation of intuitionistic logic.

Types made their first appearance in Russel and Whitehead’s Principia Mathematica, but were
not studied there in their own right. It was only Church [Chu40] who used types to represent
propositions so that proofs of these propositions were given by λ-terms [Chu32]. Coincidentally, it
turned out that these very same λ-terms could be used to describe all computable functions [Chu36],
albeit being untyped. The simple type theory of Church made a severe restriction to the domain of
functions that could be described by typeable λ-terms. This restriction ruled out, for example, the
option of encoding all of higher-order arithmetic of System T, thus also the encoding of Gödel’s
Dialecta interpretation [Göd58; BDS13, Sec. 5.3]. Girard [Gir71; Gir72] overcame this problem by
introducing System F,46 which extends Church’s simple types with impredicative polymorphism.
Besides capturing a larger class of total higher-order functions, System F includes universal second-
order quantification. However, it is lacking first-order quantification, which is what dependent types
can achieve.

Dependent types were first conceived by de Bruijn for his Automath project, see [dBru66] for an
informal overview and [dBru68] for a fully formal description. The goal of the Automath project
was the formalisation of mathematics in a human-readable language, assisted by a computer that
checks the correctness of proofs. Later, other logicians picked up on the idea of dependent types
to account for first-order logic. The dependent type theory that is most popular today is Martin-
Löf’s type theory (MLTT), which he first developed in 1972 but never published, and then revised
in [Mar75b] to overcome an inconsistency [Gir72]. It is the work of Martin-Löf that forms the
basis of many modern proof assistants. For example, Coq [Coq12] is based on the Calculus of
(Inductive) Constructions [CH88; Pau15], and extends MLTT with, among other things, a special
type of propositions. Agda, on the other hand, is directly based on MLTT [Nor07]. There have been
plenty of other type systems that feature dependent types like Pure Type Systems [GN91; KLN04],
Nuprl [Con97], and the Extended Calculus of Constructions [Luo89], which is the type theory of
the proof assistant LEGO. A more detailed discussion can be found in the introduction of [NGdV94]
or in [NG14]. Due to its tight connection to logic and category theory, we base our understanding
of dependent types here on the work of Martin-Löf though.

After this history lesson about constructivism and dependent types, we shall now take our second
stop to see how dependent types are viewed from the perspective of logic. Recall that we devised
in Chapter 5 the logic FOL▶ that extends standard first-order intuitionistic logic. This logic came
with a proof system, in which we represented all proofs as finite trees. These trees are thereby built
up using the proof rules of the logic. The idea of Church [Chu32] was to represent such proofs as

168

6.1. Hitchhiker’s Guide to Dependent Type Theory

λ-terms. Let us illustrate this idea on the two quantifiers.
Among the formulas of FOL▶ there were universally quantified formulas. To remind ourselves of

the rules for those quantified formulas, let us reintroduce some notation. Recall that the logic FOL▶
came with a judgement Γ | ∆ ⊢ ϕ that holds if the formula ϕ uses only variables from the context Γ
and is derivable in the proof system of FOL▶ from the assumptions in ∆. We write Γ ⊢L t : A, if t
is a term from some underlying language L, like λµν , λµν= or ONΓ

A, of type A in the object context
Γ. Moreover, we write Γ ⊩ ϕ if ϕ is a formula that is type correct for the variables in context Γ,
and we denote the substitution of t for x in a formula ϕ by ϕ[t], if x is uniquely determined. The
universal quantifier was then determined by the following two rules.

Γ,x : A | ∆ ⊢ ϕ
(∀-I)

Γ | ∆ ⊢ ∀x : A.ϕ

Γ | ∆ ⊢ ∀x : A.ϕ Γ ⊢L t : A
(∀-E)

Γ | ∆ ⊢ ϕ[t]

Instead of coding proofs as trees, we can associate to each proof rule a term constructor, thereby
turning the above proof construction rules into typing rules:

Γ,x : A | ∆ ⊢ p : ϕ

Γ | ∆ ⊢ (λx .p) : (∀x : A.ϕ)

Γ | ∆ ⊢ p : (∀x : A.ϕ) Γ ⊢L t : A

Γ | ∆ ⊢ p t : ϕ[t]

These rules should be read as follows. For the first, if p is a proof of ϕ for an arbitrary x : A,
then the λ-abstraction λx .p proves ∀x : A.ϕ. The second rule, implements precisely the idea of the
BHK-interpretation that a proof p for ∀x : A.ϕ is a procedure that produces for each t a proof for
ϕ[t]. Similarly, we can turn the rules for the existential quantifier

Γ ⊢L t : A Γ | ∆ ⊢ ϕ[t]
(∃-I)

Γ | ∆ ⊢ ∃x : A.ϕ

Γ ⊩ ψ Γ,x : A | ∆,ϕ ⊢ ψ
(∃-E)

Γ | ∆,∃x : A.ϕ ⊢ ψ

into typing rules. How can this be achieved? Well, in the introduction rule we need to provide a
witness and a proof that this witness satisfies the corresponding proposition. Thus, a proof of an
existential quantifier is given by the pair of this witness and the proof:

Γ ⊢L t : A Γ | ∆ ⊢ p : ϕ[t]

Γ | ∆ ⊢ ⟨t ,p⟩ : (∃x : A.ϕ)

The second rule is a bit more delicate, since we now assign names to proofs, which would lead us
to introduce a fresh variable in the conclusion of the elimination rule. A better way is to add the
proof of the existentially quantified proposition as an extra assumption. Keeping this in mind, we
can also turn (∃-E) into a type checking rule for a proof term.

Γ ⊩ ψ Γ,x : A | ∆,α : ϕ ⊢ p : ψ Γ | ∆ ⊢ q : (∃x : A.ϕ)

Γ | ∆ ⊢ unpack q as ⟨x ,α⟩ in p : ψ

The proof term “unpack q as ⟨x ,α⟩ in p” allows us to inspect the existential proof q and use the
fact that there is a witness x : A and a proof α : ϕ. However, we do not get further information
about them, which is why both the witness and the proof are variables in p.

Let us put the proof terms for universal and existential quantifier to use and derive a small
tautology of intuitionistic logic:

∃x : A. ∀y : B.ϕ[x ,y] ⊢ ∀y : B. ∃x : A.ϕ[x ,y]. (6.1)

169

Chapter 6. Categorical Logic Based on Inductive-Coinductive Types

This requires us to find a proof term p that uses the assumption on the left, which can be accessed
through a proof variable α , with

α : (∃x : A. ∀y : B.ϕ[x ,y]) ⊢ p : (∀y : B. ∃x : A.ϕ[x ,y]).

Using λ-abstraction, we can define p B λy.q, if we have a proof q with

y : B | α : (∃x : A. ∀y : B.ϕ[x ,y]) ⊢ q : (∃x : A.ϕ[x ,y]).

Since we need an element of type A to prove q, we have to extract this element from α . This can be
done by using the elimination for the existential quantifier, hence we put q B unpack α as ⟨x , β⟩ in r
for some proof r with

y : B,x : A | β : (∀y : B.ϕ[x ,y]) ⊢ r : (∃x : A.ϕ[x ,y]).

The proof r is now a proof of an existential quantifier, thus we use the dependent pairing and the
proof β to obtain r B ⟨x , β y⟩. Putting all these steps into one proof, we thus have

α : (∃x : A. ∀y : B.ϕ[x ,y]) ⊢ λy. unpack α as ⟨x , β⟩ in ⟨x , β y⟩ : (∀y : B. ∃x : A.ϕ[x ,y]).

From the perspective of the BHK-interpretation, this proof is also an intuitive computational process
through which the global choice of x for all y in α is turned into a local choice for all y.47

It would be natural to turn the mere derivability in (6.1) into the following implication.

⊢ (∃x : A. ∀y : B.ϕ[x ,y])→ ∀y : B. ∃x : A.ϕ[x ,y] (6.2)

To do so, we need proof terms for the implication, which are basically the same as for the function
type or the universal quantifier, only that this time the “domain” of the implication ranges over proofs.
Thus, we can form λα .p : ϕ → ψ , where p is a proof for ψ that may use the assumption ϕ through
the proof variable α . The implication in (6.2) is then proved by λα . λy. unpack α as ⟨x , β⟩ in ⟨x , β y⟩.

At this point, we have introduced three different types of application and λ-abstraction, all of
them only differentiated by their types, as we can see from the following table.

Role Application Abstraction
Function Type t s : B for t : A→ B and s : A λx . t : A→ B
Implication p q : ψ for p : ϕ → ψ and q : ϕ λα .p : ϕ → ψ
Universal Quantification p t : ϕ[t] for p : (∀x : A.ϕ) and t : A λx .p : ∀x : A.ϕ

That there are so many different flavours of abstraction and application is owed to the fact that
Church’s proof system in [Chu32] has a strict separation between objects and proofs, just like our
logic FOL▶ . However, if we push further the idea of expressing proofs as elements of types that
represent propositions, then we arrive at the propositions-as-types interpretation.48 The idea of this
interpretation is that we can associate to each proposition of an intuitionistic logic (propositional,
first-order, etc.) an appropriate type and to each proof a term. In the present context, we associate
to first-order formulas types of a dependent type theory. More specifically, universal quantifiers
correspond to the dependent product types (Π-types) and existential quantifiers to dependent sums
(Σ-types) that we already used above. This allows us to subsume all the different rules for applications
and abstractions by two rules, as we shall explain now.

170

6.1. Hitchhiker’s Guide to Dependent Type Theory

Recall that we introduced earlier the dependent product typeΠx : A. B[x] to mimic the set-theoretic
product of set-families and that both come with a notion of function application. Now suppose that
for a family {Xi }i ∈I we have made a choice of elements ui ∈ Xi for each i ∈ I . Then we can construct
a function f ∈ ∏

i ∈X Xi with f (i) ∈ Xi by putting f (i) = ui . This function formation, together
with function application, defines the family product. Therefore, we characterise dependent product
types by the following two formation rules.

Γ,x : A ⊢ t : B[x]
Γ ⊢ (λx . t) : (Πx : A. B[x])

Γ ⊢ t : (Πx : A. B[x]) Γ ⊢ s : A
Γ ⊢ t s : B[s]

Let us compare these two rules to those for the universal quantifier above. Two things have happened
here. First, the context of assumptions ∆ has vanished from the picture. This is because we interpret
now propositions as types, thus the assumptions that used to be in ∆ appear now in the context
Γ. But this also means that the types that appear in Γ may use variables that appear before in Γ.
For instance, a possible context would be (n : Nat,v : ListA n). Second, did objects in the universal
quantifier instantiation range before over terms of an external language L, then these objects stem
now from the type theory itself. This is seen in the application rule for the dependent product type.
Thus, the dependent product type streamlines universal quantification and functions into one type.
Similarly, the dependent sum type is given by the following two rules.

Γ ⊢ s : A Γ ⊢ t : B[s]
Γ ⊢ ⟨s, t⟩ : (Σx : A. B[x])

Γ,x : A,y : B[x] ⊢ t : C Γ ⊢ s : (Σx : A. B[x])

Γ ⊢ unpack s as ⟨x ,y⟩ in t : C

These term formation rules unify products and sums with the first-order quantifiers.
Let us exemplify this unification by showing the correspondence between dependent products and

sums, and universal and existential quantifier. Suppose that we inductively translate formulas into
types and that we have already translated a formula ϕ into a type ϕ. We can extend the translation
to the quantified versions of this formula by defining

∀x : A.ϕ = Πx : A.ϕ and ∃x : A.ϕ = Σx : A.ϕ.

The logical implication is just given by the function type, which in turn is defined in terms of the
dependent product, as we have seen earlier. Coming back to our example from equation (6.1) above,
we want to show that there is a term t of type

(Σx : A.Πy : B.C[x ,y])→ Πy : B.Σx : A.C[x ,y].

The term that achieves this is literally the one we have used before, only to be interpreted now in
the type theory: λα . λy. unpack α as ⟨x , β⟩ in ⟨x , β y⟩. Thus, after the translation of formulas to
types, we can just keep the same proof terms as before.

The reader might have noticed that in our table one possibility of abstraction is missing:

Role Application Abstraction
Data Extraction t p : A for t : ϕ → A and p : ϕ λα . t : ϕ → A

That is, the extraction of data, which is contained in a proof, back into the object language. Such
an extraction is usually not part of a logic,49 but it can be derived if we approach logic through

171

Chapter 6. Categorical Logic Based on Inductive-Coinductive Types

dependent types. A typical example for the use of this extraction mechanism is the recovery of the
witness of an existential proof:

(λy. unpack y as ⟨x ,α⟩ in x) : (Σx : A. B[x])→ A

This extraction of witnesses from sum types will be discussed again in Section 6.4 and Chapter 7.
We round off the type theoretic view on logic by a more concrete example. Suppose we want to

use our highly sophisticated type theory to reason about something mundane as holidays. Suppose
we have encoded our favourite holidays as a type isHoliday[y,m,d], with

y : Nat,m : Pos 12,d : Pos (days ym) ⊢ isHoliday[y,m,d] : Type,

where “days” calculates again the days in the given month of a year. The question of how to actually
define isHoliday is left for later. From the logic point of view, isHoliday is a predicate (or relation)
on years, months and days that should hold if the given date is a holiday.50 The type theoretic
analogue is the existence of a term (a proof) of type isHoliday[y,m,d], provided the given date is
a holiday. We then say that the type isHoliday[y,m,d] is inhabited. Analogous to the set-theoretic
notion of comprehension, which allows us to form a set that contains exactly those elements for
which a predicate holds, we can form a type Holiday that is inhabited only by dates that are provably
holidays. This type is given by

Holiday B Σy : Nat,m : Pos 12,d : Pos (days ym). isHoliday[y,m,d],

where we abbreviate the nested sum types by just one Σ. As a type, Holiday resembles the set
{(y,m,d) | isHoliday[y,m,d]}, with the difference that each date in the type Holiday comes with a
proof that it actually is a holiday.

Dependent Types in Categorical Logic
It is now time to get to our final destination: the category theoretical perspective on dependent type
theory. This completes our trip through the three-fold relation between computations, logic and
category theory. The reason for discussing the category theoretical perspective is that it provides us
with an elegant framework for the model theory of types, and it will allow us to discuss concepts
of inductive-coinductive types from an abstract perspective. But more is true: Categories and type
theories complement each other. The former can serve also as deductive systems, while allowing
us to sweep many technicalities of syntactic type theories, like variable binding, under the rug.
However, it is much easier to give and check proofs in syntactic theories, because category theory
makes every application of structural rules like weakening explicit. That category theory is so
explicit leads to an enormous amount of bookkeeping, which is necessary to construct even simple
terms in the language of category theory. This is contrary to syntactic theories, where we leave
weakening steps implicit and are thereby able to manage even complex proofs. We will not delve
deeply in how the relation between category and type theory developed, but rather refer to the
wonderful introduction by Lambek and Scott [LS88].

It is a well-known fact that the simply typed λ-calculus with finite product types, finite sum types
and function types corresponds to Cartesian closed categories with finite coproducts, if we impose
enough equations on the terms of the calculus, cf. Section 4.2. In fact, the simply typed λ-calculus

172

6.1. Hitchhiker’s Guide to Dependent Type Theory

gives rise to an initial object in the category of Cartesian closed categories, as shown in [LS88, Chap.
I.11]. So what is then the category theoretical counterpart to dependent type theory?

When we introduced the dependent product and sum types, we got our intuition for their defining
properties from set-families. In the preliminaries (Section 2.4) it is shown how set-families can be
organised into a fibration by letting Fam(Set) be the category of families and P : Fam(Set)→ Set be
the functor that maps a family {Xi }i ∈I to the index set I . This fibration is the prototypical example
for a model of dependent type theory. But what are the integral features that a fibration must have
to interpret such a theory? The answer to this question is best found by organising a dependent
type theory itself into a fibration.

So we wish construct a fibration T : T → C from a given dependent type theory, the classifying
fibration of that theory. The base category C of that fibration has contexts as objects and substitutions
as morphisms. By a substitution σ : Γ1 → Γ2 we mean here an n-tuple (t1, . . . , tn) of terms, where
Γ2 = x1 : A1, . . . ,xn : An and Γ1 ⊢ ti : Ai [t1/x1, . . . , ti−1/xi−1]. Such substitutions can be composed
and there is an identity substitution, both of which are given by extending the corresponding notions
from classifying categories in Section 4.2.1. The total category T of the fibration consists of types
and terms in contexts. More precisely, the objects of T are judgements Γ ⊢ A : Type and the
morphisms Γ1 ⊢ A : Type→ Γ2 ⊢ B : Type are pairs (σ , t), where σ is a substitution Γ1 → Γ2 and
t is a term with Γ1,x : A ⊢ t : B[σ]. The fibration is then given by the obvious projection functor
T : T → C with P(Γ ⊢ A : Type) = Γ. Note that a fibre TΓ of T over a context Γ consists of
types in that context and the morphisms are pairs (idΓ, t), where idΓ is the identity substitution and
Γ,x : A ⊢ t : B. Using this fact, we can easily describe the Cartesian lifting of a substitution. Since
the fibration P will be cloven (and even split), it suffices to define for a substitution σ : Γ1 → Γ2

the reindexing functor σ ∗ : TΓ2
→ TΓ1

. As one might expect, this functor is given by applying the
substitution: σ ∗(Γ2 ⊢ A : Type) = Γ2 ⊢ A[σ] : Type and σ ∗(idΓ2

, t) = (idΓ1
, t [σ]). One can easily

check that T is a fibration with these definitions, provided that the dependent type theory satisfies
some conditions like a substitution lemma, cf. Section 4.2.1.

Let us now connect dependent types to set-families. The idea is essentially that a dependent type
can be seen as a family of types that is indexed by other types. More precisely, a context Γ ∈ C
corresponds to an index set I ∈ Set and a type A in that context to a set family X indexed by I .
The exact interpretation of contexts as index sets and types as set families depends of course on the
concrete theory at hand. But as an illustration, let A be a type in an empty context and B be a type
with x : A ⊢ B : Type. Then the context x : A is an element of C and the type B is in Tx :A. Now
suppose that we (inductively) interpreted the context x : A as a set I and the type B as a family
X ∈ SetI , where SetI is the fibre of the set-family fibration over I . In the type theory we can then
form the sum type over B with ∅ ⊢ Σx : A. B : Type, which is thus an element of T∅. On the side
of set families, we can form the singleton family {⨿i ∈I Xi }⋆∈1 that consists just of the coproduct of
all sets in the family X and is an element of Set1. This example illustrates how contexts correspond
to index sets, in particular the empty context to the singleton set, and how type families give rise
to set families.

As a further example, we return now to the types that we cooked up to model calendar days.
To this end, we need the family {Posn}n∈N with Posn = {k ∈ N | 1 ≤ k ≤ n}, which is an object
in SetN. Earlier, we formed the type of correct dates as a sum type by using a type of bounded
positive numbers. We can take now Pos as the corresponding family. So the question is: How we
can properly represent sum types as operations on (fibres of) the set-family fibration? Recall that

173

Chapter 6. Categorical Logic Based on Inductive-Coinductive Types

the date type consists of two sums, where the inner one was taken over a type that corresponds to
the family

D = {Posdays y m}(y,m)∈N×Pos12 .

We can now form the coproduct over the index for the month to obtain the first sum:

DM =
{⨿

m∈Pos12
D(y,m)

}
y∈N
.

Finally, the date type corresponds to the following family, where we write {X }1 instead of {X }⋆∈1.{⨿
y∈N

DMy

}
1

Since we are using the terminology “coproduct” here, we need to explain what the appropriate
universal property is. This will allow us to relate the rules of the type theory to those of the
set-fibration.

In essence, the universal property of the coproducts above will correspond to the term formation
rules of sum types, as we demonstrate now. So let A and B[x] be a types, where x : A occurs freely
in B[x]. We can see B[x] as a family of types indexed by A, and therefore consider A and B[x]
analogous to an index set I and a set-family X in SetI , respectively. Recall now that sum types
came with a pairing of type x : A,y : B[x] ⊢ ⟨x ,y⟩ : Σx : A. B[x]. Note that we can use weakening
to view the type Σx : A. B[x] as a family with x : A ⊢ Σx : A. B[x] : Type. By analogy, the singleton
family {⨿i ∈I Xi }1 gives rise to the I -indexed family {⨿i ∈I Xi }j ∈I , in which the index j is not used.
Formally, this weakening is achieved by considering the unique map ! : I → 1 from I to the singleton
set. This map gives rise to the reindexing functor, see Section 2.4,

!∗ : Set1 → SetI

by !∗(Y) = {Y⋆}j ∈I , where ⋆ denotes the only element in 1. With this notation for weakening at
hand, we can now see the pairing for the coproduct as a map

ηX : X → !∗
(⨿

i ∈I
Xi

)
in SetI by putting ηX = {ηX ,i }i ∈I with ηX ,i (x) = (i,x). A reader familiar with adjoint functors
recognises probably already the notation for the unit of an adjunction lurking in here, so let us
make the guess that the coproduct is left adjoint to the weakening functor !∗. Indeed, let us write⨿

I X for the coproduct
⨿

i ∈I Xi . We then have the following adjoint correspondence between maps
on indexed sets.

f :
⨿

I X −→ Y Set1

д : X −→ !∗ Y SetI

From top to bottom, we have that f = { f⋆ :
⨿

I X → Y } gives the family д = {дi : Xi → Y⋆}i ∈I by
putting дi (x) = f (i,x). Going upwards, we define f from д by putting f⋆(i,x) = дi (x). This latter
definition corresponds to what we achieved with unpacking for sum types, in the sense that f⋆(s)
corresponds to unpack s as ⟨i,x⟩ in дi (x). The universal property of the coproduct of set-families is

174

6.1. Hitchhiker’s Guide to Dependent Type Theory

now given by the adjunction
⨿

I ⊣ !∗, which, as we have seen, captures precisely the term formation
rules for sum types.51

So far, we have explained the sum type of date types with only one free variable. But what about
set-families like D that have multiple free variables? To tackle this case, we first need to discuss
how free variables are introduced in the first place. Type theoretically, one usually has a context
formation rule that, given a valid context Γ and a type A in that context, allows us to expand the
context Γ to a new context Γ,x : A. Since a context Γ corresponds to an index set I and a type A
in this context to a family X indexed by I , we thus need an operation that turns a set-family into
a set. In other words, we want to have a functor {−} : Fam(Set) → Set, which is usually called
comprehension. Recall that we saw X as an object (I ,X) in the category Fam(Set) of set-families.
Then we can define the comprehension functor by {(I ,X)} = ⨿

i ∈I Xi . Note that if X is a constant
family, that is, if there is a set A with Xi = A for all i ∈ I , then {(I ,X)} � I ×A. We can now define
a map πX : {X } → I by putting πX (i,x) = i . Reindexing along this map corresponds to weakening
of types. For example, if I is a set, then we can form the singleton family {I }⋆∈1, from which we
obtain {{I }1} � 1 × I � I . The projection π {I }1 : {{I }1} → 1 is then nothing but the unique map
! : I → 1 that we used earlier to express the universal property of the coproduct

⨿
I X . Indeed, given

a family Y ∈ Set1, we have that π ∗(Y) = {Y⋆}j ∈I , which is the set-theoretic analogue to weakening
of a type X without dependencies, in that we introduce a fresh variable j of type I into the (empty)
context of Y . Therefore, we also have that the coproduct functor

⨿
I is left-adjoint to π ∗. More

generally, coproduct and products for set-families are captured by the following adjoint situation, in
which A ∈ SetI and πA : {A} → I .

Set{A} SetI

⨿
A

∏
A

π ∗A

⊣
⊣

Let us now see by the holiday example how the comprehension functor allows the introduction of
fresh variables into context. Recall that we considered the family D, where D(y,m) contains exactly
those positive numbers that correspond to the days in the month m of the year y. Comprehension
now allows us to view the predicate isHoliday as a set-family in Set{D }: Define

isHoliday((y,m),d) B {set of proofs that d.m.y is a holiday we acknowledge}

for (y,m) ∈ N × Pos12 and d ∈ D(y,m), or, if we are only interested in provability and not the proofs
themselves, we can use the non-constructive definition

isHoliday((y,m),d) B

{
1, d.m.y is a holiday we acknowledge
∅, otherwise

.

To construct the set-family that corresponds to the type of holidays we need to go through a small
complication. This complication should be embraced though, as it shows how category theory
makes the use of weakening explicit. We noted earlier that the comprehension of a constant family
is isomorphic to a product, thus for the map !N : N→ 1 we obtain {!∗N(Pos12)} � N× Pos12. In other

175

Chapter 6. Categorical Logic Based on Inductive-Coinductive Types

Dependent Type Theory Fibrations
Context Γ Object I in base category B
Type in context Γ Object X in fibre PI of fibration P : E→ B over I
Context expansion Comprehension {−} : E→ B
Weakening Reindexing along projection πX : {X } → PX
Dependent Product/function space Π Product with π ∗X ⊣

∏
X

Dependent sum Σ Coproduct with
⨿

X ⊣ π ∗X
Equality type (see Example 6.2.12) Equality Eq : PI → PI×I , left adjoint to contraction

δ ∗ with δ : I → I × I

Table 6.1.: Comparison of Notions from Dependent Type Theory and Fibrations

words, the index of D is equivalently given by {!∗N(Pos12)}. This allows us to use the description of
coproducts as left-adjoint functors to form the (singleton) family Holiday by the following repeated
coproduct.

Holiday B
⨿
N

⨿
!∗N(Pos12)

⨿
D

isHoliday

In this definition, the coproducts are, from right to left, left-adjoint to the reindexing functors
coming from πD : {D} → {!∗N(Pos12)}, π!∗N(Pos12) : {!

∗
N(Pos12)} → N, and πN : N → 1, respectively.

This formation of the family Holiday illustrates the bookkeeping that is introduced when encoding
type families that use weakening.

Of course, one has to appropriately axiomatise the notion of comprehension, but the basic idea
is that it is a functor from the total into the base category of a fibration that comes with projection
morphisms like the ones we used above. Further technical details are deferred to Section 6.2.4. Let
us just mention that there are other notions than fibrations with comprehension that can be utilised
to model dependent type theory: display map categories [Tay99], categories with attributes [Car78;
and Dyb95; Mog89; Pit01], categories with families [Dyb95], and contextual categories [Car86; KL16;
Str91]. These notions do not differ very much from each other though, see [Jac93] and [nLa17].
Finally, to keep track of the correspondence between type theoretic and category theoretical concepts,
the reader might find Table 6.1 useful.

This ends our tour through the three different worlds of dependent type theory. Other views,
further explanation and more references concerning dependent type theory may be found in, among
other places, [GTL89; Hof97; Jac99; Mar75b; NGdV94; NG14; and Pie04].

6.2. Categorical Dependent Recursive Types
In this section, we give a category theoretical description of dependent inductive-coinductive types.
The word “type” is somewhat loosely used here in the sense that we do not mean by “type” a
syntactic label, rather we mean an entity (here: an object in a category) that determines the values
(morphisms from a final object, see [LS88]) for variables of that type and the behaviour of maps
(morphisms) on it, cf. [PSW76]. This allows us to construct a type theory that corresponds to these
entities. For example, for objects A and B, the maps into A × B are completely determined by maps
on A and B through the projections and pairing together with the universal mapping property. This
gives rise to product types with the appropriate term constructors, cf. Section 3.1. That being said,

176

6.2. Categorical Dependent Recursive Types

we will identify in Definition 6.2.9 an inductively generated class of objects and functors that model
so-called strictly positive types. In other words, we effectively give a syntactic description of objects
that we study here as dependent inductive-coinductive types.

To motivate the formal definition of dependent types, we will first study in Section 6.2.1 the proto-
typical example of length-indexed lists, which we have already seen in the introductory guide. From
this example, we extract in two steps the relevant ingredients of dependent inductive-coinductive
types. First, we show in Section 6.2.2 that such types are given as initial (respectively final) dial-
gebras, in which the functor that determines the codomain (resp. the domain) of these dialgebras is
of very special shape. This is where we generalise the categorical data types of Hagino [Hag87] to
dependent types. The second step is to identify domain functors for inductive types and codomain
functors for coinductive types. This leads us to the definition of recursive dependent type complete
categories (µP-complete categories) in Section 6.2.3, which allow the interpretation of strictly positive,
dependent, inductive-coinductive types.

One may wonder why we restrict ourselves to strictly positive types. The problem is not so much
the description of more general types. In fact, conceiving initial or final dialgebras that fulfil the
restrictions in Section 6.2.2 as types is perfectly fine. However, we can of course not guarantee the
existence of inductive (resp. coinductive) types for arbitrary domain (resp. codomain) functors. So
we restrict to a reasonable closure condition that will allow us to construct the arising types from
simpler structures in Section 6.3.

We will finish this section by fusing µP-completeness with comprehension categories into recursive
dependent type closed categories (µPCC), in which we can construct strictly positive types that may
depend on previously constructed types. For example, we are able to construct the types that we
met in the introductory guide: the type of natural numbers Nat, the type ListA n of lists of length
n for n : Nat, and the type Pos n of positive numbers bounded by n. Other examples that can
be constructed in µPCCs include bisimilarity and the substream relation for streams. Thus, µPCCs
provide a framework for general dependent inductive-coinductive types.

6.2.1. Introductory Example
Before diving into the formal definition of dependent recursive types, we start with an example,
which allows us to first gain some intuition and from which we will extract the essence of dependent
recursive types. The type we examine are lists indexed by their length, frequently also called vectors.

Example 6.2.1. For a given set A, we denote by An the n-fold product of A. Length-indexed lists52

or vectors over A are given by the set-family List A = {An}n∈N, which is an object in the category
SetN of families indexed by natural numbers (Section 2.4).

Vectors come with two constructors: nil⋆ : 1 → A0 for the empty vector, and consn : A × An →
An+1 for prefixing of vectors with elements of A. We note that nil : {1}1 → {A0}1 is a morphism
in the category Set1 of families indexed by the one-element set 1, whereas cons = {consn} is a
morphism {A × An}n∈N → {An+1}n∈N in SetN. Let F ,G : SetN → Set1 × SetN be functors into the
product of the categories Set1 and SetN given by

F (X) = ({1}1, {A × Xn}n∈N) G(X) = ({X0}1, {Xn+1}n∈N).

Using these functors, we see that (nil, cons) : F (List A) → G(List A) is an (F ,G)-dialgebra. In fact,
(nil, cons) is the initial (F ,G)-dialgebra, see Section 2.5. ◀

177

Chapter 6. Categorical Logic Based on Inductive-Coinductive Types

At this stage, the reader might be wondering why we are using initial dialgebras rather than initial
algebras to describe the inductive data type in Example 6.2.1. There are two reasons for this. Firstly,
as we will see in Definition 6.2.9, using dialgebras allows us to give a straightforward definition of
(strictly positive) dependent types. Such a definition is also possible for algebras, cf. Theorem 6.3.1,
but much more complicated to carry out. The second reason for using dialgebras is that these allow
us the representation of dependent sum and dependent product types as initial and, respectively,
final dialgebras. This view will lead to a minimal type theory in Chapter 7.

In Example 6.2.1, we have presented vectors as an initial dialgebra for certain functors. As it turns
out, the functor that describes the codomain of the constructors has a special form.

Example 6.2.2. First, we note that the fibre of Fam(Set) above I is isomorphic to SetI . Let then
z : 1 → N and s : N → N be defined by z(∗) = 0 and s(n) = n + 1, giving us reindexing functors
z∗ : SetN → Set1 and s∗ : SetN → SetN. By their definition, z∗(X) = {X0}1 and s∗(X) = {Xn+1}n∈N,
hence the functor G, we used to describe vectors as dialgebra, is G = ⟨z∗, s∗⟩. In Sec. 6.2.2, we
address the structure of F .

6.2.2. Signatures and Recursive Types
The idea that underlies the categorical data types of Hagino [Hag87] is that the outcome of a
constructor for a type must be of that type itself. More concretely, a (non-dependent) inductive
type T with n constructors is given by a declaration like that on the left in Figure 6.1. Hagino then

data T where
c1 : F1(T) → T
...
cn : Fn (T) → T

data Γ ⊢ T’ where
Γ1 ⊢ c ′1 : F ′1(T’) → T’[σ1]
...
Γ1 ⊢ c ′n : F ′n (T’) → T’[σn]

Figure 6.1.: Declarations of Non-Dependent and Dependent Inductive Types

notices that T corresponds to an initial (F ,G)-dialgebra in a category C with F ,G : C → ∏n
k=1 C,

F = ⟨F1, . . . , Fn⟩ and G = ⟨Id, . . . , Id⟩. The dialgebra structure on T is then given by the tuple
(c1, . . . , cn), which is a morphism in the category

∏n
k=1 C. We now extend this idea to dependent

types. Suppose that T ′ is a dependent type as in Figure 6.1 with variables in context Γ. Each
constructor c ′k of T ′ may live in a different local context Γk , thus we have to apply a substitution
σk to the type T ′ to bring it into the local context, see the codomain of the constructors c ′k in
Figure 6.1. We encountered this already in the example in Section 6.2.1, as the type of vectors over
A corresponds to the following type declaration.

data n : Nat ⊢ ListAn where
⊢ nil : 1→ ListA 0

k : Nat ⊢ cons : ListAk → ListA (k + 1)

Assume that we are given a fibration P : E → B and that there is an index I ∈ B that corresponds
to the context Γ. To view T ′ as an object in the fibre PI , we assume that each Γk corresponds to an
object Jk ∈ B as well. Given this setup, we note that c ′k must be a morphism in PJk , hence F ′k (T

′)

178

6.2. Categorical Dependent Recursive Types

must also be an object in the same fibre. This leads us for each 1 ≤ k ≤ n to the assumption that F ′k
is a functor PI → PJk . Similarly, each σk is a substitution that assigns to each variable in the context
Γ a term that lives in context Γk . Therefore, we also assume that there is a morphism uk : Jk → I
in the base B, which in turn gives rise to the reindexing functors u∗k : PI → PJk . These assumptions
allow us to view each constructor c ′k as a morphism F ′k (T

′) → u∗k (T
′) in PJk or, equivalently, as

morphism (c ′1, . . . , c
′
n) in

∏n
k=1 PJk . Putting this all together, we will conceive (c ′1, . . . , c

′
n) as an

initial dialgebra on T ′ for the functors F ′ and Gu with F ′ = ⟨F ′1, . . . , F ′n⟩ and Gu = ⟨u∗1, . . . ,u∗n⟩. This
development is summed in the following definition of a signature and the definition of a recursive
type below in Definition 6.2.7.

Definition 6.2.3. Let P : E→ B be a fibration. A (dependent) recursive-type signature with parameters
in a category C, is a pair (F ,u) consisting of

• a functor F : C × PI → D, where D =
∏n

k=1 PJk is a product of categories for some n ∈ N,
objects Jk ∈ B with k = 1, . . . ,n and I ∈ B, and

• a family u of n morphisms in B with uk : Jk → I for k = 1, . . . ,n.

A family u as above induces a functor Gu : PI → D given by Gu B ⟨u∗1, . . . ,u∗n⟩. ◀

Signatures form the basis of the types we will introduce in Definition 6.2.7. Before we get to
them, let us give the official signature for the type of vectors.

Example 6.2.4. In Example 6.2.2, we have seen that the codomain of the constructors for vectors
are given by a functor G with G = ⟨z∗, s∗⟩. According to Definition 6.2.3, we have G = Gu with
u = (z, s), thus the signature of vectors is (F ,u), with the functor F : SetN → Set1 × SetN, as given
in Example 6.2.1.

Note that the parameter category C is trivial (C = 1) in this case. To make the set A, over which
we considered vectors, a parameter we can use instead the functor F ′ : Set × SetN → Set1 × SetN
given by F ′(Y ,X) = ({1}1, {Y × Xn}n∈N). Note that we then have F ′(A,−) = F for any set A. This
gives us a signature (F ′,u) with parameters in Set. ◀

We showed in Example 6.2.1 that vectors are an initial (F ,Gu)-dialgebra. This is an instance of
what we will call an inductive type for a signature. In Example 6.2.4, we added the set over which
we consider vectors as a parameter to the signature. So to define types for arbitrary signatures (with
parameters), we need to be able to deal with parameterised dialgebras, which are dialgebras that
take further parameters. More technically, these are dialgebras in functor categories for a lifting of
the functors F and Gu that we will define now. This is analogous to, for example, [Kim10].

Definition 6.2.5. Suppose that we are given a signature (F ,u), where F : C×PI → D. For eachV ∈ C
we define a functor F (V ,−) : PI → D by putting F (V ,−)(X) B F (V ,X). Let us, moreover, assume
that for all V an initial (F (V ,−),Gu)-dialgebra αV : F (V ,ΦV) → Gu(ΦV) and final (Gu , F (V ,−))-
dialgebra ξV : Gu(ΩV)→ F (V ,ΩV) exists, where Gu = ⟨u∗1, . . . ,u∗n⟩.

Given these assumptions, we define functors on functor categories with fixed domain C:

F̂ , Ĝu : [C,PI]→ [C,D] F̂ (H) B F ◦ ⟨IdC,H ⟩ Ĝu(H) B Gu ◦ H . (6.3)

179

Chapter 6. Categorical Logic Based on Inductive-Coinductive Types

We use the dialgebras ΦV and ΦV to build functors µ(F̂ , Ĝu) : C→ PI and ν(Ĝu , F̂) : C→ PI by

µ(F̂ , Ĝu)(V) B ΦV µ(F̂ , Ĝu)(f : V →W) B (αW ◦ F (f , idΦW))

ν(Ĝu , F̂)(V) B ΩV ν(Ĝu , F̂)(f : V →W) B (F (f , idΩV) ◦ ξV)
∼ ,

where the bar and tilde superscripts denote the inductive and coinductive extensions, that is, the
unique homomorphism given by initiality and finality, respectively. ◀

To understand the definition of the functors µ(F̂ , Ĝu) and ν(Ĝu , F̂), it helps to visualise their
definition as homomorphism diagrams:

F (V ,ΘV) F (V ,ΘW)

F (W ,ΘW)

Gu(ΘV) Gu(ΘW)

αV

F
(
V ,µ

(
F̂ ,Ĝu

))
(f)

F(f , idΦW)

αW
µ
(
F̂ ,Ĝu

)
(f)

Gu(ΩV) Gu(ΩW)

F (V ,ΩV)

F (W ,ΩV) F (W ,ΩW)

ξV

ν
(
Ĝu , F̂

)
(f)

ξW

F(f , idΩV)
F
(
W ,ν

(
Ĝu , F̂

))
(f)

Now note that F̂
(
µ(F̂ , Ĝu)

)
(V) = F (V ,ΦV) and Ĝu

(
µ(F̂ , Ĝu)

)
(V) = Gu(ΦV), so that the α given in

in Definition 6.2.5 is a family of morphisms, which is moreover natural by uniqueness of inductive
extensions. Since the same also holds for ξ , we obtain the following lemma.

Lemma 6.2.6. The morphisms αV and ξV in Definition 6.2.5 form natural transformations

α : F̂
(
µ(F̂ , Ĝu)

)
⇒ Ĝu

(
µ(F̂ , Ĝu)

)
and ξ : Ĝu

(
ν(Ĝu , F̂)

)
⇒ F̂

(
ν(Ĝu , F̂)

)
. (6.4)

Moreover, α and ξ are, respectively, initial and final dialgebras in the functor category [C,D].

Having set up the notations for parameterised initial and final dialgebras, we can finally define
what (dependent) recursive types are.

Definition 6.2.7. Let (F ,u) be a recursive-type signature with parameters in C and F : C× PI → D.
An inductive type for (F ,u) is an initial (F̂ , Ĝu)-dialgebra with carrier µ(F̂ , Ĝu). Dually, a coinductive
type for (F ,u) is a final (Ĝu , F̂)-dialgebra, note the order, with the carrier being denoted by ν(Ĝu , F̂)
Both carriers are functors with

µ(F̂ , Ĝu) : C→ PI and ν(Ĝu , F̂) : C→ PI .

If C = 1, then we view these carriers as objects in PI and drop the hats from the notation. ◀

We have seen in the introductory guide that dependent coproducts and products play a central
role in dependent type theory. Moreover, we have claimed that these would arise as inductive and
coinductive types, respectively. The following example makes this statement precise.

180

6.2. Categorical Dependent Recursive Types

Example 6.2.8. Recall from Section 2.4 that a fibration P : E → B is said to have dependent
coproducts and products along a morphism f : I → J in B, if there are functors

⨿
f and

∏
f from PI

to PJ that are, respectively, left and right adjoint to f ∗. For each X ∈ PI , we can define a signature,
such that

⨿
f (X) and

∏
f (X) arise as recursive types for these signatures, as follows. Define the

constant functor by

KX : PJ → PI KX (Y) = X KX (д) = idX .

With this definition, (KX , f) is the signature for coproducts and products. For example, the unit η
of the adjunction

⨿
f ⊣ f ∗ is the initial (KX , f ∗)-dialgebra ηX : KX (

⨿
f (X)) → f ∗(

⨿
f (X)), using

that KX (
⨿

f (X)) = X .
To actually get a functor

⨿
f : PI → PJ we need to move to a parameterised signature. The

observation we use is that the projection functor π1 : PI × PJ → PI is a “parameterised” constant
functor, since we have K J

A = π1(A,−). If we are given f : I → J in B, then we use the signature
(π1, f), and define

⨿
f B µ(π̂1, f̂ ∗) and

∏
f B ν(f̂ ∗, π̂1). We claim now that we indeed get

adjunctions
⨿

f ⊣ f ∗ ⊣ ∏
f . This will be proven in Thm. 6.2.11. For now, let us just mention that,

for example, the unit η : Id⇒ f ∗
⨿

f is given by the initial dialgebra on µ(π̂1, f̂ ∗). ◀

6.2.3. Recursive-Type Complete Categories

We now define a class of signatures and functors that should be seen as category theoretical lan-
guage for, what is usually called, strictly positive types [AM09], positive generalised abstract data
types [HF11] or descriptions [Cha+10; DM13]. Note, however, that none of these treat coinductive
types. A non-dependent version of strictly positive types that include coinductive types are given
in [AAG05].

Let us first introduce some notation. Given categories C1 and C2 and an object A ∈ C1, we denote
by KC1

A : C1 → C2 the functor mapping constantly to A. The projections on product categories are
denoted, as usual, by πk : C1 ×C2 → Ck . Using these notations, we can define what we understand
to be a recursive type.

Definition 6.2.9. Let P : E → B be a cloven fibration, S a class of signatures in P and D a class
of functors. We denote by SC→D ⊆ S the class of all signatures (F ,u) ∈ S such that F : C → D.
Similarly, DC→D ⊆ D is the class of all functors F ∈ D with F : C→ D.

We say that P is a recursive-type complete category (µP-complete category) if there is a class S of
signatures in P and a class D of functors subject to the following closure rules. The class S must
be closed under formation of signatures over D with arbitrary reindexing morphisms in B:

D =
∏n

i=1 PJi F ∈ DC×PI→D u = (u1 : J1 → I , . . . ,un : Jn → I) morphisms in B
(F ,u) ∈ SC×PI→D

The classD must contain base types and must be closed under pairing, composition and the formation

181

Chapter 6. Categorical Logic Based on Inductive-Coinductive Types

of recursive types from signatures in S:

A ∈ PJ
KPI
A ∈ DPI→PJ

C =
∏n

i=1 PIi
πk ∈ DC→PIk

f : J → I in B
f ∗ ∈ DPI→PJ

F1 ∈ DPI→PK F2 ∈ DPK→PJ
F2 ◦ F1 ∈ DPI→PJ

Fi ∈ DPI→PJi i = 1, 2

⟨F1, F2⟩ ∈ DPI→PJ1×PJ2

(F ,u) ∈ SC×PI→D

µ(F̂ , Ĝu) ∈ DC→PI

(F ,u) ∈ SC×PI→D

ν(Ĝu , F̂) ∈ DC→PI

If S and D are the minimal classes that are closed under these rules, then we call S the class of
strictly positive signatures and D the class of strictly positive types. ◀

A brief note about terminology: The name µP-complete is an adaption of the λ-cube terminology,
where the calculus with just dependent types is called λP, see [Bar91; NG14]. The letter “P” stands in
this context for “predicate” and signifies the involvement of dependent types. With the Greek letter
µ, we intend to refer to recursive types and not just inductive types. The reader should think here
of general µ-recursion as a mnemonic, similar to the naming of µ-bicomplete categories [San02b].

The following assumption reflects that D contains exactly the strictly positive types we will
consider in Chapter 7.

Assumption 6.2.10. We assume, without loss of generality, that for a µP-complete category, the
classes S and D are exactly its strictly positive signatures and types.

One feature of recursive-type complete categories is that basic types, like fibrewise and dependent
products and coproducts, arise naturally as inductive and coinductive types. This is an instance of
the following, more general, result.

Theorem 6.2.11. Suppose P : E→ B is a µP-complete category. LetC =
∏n

i=1 PJi and π1 : C×PI → C
be the first projection. If (π1,u) is a signature such uk : Ji → I , then we have for Gu = ⟨u∗1, . . . ,u∗n⟩ the
following adjoint situation:

µ(π̂1, Ĝu) ⊣ Gu ⊣ ν(Ĝu , π̂1).

Proof. We only show how the adjoint transposes are obtained in the case of inductive types. Con-
cretely, for a tuple V ∈ C and an object A ∈ PI , we need to prove the correspondence

f : µ(π̂1, Ĝu)(V) −→ A in PI

д : V −→ GuA in C

Let us use the notation H = µ(π̂1, Ĝu), then the choice of π1 implies that the initial (π̂1, Ĝu)-dialgebra
is of type α : IdC ⇒ Gu ◦H , since π̂1(H) = π1 ◦ ⟨IdC,H ⟩ = IdC and Ĝu(H) = Gu ◦H . This allows us
to use as transpose of f the morphism V

αV−−→ Gu(H(V))
Gu f−−−→ GuA. As transpose of д, we use the

inductive extension of π̂1(KC
A)(V) = V

д
−→ GuA = Ĝu(K

C
A)(V). The proof that this correspondence

is natural and bijective follows straightforwardly from initiality. For coinductive types, the result is
given by duality. □

182

6.2. Categorical Dependent Recursive Types

From this result we can recover the usual binary, fibrewise products and coproducts, and the
dependent products and coproducts as shown in the following table.

Construction Parameter C Reindexing u Definition
Binary Coproduct +I : PI × PI → PI PI (idI , idI) +I = µ(π̂1, Ĝu)

Binary Product ×I : PI × PI → PI PI (idI , idI) ×I = ν(Ĝu , π̂1)

Dependent Coproduct
⨿

f : PI → PJ 1 (f : I → J)
⨿

f = µ(π̂1, Ĝu)

Dependent Product
⨿

f : PI → PJ 1 (f : I → J)
∏

f = ν(Ĝu , π̂1)

Many more examples, like initial and final objects etc., can be obtained in a µP-complete category,
but we defer their construction to the examples in Chapter 7 to reduce repetition. Let us give two
examples that become relevant in Section 6.4 though.

Example 6.2.12 (Propositional Equality). There are several definable notions of equality, provided
that B has binary products. A generic one is propositional equality EqI : PI → PI×I , the left adjoint
to the so-called contraction functor δ ∗ : PI×I → PI , where δ is the diagonal δ : I → I × I . Thus,
propositional equality can be obtained from the table above as the dependent coproduct along δ :
EqI B

⨿
δ . Since EqI is a left adjoint, it comes for each X ∈ PI×I with a constructor reflX : X →

δ ∗(EqI (X)).
Let us clarify this definition by instantiating it over set families. For Y ∈ SetI×I and i ∈ I , we

have δ ∗(Y)i = Yδ (i) = Y(i,i). The equality type on X ∈ SetI and (i, j) ∈ I × I is given on the other
hand by

EqI (X)(i, j) =
⨿
k ∈I

δ (k)=(i, j)

Xk �

{
Xi , i = j

∅, i , j
.

The constructor reflX is given for each i ∈ I as a map Xi → EqI (X)(i,i) � Xi , and is essentially the
identity map. It should be noted that one is usually more interested in the instance EqI (1I), where
1I in the final object in PI . For this reason, we define

Eq(I) B EqI (1I). (6.5)

In Fam(Set), one obtains thus

Eq(I) = EqI (1I) �
{
1, i = j

∅, i , j
,

which is the definition of equality on I that might be more familiar. ◀

Example 6.2.13 (Bisimilarity for Streams). Assume that there is an object Aω in B of streams over
A, together with projections hd : Aω → A and tl : Aω → Aω , giving us the head and tail of a stream.
We can define bisimilarity between streams as coinductive type for the signature

F ,Gu : PAω×Aω → PAω×Aω × PAω×Aω
F =

⟨
(hd × hd)∗ ◦KEq(A), (tl × tl)∗

⟩
and u = (idAω×Aω , idAω×Aω).

183

Chapter 6. Categorical Logic Based on Inductive-Coinductive Types

Let us put this definition of bisimilarity into a broader perspective. There is a category Rel(E) of
binary relations in E by forming the pullback of P along ∆: B→ B with ∆(I) = I × I , see [HJ97]:

Rel(E) E

B B

Rel(P) P

∆

Since P is cloven, also the resulting fibration Rel(P) is cloven ([Jac99, Lem. 1.5.1]). Thus, we obtain
reindexing functors between the fibres of Rel(E), which we will denote by (−)#. Note that the fibres
of Rel(E) can be presented by the isomorphism Rel(E)X � PX×X , so that reindexing in Rel(P) is
effectively given by f # = (f × f)∗. We can now reinterpret F and Gu in Rel(E) by

F ,Gu : Rel(E)Aω → Rel(E)Aω × Rel(E)Aω
F = ⟨hd# ◦KEq(A), tl#⟩ and Gu = ⟨id#

Aω , id#
Aω ⟩.

The final (Gu , F)-dialgebra on BisimA ∈ Rel(E)Aω is a pair of morphisms(
hd∼A : BisimA → hd#(Eq(A)), tl∼A : BisimA → tl#(BisimA)

)
.

BisimA should be thought of to consist of all bisimilarity proofs. Coinductive extensions yield the
usual coinduction proof principle, allowing us to prove bisimilarity by establishing a bisimulation
relation R ∈ Rel(E)Aω together with h : R → hd#(Eq(A)) and t : R → tl#(R). This says, as usual, that
the heads of streams related by R are equal and that the tails of related streams are again related.
Later, in Example 6.4.13, we will see how bisimilarity arises canonically for coinductive types. ◀

Let us now come to an example of a truly dependent, inductive-coinductive type. This type will
represent the substream relation that we encountered before.

Example 6.2.14. Recall that we have defined in Example 5.1.13 the substream relation that relates
two streams s and t , if all the elements in s occur in order in t . We denoted this relation symbolically
by s ≤ t . In Section 5.1.3, we found out that this relation could be expressed by selecting elements
from the stream t through an inductive-coinductive type. From this, we inferred that ≤ is an
inductive-coinductive relation. The purpose of this example is to make this somewhat more precise
by defining ≤ directly as a recursive type. In Section 7.5.3 we will relate both definitions.

To give an intuitive description of the direct definition of the substream relation, let us use for a
moment the language of the copattern calculus λµν=. Let s and t thus be of type Aω . We consider
s to be substream of t , written s ≤ t , if we can obtain a stream t ′ by finitely often applying .tl to t ,
such that

1. s .hd = t ′.hd, and

2. s .tl ≤ t ′.tl.

Figure 6.2 should give an idea of how this definition works for streams of natural numbers.
Let us now derive from this description a definition of the substream relation in a µP-complete

category. As a first towards this goal consider the following mutually recursive declaration of the
dependent types s ≤ t and s ≤µ t .

184

6.2. Categorical Dependent Recursive Types

t : 1 5 0 3 1 2 4 · · ·

s: 0 1 2 3 4 5 6 · · ·

t ′ = t .tl.tl

s .tl
Figure 6.2.: Operational View on Substream Relation

codata s, t : Aω ⊢ s ≤ t where
out : s ≤ t → s ≤µ t

data s, t : Aω ⊢ s ≤µ t where
match : (s.hd = t.hd) × (s.tl ≤ t.tl) → s ≤µ t
skip : s ≤µ t.tl → s ≤µ t

The first type is coinductive, which is signified by the keyword codata, whereas the second is an
inductive type. Of course, the first type should represent the substream relation. But what is the
role of the type s ≤µ t? Note that in the description of the substream relation above we said that for
s ≤ t to hold there must be a stream t ′ that is obtained by finitely often applying the tail destructor
to t . These skipping steps can be exactly achieved by using the “skip” constructor of s ≤µ t and,
since this is an inductive type, we eventually need to use the “match” constructor. This constructor,
in turn, requires us to show that the heads of s and t match and that the tail of s is a substream of
the tail of t ′. Hence, “match” formalises exactly the two conditions we posed above on t ′.

In Figure 6.3, we give a representation of a proof tree for the fact that the constant stream 1ω is
a substream of the alternating bit stream alt. Since the tail of alt starts with a 1, we use for clarity
the notation 1 : alt instead of alt.tl in the tree. Moreover, the dashed line shows how the proof tree
is build through the coinductive type 1ω ≤ alt. We will give a formal definition of this proof by
using finality of the substream relation.

skip(1ω ,alt)

match(1ω ,1 : alt)
refl1

Figure 6.3.: Conceptual Representation of a Proof of 1ω ≤ alt

After developing an intuition for how the substream relation arises as an inductive-coinductive
type, it is now our job to construct this relation by using the machinery of µP-complete categories.
This is done in three steps: First, we define a functor S ′µ : Rel(E)Aω → Rel(E)Aω , such that S ′µ (R)
corresponds to ≤µ but with all occurrences of ≤ in its declaration replaced by R. Second, we define
S ∈ Rel(E)Aω , which corresponds to ≤. Finally, the type ≤µ itself is interpreted as S ′µ (S). Since
S ′µ : Rel(E)Aω → Rel(E)Aω should be an inductive type, we define S ′µ = µ

(
F̂ , Ĝu

)
with

F : Rel(E)Aω × Rel(E)Aω → Rel(E)Aω × Rel(E)Aω
F (S,R) =

(
hd#(Eq(A)) × tl#(S), (id × tl)∗(R)

)
185

Chapter 6. Categorical Logic Based on Inductive-Coinductive Types

and u = (idAω , idAω). On top of this type, we can now define the substream relation S ∈ Rel(E)Aω
by S = ν

(
GidAω , S

′
µ
)
. Notice how these definitions reflect exactly the type declarations above because

with Sµ = S ′µ (S) we obtain the following operations, since S and Sµ are final and initial dialgebras.

out : S → Sµ

match : hd#(Eq(A)) × tl#(S)→ Sµ

skip : (id × tl)∗(Sµ)→ Sµ

Coming back to the example that 1ω is a substream of alt, we can give in Rel(Fam(Set))Aω a
formal description of the proof tree in Figure 6.3. To do so, recall that Rel(Fam(Set))Aω � SetAω×Aω ,
which allows us to define relations easily as set families. Thus, let us define R ∈ SetAω×Aω to be

R(σ ,τ) =

{
1, σ = 1ω and τ = alt
∅, otherwise

.

We can then define morphism c : R → S ′µ (R) in SetAω×Aω by

c(1ω ,alt)(⋆) = skip(1ω ,alt)
(
match(1ω ,1 : alt)(refl1(⋆),⋆)

)
.

Since id#(R) � Id(R) = R, we have that c is a
(
Gid, S

′
µ
)
-dialgebra and can thus be extended to a

homomorphism c̃ : R → S . By applying this map, we obtain the tree in Figure 6.3 as the element
c̃(1ω ,alt)(⋆) in S .

Summing up, we have shown how to construct the substream relation in any µP-complete category.
We show that this direct definition is equivalent to the one given by stream filtering in Section 5.1.3.

◀

Up to this point, all coinductive types that we encountered only used the identity substitution to
determine the domain of their destructors. In the last example of this section we study a dependent
coinductive type that uses a non-trivial substitution instead. The point of this example is to illustrate
how non-trivial substitutions allow us to block the application of destructors.53 54

Example 6.2.15. A partial stream is a stream together with a, possibly infinite, depth up to which
it is defined. Assume that there is an object N∞ of natural numbers extended with infinity and a
successor map s∞ : N∞ → N∞ in B, we will see how these can be defined in Example 6.2.19. The
partial streams correspond to the following type declaration, the idea of which is that the head and
tail of partial streams are defined only on those partial streams that are defined in, at least, the first
position.
codata n : N∞ ⊢ PStr A n where

k : N∞ ⊢ hd k : PStr A (s∞ k) → A
k : N∞ ⊢ tl k : PStr A (s∞ k) → PStr A k

As set of partial functions, we can define partial streams as a family indexed by n ∈ N∞:

PStr(A)n = {s : N⇀ A | ∀k < n.k ∈ dom s ∧ ∀k ≥ n.k < dom s},

where the order on N∞ is given by extending that of the natural numbers with ∞ as strict top
element, that is, such that k < ∞ for all k ∈ N.

186

6.2. Categorical Dependent Recursive Types

The interpretation of PStr(A) for A ∈ P1 in a µP-complete category is given as the carrier of the
final (Gu , F)-dialgebra with

Gu , F : PN∞ → PN∞ × PN∞ Gu =
⟨
s∗∞, s

∗
∞
⟩

F =
⟨
KN

∞
A′ , Id

⟩
,

where A′ = !∗N∞(A) ∈ PN∞ is the weakening of A with !N∞ : N
∞ → 1. On set families, partial streams

are given by the dialgebra ξ = (hd, tl)with hdk : PStr(A)(s∞ k) → A and tlk : PStr(A)(s∞ k) → PStr(A)k
for every k ∈ N∞.

We can make this construction functorial in A, using the same “trick” as for sums and products.
To this end, we define the functor H : P1 × PN∞ → PN∞ × PN∞ with H =

⟨
!∗N∞ ◦π1,π2

⟩
, where π1

and π2 are corresponding projection functors, so that H(A,X) = F (X). This gives, by recursive-type
completeness, rise to a functor ν(Ĝu , F̂) : PN∞ → PN∞ , which we denote by PStr, together with a
pair (hd, tl) of natural transformations. □

6.2.4. Recursive-Type Closed Categories

We have seen in the introduction that one of central notions in a (dependent) type theory is context
extension. It turned out that a possible category theoretical counterpart was to have a comprehension
functor. The following definition gives a precise description of the necessary ingredients that a
fibration with comprehension needs to have, so that dependently typed contexts can be interpreted
over that fibration. This definition can be found, for example, in [Jac99, Lem. 1.8.8, Def. 10.4.7]
and [FGJ11].

Definition 6.2.16. Let P : E → B be a fibration. If each fibre PI has a final object 1I and these
are preserved by reindexing, then there is a fibred final object functor 1(−) : B→ E. (Note that then
P(1I) = I .) P is a comprehension category with unit (CCU), if 1(−) has a right adjoint {−} : E → B,
called comprehension. This gives rise to a functor P : E → B→ into the arrow category over B, by
mapping P(A) = P(εA) : {A} → P(A) and P(f) = ({ f }, P f), where ε : 1{−} ⇒ Id is the counit of
1(−) ⊣ {−}. We often denote P(A) by πA and call it the projection of A. Finally, P is said to be a full
CCU , if P is a fully faithful functor.

Note that, in a µP-complete category, we can define final objects in each fibre, though the preser-
vation of them by reindexing needs to be required separately, see Section 6.5.

Let us record for later use what the fullness conditions for a CCU means explicitly. Recall that
a morphism between projections πA and πB in the arrow category B→ is given by a commuting
diagram of the following form.

{A} {B}

PA PB

f

πA πB
д

That P is a fully faithful functor means now that there is a unique h : A→ B in E with P(h) = (f ,д).
By definition of P, we thus have f = {h} and д = Ph.

The following example describes comprehension for the set-family fibration, which he have en-
countered already in the introduction.

187

Chapter 6. Categorical Logic Based on Inductive-Coinductive Types

Example 6.2.17. In Fam(Set), the final object functor is given by 1I = (I , {1}i ∈I), where 1 is the
singleton set. Comprehension is defined to be {(I ,X)} = ⨿

i ∈I Xi and the projections πI map then
an element of

⨿
i ∈I Xi to its component i in I .

Using comprehension, we can give a general account to dependent recursive types.

Definition 6.2.18. We say that a fibration P : E→ B is a recursive-type closed category (µPCC), if it
is a CCU, has a terminal object in B and is µP-complete.

As already mentioned, the purpose of introducing comprehension is that it allows us to use
recursive types defined in E again as index. The terminal object in B is used to introduce recursive
types without dependencies, like natural numbers. Let us reiterate on Ex. 6.2.15 to illustrate this.

Example 6.2.19. Recall that we assumed the existence of extended naturals N∞ and the successor
map s∞ on them to define partial streams. We are now in the position to define in a recursive-type
closed category everything from scratch as follows.

Having defined + : P1 × P1 → P1, see Thm. 6.2.11, we put N∞ B ν(Id, 1 + Id) with its final
dialgebra structure being the predecessor pred. The successor map s∞ : N∞ → N∞ can then be
defined as the unique homomorphism in the following diagram.

N∞ N∞

1+ N∞ N∞

s∞

κ2 pred
id+s∞

Partial streams PStr : P{N∞ } → P{N∞ } are then given as in Ex. 6.2.15 by the final (Ĝu , F̂)-dialgebra,
only this time we need to apply the comprehension functor to s∞ to obtain a map in the base
category B. Thus, we put u = ({s∞}, {s∞}) and F =

⟨
!∗N∞ ◦π1,π2

⟩
. ◀

6.3. Constructing Recursive Types as Polynomials
In Section 6.2, we have given conditions on fibrations that allow us to use them as dependent
type theory based only on inductive and coinductive types. The important notion there was that
of µP-completeness (Definition 6.2.9). This raises of course the question whether there are any
examples of µP-complete categories. We will answer this question affirmatively by showing that
there is a class of categories, called Martin-Löf categories, that admit an interpretation of all necessary
recursive types. This works by reducing all recursive types to polynomial functors [GK13] (also called
container [AAG05]). An example of this class is then the codomain fibration over the category of
sets.

The construction proceeds in two steps. First, we reduce in Theorem 6.3.1 the dialgebras arising
from signatures to algebras and coalgebras, respectively. Second, we construct the necessary initial
algebras and final coalgebras as fixed points of polynomial functors, analogous to the construction
of strictly positive types in [AAG05]. This second step is again an assembly of results. We prove
in Theorem 6.3.10 that fixed points of dependent polynomial functors with parameters are again
polynomial functors. This allows us to construct nested recursive types, and is the significant result of
this section. Next, we show that dependent recursive types can be constructed from non-dependent

188

6.3. Constructing Recursive Types as Polynomials

recursive types. For coinductive types the corresponding result is given in Theorem 6.3.6, whereas
the analogous result for inductive types is already in [AAG05] and [GK13]. Finally, the construction
of non-dependent, coinductive types can be reduced to that of inductive types, which is again proved
by Abbott et al. [AAG05].

We begin by showing that inductive and coinductive types correspond to certain initial algebras
and final coalgebras, respectively.

Theorem 6.3.1. Let P : E → B be a fibration with fibrewise coproducts and dependent sums. If (F ,u)
with F : PI → PJ1 × · · · × PJn is a signature, then there is an isomorphism

DiAlg(F ,Gu) � Alg
(⨿
u1

◦F1 +I · · ·+I

⨿
un

◦Fn
)

where Fk = πk ◦ F is the kth component of F . In particular, existence of inductive types and initial algebras
coincide. Dually, if P has fibrewise and dependent products, then

DiAlg(Gu , F) � CoAlg
(∏
u1

◦F1 ×I · · · ×I
∏
un

◦Fn
)
.

In particular, existence of coinductive types and final coalgebras coincide.

Proof. The first result is given by a simple application of the adjunctions
⨿n

k=1 ⊣ ∆n between the
(fibrewise) coproduct and the diagonal, and

⨿
uk ⊣ u∗k :

FX −→ GuX (in PJ1 × · · · × PJn)

(
⨿
u1
(F1X), . . . ,

⨿
un (FnX)) −→ ∆nX (in PnI)⨿n

k=1

⨿
uk (FkX) −→ X (in PI)

That homomorphisms are preserved follows at once from naturality of the used Hom-set isomorph-
isms. The correspondence for coinductive types follows by duality. □

To be able to reuse existing work, we work in the following with the codomain fibration
cod : B→ → B for a category B with pullbacks. Moreover, we assume that B is finitely com-
plete and locally Cartesian closed. The following definition allows to connect this to our setup of
fibrations.

Definition 6.3.2 ([Jac99, Def. 10.5.3]). Let P : E→ B be a comprehension category with coproducts,
that is, for every A ∈ E with projection πA : {A} → PA there is an adjunction

⨿
A ⊣ π ∗A that

satisfies the Beck-Chevalley condition, see Definition 2.4.4. We denote the unit of these coproducts
by η : Id⇒ π ∗A

⨿
A, and we let πA (

⨿
A X) be the Cartesian lifting of πA as in the following diagram.

π ∗A
⨿

A X
⨿

A X

{A} PA = P(
⨿

A X)

πA (
⨿
A X)

πA

P

189

Chapter 6. Categorical Logic Based on Inductive-Coinductive Types

The fibration P has strong coproducts, if the dependent pairing κ : {X } → {⨿I X }, given by

κ =
{
πA

(⨿
A
X

)
◦ ηX

}
,

is an isomorphism. We call P a closed comprehension category (CCompC), if it is a full CCU with
products, strong coproducts and has a final object in the base category B. ◀

By [Jac99, Thm 10.5.5], a finitely complete category B is locally Cartesian closed if and only if
the codomain fibration is cod : B→ → B is a closed comprehension category. Another assumption
that we need is that the binary coproducts in B are disjoint, which means that the injections are
monomorphisms and form the following pullback square.

0 J

I I + J

κ2
κ1

Under the assumption that coproducts are disjoint, we obtain an equivalence B/I+J ≃ B/I × B/J ,
see [Jac99, Prop. 1.5.4].

Assumption 6.3.3. In this section we assume that B is a finitely complete, locally Cartesian closed
category with disjoint coproducts.

Definition 6.3.4. A dependent polynomial Γ indexed by I on variables indexed by J is given by a
triple of morphisms

B A

J I
s

f
t

If J = I = 1, f is said to be a (non-dependent) polynomial. The extension of a polynomial Γ is given
by the composite JΓK = B/J s∗−→ B/B

∏
f−−→ B/A

⨿
t−−→ B/I ,

which we denote by Jf K if Γ is non-dependent. A functor F : B/J → B/I is a dependent polynomial
functor , if there is a dependent polynomial Γ such that F � JΓK.

Note that polynomials are called containers by Abbott et al. [Abb03; AAG05], and a polynomial
Γ = 1

!←− B
f
−→ A

!−→ 1 would be written as A ▷ f there. Similarly, dependent polynomials are a slight
generalisation of indexed containers [AM09]. Container morphisms, however, are different from
those of dependent polynomials, as the latter correspond to strong natural transformations [GK13,
Prop. 2.9], whereas the former are in exact correspondence with all natural transformations between
extensions [AAG05, Thm. 3.4]. Because of this relation, we will apply results for containers, which
do not involve morphisms, to polynomials. Another difference in terminology between the theory of
polynomial functors and containers is that initial algebras and final coalgebras for functors associated
to containers are called and W-types and M-types, respectively. We will adopt this terminology in
the following and denote for f : A→ B byWf the carrier of the initial algebra and by Mf the carrier
of the final coalgebra for Jf K. In particular, we can use this to translate [AAG05, Prop. 4.1], giving
us a construction of final coalgebras for polynomial functors from initial algebras for polynomial
functors.

190

6.3. Constructing Recursive Types as Polynomials

Assumption 6.3.5. We assume additionally that B is closed under the formation of W-types, thus
is a Martin-Löf category in the terminology of Abbott et al. [AAG05]. By the above remark, B then
also has all M-types.

Analogously to how [GH04, Thm. 12] extends [MP00, Prop. 3.8], we extend here [vdBdM04,
Thm 3.3]. That is to say, we show that final coalgebras for dependent polynomial functors can be
constructed from final coalgebras of non-dependent polynomial functors. One reviewer of [Bas15a]
had pointed out that this result can be derived from [vdBdM07, Thm 3.1], the published version
of [vdBdM04]. However, we include a proof here, since it gives some insight into the handling of
dependencies.

Theorem 6.3.6. Dependent polynomial functors B/I → B/I have final coalgebras.

Proof. Let Γ = I
s←− B

f
−→ A

t−→ I be a dependent polynomial. We construct, analogously to [GH04],
the carrier of a final coalgebra V of JΓK as an equaliser as in the following diagram, in which f × I
is a shorthand for B × I

f ×idI−−−−→ A × I and Mf ×I is the carrier of the final Jf × IK-coalgebra.
V Mf Mf ×I

д u1

u2

(6.6)

First, we give u1 and u2, whose definitions are summarised in the following two diagrams.

Mf Mf ×I

Jf K(Mf)

Jf × IK(Mf) Jf × IK(Mf ×I)

u1

ξf

ξf ×I

pMf Jf ×IK(u1)

Mf Mf ×I Mf ×I

Jf × IK(Mf ×I)

Jf × IK(Mf ×I × B) Jf × IK(Mf ×I)

u1

u2

ξf ×I

ψ

ξf ×I

ΣA×IK Jf ×IK(φ)
These diagrams shall indicate that u1 is given as coinductive extension and ψ as one-step definition,
using that Mf ×I is a final coalgebra, see Appendix B. The maps involved in the diagram are given
as follows, which we sometimes spell out in the internal language of the codomain fibration, see for
example [Abb03], as this is sometimes more readable.55

• The natural transformation p : ΣAΠf ⇒ ΣA×IΠf ×I sends (a,v) to (a, t(a),v). It is given by
the extension Jα , βK : Jf K⇒ Jf × IK of the morphism of polynomials [AAG05]

B A

B × I A × I

f

β α
f ×I

where α = ⟨id, t⟩ and β = ⟨id, t ◦ f ⟩.

191

Chapter 6. Categorical Logic Based on Inductive-Coinductive Types

• The map K : Πf ×I (Mf ×I)→ Πf ×I (Mf ×I × B) is given as transpose of

⟨εMf ×I ,π1 ◦ π ⟩ : (f × I)∗(Πf ×I (Mf ×I))→ Mf ×I × B,

where ε is the counit of the product (evaluation) and π is the context projection. In the
internal language K is given by K v = λ(b, i).(v (b, i),b).

• φ : Mf ×I × B → Mf ×I is constructed as coinductive extension as in the following diagram

Mf ×I × B Mf ×I

Jf × IK(Mf ×I) × B

Jf × IK(Mf ×I × B) Jf × IK(Mf ×I)

ξf ×I×id

φ

ξf ×I

e Jf ×IK(φ)
Here e is given by e((a, i,v),b) = (a, s b, λ(b ′, s b).(v (b ′, i),b ′)), arising from the so-called
Frobenius property, see [Jac99, Lem. 1.9.12].

We note that the elements of the subobject V of Mf , as given in (6.6), can be described by

x : Vi ⇐⇒
ξf x = (a : A,v : ΠfMf), t a = i and (∀b : B. f b = a ⇒ v b : Vs b).

The direction from left to right is given by simple a calculation, whereas the other direction can be
proved by establishing a bisimulation between u1 x and u2 x . We defer these details to Appendix B.

This characterisation of V allows us to prove that ξf : Mf → Jf K(Mf) restricts to ξ ′ : V → JΓK(V)
and that ξ ′ is a final coalgebra. Hence, V is indeed the carrier of a final JΓK-coalgebra in B/I . □

Before we continue, let us briefly illustrate the construction of final coalgebras for dependent
polynomials from non-dependent polynomials in Set→.

Example 6.3.7. Recall from Ex. 6.2.15 that partial streams are given by
codata n : N∞ ⊢ PStr A n where

k : N∞ ⊢ hd k : PStr A (s∞ k) → A
k : N∞ ⊢ tl k : PStr A (s∞ k) → PStr A k

and that PStr is the final (Ĝu , Ĥ)-dialgebra, where we have that H : Set1 × SetN∞ → SetN∞ × SetN∞

with H =
⟨
!∗N∞ ◦π1,π2

⟩
and u = (s∞, s∞). By Thm. 6.3.1, we can construct PStr as the final coalgebra

of F : Set/1 × Set/N∞ → Set/N∞ with F (A,X) =
∏

s∞ !
∗
N∞ A ×N∞

∏
s∞ X .

Let us now fix an object A ∈ Set/1 and put A′ B !∗N∞(A). To represent F (A,−) as a polynomial
functor, we will need the following pullback

Q
⨿
N∞

∏
s∞ A

′

N∞ N∞

p

f

π

s∞

(6.7)

192

6.3. Constructing Recursive Types as Polynomials

(3,a0)

(∞,a1)

(15,a2)

...

(2, 3, a0)

(∞, ∞, a1)

(14, 15, a2)

f (3,b0)

(2,b1)

(1,b2)

(0,⊥)

(2, 3, b0)

(1, 2, b1)

(0, 1, b2)

3 π

2

p

π

1

p

π

0

p

π

(∞, c0)

(∞, c1)

(∞, c2)

...

(∞, ∞, c0)

(∞, ∞, c1)

(∞, ∞, c2)

∞ π

Figure 6.4.: Intermediate trees constructed in Thm. 6.3.6; only the last two are valid

where π is the evident coproduct projection. Now we have

F (A,X) =
∏

s∞
A′ ×N∞

∏
s∞

X

�
⨿

π
π ∗

(∏
s∞

X
)

× represented by
⨿

�
⨿

π

∏
f
p∗X Beck-Chevalley with (6.7)

= JΓK(X),

where Γ is the polynomial given by

Γ = N∞
p
←− Q

f
−→

⨿
N∞

∏
s∞

A′
π−→ N∞.

To be able to picture trees in Mf and in the final coalgebra of JΓK, we note that

Q �
{
(k, (n,v)) ∈ N∞ ×

⨿
N∞

∏
s∞

A′
��� s∞k = n

}
.

Moreover, we denote a pair (n,v) ∈ ⨿
N∞

∏
s∞ A

′ by (n,a) if there in a k ∈ N∞ with n = s∞ k and
v k = a, or if n = 0 by (0,⊥).

Recall that we construct in Thm. 6.3.6 the final coalgebra of JΓK as a subobject of Mf . In Figure 6.4,
we present three trees that are elements of Mf , where only the second and third are actually selected
by the equaliser taken in Thm. 6.3.6. The matching of indices, which is used to form the equaliser,
is indicated in the second tree. This tree is then an element of PStr(A)3, whereas the third is in
PStr(A)∞. ◀

Both in [AAG05, Prop. 4.1] and [vdBdM07, Cor. 4.3] it is shown that a final coalgebra for a
polynomial functor can be constructed in a Martin-Löf category from an initial algebra and an
equaliser. This is closely related the result of Barr [Bar93], which states that a final coalgebra of an
(accessible, ω-continuous) functor F with F∅ , ∅ is the Cauchy completion of its initial algebra. We
can combine this with Theorem 6.3.6 to obtain final coalgebras for dependent polynomial functors
from initial algebras of (non-dependent) polynomial functors. This gives us already the possibility

193

Chapter 6. Categorical Logic Based on Inductive-Coinductive Types

of interpreting non-nested fixed points in any Martin-Löf category. So it remains to show that we
can interpret nested fixed points.

We proceed as follows. Suppose that we are given a parameterised signature (F ,u) with F : C ×
B/I → D, C =

∏m
i=1 B/Ki , D =

∏n
i=1 B/Ji , and ui : Ji → I . Then we need to show that µ(F̂ , Ĝu)

and ν(F̂ , Ĝu) are both polynomial functors of type C→ B/I . To do so, we first use Thm. 6.3.1, thus
we have to show that for each A ∈ C the intial algebra respectively final coalgebra of the functors

H1(A,−) =
⨿
u1

◦ F1(A,−) +I · · ·+I

⨿
un

◦ Fn(A,−)

H2(A,−) =
∏
u1

◦ F1(A,−) ×I · · · ×I
∏
un

◦ Fn(A,−)

give rise to polynomial functors, assuming that F1, . . . , Fn are polynomial functors. Let K be given
by K = K1 + · · · + Kn , then one can use the equivalence C × B/I ≃ B/K+I to show that there are
polynomial functors H ′k : B/K+I → B/I that are naturally isomorphic to C × B/I ≃ B/K+I

Hk−−→ B/I ,
see [Abb03, Prop. 4.4.2]. Such functors H ′k are captured by the following definition.

Definition 6.3.8. We call a dependent polynomial parametric, if it is of the form

K + I B A I .
s f t

As we have seen, such polynomials represent polynomial functors B/K × B/I → B/I and allow
us speak about nested fixed points. What thus remains is that fixed points of parametric dependent
polynomial functors are again dependent polynomial functors. Towards this, we first bring parametric
polynomials into a convenient form.

Lemma 6.3.9. Let

Γ : K + I B A I ,
s f t

be a parametric polynomial. Then there are two polynomials

K B1

A I

I B2

s1
f1

t

s2
f2

such that for all Z ∈ B/K+I ⨿
t

(∏
f1
s∗1 κ

∗
1 Z ×A

∏
f2
s∗2 κ

∗
2 Z

)
� JΓK(Z),

where κ1 : K → K + I and κ2 : I → K + I .

Proof. We form the pullbacks

B1 K

B K + I

s1

p1 κ1

s

B2 I

B K + I

s2

p2 κ2

s

194

6.3. Constructing Recursive Types as Polynomials

and put fi = f ◦ pi . Then, using the abbreviations X = κ∗1 Z and Y = κ∗2 Z , we have⨿
t

(∏
f1
s∗1X ×A

∏
f2
s∗2 Y

)
�

⨿
t

(∏
f

∏
p1
s∗1X ×A

∏
f

∏
p2
s∗2 Y

) ∏
f ◦pi
�

∏
f

∏
pi

�
⨿

t

(∏
f
s∗

∏
κ1

X ×A
∏

f
s∗

∏
κ2
Y
)

Beck-Chevalley

�
⨿

t

∏
f
s∗

(∏
κ1

X ×K+I

∏
κ2
Y
)

fibred product

�
⨿

t

∏
f
s∗

(∏
κ1
κ∗1 Z ×K+I

∏
κ2
κ∗2 Z

)
Def. X ,Y

�
⨿

t

∏
f
s∗ Z Disjoint coprod.

= JFK(Z) □

We are now in the position to prove that initial algebras and final coalgebras of parametric
polynomial functors are again polynomial functors, the final step towards constructing recursive
types. The proof of this fact follows that for container [Abb03, Sec. 5.3-5.5] or for non-dependent
polynomials [GH04], except that we need to take care of the indices.

Theorem 6.3.10. Initial algebras and final coalgebras of parametric (dependent) polynomial functors
are again polynomial functors. More formally, let F : B/K+I → B/I be a parametric polynomial functor.
Then there are polynomial functors µF ,νF : B/K → B/I and natural transformations

α : F̂ (µF)⇒ µF and ξ : νF ⇒ F̂ (νF),

so that α is an initial algebra and ξ a final coalgebra for F̂ : [B/K,B/I]→ [B/K,B/I].

Proof. Suppose F is given by the parametric polynomial

Γ : K + I B A I .
s f t

Then, by Lemma 6.3.9, we obtain two polynomials

Γ1 : K B1

A I

Γ2 : I B2

s1
f1

t

s2
f2

that represent JΓK. Let H : B/K × B/I → B/I be the functor given by

H(X ,Y) B
⨿

t

(∏
f1
s∗1X ×A

∏
f2
s∗2 Y

)
. (6.8)

The goal is then to show that there is a polynomial functor G : B/K → B/I that carries the structure
of an initial algebra or final coalgebra, respectively.

195

Chapter 6. Categorical Logic Based on Inductive-Coinductive Types

As a first step, let us assume that such a G exists and is given by G � J∆K with

∆ : K Q P I .
x h y

Then we must have for each X ∈ B/K an isomorphism H(X ,G(X)) � G(X). We now want to
calculate, as in [Abb03, Sec. 5.3-5.4], how ∆ needs to be given.

The first step is to define y : P → I , an easy calculation shows that there must be an isomorphism

ψ : JΓ2K(y) �−→ y. (6.9)

So, analogously to [Abb03; GH04], we construct y as the carrier of an initial algebra or final coalgebra,
respectively, of JΓ2K, depending on whether G should be the carrier of an initial algebra or final
coalgebra.

To define h and x , we first introduce a few morphisms obtained from pullbacks. Their purpose
will become clear once we give the constraints introduced by the isomorphism H(X ,G(X)) � G(X).
First, we reindex y along s2 by means of the following pullback.

s∗2 P P

B2 I

s∗2 y

s2 y

y

s2

Next, we will use the pullback

U B2

∏
t
⨿

f2 s
∗
2 P A

pU2

pU1 f2
π1

from which we define a morphism γ : U → f ∗2
∏

f2 s
∗
2 P as in the following diagram, i.e., by using

the lifting property of the Cartesian morphism f2 (
∏

f2 s
∗
2 y).

U
∏

t
⨿

f2 s
∗
2 P

f ∗2
∏

f2 s
∗
2 P

∏
f2 s
∗
2 P

B2 A

pU1

γ

pU2

π2

f2 (
∏
f2 s

∗
2 y)

f ∗2 (
∏
f2 s

∗
2 y)

∏
f2 s

∗
2 y

f2

Finally, we use will use the counit ε : f ∗2
∏

f2 ⇒ Id of the adjunction f ∗2 ⊣
∏

f2 . With all this notation
set up, we demand there to be an isomorphism

ϕ : π ∗1(f1) +
⨿

pU1
(s2 y ◦ εs∗2 y ◦ γ)

∗(h)
�−→ ψ ∗(h), (6.10)

196

6.3. Constructing Recursive Types as Polynomials

where the binary coproduct is taken in B/∏
t
⨿
f2 s

∗
2 P . Since⨿

ψ

(
π ∗1(f1) +

⨿
pU1

(s2 y ◦ εs∗2 y ◦ γ)
∗
)

is a polynomial functor, we can construct, analogously to [Abb03], ϕ as initial dialgebra by using
Theorem 6.3.1.

The last ingredient to the polynomial ∆, which represents G, is the map x : Q → K . It can be
defined as the inductive extension of

χ : π ∗1(f1) +
⨿

pU1
(s2 y ◦ εs∗2 y ◦ γ)

∗(KQ)
�−→ ψ ∗(KQ)

χ = [s1,π2].

We thus have
x = [s1,x ◦ π2] ◦ ϕ−1. (6.11)

By using ψ and ϕ, we can now define mutually inverse maps

αX : H(X ,G(X)) G(X) : βX ,
�

where G = J∆K. In other words, we show that⨿
t

(∏
f1
s∗1X ×A

∏
f2
s∗2

⨿
y

∏
h
x∗X

)
�

⨿
y

∏
h
x∗X

by means of αX and βX . To simplify the presentation, we give these maps in the internal language
of B→ and annotate steps with types. Thus, let i : I and define αX by

αX ,i

(
a : A,u :

(∏
f1
s∗1X

)
a
,v :

(∏
f2
s∗2

⨿
y

∏
h
x∗X

)
a

���� t a = i

)
= (p,w)

where
(p : P | y p = i) = ψ (a,π1 ◦v)
w : (

∏
h x
∗X)p

w (q : h | h q = p) = [w1,w2](ϕ
−1 q)

w1 : (π
∗
1(f1))(a,π1◦v) → (x∗X)(a,π1◦v)

w1 (b1 : B1 | f1 b1 = a) = u b1

w2 : ((s2 y ◦ εs∗2 y ◦ γ)
∗(h))(a,π1◦v) → (x∗X)(a,π1◦v)

w2 ((b2 : B2,a
′ : A, z : (

∏
f2 s
∗
2 y)a′),q

′ : Q

| f2 b2 = a′ = a and z = π1 ◦v and h q′ = z b2 = π1(v b2))

= π2 (v b2) q
′.

Note that p is in the correct fibre, since

y p = y (ψ (a,u ′)) = (
⨿

t
∏

f2 s
∗
2 y)(a,u

′) = t a = i,

197

Chapter 6. Categorical Logic Based on Inductive-Coinductive Types

and that w1 and w2 are well-defined because

X (u b1) = s1 b1 = [s1,x ◦ π2] (κ1 b1) = [s1,x ◦ π2] (ϕ−1 q) = x q

and

X (π2 (v b2) q
′) = x q′ = [s1,x ◦ π2] (κ2 ((b2,a′, z),q′)) = [s1,x ◦ π2] (ϕ−1 q) = x q.

Dually, βX is given for i : I by

βX ,i

(
p : P ,w :

(∏
h
x∗X

)
p

���� y p = i

)
= (a,u,v)

where(
a : A,v ′ :

(∏
f2 s
∗
2 y

)
a

��� t a = i
)
= ψ−1i p

u :
(∏

f1 s
∗
1X

)
a

u (b1 : B1 | f1 b1 = a) = w (ϕ(a,v ′) (κ1 b1))

v :
(∏

f2 s
∗
2

⨿
y
∏

h x
∗X

)
a

v (b2 : B2 | f2 b2 = a) = (v ′ b2,w
′)

where
w ′ (q : Q | h q = v ′ b2) = w (ϕ(a,v ′) (κ2 (b2,a,v

′,q))).

Let us also check that the indices for βX match up. For well-definedness of u we have

h (ϕ(a,v ′) (κ1 b1)) = ψi (a,v
′) = ψi (ψ

−1
i p) = p,

thus the application w (ϕ(a,v ′) (κ1 b1)) is well-defined, and we have

X (w (ϕ (κ1 b1))) = x (ϕ (κ1 b1)) = [s1,π2] (ϕ
−1 (ϕ (κ1 b1))) = [s1,π2] (κ1 b1) = s1 b1,

hence u : (
∏

f1 s
∗
1X)a . For v we note that

y (v ′ b2) = s2 b2,

thus v ′ b2 : (s∗2 y)b2 . Moreover, we have

h (ϕ(a,v ′) (κ2 (b2,a,v
′,q))) = ψi (a,v

′) = p,

so that the application w (ϕ(a,v ′) (κ2 (b2,a,v
′,q))) is well-defined. Finally, we find

X (w (ϕ (κ2 (b2,a,v
′,q)))) = x (ϕ (κ2(b,a,v

′,q)))

= [s1,x] (ϕ
−1 (ϕ (κ2(b,a,v

′,q))))

= [s1,x] (κ2(b,a,v
′,q))

= x q.

198

6.4. Internal Reasoning Principles

So w : (
∏

h x
∗X)v ′ b2 and, putting this together with v ′ b2 : (s∗2 y)b2 , we have that v has the claimed

type. Hence βX is well-defined.
It is now also straightforward to check that αX and βX are mutually inverse natural transformations.

Finally, to show that G(X) is the initial algebra (resp. final coalgebra) for H(X ,−) follows the same
line of argument as [Abb03]. □

Summing up, we obtain the following result.

Corollary 6.3.11. All recursive types for strictly positive signatures can be constructed in the Martin-Löf
category B.

6.4. Internal Reasoning Principles

In the introduction we have seen that first-order intuitionistic logic arises through the Brouwer-
Heyting-Kolmogorov interpretation in dependent type theories. The comprehension categories
(Definition 6.2.16) allowed us to give a category theoretical account for dependent types, and in
Theorem 6.2.11 we saw that that important connectives, like conjunction and disjunction, universal
and existential quantification, falsum etc., are definable as recursive types in a µPCC. Thus, we are
able to encode first-order formulas in a µPCC. This raises the question, under what conditions we
are able to prove formulas in a µPCC by appealing to induction and coinduction principles for truly
recursive types like natural numbers or streams.

More specifically, given an inductive type, like the natural numbers, we want to prove propositions
on that type by induction. On the other hand, for coinductive types, like streams, we would like to
prove identities between elements of that type by establishing a bisimulation relation. Both proof
methods are well-understood for fibrations L : L → D, where L is to be thought of as a logic with
free variables ranging over recursive types in D, see the work of Hermida and Jacobs [HJ97], and
Fumex et al. [FGJ11]. However, the way to think about dependent types is that these simultaneously
define types and a logic for these types, so that we can actually construct L for a µPCC P : E→ B.
It is then this logic, in which we want to derive induction and coinduction principles.

This section is structured as follows. First, we construct said logic over P , and give a weak induction
principle within this logic that can be proved without further assumptions. Then we instantiate, under
additional assumptions, the framework for “fibred” induction and coinduction, defined in [FGJ11].
It turns out that the crucial assumption for obtaining induction is a strong elimination principle for
coproducts. Next, we show that strong elimination is equivalent to dependent recursion, where the
latter seems to be a more natural requirement. Finally, we derive a simple coinduction principle for
µPCCs, which holds without any further assumptions. This last fact tells us that µPCC model, as
expected, extensional rather than intensional type theories.

6.4.1. Internal Logic

We begin by defining a notion of predicates ϕ over types in a µPCC P : E→ B. For a type A, these
are given as objects in P{A} , that is, types depending on A. This situation is captured by the pullback

199

Chapter 6. Categorical Logic Based on Inductive-Coinductive Types

(change of base) below.
L E

E B

B

PL

L P

P

{−}

We call L : L → E the internal logic of P . Explicitly, objects in L are pairs (A,ϕ) with ϕ ∈ P{A}
and morphisms (A,ϕ) → (B,ψ) are pairs (f ,д) of morphisms in E with f : A→ B, д : ϕ → ψ and
{ f } = Pд. The internal logic fibration L restricts for each I ∈ B to a fibration LI : PLI → PI , where
PLI is the fibre of P ◦ L, the left side in the diagram, above I . The reindexing functor u# : PLJ → PLI
for u : I → J in B is then given by

u#(A,ϕ) = (u∗A, {u A}∗ ϕ) u#(idA, f) = (idu∗ A, {u A}∗ f)
where u A : u∗A→ A is the Cartesian lifting of u, see Def. 2.4.1.

As we have seen in Theorem 6.2.11, every µPCC P has coproducts
⨿

f : PI → PJ along all f : I → J
in B as left adjoint to f ∗, in other words, P is a bifibration, see [Jac99, Lem. 9.1.2]. We use these
coproducts mostly to turn a predicate over A into a type in PI , where I = PA. In this case, we use
the notation

⨿
A B

⨿
πA for the projection πA : {A} → I given in Definition 6.2.16. Crucially, these

projections come, by their definition, in the form of a natural transformation π : {−} ⇒ P . This
allows us to define a fibrewise comprehension-like functor {−}I : PLI → PI for LI .
Lemma 6.4.1. For each I ∈ B, we have the following.

1. LI : PLI → PI is a bifibration, given for f : A→ B in PI by
⨿

f (A,ϕ) =
(
B,

⨿
{f } ϕ

)
.

2. LI : PLI → PI has a right adjoint 1I
(−) : PI → PLI , given by 1IA =

(
A, 1{A}

)
.

3. There is a functor {−}I : PLI → PI , given by {(A,ϕ)}I = ⨿
A ϕ, with projections π I : {−}I ⇒ LI .

Proof. 1. (Bi)fibrations are preserved under change of base, see for example [Jac99, Lem. 1.51
and Lem. 9.1.2].

2. Fibred final objects are preserved under change of base [Jac99, Lem 1.8.4], hence we get a final
object functor 1(−) : E→ L. Since this is a fibred functor, we can restrict it to 1I

(−) : PI → PLI .

3. To define the action of {−}I on morphisms (f ,д) : (A,ϕ) → (B,ψ), we use that there is a
unique mediating morphism h : ϕ → { f }∗ψ above the identity with { f }ψ ◦ h = д as in the
following diagram, see Definition 2.4.1.

ϕ

{ f }∗ψ ψ E

{A}

{A} {B} B

д

!h

{f }ψ

PPд

id
{f }=Pд

200

6.4. Internal Reasoning Principles

Note, moreover, that there is a canonical natural transformation β :
⨿

A { f }∗ ⇒ P(f)∗
⨿

B ,
as used in the Beck-Chevalley condition, which arises because of the identity P(f) ◦ πA =
πB ◦ { f }: ⨿

A
{ f }∗ ⇒

⨿
A
{ f }∗ π ∗B

⨿
B

�
=⇒

⨿
A
π ∗A (P f)

∗
⨿

B
⇒ (P f)∗

⨿
B

Then we can put

{(f ,д})I =
⨿

A
ϕ

⨿
A h−−−−→

⨿
A
{ f }∗ψ

βψ−−→ (P f)∗
(⨿

B
ψ
)
�−→

⨿
B
ψ ,

using the isomorphism P(f)∗ = id∗I � Id. To check that this indeed gives rise to a functor, one
needs to check that {id(A,ϕ)}I = id{(A,ϕ)}I and {(f2,д2) ◦ (f1,д1)}I = {(f2,д2)}I ◦ {(f1,д1)}I .
Both follow, with enough patience, from the coherence conditions of a cloven fibration and
of the adjunction

⨿
A ⊣ π ∗A, naturality of the involved morphism, and the uniqueness of h.

We demonstrate this for {id(A,ϕ)}I = {(idA, idϕ)}I and id{(A,ϕ)}I = id⨿
A ϕ in the following

diagram, in which {(idA, idϕ)}I is the outer, upper triangle.⨿
A ϕ

⨿
A {id}∗ ϕ

⨿
A id∗ π ∗A

⨿
A ϕ

⨿
A π
∗
A id∗

⨿
A ϕ

id∗
⨿

A ϕ

⨿
A ϕ

⨿
A π
∗
A
⨿

A ϕ

id∗
⨿

A ϕ

⨿
A ϕ

⨿
A h

1

⨿
A id∗ ηϕ

Nat. ρ−1

(
⨿
A ρ−1 π ∗A

⨿
A)ϕ (

⨿
A µid,πA

⨿
A)ϕ

2

(
⨿
A π ∗A ρ

−1 ⨿
A)ϕ

εid∗⨿A ϕ

3

⨿
A ρ−1ϕ ⨿

A ηϕ

ε⨿A ϕ
⨿

A ⊣ π ∗A

Naturality ε

ρ−1⨿
A ϕ

The triangle 1 commutes because ρ is defined as h in this case, thus
⨿

A ρ
−1
ϕ ◦

⨿
A h = id

by functoriality of
⨿

A. The parts 2 and 3 both commute by the coherence conditions of
a cloven fibration. For the other parts, the reason for commutativity have been indicated in
the diagram.
The projections are obtained as follows. For each A, we can define a morphism prjA : 1{A} →
π ∗AA as the unique map mediating the counit εA : 1{A} → A of 1 ⊣ {−} and the Cartesian
lifting πAA : π ∗AA→ A. This gives a map

ϕ
!ϕ−→ 1{A}

prjA−−−→ π ∗AA,

201

Chapter 6. Categorical Logic Based on Inductive-Coinductive Types

hence a unique morphism π Iϕ :
⨿

A ϕ → A. Naturality of π I follows from final objects
being fibred, naturality of the involved morphism, the coherence conditions of

⨿
B ⊣ π ∗B and

uniqueness of Cartesian extensions. □

6.4.2. Induction and Dependent Iteration
We are now going to study dependent iteration and induction principles for inductive types in the
internal logic we introduced in Section 6.4.1. First, we derive a weak dependent iteration principle
that can be defined in any µPCC. Second, we show that we can obtain a proper dependent iteration,
or induction, principle if we have strong sums. Since the second projection of strong sums can be
defined by using dependent iteration, we arrive at the conclusion that having strong sums is the
equivalent to having dependent iteration in a µPCC.

Before we get into the technical details, let us first discuss what dependent iteration is. As a starting
point, let us consider the type Nat of natural numbers, which is determined by the constructors
0 : Nat and suc : Nat→ Nat. The usual iterations principle would read something like the following
rule

⊢ X : Type Γ ⊢ x0 : X Γ ⊢ s : X → X

Γ ⊢ iter(x0, s) : Nat→ X

together with the equations

iter(x0, s) 0 = x0 and iter(x0, s) (suc n) = s (iter(x0, s) n).

That is to say, given a type X , a starting value x0 and a successor map s , we can construct for each
natural number n an element in X by iterating s n-times on x0. Dependent iteration means now
that the type X may vary with (that is, depends on) the input value. This is a direct adaptation
of the induction principle to the type theoretic setting.56 Of course, we have to extend the input
accordingly, which leads us to the following rule.

n : Nat ⊢ X [n] : Type Γ ⊢ x0 : X [0] Γ,k : Nat ⊢ s : X [k]→ X [suc k]
Γ,n : Nat ⊢ iter(x0, s) n : X [n]

The equations that specify the behaviour of dependent iteration have of course be changed accord-
ingly:

iter(x0, s) 0 = x0 and iter(x0, s) (suc n) = s[n] (iter(x0, s) n).

Thus far, we have explained dependent iteration only for a special type and also by using type
theoretic syntax. So what is the general, category theoretical picture behind dependent iteration?
Suppose that (A,α) an initial (F ,Gu)-dialgebra in PI for a signature (F ,u) with F : PI → C. First
of all, we need a type that depends on the elements of A, that is, we need a predicate over A. In
other words, we suppose to be given (A,ϕ) ∈ PLI . The usual way to describe dependent iteration or
induction, would be to define liftings F and Gu to functors PLI → D, where D lifts C to predicates
over the correct indices, just as PI is lifted to PLI . Dependent iteration arises then, if for any
dialgebra F (A,ϕ) → Gu(A,ϕ) there is a morphism 1{A} → (A,ϕ) in PLI . Note that 1{A} models
the full predicate on A and thus expresses that all elements of A are present in ϕ. This is the result
we will have at the end of this section, but it requires strong coproducts to prove. So before that,
we will establish a weaker dependent iteration principle that works without strong coproducts. The

202

6.4. Internal Reasoning Principles

idea is that we can track dependencies using sums, that is, given (A,ϕ) ∈ PLI , we can pack this
predicate to {(A,ϕ)}I = ⨿

A ϕ ∈ PI , see Lemma 6.4.1. This trick allows us to avoid having to move
to dialgebras on predicates and instead formulate dependent iteration simply on data types, as the
following proposition shows.

Proposition 6.4.2. Let (F ,u) be a signature with F : PI → C, (A,α) an initial (F ,Gu)-dialgebra, and
d : F {(A,ϕ)}I → Gu {(A,ϕ)}I , such that π Iϕ : {(A,ϕ)}I → A is a homomorphism. Then there is a unique
homomorphism h : (A,α)→ ({(A,ϕ)}I ,d) with π Iϕ ◦ h = idA as in the following diagrams.

F (A) F {(A,ϕ)}I F (A)

Gu(A) Gu {(A,ϕ)}I Gu(A)

α

Fh

d

Fπ Iϕ

α

Guh Guπ Iϕ

A {(A,ϕ)}I

A

!h

π Iϕ

Proof. The homomorphism h is the inductive extension of d and, since π Iϕ ◦ h is an endomorphism
on α , it must be the identity by uniqueness of inductive extensions. □

Note that the condition π Iϕ being a homomorphism states that d only changes the element of ϕ,
but preserves the elements of A. The morphism h maps the elements of A to their corresponding
elements of ϕ, and the assertion π Iϕ ◦ h = id tells us that h keeps the index from A intact. Let
us demonstrate the dependent iteration principle by deriving the classical induction principle for
vectors.

Example 6.4.3. Recall that we defined vectors as the initial (F ,Gu)-dialgebra with F = ⟨1,KA × Id⟩
and Gu = ⟨z∗, s∗⟩, giving rise to the constructor α = (nil, cons). In this case, the condition that πNϕ
is a homomorphism for a map d = (d1,d2) becomes

d1 : 1→ z∗
(⨿

VecA
(ϕ)

)
z∗

(
πNϕ

)
◦ d1 = nil

d2 : A ×
⨿

VecA
(ϕ)→ s∗

(⨿
VecA

(ϕ)
)

s∗
(
πNϕ

)
◦ d2 = cons ◦

(
idA × πNϕ

)
,

which are, modulo the use of coproducts, the usual condition for induction base and step.
Let us derive from Proposition 6.4.2 an induction principle for predicates on vectors that have

only trivial proofs for membership. More precisely, let Ψ ⊑ VecA be a predicate in SetN, where
⊑ denotes the index-wise set inclusion. We can derive from Ψ a predicate ϕ ∈ Set{Vec A} in the
internal logic of Fam(Set) by defining

ϕ(n,v) =

{
1, v ∈ Ψn

∅, otherwise
.

Our goal is now to derive the following induction principle for Ψ by using Proposition 6.4.2 on ϕ.

nil ∗ ∈ Ψ0 ∀n ∈ N. ∀a ∈ A. ∀v ∈ (Vec A)n .v ∈ Ψn =⇒ cons a v ∈ Ψn+1

VecA ⊑ Ψ
(6.12)

The premises of the rule (6.12) allow us to define maps d1 and d2 as above by putting

d1(⋆) B (nil⋆,⋆) d2(a, (v,⋆)) B (cons a v,⋆).

203

Chapter 6. Categorical Logic Based on Inductive-Coinductive Types

That the preconditions of Proposition 6.4.2 hold with respect to these maps is clear, thus we obtain a
map h : VecA→⨿

VecA φ with h(v) = (v,⋆). Hence for each n ∈ N and v ∈ (VecA)n , we have that
⋆ ∈ ϕ(n,v) and so v ∈ Ψn . This gives us the conclusion VecA ⊑ Ψ of the induction rule (6.12). ◀

Note that in the last example we have used only a special case of the dependent iteration principle
that we derived in Proposition 6.4.2: each element of the family ϕ was defined to be either the empty
set or a singleton. Such definitions are usually called proof irrelevant because the truth of ϕv is not
witnessed by an informative proof. Thus, we only get to know that ϕv holds but not why. In a
type theoretic setting, we would usually define ϕv to be the set of all proofs that witness that ϕ
holds for v , which will be empty if ϕ does not hold for v . This explains the reason why we called
the content of Proposition 6.4.2 a weak dependent iteration principle: It allows us to prove that a
predicate ϕ holds but we cannot extract the proof for this fact, thus it is fairly useless as a general
iteration principle.

To see this, suppose for instance that we define an inductive type Elem ∈ P{VecA} that describes
positions in vectors. We can use Proposition 6.4.2 only to define maps h : VecA → ⨿

VecA Elem.
However, we cannot extract the actual element from the vector, as we do not have access to Elem
itself.

The principle given in Proposition 6.4.2 has another shortcoming: We can use it only on initial
dialgebras, since we otherwise cannot construct the homomorphism with the required property. This
and the problem described above can be fixed if we assume strong coproducts, see Definition 6.3.2,
as we show in the following. In a first step towards this, let us record that if the coproducts
in a given µPCC are strong, then its internal logic fibration is a closed comprehension category
(CCompC, Definition 6.3.2) as well. This is proved for a general CCompC, which an µPCC with
strong coproducts is, in [Jac91, Prop. 4.4.10].

Lemma 6.4.4. If P admits strong coproducts and full comprehension, then L : L → E is a CCompC and
in particular we have 1I

(−) ⊣ {−}
I .

Strong coproducts also allow us do define the index projection fstϕ :
⨿

A ϕ → A as a morphism
in PI in a simple way. First, note that the following diagram commutes

{⨿A ϕ} {ϕ} {A}

{π ∗A
⨿

A ϕ}

I I

κ−1

π⨿
A ϕ

πϕ

{ηϕ }
πA=P(πA (

⨿
A ϕ)){πA (

⨿
A ϕ)} ππ ∗A

⨿
A ϕ

by definition of κ and the unit ηϕ being vertical (i.e., P(ηϕ) = id{A}). We thus obtain from fullness
of the CCU P a unique map fstϕ :

⨿
A ϕ → A with {fstϕ } = πϕ ◦κ−1 and P(fstϕ) = idI . Note that in

the case ϕ = 1{A} the map fst1{A} :
⨿

A 1{A} → A is an isomorphism by P being a full comprehension
category, see [Jac99, Exercise 10.5.4(iii)].

Combining Proposition 6.4.2 with Lem. 6.4.4 we obtain a proper induction principle for initial
dialgebras.

204

6.4. Internal Reasoning Principles

Proposition 6.4.5. Let P : E→ B be a µPCC with strong coproducts, (F ,u) a signature with F : PI → C
and (A,α) an initial (F ,Gu)-dialgebra. Then we have functors

F̈ , G̈u : PLI → C F̈ B F ◦ {−}I G̈u B Gu ◦ {−}I ,

such that the dialgebra α̈ : F̈
(
1IA

)
→ G̈u

(
1IA

)
given by

F̈
(
1IA

)
= F

(⨿
A
1{A}

)
�−→ FA

α−→ GuA
�−→ Gu

(⨿
A
1{A}

)
= G̈u

(
1IA

)
,

is initial among those
(
F̈ , G̈u

)
-dialgebras ((A,ϕ),d) for which π Iϕ : {(A,ϕ)}I → A is a (F ,Gu)-dialgebra

homomorphism. That is to say, there is a unique h : 1IA → (A,ϕ), such that the following diagram com-
mutes.

F̈
(
1IA

)
F̈ (A,ϕ) = F {(A,ϕ)}I F (A)

G̈u
(
1IA

)
G̈u(A,ϕ) = Gu {(A,ϕ)}I Gu(A)

α̈

F̈ h

d

Fπ Iϕ

α

G̈uh Guπ Iϕ

Proof. Let α̈ = Gu(fst−1) ◦ α ◦ F (fst) be the indicated (F̈ , G̈u)-dialgebra, where fst :
⨿

A 1{A} → A is
the projection that we discussed above. We then have

Gu (fst) ◦ α̈ = Gu (fst) ◦Gu(fst−1) ◦ α ◦ F (fst) = α ◦ F (fst) ,

thus fst is a homomorphism as indicated in the left square of (6.13) below. Next, let d be a dialgebra
for which π Iϕ is a homomorphism. From Proposition 6.4.2 we obtain a unique h : A → {(A,ϕ)}I ,
making the right square of the following diagram commute.

F̈
(
1IA

)
F (A) F̈ (A,ϕ)

G̈u
(
1IA

)
Gu(A) G̈u(A,ϕ)

α̈

F (fst)

α

Fh

d

Gu (fst) Guh

(6.13)

By fullness, see Lemma 6.4.4, we then obtain a unique ȟ : 1IA → (A,ϕ) with {ȟ}I = h ◦ π I and
PL(ȟ) = idA, since the following diagram commutes by Proposition 6.4.2.

{1IA}I A {A,ϕ}I

A A

π I

π I h

π I

Let us now show that ȟ is a homomorphism α̈ → d , using that π I1{A} = fst, see proof of Lemma 6.4.1.3.

d ◦ F̈
(
ȟ
)
= d ◦ F

(
{ȟ}I

)
Def. of F̈

= d ◦ F
(
h ◦ π I

)
Def. of ȟ

= Gu
(
h ◦ π I

)
◦ α̈ By (6.13) and using π I1{A} = fst

= G̈u
(
ȟ
)
◦ α̈ Def. of ȟ and G̈u

205

Chapter 6. Categorical Logic Based on Inductive-Coinductive Types

Uniqueness of ȟ is immediate by uniqueness of h and by the comprehension being faithful. Hence
α̈ is initial indeed. □

Now that we have obtained a dependent iteration (or induction) principle from uniqueness of
inductive extensions and strong coproducts, one may ask if we can also go the other way round.
That is to say, can we state a dependent iteration principle without appealing to strong coproducts
and then derive the existence of an inverse for the coproduct injection from there? We will answer
the first question affirmatively here, but leave the second to the syntactic development in Chapter 7.
The reason for deferring the second part is that the answer to the first question is unfortunately very
technical and should merely be seen as a possibility result, not a practically usable result. One can
formulate the result differently as to obtain a better usable result but that requires us to manually
define a lifting for the strictly positive type functors in Definition 6.2.9. This is certainly possible
but then we would do the same again in the syntactic development, thereby repeating a lot of work.
Cutting a long story short, we will now adapt the development of an induction principle by Fumex
et al. [FGJ11] to our setting of dependent iteration for inductive types without appealing to strong
coproducts.

In [FGJ11], Fumex et al. define a generic lifting for functors to predicates to be able to formulate
an induction principle. A remarkable fact of this lifting is that it does not use any further properties
of the functor that it lifts, only the fact that comprehension is right adjoint to the final object functor.
However, in our case we would thus need for each I ∈ B that {−}I is right adjoint to 1I

(−), which
in turn needs that the coproducts in the fibration P are strong, see Lemma 6.4.4. Since we want to
avoid requiring that, we restate the result in [GJF12, Thm. 4.14] under weaker conditions, namely
without using the full adjunction 1I

(−) ⊣ {−}
I .

Lemma 6.4.6. If P : E→ B is a µPCC, then there are functors LI : PLI → P→I and U I : P→I → PLI , of
which LI is given by LI (A,ϕ) = π Iϕ :

⨿
A ϕ → A. Moreover, given a functor F : PI → PJ , then there is a

functor F→ : P→I → P→J defined by F→(f : A→ B) = F f : FA→ FB. Out of these,U I and F→ preserve
final objects and, if P has full comprehension, then also LI preserves final objects.

Proof. Functoriality of LI follows readily from π I being a natural transformation. U I is given, as
in [GJF12], by

U I (f : A→ B) =
⨿

f
(1IA) =

⨿
f
(A, 1{A}) =

(
B,

⨿
{f }

1{A}
)
,

where the coproduct
⨿

f is taken in LI (Lemma 6.4.1) The definition of U I on morphisms is slightly
more complicated, see loc. cit., we note however that it only uses properties of cartesian liftings.
Finally, F→ is the canonical lifting of a functor to arrow categories.

The proof that U I preserves final objects is given by Ghani et al. [GJF12, Thm. 4.14], and the
preservation of final objects by F→ is a routine proof. That LI preserves final objects means that
it maps 1IA =

(
A, 1{A}

)
to an isomorphism. This is indeed the case here, as, by fullness, the map

π Iϕ :
⨿

A 1{A} → A is an isomorphism, see [Jac99, Ex. 10.5.4]. The rest of the proof in [GJF12] can
be preserved. □

As in [FGJ11], we can combine these functors into a lifting of functors F : PI → PJ to predicates.

206

6.4. Internal Reasoning Principles

Definition 6.4.7. The canonical predicate lifting of a functor F : PI → PJ is given by

F B PLI
LI−−→ P→I

F→−−→ P→J
U J

−−→ PLJ .

This extends to a canonical predicate lifting of a signature (F ,u) with F : PI →
∏

k=1, ...,n PJk to (F ,u)

with F : PLI →
∏

k=1, ...,n PLJk by putting

Fk B PLI
LI−−→ P→I

F→k−−→ P→Jk
U Jk
−−−→ PLJk .

Note that the functor Gu associated to this signature is then given by

Gu = ⟨u#
1, . . . ,u

#
n⟩ : PI →

∏n

k=1
PLJk ,

where the reindexing is now taken in the internal logic L.

The liftings F and Gu preserve fibred final objects by Lem. 6.4.6 and by reindexing preserving
fibred structure, respectively. This gives us the following important property of the canonical liftings,
which enables us to express a dependent iteration principle.

Lemma 6.4.8. The canonical predicate lifting of a signature (F ,u) is truth-preserving, in the sense that

F ◦ 1I(−) �
(
n∏

k=1

1Jk
(−)

)
◦ F and Gu ◦ 1I(−) �

(
n∏

k=1

1Jk
(−)

)
◦Gu . □

Let us briefly discuss what shape the dialgebras for these lifted functors take in Fam(Set).

Example 6.4.9. Recall that an object in PLI is a pair (A,ϕ) with ϕ ∈ P{A} . Let us first spell out
how F and Gu act component-wise on such objects.

Fk (A,ϕ) = U Jk F→k L
I (A,ϕ)

= U Jk F→k

(
fstϕ :

⨿
A
ϕ → A

)
= U Jk

(
Fk (fstϕ) : Fk

(⨿
A
ϕ
)
→ FkA

)
=

(
FkA,

⨿
{Fk (fstϕ)}

1{Fk (⨿A ϕ)}

)
and

Gu,k (A,ϕ) = u#
k (A,ϕ)

=
(
u∗k A, {uk A}

∗ ϕ
)

= (Gu,kA, {uk A}∗ ϕ)

A morphism r : F (A,ϕ)→ Gu(A,ϕ) in
∏n

k=1 PLJk is now an n-tuple of pairs ((d1,b1), . . . , (dn ,bn)),
such that (d1, . . . ,dn) : FA→ GuA is an (F ,Gu)-dialgebra, and each bk is a morphism

bk :
⨿
{Fk (fstϕ)}

1{Fk (⨿A ϕ)} → {uk A}
∗ ϕ

207

Chapter 6. Categorical Logic Based on Inductive-Coinductive Types

with {dk } = P(bk). Recall that comprehension in Fam(Set) was given by taking coproducts. Thus,
for A ∈ SetI we have {FkA} =

⨿
j ∈Jk (FkA)j and the elements of {FkA} are of the form (j,x) with

j ∈ Jk and x ∈ (FkA)j . Given ϕ ∈ Set{A} , we have for (j,x) ∈ {FkA}(⨿
{Fk (fstϕ)}

1{Fk (⨿A ϕ)}

)
(j,x)

=
⨿

(j′,y) ∈ {Fk (
⨿
A ϕ)}

j′=j and Fk (fstϕ)j (y) = x

1 �
⨿

y ∈ Fk (
⨿
A ϕ)j

Fk (fstϕ)j (y) = x

1,

from where we obtain that the components of bk have the following type.

(bk)(j,x) :
⨿

y ∈ Fk (
⨿
A ϕ)j

Fk (fstϕ)j (y) = x

1 −→ ϕ(uk (j),dk, j (x)).

Most importantly, note the use of dk in the codomain of bk , which comes from the fact that
{dk } = P(bk). The intuition is that each bk proves, from the induction hypothesis that ϕ holds at
the argument of the constructor dk , that ϕ holds at dk, j(x).

Let us spell this example further out in the case when A is the family of vectors of a set B. Thus,
we assume, see Example 6.2.4, that F : SetN → Set1 × SetN with F1 = K1 and F2 = !∗N(B) × Id, and
G(u1,u2) = ⟨z∗, s∗⟩. Recall that we called the constructors for vectors nil and cons, so that we now
put d1 = nil and d2 = cons. Given a predicate ϕ ∈ Set{List B } that we want to prove by induction, we
need to provide maps b1 and b2 of the following type. For b1, note that {F1(List B)} =

⨿
x ∈1 1 � 1,

so that there only needs to be a single map b1 of type

b1 :
⨿
y ∈ 1

id(y) =⋆

1 −→ ϕ(0,nil(⋆)).

For b2, we note that elements of {F2(List B)} are given by pairs (n, (b,x)) where n ∈ N and
(b,x) ∈ B × (List B n). Thus, we have

(b2)(n,(b,x)) :
⨿

(b,u) ∈ F2(
⨿

ListB ϕ)n
fstϕ (u) = x

1 −→ ϕ(n+1,consn(b,x)).

We can now read the types of b1 and b2 as follows. Firstly, the map b1 picks out a proof that ϕ
holds for the empty vector nil(⋆). Second, for a fixed n ∈ N, b ∈ B and x ∈ List B n, we can refine
the domain of (b2)(n,(b,x)) further. Note that u ∈ (⨿ListB ϕ)n is a pair (x ′,p), where x ′ ∈ List B n and
p ∈ ϕ(n,x ′). The constraint that fstϕ (u) = x ensures then that x ′ = x . In other words, the domain of
b2 consists essentially of all proofs of ϕ(n,x). These observations allow us to rewrite the type of b2
to the following.

(b2)(n,(b,x)) : ϕ(n,x) → ϕ(n+1,consn(b,x))

In this form, we recognise immediately the assumptions of the expected induction scheme for vectors,
if we use a proof-irrelevant ϕ as in Example 6.4.3.

ϕ(0,nil(⋆)) ∀n ∈ N. ∀b ∈ B. ∀x ∈ List B n.ϕ(n,x) → ϕ(n+1,consn(b,x))

∀n ∈ N. ∀x ∈ List B n.ϕ(n,x)

208

6.4. Internal Reasoning Principles

We will discuss the case for a predicate ϕ that is not defined to be proof-irrelevant in Example 6.4.11.
◀

What remains is to define dependent iteration using the canonical predicate lifting.

Definition 6.4.10. There is a functor

DiAlg(1) : DiAlg(F ,Gu)→ DiAlg(F ,Gu)

given on objects d : FX → GuX by

DiAlg(1)(d) = F
(
1IX

)
�

n∏
k=1

1JkF (X)

∏n
k=1

1Jkd−−−−−−−−→
n∏

k=1

1JkGu (X)
� Gu

(
1IX

)
,

using that the canonical lifting is truth-preserving, see Lemma 6.4.8. We say that a µPCC P : E→ B
admits dependent iteration, if DiAlg(1) preserves initial dialgebras, cf. [HJ97]. ◀

Let us explicate this form of dependent iteration for vectors, thereby continuing Example 6.4.9.

Example 6.4.11. Recall that for a predicate ϕ ∈ Set{List B } we were able to reduce the conditions
on a dialgebra r : F (List B,ϕ)→ Gu(List B,ϕ) with r = ((nil,b1), (cons,b2)) to

b1 : 1→ ϕ(0,nil(⋆)) and (b2)(n,(b,x)) : ϕ(n,x) → ϕ(n+1,consn(b,x)).

If P happens to admit dependent iteration, then there is a unique homomorphism h : 1IList B →
(List B,ϕ). Since 1IList B = (List B, 1{List B }), we have that h = (f ,д), where f and д are maps with
f : List B → List B and д : 1{List B } → ϕ. Moreover, for f the following diagram commutes.

F (List B) F (List B)

Gu(List B) Gu(List B)

F f

(nil,cons) (nil,cons)
Gu f

From uniqueness of inductive extensions, we thus immediately conclude that f is the identity map.
For the map д, the following diagram commutes for any choice of n ∈ N, b ∈ B and x ∈ List B n.

(1, (1{List B })(n,x)) (1,ϕ(n,x))

((1{List B })(0,nil(⋆)), (1{List B })(n+1,consn(b,x))) (ϕ(0,nil(⋆)),ϕ(n+1,consn(b,x)))

(id1, id1)

(id,д(n,x))

(b1,(b2)(n,(b,x)))
(д(0,nil(⋆)),д(n+1,consn (b,x)))

This diagram expresses the expected computational behaviour of dependent recursion.
To sum the above discussion up, let us state the following dependent iteration rule for vectors in

Fam(Set), in which we use dependent products to express the type constraints of b1 and b2 more
conveniently.

b1 : 1→ ϕ(0,nil(⋆)) b2 : Πn ∈ N.Πb ∈ B.Πx ∈ List B n.ϕ(n,x) → ϕ(n+1,consn(b,x))

д : Πn ∈ N.Πx ∈ List B n. 1→ ϕ(n,x)

209

Chapter 6. Categorical Logic Based on Inductive-Coinductive Types

The second diagram above expresses then indeed the expected computational behaviour:

д(0, nil(⋆))(⋆) = b1(⋆)

д(n + 1, consn(b,x))(⋆) = (b2)(n,(b,x))(д(n,x)(⋆)) ◀

With this, we end our exploration of dependent iteration and induction in the context of categorical
dependent inductive types. It is time to move on to its dual: coinduction.

6.4.3. Coinduction
In the last section we have discussed dependent iteration principles for inductive types. Under
the BHK-interpretation, these dependent iteration principles give us then also induction principles,
with which we can prove predicates to hold on all elements of an inductive type. This raises of
course the question what the corresponding principle for coinductive types is. Since elements of
coinductive types allow the description and comparison of behaviour, Hermida and Jacobs [HJ97]
observed that the canonical proof principle associated with coalgebras is concerned with proving
equality. More specifically, the principle of coinduction grants us the possibility to prove an identity
between elements of a coinductive type by establishing a bisimulation relation. The goal of this
section is to provide a simple coinduction principle for coinductive types in a recursive-type closed
category (µPCC).

To state what a bisimulation relation for a coinductive type is, we first need to define relations
internal to a µPCC, where by relation we mean here binary relations on one carrier. Intuitively, such
relations are given as predicates on the binary product of that carrier with itself. Since the carrier
might be a dependent type, we need to take those dependencies into account. These considerations
leads us to define the category of relations in the internal logic of P as the following pullback of LI
along ∆, where ∆ is the diagonal given by ∆(A) = A ×I A and the binary product is taken in PI ,
see Theorem 6.2.11.

Rel(PI) PLI

PI PI

LI

∆

We will usually leave out the subscript of the binary product, if the index I is understood from the
context. Intuitively, Rel(PI) consists of objects (A,R) with A ∈ PI and R ∈ P{A×A} . The morphisms
in Rel(PI) are pairs (f ,д) : (A,R) → (A′,R′) with f : A → A′, д : R → R′ and Pд = { f ×I f }, cf.
Section 6.4.1.

To define relation liftings, Fumex et al. [FGJ11] use a so-called quotient functor Q : Rel(PI)→ PI .
Such a functor intuitively takes (A,R) to the quotient of A by the equivalence closure of R. We will
not need a full quotient here to formulate a coinduction principle, rather it suffices to take instead
the collection of pairs in A together with a proof that these are related. The reason for this is that
the coinduction principle is only valid on final dialgebras, hence there is no need to take a quotient
to compare states of other dialgebras under behavioural equivalence. So let us define a functor
Q : Rel(PI)→ PI by

Q(A,R) B {(A ×A,R)}I =
⨿

A×A
R. (6.14)

Similar to the weak dependent iteration principle, we will now use Q to establish a coinduction
principle by appealing to the fact that coinductive types admit unique coinductive extensions. To

210

6.4. Internal Reasoning Principles

this end, let δ : IdPI ⇒ ∆ be the diagonal with δA = ⟨id, id⟩, and let ∇H : H(A×A)→ H(A)×I H(A)
be the canonical morphism given by ∇H = ⟨H(π1),H(π2)⟩. Using this notation, we can derive the
following coinduction principle.

Proposition 6.4.12. Let (F ,u) be a signature with F : PI → C. Suppose that (A, ξ) a final (Gu , F)-
dialgebra, (A,R) ∈ Rel(PI) and d : Gu(Q(A,R)) → F (Q(A,R)), such that the following diagram com-
mutes.

Gu(Q(A,R)) Gu(A)
2

F (Q(A,R)) F (A)2

d

∇Gu ◦ Gu (π IR)

ξ×I ξ
∇F ◦ F (π IR)

Then there is a unique h : Q(A,R)→ A with δA ◦ h = π IR .

Proof. By definition, we have for i = 1, 2 that πi ◦ ∇Gu = Gu(πi), hence we find

πi ◦ ∇Gu ◦Gu(π IR) = Gu(πi ◦ π IR),

and analogously for F . Thus πi ◦ π IR is a homomorphism from d to ξ and must therefore be equal
to h. Since this holds for i = 1, 2, we have π IR = δA ◦ h. □

What is the intuition behind this coinduction principle? Given that the relation R is a bisimulation
relation, which is witnessed by a dialgebra d as in the proposition, then for each related pair there is a
an element of A. Moreover, this element shows exactly the behaviour that is modelled commonly by
both related elements.57 To clarify this form of coinduction further, let us instantiate Proposition 6.4.12
to streams.

Example 6.4.13. Let F = ⟨KA, Id⟩ and u = (id1, id1), so that streams Aω over A are given by ν(Gu , F)
with (hd, tl) : Gu(Aω)→ F (Aω). The conditions for a dialgebra Gu(

⨿
Aω×Aω (R))→ (A,

⨿
Aω×Aω (R))

over a relation R on Aω then capture the usual bisimulation proof principle: Suppose we have
(d1,d2) with d1 :

⨿
Aω×Aω (R) → A and d2 :

⨿
Aω×Aω (R) →

⨿
Aω×Aω (R). Then the conditions read

as δ ◦ d1 = hd ◦ πR and πR ◦ d2 = (tl × tl) ◦ πR . The first condition expresses thereby that the two
related streams must have the same head, which is actually computed by d1. As for the second
condition, this says that d2 maps a proof of two streams being related by R to a proof that their tails
are again related by R. The reader will recognise these conditions as the usual ones for bisimulation
relations. ◀

Note that this coinduction principle allows us to prove external equality, which is the equality of
morphisms in E, between elements of coinductive types. This includes also the (dependent) function
space, see Theorem 6.2.11. In particular, we can show in this case that functions are equal by proving
that they agree on every argument. Hence, for a theory in which functions are only externally equal
if they are convertible, we need to relax the requirement that coinductive types are final dialgebras.
This is not so surprising, and we will discuss in Section 6.6 possibilities to overcome this mismatch
between category theory and syntactic type theory.

211

Chapter 6. Categorical Logic Based on Inductive-Coinductive Types

6.5. A Beck-Chevalley Condition for Recursive Types
As already mentioned in the introduction, if we want to recover the expected property that substitu-
tions distribute over sum types, then we need to require that the so-called Beck-Chevalley condition
holds for coproducts. More specifically, given a term t and variables x and y, such that x is distinct
from all the variables in t and from y, one defines substitution on sum types by

(Σx : A[y]. B[x ,y])[t/y] = Σx : A[t]. B[x , t].

Notice that there is something subtle is going on here. First, the sum on the right is a different one
because the type of the variable x has changed. Second, we assumed that the variable x is distinct
from all other variables around, which allows to avoid having to rename x . More generally, we could
introduce a fresh name, rename the bound occurrences of x in B and then define the substitution
on sums by

(Σx : A[y]. B[x ,y])[t/y] = Σx ′ : A[t]. B[x ′, t]. (6.15)

We will now use the classifying fibration for a dependent type theory, which we introduced
in Section 6.1, to explain how the Beck-Chevalley condition captures this definition of substitution
category theoretically. Recall that we defined the coproduct as a left-adjoint functor to the projections
πA : {A} → PA. In the context of the classifying fibration for a dependently typed calculus, we
defined comprehension as context extension and the projections are the weakening substitutions.
More precisely, for a context Γ = x1 : A1, . . . ,xn : An , a type A with Γ ⊢ A : Type and a fresh
variable x comprehension is given by {Γ ⊢ A : Type} = Γ,x : A. The corresponding projection
πA : Γ,x : A → Γ is given by πA = (x1, . . . ,xn). This allows us to express the equation (6.15) in
category theoretical terms by using the coproduct as follows. Suppose that y : C ⊢ A : Type and
Γ ⊢ t : C , then equation (6.15) reads as(⨿

πA
B[x ,y]

)
[t/y] =

⨿
πA[t]

B[x ′, t].

Using that reindexing amounts to the application of substitutions, we can further rewrite this to:

t∗
(⨿

πA[y]
B[x ,y]

)
=

⨿
πA[t]

(t ,x ′)∗(B[x ,y]).

Note that the involved substitutions and projections can be organised in the following pullback
diagram.

Γ,x ′ : A[t] Γ

y : C,x : A y : C

πA[t]

(t,x ′) t

πA

The fact that this is a pullback diagram captures the essence of the variable renaming and thereby
also the interaction between the involved coproduct and reindexing functors.

Let us now generalise this interaction between reindexing and coproducts to arbitrary coproducts.
The above considerations lead us then to assume that we are given a pullback square such as the

212

6.5. A Beck-Chevalley Condition for Recursive Types

following.
K J

L I

д

v u
f

Given such a commuting square, we get an isomorphism v∗ ◦ f ∗ � д∗ ◦u∗. Together with the unit
ηf : Id⇒ f ∗

⨿
f and the counit εд :

⨿
д д
∗ ⇒ Id, we obtain thus the following canonical morphism.⨿

д
v∗

⨿
д
v∗ f ∗

⨿
f

⨿
д
д∗ u∗

⨿
f

u∗
⨿

f

⨿
д v∗ ηf � εд x ∗

⨿
f

The Beck-Chevalley condition for coproducts requires now that this morphism has an inverse. This
allows us to generalise the definition of substitution in (6.15) to the following isomorphism.

u∗
⨿

f
�

⨿
д
v∗

The aim of this section is now to generalise the Beck-Chevalley condition to arbitrary recursive
types, thereby enabling the expected notion of substitution on recursive types. After having intro-
duced the generalised Beck-Chevalley condition, we prove that it is equivalent to the usual one
for products and coproducts. Moreover, we show that binary products, binary coproducts and final
objects are fibred if we construct these as recursive types that satisfy our generalised Beck-Chevalley
condition.

We start by developing some notation that we will need to define the Beck-Chevalley condition
for recursive types. Let (F ,u) be a signature with F : C × PI → D and ui : Ji → I for D =

∏n
i=1 PJi .

Assume that we are given for each 1 ≤ i ≤ n a pullback square as follows.

Li Ji

K I

wi

xi ui

v

(6.16)

Note that we are now given a pullback for each constructor/destructor in contrast to the situation
for the Beck-Chevalley condition on coproducts that we described above. From the pullbacks in
(6.16), we obtain isomorphisms

ιu,i : x∗i ◦v∗ � (v ◦ xi)∗ = (ui ◦wi)
∗ � w∗i ◦u∗i , (6.17)

since P is a cloven fibration. We can merge all morphisms that occur in the pullbacks together into
functors Gx : PK →

∏n
i=1 PLi and W :

∏n
i=1 PJi → PLi that we define by Gx = ⟨x∗1, . . . ,x∗n⟩ and

W = w∗1 × · · · ×w∗n . If we put ιu,x = ιu,1 × · · · × ιu,n , which is given for each A ∈ PI by

(ιu,1 × · · · × ιu,n)A = (ιu,1A , . . . , ι
u,n
A) in

n∏
i=1

PLi ,

then we obtain an isomorphism
ιu,x : Gx v

∗ �WGu .

213

Chapter 6. Categorical Logic Based on Inductive-Coinductive Types

Let us now assume that we are given a functor Fv : C×PK →
∏n

i=1 PLi and another isomorphism
ιF : Fv (Id ×v∗)⇒WF , as indicated in the following diagram.

C × PI
∏n

i=1 PJi = D

C × PK
∏n

i=1 PLi

F

Id×v∗ W

Fv

�

Using this data, we can define a functor Cv : DiAlg
(
Ĝu , F̂

)
→ DiAlg

(
Ĝx , F̂v

)
as follows. Suppose

that δ : Ĝu(H)⇒ F̂ (H) is a dialgebra, then Cv (δ) is the composition

Ĝx (v
∗H) = Gx v

∗H

ιuH
==⇒WGuH =WĜu(H)

W δ
==⇒W F̂ (H) =WF ⟨IdC,H ⟩
(ιF)

−1 ⟨IdC,H ⟩
========⇒ Fv (IdC ×v∗)⟨IdC,H ⟩ = Fv ⟨IdC,v∗H ⟩ = F̂v (v∗H).

For a dialgebra homomorphism β : H1 ⇒ H2 from δ1 to δ2, we put Cv (β) = v∗ β , which is a
(Ĝx , F̂v)-dialgebra homomorphism since the following diagram commutes.

Ĝx (v
∗H1) Ĝx (v

∗H2)

WĜu(H1) WĜu(H2)

W F̂ (H1) W F̂ (H2)

F̂v (v∗H1) F̂v (v∗H2)

Ĝx (v∗ β)

ιuH1 ιu nat. ιuH2

WĜu (β)

W δ1 β hom. W δ2

W F̂ (β)

(ιF)−1 ⟨Id,H1 ⟩ ιF nat. (ιF)−1 ⟨Id,H2 ⟩

F̂v (v∗ β)

The functor laws for Cv follow from functoriality of v∗. In the dual way, we can also define a functor
Iv : DiAlg

(
F̂ , Ĝu

)
→ DiAlg

(
F̂v , Ĝx

)
by

I
v (δ : F̂ (H)⇒ Ĝu(H)) = (ιu)−1H ◦W δ ◦ ιF ⟨IdC,H ⟩
I
v (β) = v∗ β .

These two functors allow us to define what it means that recursive types are preserved by reindexing.

Definition 6.5.1. A coinductive type (Ω, ξ) for (F ,Gu) fulfils the Beck-Chevalley condition, if for
every family of pullbacks v ×I ui as in (6.16), there is a functor Fv and an isomorphism ιF as described
above, such that the coinductive extension h : v∗Ω⇒ Ωv of Cv (ξ) to the coinductive type (Ωv , ξv)

214

6.5. A Beck-Chevalley Condition for Recursive Types

for (Fv ,Gx), as in the following diagram, is an isomorphism Cv (ξ) � ξv of dialgebras.

Ĝx (v
∗ Ω) Ĝx (Ω

v)

F̂v (v∗ Ω) F̂v (Ωv)

Cv (ξ)

Ĝx (h)

ξv

F̂v (h)

The Beck-Chevalley condition for inductive types is defined dually using Iv .

As the name suggests, this definition is supposed to capture the known Beck-Chevalley conditions.
To prove this, we first need a small technical following.

Lemma 6.5.2. Let F1 : C1 → C2 be a functor and (F2,u) be a signature with F2 : C2 × PI → C3. We
define a functor F : C1 × PI → C3 by F = F2 ◦ (F1 × Id). With this definition, we have µ(F̂ , Ĝu) =

µ(F̂2, Ĝu) ◦ F1 and α (F̂ ,Ĝu) = α (F̂2,Ĝu)F1. Dually, we also have that ν(Ĝu , F̂) = ν(Ĝu , F̂2) ◦ F1 and
ξ (F̂ ,Ĝu) = ξ (F̂2,Ĝu)F1.

Proof. This follows simply from the definitions. Let V ∈ C1, then

µ(F̂ , Ĝu)(V) = µ(F (V ,−),Gu) = µ((F2 ◦ (F1 × Id))(V ,−),Gu)
= µ(F2(F1(V),−),Gu) = µ(F̂2, Ĝu)(F1(V))

= (µ(F̂2, Ĝu) ◦ F1)(V)

and the equality of the natural transformations follows immediately from their definition and the
functor equality above. □

We can now show the usual Beck-Chevalley condition and the one given in Definition 6.5.1 are
equivalent for the adjunctions we obtained as recursive types in Theorem 6.2.11.

Theorem 6.5.3. The adjunctions constructed inTheorem 6.2.11 are fibred iff they fulfil the Beck-Chevalley
condition for recursive types.

Proof. We prove this for the constructed right adjoints, the proof for the left adjoints follows by
duality. Recall that we defined for C =

∏n
i=1 PJi , a right adjoint for all Gu = ⟨u∗1, . . . ,u∗n⟩ by

ν(Ĝu , π̂1) : D → PI with π1 : C × PI → C. Given pullbacks (xi ,wi) = v ×I ui as in (6.16), we put
D =

∏n
i=1 PLi ,W : C→ D withW = w∗1 × · · · ×w∗1 and Gx = ⟨x∗1, . . . ,x∗n⟩. We find the right adjoint

of Gx to be ν(Ĝx , π̂
′
1) with π ′1 : D × PK → D. The Beck-Chevalley condition (B-C condition) for

adjoint functors requires that the canonical natural transformation γ : v∗ ◦ν(Ĝu , π̂1)⇒ ν(Ĝx , π̂
′
1)◦W

is an isomorphism. We show that this coincides with our definition for recursive types.
Let ξ be the final (Ĝu , π̂1)-dialgebra and ξv the final (Ĝx , F̂v)-dialgebra. We note that for the

projection π ′′1 : C × PK → C, we have π ′1 ◦ (W × Id) = W π ′′1 . Thus, we can choose for the B-C
condition Fv =W π ′′1 and get, by Lemma 6.5.2, ν(Ĝx , F̂v) = ν(Ĝx , π̂

′
1) ◦W . By finality, this means

that γ is in fact the unique morphism from Cv (ξ) to ξv . The B-C condition for recursive types
requires this to be an isomorphism, just as the B-C condition for adjoints does. This means that
the constructed adjunctions are fibred iff they satisfy the B-C condition for recursive types with the
choice Fv =W π ′′1 . □

215

Chapter 6. Categorical Logic Based on Inductive-Coinductive Types

In the same way, we can relate fibred final objects and our Beck-Chevalley condition.

Theorem 6.5.4. Terminal objects 1I , constructed as ν(id∗I , IdPI), are fibred iff they satisfy the Beck-
Chevalley condition for recursive types.

Proof. We note that the pullback (6.16) degenerates, in this case, to only give a morphism v : K → I .
Then we pick Idv = v∗ and the rest follows as in Theorem 6.5.3. □

6.6. Discussion

In the previous Chapter 5 we established several approaches to reasoning about mixed inductive-
coinductive programs. Among these approaches was a syntactic logic FOL▶ together with a proof
system. We realised at the end of Section 5.2 that we could implement the standard induction and
coinduction principles for non-mutual inductive or coinductive types but not for more general types,
see Note 39, since the logic FOL▶ is lacking the possibility to form fixed point formulas. However,
adding fixed point formulas would force us to also add the corresponding proof rules to the logic,
which are a mere adaption of the term formation rules for fixed point types in the calculus λµν . To
save ourselves from duplicating rule sets and from repeating proofs of properties for the logic, we
decided to merge programming and reasoning into one language.

In the present chapter, we established a dependent type theory in the language of category theory,
in which we can write the same programs as in the calculus λµν , as well as reason about these
programs. The idea of this category theoretical language was to extend the ideas of Hagino [Hag87]
from a simply typed calculus to a dependently typed one. Specifically, this meant that we viewed
inductive and coinductive types as initial and final dialgebras in the fibres of a fibration. These
fibres replaced thereby the simple categories that Hagino used and allowed us to manipulate the
dependencies, as we have seen in the principle example of vectors in Section 6.2.1. Starting from
this view on dependent types, we developed notions of signatures and strictly positive types that
form a general basis for dependent inductive-coinductive types. All these considerations led us
to the definition of recursive type closed categories (µPCC) as a theory of inductive-coinductive
dependent types. Besides the truly recursive types like vectors, (partial) streams, bisimilarity, and
the substream relation, we were also able to encode the standard connectives of Martin-Löf type
theory as (non-recursive) inductive and coinductive types. This will enable us in the next Chapter 7
to construct a syntactic type theory that is purely based on recursive types, while still subsuming
standard Martin-Löf type theory.

After we introduced the basic category theoretical setup, we showed that the developed theory
is actually sensible by showing that the initial and final dialgebras can be constructed as initial
algebras and final coalgebras of polynomial functors. This opens up a wide class of models for the
theory. Moreover, we demonstrated that the unique mapping properties of inductive and coinductive
types give rise to a simple dependent iteration (or induction) principle and a coinduction principle.
Under the further assumption that coproducts are strong, that is, they admit projections for both
components, we could also obtain a proper dependent iteration principle. Finally, we established a
Beck-Chevalley condition for recursive types to allow the interpretation of a corresponding syntactic
theory of inductive-coinductive dependent types in a µPCC.

216

6.6. Discussion

Related Work
Let us briefly discuss existing work that is related to the content of this chapter. Most of the relevant
work has been already discussed in the corresponding places, but a more streamlined overview seems
appropriate.

Categorical Dependent Recursive Types The basic setup, which we chose here to construe
dependent inductive-coinductive types category theoretically, is essentially a combination of existing
ideas. Specifically, we took Hagino’s dialgebra approach for simple types [Hag87] and merged it
with the fibrational view on dependent types [Jac99]. This fibrational view is, in my opinion, the
most modular and transparent presentation of dependent types in terms of categories, since all
requirements made on a fibration have a clearly defined purpose. It is this modularity that makes
fibrations very suitable for reusing existing notions in the context of inductive-coinductive dependent
types. As mentioned at the end of Section 6.1, there is an abundant supply of category theoretical
models for dependent types. However, since these are specifically tailored towards dependent types,
it is often the case that the straightforward approach of using dialgebras cannot be implemented there.
Moreover, many of these models are related or even equivalent to fibrational models [Jac93]. Finally,
we should mention that there are other category theoretical approaches to recursive dependent types,
but none of them actually treats coinductive dependent types, see the introduction of Section 6.2.3.

Constructing Recursive Types as Polynomials Polynomial functors are the go-to class of func-
tors that is used whenever reasonably general but also well-behaved class of functors are required.
One of the main reasons for that is that they preserve certain limits and colimits [GK13], which
are important for constructing initial algebras [GH04; GK13; Koc11] and final coalgebras [Jac16;
vdBdM07]. Another reason is that it is straightforward to associate a syntactic theory to initial
algebras [Fio12; HF11] and to final coalgebras [BRS09; Gol01] of polynomial functors, since these
are, respectively, finite and potentially infinite trees. This latter reason is also why polynomial func-
tors [GK13; HF11] or container [Abb03; AAG05] are taken as foundation for data types. Fortunately,
this interest led to many existing results that we were able to use in our reduction of theory of
dependent recursive types to polynomial functors in Section 6.3. The main sources that we used
here were [GK13] and [AAG05].

Internal Reasoning Principles Both induction and coinduction principles have been studied ex-
tensively in the context of category theory. The clearest expositions on these principles are [HJ97]
and the extension [FGJ11] thereof to indexed sets. In Section 6.4, we instantiated some of the results
from these two publications and proved other results under weaker conditions. This is discussed in
detail in the corresponding places in Section 6.4.

A Beck-Chevalley Condition for Recursive Types The Beck-Chevalley condition is well- and
widely known for products and coproducts, but our analogue for recursive types has not been studied
anywhere. That being said, since products and coproducts arise as recursive types, one may ask
how the classical Beck-Chevalley condition relates to ours in those cases. Indeed, in Theorem 6.5.3
we showed that the classical condition is equivalent to ours for the presentation of products and
coproducts as recursive types.

217

Chapter 6. Categorical Logic Based on Inductive-Coinductive Types

Contributions

After summarising the content and context of the chapter, let us also clearly mark the contributions
made in this chapter. First of all, the adaption of Hagino’s categorical data types to dependent types
has not been explored before. Moreover, the resulting theory explains the types of Martin-Löf type
theory in terms of inductive-coinductive types, which was considered to some extend folklore but has
never been formally explored somewhere. The construction of recursive types through polynomials
required one new result (Theorem 6.3.10), which is the main contribution of Section 6.3. Next, the
internal logic of a dependent type theory has, to the best of my knowledge, not been presented
and studied as we did in Section 6.4. In particular, the resulting (weak) induction and coinduction
principles were not studied in the absence of strong coproducts and quotients. Since there was no
category theoretical study of general dependent inductive-coinductive types, also the Beck-Chevalley
condition from Section 6.5 is a novel contribution.

Future Work

Much of the content in this chapter is fairly stable and explored. There are a few directions for
future research though. As we will see in Chapter 7, the (unique) mapping principle of the recursive
types from Section 6.2 correspond to simple iteration and coiteration rules on the syntactic side. The
problem with this is that it usually much easier to write programs by giving a set of equations, similar
to what we found in Section 3.2. This raises of course the question whether there is a way to give
equational specifications of morphisms on dependent recursive types. A possible approach might
be to adapt, at least in the coinductive case, completely iterative algebras [Acz+03] to dependent
types. However, the equational specifications there need to be extended with pattern matching for
the specification of functions on inductive types, and one needs to be careful with identity types, as
pattern matching might lead to stronger than expected theories, cf. [CDP16; GMM06].

Since in Section 6.4 we found the internal reasoning principles were based on the fact that induct-
ive and coinductive types come with unique mapping principles, we concluded that the category
theoretical approach we took so far makes too strong requirements on types. The reason is that
uniqueness of inductive and coinductive extensions are problematic in syntactic theories because
it usually breaks decidability of type checking. A possibility to overcome this problem is to make
uniqueness proof-relevant, in the sense that whenever we show the uniqueness of a homomorphism,
then there is an explicit proof object in the category that witnesses this fact. This can be realised,
for example, by using 2-categories or higher generalisations thereof. But since this takes us to far
astray, we leave the problem of matching the category theoretical semantics better intensional type
theories for the future.

Notes
41 Translation taken from “Substance and Function and Einsteins Theory of Relativity“ by E. Cassirer,

p.371, 1923.

42 For instance, having both projections for sum types in an impredicative calculus like the Calculus
of Constructions, leads to inconsistencies, see [Coq89]. More precisely, the fact that there is a

218

6.6. Discussion

proposition isomorphic to the coproduct of a family of propositions is independent of having an im-
predicative universe of propositions [Str89]. Similarly, a logic that combines computational classical
logic in form of control operators with strong sum types also becomes inconsistent, as has been
shown by Herbelin [Her05].

43 The alert reader might note that we only obtain (ListA (n + 1))[2] = ListA (2 + 1). To get to ListA 3
we actually need to use the computation 2 + 1 ≡ 3 inside the type. Since this is not really relevant
to the present introduction, we sweep this problem under the rug for now and come back to it in
the next chapter.

44 A more modern notation for dependent function types, which emphasises the close relation to the
simple function type, is (x : A) → B[x] for Πx : A. B[x]. However, since the dependent function
space is given category theoretically as a product, we stick to the traditional notation here.

45 A historical overview can be found in [TvD88, Sec. 1.4].
46 In modern expositions, System F is called λ2, see for example [NG14].
47 The reverse direction of

∃x : A. ∀y : B.ϕ[x ,y] ⊢ ∀y : B. ∃x : A.ϕ[x ,y]

is the constructive version of the axiom of choice:

α : (∀x : A. ∃y : B.ϕ[x ,y]) ⊢ p : (∃f : A→ B. ∀x : A.ϕ[x , f x]).

To give such a proof p, we need to assume though something more about the existential quantifier,
namely that there are projections z : (∃x : A.ψ [x]) ⊢ π1 z : A and z : (∃x : A.ψ [x]) ⊢ π2 z : ψ [π1 z].
How these can be obtained is discussed towards the end of Section 6.1 and in the next chapter. If
we have these projections, then the proof p is given by

p B
⟨
λx . π1 (α x), λx . π2 (α x)

⟩
.

48 The propositions-as-types interpretation is often also referred to as Curry-Howard correspondence. I
will, however, avoid this terminology here, since it is neither descriptive nor very accurate. There
are many more people that would have to be mentioned in this name, first and foremost, Church is
missing from the list.

49 An exception is Frege’s definite description operator ι that allows one to name an object that uniquely
satisfies a proposition, see e.g. [TvD88, Par. 2.2.9] and [NG14, Sec. 12.7].

50 Of course, we can see isHoliday also as a predicate over the date type that we introduced above.
However, we use the present definition for illustrative purposes later.

51 The adjunction
⨿

I ⊣ !∗ consists in fact also of some equations that need to hold. As it turns out, one of
these equations gives the computation rule for sum types: unpack ⟨u,v⟩ as ⟨i,x⟩ in t −→ t [u/i,v/x].
The other equation ensures that unpack y as ⟨i,x⟩ in t is the unique term with that computational
property, and as such is usually not part of a syntactic theory. Thus, the category theoretical

219

Chapter 6. Categorical Logic Based on Inductive-Coinductive Types

approach makes slightly to strong requirements here, see also the discussion in Section 4.2 for the
analogous situation in non-dependent calculi. This can be solved in the case of sum types by allowing
η-conversions: unpack s as ⟨i,x⟩ in t [⟨i,x⟩/y] −→ t [s/y]. However, η-conversions are difficult to
manage and do not generalise well to recursive types.

52 There are two principal ways to conceive of vectors: Either we group the vectors of the same length
into a set, thereby forming a family of sets, or we see vectors as the set of all lists together with
the map that assigns to each list its length. In Example 6.2.1, we use the first view, but we will later
return to the second when we consider dependent types as objects in slice categories.

53 For an Agda-versed reader it might be interesting to note that the use of non-trivial substitution
in the domain of destructors is currently not available in Agda. It is questionable though whether
adding this capability is useful in an intensional theory like Agda. The reason is that if we are given
n : N∞ and t : PStr A n, then to apply hd to t we would have to establish that n = s∞ k for some
k : N∞. However, since N∞ is a coinductive type, we will rarely find ourselves in the luxury position
that we can prove an equality, rather we may only find that n is bisimilar to s∞ k for some k . But
an even better way would be to define PStr differently:

codata n : N∞ ⊢ PStr A n where
hd : PStr A n → (Π k : N∞. (n .out = κ2 k) → A)
tl : PStr A n → (Π k : N∞. (n .out = κ2 k) → PStr A k)

Given an element s : PStrAn for some n : N∞, we can always apply, say, tl to s . This gives us then
a term of type Πk . (n.out = κ2 k) → PStr A k . Thus, if we have a k of type N∞ and a proof p for
n.out = κ2 k , then we obtain the tail of s by tl s k p : PStrAk . Such a definition works much better
in an intensional theory like Agda and, in contrast to a bisimilarity-based definition, still enables
the use of automatic reductions.

54 Even though µP-complete categories offer more flexibility for the domain of the destructors of a
coinductive type, see the note 53, the coinductive types in Agda provide some further power. More
specifically, the destructors of a coinductive type in Agda can refer to previously declared destructors.
This allows the declaration of a strong dependent sum, see [Jac99, Sec. 10.1 and Def. 10.5.2]. We
discuss this in Section 6.4, and see also Note 47.

55 If X ∈ B/I and Y ∈ B/J , then a morphism f : X → Y in B can be defined in the internal language of
the codomain fibration by statements of the form “fi p = e”, where p is a pattern and e an expression
that are given by the following grammar.

e F x | f | e e | λp. e | (e, e)
p F x | x : T | (p,p) | (p | c)
c F e = e

T F I | Xe

The intention is that x is a variable, f a morphism in B, λp. e an element of a product, and (e, e)
an element of a coproduct. A pattern is either a, possibly typed, variable, or it matches dependent
pairs of a coproduct, or it introduces some constraints that arise from products or coproducts. Those
constraints may just be identities between expressions that can involve only the variables of the

220

6.6. Discussion

corresponding pattern. Finally, a type is either an object I of B or it selects a fibre Xe of X by means
of an expression. Typing constraints can then be given in the form e1 : Xe2 , which expresses that
X e1 = e2, using the fact that X is a morphism U → I for some object U in B. Expressions, patterns
and constraints are all subject to the obvious typing constraints. For instance, given a morphism
h : I → J in B and a morphism f : X → Y in B/I , we can define

⨿
h f :

⨿
h X →

⨿
h Y by(⨿

h
f
)
j
(i,x : Xi | h i = j) = (i, f x).

We now need to show that (i, f x) : (
⨿

h Y)j , i.e., h(Y (f x)) = j. Since f is a morphism in B/I ,
we have that Y ◦ f = X . This gives us the required identity by using the constraint h i = j in the
pattern of

⨿
h f : h (Y (f x)) = h (X x) = h i = j.

56 Besides enabling induction, the dependent iteration allows also for interesting computational spe-
cifications. For example, primitive recursion can be implemented much more efficiently by using
dependent iteration. In particular, the predecessor map pred : Nat → Nat is given by iter(0, λn.k)
in the notation of the introduction of Section 6.4.2, where k : Nat ⊢ λn.k : Nat. The computational
rules give then pred 0 = 0 and pred (s n) = (λn.k)[n] (pred n) = n, as expected.

57 This is very similar to the span-based definition of bisimilarity that is studied in the context of the
theory of coalgebras, see e.g. [Sta11].

221

CHAPTER 7

Constructive Logic Based on
Inductive-Coinductive Types

I would like to argue […] that without a system of formal constraints there are no creative acts; specifically,
in the absence of intrinsic and restrictive properties of mind, there can be only ‘shaping of behavior’ but no
creative acts of self-perfection.

— Noam Chomsky, “Language and Freedom”, 1970.58

In Chapter 6, we have established a category theoretical approach to dependent type theory that
was solely based on inductive-coinductive types. The key idea was to model inductive types as
initial dialgebras and coinductive types as final dialgebras in fibres of a fibration. Moreover, we
singled out functors that describe the domain and codomain of constructors and destructors of
strictly positive, recursive types. This allowed us to construct models for these categorical types in
terms of polynomial functors on the slices of certain locally Cartesian closed categories.

The goal of this final chapter is to find a syntactic type theory that matches the category theoretical
setup of Chapter 6 and show that this theory is consistent. This dependent type theory is centred
around recursive types that correspond to the initial and final dialgebras for strictly positive signa-
tures. To show that the theory is consistent, we give proofs of subject reduction (types are preserved
by reduction steps) and of strong normalisation. These are the main results of the present chapter.
However, to demonstrate also the usefulness of the type system, we give plenty of examples in
Section 7.2, including an encoding of the propositional connectives of first-order intuitionistic logic,
plus an extensive application in Section 7.5. There we show the equivalence between the definition
of the substream relation in terms of stream filtering (Example 5.1.13), and the direct definition in
Example 6.2.14. We use this equivalence to prove that the substream relation is transitive. The full
development of this is given in Section 7.5, which is compiled from Agda code.

Since the application in Section 7.5 requires an induction principle for inductive types, we need to
extend the calculus that we developed in Section 7.1. The reason is that this calculus only features a
non-dependent iteration scheme, which is, as we have seen in Section 6.4.2, not enough to establish
a general dependent iteration scheme. This extension is straightforward, though somewhat tedious
to carry out. It is expected that the strong normalisation proof for the basic calculus carries over to
this extension, but this is a conjecture at this point. However, we extend the subject reduction proof,
as this is only a small exercise in patience. The result of this effort is a calculus in which we can
prove, under the propositions-as-types interpretation, propositions on inductive types by induction.

At this point, we should justify the need for another type theory. This is a pressing question, since
Martin-Löf type theory (MLTT) [Mar75a] and the calculus of inductive constructions (CoIC) [BC04;
Pau93; Wer94] are well-studied frameworks for intuitionistic logic. The main reason is that the
existing type theories have no explicit dependent coinductive types, which prevents us from directly
defining coinductive predicates and relations like the substream relation. Giménez [Gim95] discusses
an extension of the CoIC with coinductive types and guarded recursive schemes, but he proves no
properties about the conversion relation. On the other hand, Sacchini [Sac13] extended the Calculus

223

Chapter 7. Constructive Logic Based on Inductive-Coinductive Types

of Constructions with streams and sized-types, and proves subject reduction and strong normalisation.
However, the problem of limited support for general coinductive types remains. Finally, we should
also mention that general coinductive types are available in implementations like Coq [Coq12],
which is based on [Gim95], Agda [Agd15] and Nuprl [Con97]. Yet, none of these has a formal
justification, and Coq’s coinductive types are even known to have problems, for example related to
subject reduction.59

One might argue that (dependent) coinductive types can be encoded through inductive types, as
we have seen in Section 6.3 and was demonstrated in the setting of univalent homotopy type theory
by Ahrens et al. [ACS15]. However, such an encoding does not give rise to a useful computation
principle in an intensional type theory such as MLTT or CoIC, see [cLa16] for details. This becomes
an issue once we try to prove propositions about terms of coinductive type, as we cannot use
computational rules like those in Definition 3.1.11. For example, in such an encoding not even the
conversion tl 1ω ≡ 1ω holds, which prevents us from proving the simple identity in Example 5.1.11
directly.60 Clearly, such a restriction is not desirable, hence an encoding of coinductive types is for
practical reasons not an option.

Interesting is also the fact that all basic connectives of MLTT, like the (dependent) function
space, can be described as recursive types. This means that we do not need to have separate type
constructors and the corresponding terms formation rules for dependent sums and products, but
rather can derive them from the rules for recursive types. This is well-known in category theory,
see also Theorem 6.2.11, but we do not know of any treatment of this fact in syntactic type theories.

Chapter Outline

The remainder of this chapter is structured as follows. We start by introducing the calculus around
which the chapter revolves. Due to the complicated interactions between types, terms and the
reduction relation in a dependently typed calculus, we proceed in three steps. First, in Section 7.1.1
we give the raw syntax in form of a context-free grammar, in which types and terms are not
distinguished. The second step is to separate types and terms into, what we call here, pre-types and
pre-terms in Section 7.1.2. At this stage terms are, however, not yet well-typed. This separation
allows us to define a reduction relation on terms, which we need in the typing rules in the last step.
The third, and last, step is to give the rules for well-formed types and terms in Section 7.1.4.

Having defined the calculus, we provide in Section 7.2 a host of examples that illustrate the use
of the calculus. In particular, we show how all connectives of intuitionistic first-order logic can be
represented in the calculus. Section 7.3 is devoted to proving the central properties of the type theory
that we are interested here. These are subject reduction in Section 7.3.2, and strong normalisation
in Section 7.3.3. To be able to reason about inductive types, we introduce in Section 7.4 a dependent
iteration principle for the calculus. This is a somewhat tedious, but straightforward, extension of the
previous calculus. At this stage, there is no proof of strong normalisation, but it is expected that the
proof in Section 7.3.3 can be extended accordingly. However, subject reduction is preserved under
this extension, as we will see. With this extended calculus under our belt, we come in Section 7.5
to the final application in this thesis. There, we prove, yet again, that the substream relation is
transitive. This section has been fully formalised in Agda. We end the chapter with a discussion of
related work and future directions in Section 7.6.

224

7.1. The Calculus λPµ

Original Publication
The calculus that we develop in Section 7.1 was first presented in a paper [BG16a], for which the
author did the principle technical development and writing. That paper also featured the examples in
Section 7.2 and outlines of the proofs of subject reduction and strong normalisation, the full details
of which were made available in an ArXiv version of said article [BG16c]. Both the discussion of
the dependent iteration principle in Section 7.4 and the application in Section 7.5 are new.

7.1. The Calculus λPµ
Before we formally introduce the λPµ of dependent recursive types, let us give an informal overview
over some important concepts of that calculus. The calculus is based on several judgements that
single out well-formed types and terms. We will now go through the three ways how types can
be formed: by parameter abstraction and instantiation, and as recursive types. These concepts form
the backbone of our calculus. The term formation rules follow then just what is dictated by the
category theoretical development in Section 6.2.

The formation of types involves two kinds of variables: type constructor variables and term
variables. Type constructor variables fulfil here the same role as the type variables that we used in
Section 3.1.1 to form recursive types. Term variables are required in the formation of types here
because λPµ is a calculus of dependent types. We will then use well-formedness judgements of the
form

Θ | Γ ⊢ A : ∗,
which states that A is a type in the type constructor context Θ and the term context Γ.

Since the calculus is centred around dependent recursive types, we need a way to annotate
type constructor variables, through which recursive types are constructed, with dependencies. The
way we chose to do this here is by introducing, what we call, parameter contexts and parameter
instantiations.61 This leads us to generalise the above judgement to

Θ | Γ1 ⊢ A : Γ2 _ ∗,
which is to be read as follows. As before, A is a type in the combined context Θ | Γ1, but this time
it has also parameters of the types as they are specified by the second context Γ2. Importantly, the
types in the parameter context Γ2 my depend on variables in the context Γ1. For instance, if we
have constructed a type VecB of vectors over some type B with n : Nat ⊢ VecB : ∗, then we may
have types C with Θ | n : Nat ⊢ C : (x : VecB) _ ∗. Here, C has a free variable n of type Nat and a
parameter x of type VecB .

Given a parameterised type A as above, we can instantiate its parameters with terms of the
corresponding types as follows. Suppose that Γ2 = x1 : B1, . . . ,xn : Bn and that we are given
terms t1, . . . , tn with Γ1 ⊢ tk : Bk [t1/x1, . . . , tk−1/xk−1]. This judgement should be read as: in the
term variable context Γ1, the term tk is of type Bk [t1/x1, . . . , tk−1/xk−1]. Then we can instantiate
parameters of the type A with these terms by forming the new type A@ t1 @ · · ·@ tn with

Θ | Γ1 ⊢ A@ t1 @ · · ·@ tn : ∗.

Since type constructor variables are placeholders for parameterised types, the variables in the context
Θ are also allowed to have parameters. We illustrate this with a small example. Let VecB be again

225

Chapter 7. Constructive Logic Based on Inductive-Coinductive Types

the type of vectors over B and and let X be a type constructor variable. The type system will allow
us to form the judgement

X : (n : Nat,x : VecB) _ ∗ | Γ1 ⊢ X : (n : Nat,x : VecB) _ ∗
for any context Γ. If we are now given terms k and u with Γ1 ⊢ k : Nat and Γ1 ⊢ u : VecB [k/n],
then we are able to instantiate X with these terms to obtain

X : (n : Nat,x : VecB) _ ∗ | Γ1 ⊢ X @k @u : ∗.

Besides parameter instantiation, we also allow variables to be moved from the term variable context
into the parameter context by parameter abstraction. Given a type A with Θ | Γ1,x : B ⊢ A : Γ2 _ ∗,
we may form the abstraction (z).A with Θ | Γ1 ⊢ (z).A : (x : B,Γ2) _ ∗. As an example, we will
be able derive the following.

X : (x : B,y : B) _ ∗ | ∅ ⊢ X : (x : B,y : B) _ ∗
X : (x : B,y : B) _ ∗ | z : B ⊢ X : (x : B,y : B) _ ∗

X : (x : B,y : B) _ ∗ | z : B ⊢ X @ z@ z : ∗
X : (x : B,y : B) _ ∗ | ∅ ⊢ (z).X @ z@ z : (z : B) _ ∗

The first judgement is thereby given by projecting the variable X out of the context, the second by
weakening, the third by instantiating X , and the final one by abstracting over z. Through these two
mechanisms of parameters instantiation and abstraction we can deal smoothly with type constructor
variables in the formation of dependent recursive types.62

Similar to type constructors with parameters, part of the calculus are also parameterised terms and
instantiations thereof. A parameterised term will be typed by a type with parameters of the shape
Γ2 _ A. Given a parameterised term s with Γ1 ⊢ s : Γ2 _ A, we can instantiate s with arguments
just like parameterised types: If Γ2 = x1 : B1, . . . ,xn : Bn and Γ1 ⊢ tk : Bk [t1/x1, . . . , tk−1/xk−1] for
1 ≤ k ≤ n, then

Γ ⊢ s @ t1 @ · · ·@ tn : A[
#—
t / #—x],

where A[#—
t / #—x] denotes the simultaneous substitution of all the terms tk for the corresponding term

variables xk . In the case of terms, however, we do not allow parameter abstraction.
Having set up how we deal with type constructor variables, we come to the heart of the calculus:

the type constructors for recursive types. Thes resemble the initial and final dialgebras for strictly
positive signatures that we defined in Section 6.2. These type constructors are written as

µ(X : Γ _ ∗ ; #—σ ;
#—
A) and ν(X : Γ _ ∗ ; #—σ ;

#—
A),

where #—σ = σ1, . . . ,σn are substitutions and #—
A = A1, . . . ,An are types with a free type constructor

variable X . In view of the categorical development, the σk are the analogue of the morphisms uk in
the base category that we used there for reindexing, and the types Ak correspond to the components
of the functor F . Thus pairs (#—

A , #—σ) correspond to a strictly positive signatures.
Accordingly, we will associate constructors and an iteration scheme to inductive types, and de-

structors and a coiteration scheme to coinductive types. Suppose, for example, that Γ is a context
with Γ = x1 : B1, . . . ,xn : Bn , that Ak is a type with X : Γ _ ∗ | Γk ⊢ Ak : ∗, and σk is a substitution

226

7.1. The Calculus λPµ

with σk = (t1, . . . , tn). The kth constructor of µ(X : Γ _ ∗ ; #—σ ;
#—
A) is then denoted by αk and has

the following type, where we use the shorthand µ = µ(X : Γ _ ∗ ; #—σ ;
#—
A).

⊢ αk : (Γk , z : Ak [µ/X]) _ (µ@ t1 @ · · ·@ tm) .

The constructor αk can now be instantiated according to the parameter context: Suppose, for
simplicity, that Γk = y : C for some type C that does not depend on X and that we are given a term
Γ ⊢ s : C . For a recursive argument Γ ⊢ u : Ak [µ/X][s/y], we obtain thus

Γ ⊢ αk @ s @u : (µ@ t1 @ · · ·@ tm)[s/y].

The rest of the type and term constructors are the standard structural rules, like weakening,
one would expect. It should be noted that there is a strong similarity in the use of destructors
for coinductive types to λµν . Moreover, the definition scheme for generalised abstract data types
in [HF11] describes the same inductive types. We will discuss this further in Section 7.6.

7.1.1. Raw Syntax
We now formally introduce the syntax of the calculus λPµ. The first step is to give, what we call
here, its raw syntax. This syntax has only one syntactic class for types and terms, which is given
by the syntactic objects M and N in the following context free grammar. Part of the grammar are
also type and term variable contexts, denoted by Θ and Γ, respectively, and substitutions σ .

Definition 7.1.1. Let Var and TyVar be two disjoint, countably infinite sets of term variables and
type constructor variables. Term variables will be denoted by x ,y, z, . . . , whereas type constructor
variables are denoted by capital letters X ,Y ,Z , The raw contexts, substitutions and terms are
given by the following grammar.

ΓF ∅ | Γ,x : M x ∈ Var
ΘF ∅ | Θ,X : Γ _ ∗
σ F () | (σ ,M)

M,N F ⊤ | ⟨ ⟩ | x ∈ Var | M @N | (x).M | X ∈ TyVar | ρ(X : Γ _ ∗ ; #—σ ;
#—
M), ρ ∈ {µ,ν }

| α µ(X :Γ_∗ ; #—σ ;
#—
A)

k | ξ ν (X :Γ_∗ ; #—σ ;
#—
A)

k , k ∈ N

| iterµ(X :Γ_∗ ; #—σ ;
#—
M) # —

(Γk ,yk .Nk)

| coiterν (X :Γ_∗ ; #—σ ;
#—
M) # —

(Γk ,yk .Nk)

To disambiguate raw terms, we use the the convention that instantiation, that is the operator @,
binds to the left, and that abstraction binds from the dot all the way to the right.

Let us explain the intention of the raw terms that we have not covered in the introduction above.
In the calculus, we have an explicit type ⊤ with a single element ⟨ ⟩, thereby resembling a singleton
set. We need this type to form closed terms, as we will explain further in Example 7.2.1. The
term ξk is the destructor for coinductive types, analogous to the destructor for the greatest fixed
point types in Section 3.1. Correspondingly, terms of the form coiterν (X :Γ_∗ ; #—σ ;

#—
M)

—

(Γk ,yk .Nk) are

227

Chapter 7. Constructive Logic Based on Inductive-Coinductive Types

instances of the coiteration scheme for the coinductive type ν(X : Γ _ ∗ ; #—σ ;
#—
M). The role of the

terms Nk and the binding construct (Γk ,yk).Nk will become clearer once we introduce the typing
rules for well-formed terms. Thus, we postpone the explanation of these to Section 7.1.4. Dually,
iterµ(X :Γ_∗ ; #—σ ;

#—
M)

—

(Γk ,yk .Nk) is an instance of the iteration scheme for inductive types.
The type annotations on the constructors, destructors, and the iteration and coiteration schemes

are necessary in the definition of the reduction relation and typing rules that we give later. However,
whenever the annotated types are clear from the context, then we will usually leave them out.

7.1.2. Pre-Types and Pre-Terms
The next step is to separate the raw terms from Section 7.1.1 into, what we call here, pre-types
and pre-terms. This is an intermediate step towards the definition of the typing rules, which has
a two-fold purpose. First of all, the definition of the typing rules of the calculus λPµ require a
reduction relation on terms. However, we cannot produce such a reduction relation for the raw
syntax because essential to the definition of this relation is an action of types on terms, just like for
the reduction relation of λµν in Section 3.1.2. Such an action on terms is not definable for the whole
raw syntax though. Thus, we are lead to single out syntactic objects that allow us to define an action
on terms for them. These are the pre-types that we are going to define in this section. The second
need for pre-types and pre-terms arises in the proof of strong normalisation for λPµ. This proof is
based on the construction of a syntactic model in terms of so-called saturated sets. Usually, such a
syntactic model is constructed from raw terms because the typing rules get in the way otherwise.
But since we can define the reduction relation only on pre-terms, we also use pre-terms as a sweet
spot in between raw and typed terms in the strong normalisation proof.

The major difference between pre-types and pre-terms, and the (well-formed) types and terms in
Section 7.1.4 is that that pre-terms only get a single placeholder type assigned. This placeholder type
is denoted by an empty box �. Having only a placeholder type breaks the dependency between
the reduction relation and rules for pre-terms. Such a dependency occurs because among the rules
for terms is a so-called conversion rule, which allows computations (reduction steps) during type-
checking. Instead, we define first pre-terms and pre-types, for which we can define in a second step
the reduction relation.

Pre-types and pre-terms are defined through the following two judgements.

Θ | Γ1 ⊢pre A : Γ2 _ ∗ and Γ1 ⊢pre t : Γ2 _ �.
The first judgement expresses that A is a pre-type in the type context Θ, the term context Γ1 and
has the parameter context Γ2. Pre-terms are given by the second judgement, where the contexts Γ1

and Γ2 play the same role, but it should be noted that the type of t is just the placeholder �.
We will now just give the rules for pre-types and -terms without further commenting on them,

since they are essentially the same as the rules in Section 7.1.4. The only difference is that the types
of terms are erased and that there is no conversion rule for pre-terms. Moreover, the pre-types and
-terms are only a technical tool to establish the reduction relation in Definition 7.1.6 and for the
strong normalisation proof. Thus, the reader is advised to skip ahead and read the explanation of
the reduction relation below and of the well-formedness rules in Section 7.1.4 first. The definition
of pre-terms and pre-types is mostly here for completeness. However, due to the technical difficulty,
their definition and that of the reduction relation below have been formalised in Agda [Bas18b].

228

7.1. The Calculus λPµ

(PT)-⊤⊢pre ⊤ : ∗

(PT-TyVar)
Θ,X : Γ _ ∗ | ∅ ⊢pre X : Γ _ ∗

Θ | Γ1 ⊢pre A : Γ2 _ ∗
(PT-TyWeak)

Θ,X : Γ _ ∗ | ∅ ⊢pre A : ∗

Θ | Γ1 ⊢pre A : Γ2 _ ∗ Γ1 ⊢pre B : ∗
(PT-Weak)

Θ | Γ1,x : B ⊢pre A : Γ2 _ ∗
Θ | Γ1 ⊢pre A : (x : B,Γ2) _ ∗ Γ1 ⊢pre t : �

(PT-Inst)
Θ | Γ1 ⊢pre A@ t : Γ2 _ ∗

Θ | Γ1,x : A ⊢pre B : Γ2 _ ∗
(PT-Param-Abstr)

Θ | Γ1 ⊢pre (x). B : (x : A,Γ2) _ ∗
Θ,X : Γ _ ∗ | Γk ⊢pre Ak : ∗ ⊢pre σk : Γk ▷ Γ 1 ≤ k ≤ | #—A | ρ ∈ {µ,ν }

(PT-FP-ρ)
Θ | ∅ ⊢pre ρ(X : Γ _ ∗ ; #—σ ;

#—
A) : Γ _ ∗

Figure 7.1.: Pre-Types

Definition 7.1.2. The pre-types and pre-terms of λPµ are defined inductively by the rules in Fig-
ure 7.1 and Figure 7.2, respectively. Whenever in any of the rules a recursive type occurs, it is
implicitly assumed that this recursive type is a pre-type. In the rule (PT-FP) for recursive pre-types,
substitutions by pre-terms are used. We will refer to such substitutions as pre-context morphisms.
They are given, simultaneously with pre-types and pre-terms, by the following two rules.

⊢pre () : Γ1 ▷ ∅
⊢pre σ : Γ1 ▷ Γ2 Γ1 ⊢pre A : ∗ Γ1 ⊢pre t : �

⊢pre (σ , t) : Γ1 ▷ (Γ2,x : A)

This concludes the definition of pre-types and pre-terms. ◀

Substitution of pre-types and pre-terms are defined as expected. It is also straightforward to show
that being a pre-type, respectively a pre-term, is preserved under substitutions. This is proved in
the Agda formalisation [Bas18b]. Given a pre-context morphism σ = (s1, . . . , sn), we denote by

A[σ] B A[s1/x1, . . . , sn/xn] and t [σ] B t [s1/x1, . . . , sn/xn]

the simultaneous substitution of all terms in σ for the corresponding variables in the pre-type A,
respectively the pre-term t .

7.1.3. Reductions on Pre-Types and Pre-Terms
We now come to the reduction relation on pre-types and pre-terms. To define such a relation, we
proceeds, analogously to Section 3.1.2, in four steps: First, we define an action of pre-types on

229

Chapter 7. Constructive Logic Based on Inductive-Coinductive Types

(PO-⊤-I)⊢pre ⟨ ⟩ : � Γ1 ⊢pre t : (x : A,Γ2) _ � Γ1 ⊢pre s : �
(PO-Inst)

Γ1 ⊢pre t @ s : Γ2 _ �
x ∈ Var Γ ⊢pre A : ∗

(PO-Proj)
Γ,x : A ⊢pre x : � Γ ⊢pre A : ∗ Γ1 ⊢pre t : Γ2 _ �

(PO-Weak)
Γ1,x : A ⊢pre t : Γ2 _ �

1 ≤ k ≤ | #—A | (PO-Ind-I)
⊢pre α µ(X :Γ_∗ ; #—σ ;

#—
A)

k : (Γk ,y : Ak [µ/X]) _ �
1 ≤ k ≤ | #—A | (PO-Coind-E)

⊢pre ξ ν (X :Γ_∗ ; #—σ ;
#—
A)

k : (Γk ,y : ν @σk) _ �
∆ ⊢pre C : Γ _ ∗ ∀1 ≤ k ≤ | #—A |.

(
∆,Γk ,yk : (C @σk) ⊢pre дk : �)

(PO-Ind-E)
∆ ⊢pre iterµ(X :Γ_∗ ; #—σ ;

#—
A)

—

(Γk ,yk .Nk) : (Γ,y : µ@idΓ) _ �
∆ ⊢pre C : Γ _ ∗ ∀1 ≤ k ≤ | #—A |.

(
∆,Γk ,yk : (C @σk) ⊢pre дk : �)

(PO-Coind-I)
∆ ⊢pre coiterν (X :Γ_∗ ; #—σ ;

#—
A)

—

(Γk ,yk .Nk) : (Γ,y : C @idΓ) _ �
Figure 7.2.: Pre-Terms

pre-terms. Then we use this action to define a simple contraction relation. From this contraction
relation we obtain, as the third step, a reduction relation by taking its compatible closure. Finally,
we use the resulting reduction relation on pre-terms to define a reduction on pre-types.

For convenience, let us introduce some notation for dealing with pre-context morphisms. These
notations make it also easier to relate the present development to the category theoretical approach
in Section 6.2.
Notation 7.1.3. First, for Γ = x1 : A1, . . . ,xn : An we define the identity (pre-)context morphism
idΓ by idΓ B (x1, . . . ,xn). Second, given a type A with Θ | Γ1 ⊢pre A : Γ _ ∗ and a pre-context
morphism σ with ⊢pre σ : Γ1 ▷ Γ and σ = (t1, . . . , tn), we denote by A@σ the instantiation
A@ t1 @ · · ·@ tn . Finally, we will need to compose pre-context morphisms later. This composition
is given for pre-context morphisms Γ3

σ
▷ Γ2

τ
▷ Γ by

τ • σ B (τ1[σ], . . . ,τn [σ]), (7.1)

where τk [σ] denotes the substitution of σ in all terms in τk . ◀

Since we will frequently deal with parameter abstractions of many variables at the same time, it
is worth to also introduce some notation concerning multi-variable abstractions.
Notation 7.1.4. Let us agree on the following notations for parameter abstraction. Given a context
Γ = x1 : A1, . . . ,xn : An and a pre-type Θ | Γ ⊢pre B : ∗, we denote the full abstraction of B by
(Γ). B B (x1). · · · (xn). B, which gives us

Θ | ∅ ⊢pre (Γ). B : Γ _ ∗.
230

7.1. The Calculus λPµ

Moreover, if we are given a sequence #—
B of such types, that is, if Θ | Γi ⊢pre Bi : ∗ for each Bi in

that sequence, we denote by
—

(Γi). B the sequence of types that arises by fully abstracting each type
Bi separately. ◀

Having introduced all this notation, we can now define the action Â of a pre-type A on pre-types
and -terms. Suppose that A andU are pre-types with X : Γ _ ∗ | Γ1 ⊢pre A : Γ2 _ ∗ and Γ ⊢pre U : ∗.
Then the action of A on U is given by

Â(U) = A[(Γ).U /X]@idΓ2
.

On terms, we will define Â so that the following rule holds.

X : Γ _ ∗ | Γ1 ⊢pre A : Γ2 _ ∗ Γ,x : U ⊢pre t : �
Γ1,Γ2,y : Â(U) ⊢pre Â(t) : �

This action of pre-types is defined analogously to that of types on terms in the simply typed case
in Section 3.1.2. As such, it follows in the case of recursive types the definition of functors from
parameterised initial and final dialgebras in Section 6.2.2. In fact, Â has the type of a functor that
turns types in context Γ into types in the context Γ1,Γ2. That will become clearer once we introduce
well-formed types and terms in Section 7.1.4 and prove subject reduction in Section 7.3.2.

In the following definition of the action of pre-types, we need to generalise the above rules to
an arbitrary number of free type constructor variables in A. That means that, instead of assuming
X : Γ _ ∗ | Γ1 ⊢pre A : Γ2 _ ∗, we have Θ | ∆1 ⊢pre A : ∆2 _ ∗ for an arbitrary type context Θ.

Definition 7.1.5. Let Θ | ∆1 ⊢pre A : ∆2 _ ∗ be a pre-type with Θ = X1 : Γ1 _ ∗, . . . ,Xn : Γn _ ∗,
#—
U and #—

V be sequences of pre-types with Γi ⊢pre Ui : ∗ and Γi ⊢pre Vi : ∗ for all 1 ≤ i ≤ n. The action
of A on the sequence #—

U of types is given by

Â(
#—
U) B A[

—

(Γi).U /
#—
X]@id∆2

.

Note that we then have that Θ | ∆1,∆2 ⊢pre Â(
#—
U) : ∗.

For a sequence #—
t of pre-terms with Γi ,x : Ui ⊢pre t : � for all 1 ≤ i ≤ n, we define the action of

A on #—
t , denoted by Â(

#—
t), so that the following rule holds.

Θ | ∆1 ⊢pre C : ∆2 _ ∗ ∀1 ≤ i ≤ n. Γi ,x : Ui ⊢pre ti : �
∆1,∆2,y : Ĉ(

#—
U) ⊢pre Ĉ(#—

t) : �
If n = 0, we simply put Â(ε) = y, which also covers the case (PT-⊤). If n > 0, we define Â(

#—
t)

231

Chapter 7. Constructive Logic Based on Inductive-Coinductive Types

by induction on the derivation of Θ | Γ1 ⊢pre A : Γ2 _ ∗ as follows.

X̂i (
#—
t) = ti [y/x] (PT-TyVar)

Â(
#—
t , tn+1) = Â(

#—
t) (PT-TyWeak)

Â(
#—
t) = Â(

#—
t) (PT-Weak)�A@ s(

#—
t) = Â(

#—
t)[s/x] (PT-Inst)�(y).A(#—

t) = Â(
#—
t) (PT-Param-Abstr)�µ(Y : Γ _ ∗ ; #—σ ;

#—
A)(

#—
t) = iterµU

—

(∆k ,y
′.дk)@idΓ @y (PT-FP-µ)

with дk = αk @id∆k @
(
Âk

(#—
t ,x

))
and µU = µ(Y : Γ _ ∗ ; #—σ ;

—

Â(
#—
U))�ν(Y : Γ _ ∗ ; #—σ ;

#—
A)(

#—
t) = coiterνV

—

(∆k , z.д)@idΓ @y (PT-FP-ν)

with дk = Âk
(#—
t ,x

)
[(ξk @id∆k @ z)/y ′]

and νV = ν(Y : Γ _ ∗ ; #—σ ;
—

Â(
#—
V))

In the case (PT-FP-µ) for inductive types,
—

Â(
#—
U) is the sequence of Âi (

#—
U) that arises by applying all

Ai to
#—
U . Analogously,

—

Â(
#—
V) is given by applying all Ai to

#—
V in the case for coinductive types. ◀

To make it easier to follow this definition, let us show that the result in the case (PT-FP-µ) is
indeed a pre-term. All the other cases are covered by the proof of subject reduction in Section 7.3.2.
So suppose we are given an inductive type µ(Y : Γ _ ∗ ; #—σ ;

#—
A) with

∀1 ≤ k ≤ m.
(
Θ,X : Γ _ ∗ | ∆k ⊢pre Ak : ∗

)
⊢pre σk : ∆k ▷ Γ

µ(Y : Γ _ ∗ ; #—σ ;
#—
A)

We refer to this type just by µ in what follows. Let µU B µ(Y : Γ _ ∗ ; #—σ ;
—

Â(
#—
U)), and note that

µU @idΓ = µ̂(
#—
U). The intuition for the definition of the action of µ on terms follows that for

the definition of a functor from parameterised initial dialgebras, see Definition 6.2.5, in the sense
that µ̂(#—

t) is defined as morphism Γ,y : µ̂(
#—
U) ⊢pre h : �, as in the following diagrams for all k

with 1 ≤ k ≤ n. Note that we cannot say yet that the diagram commutes, as this requires the the
reduction relation.

∆k ,y
′ : Âk

(
#—
U , µU

)
∆k ,y

′ : Âk
(

#—
U , µV

)
∆k , z : Âk

(
#—
V , µV

)
∆k ,y : µU @σk ∆k , z

′ : µV @σk

Âk(
—idΓi ,h)

αk @id∆k @y′

Âk (
#—t ,x)

αk @id∆k @ z

h[σk]

232

7.1. The Calculus λPµ

iter
—

(Γk ,yk .дk)@ (σk • τ)@ (αk @τ @u) ≻ дk
[
Âk (iter

—

(Γk ,yk .дk)@idΓ @x)
/
yk

]
[τ ,u]

ξk @τ @ (coiter
—

(Γk ,yk .дk)@ (σk • τ)@u) ≻ Âk

(
coiter

—

(Γk ,yk .дk)@idΓ @x
)
[дk/y][τ ,u]

Figure 7.3.: Contraction of Terms.

In Definition 7.1.5, the pre-term h was given by defining

дk = αk @id∆k @
(
Âk

(#—
t ,x

))
h = iterµU

—

(∆k ,y
′.дk)@idΓ @y.

Note that дk = (αk @id∆k @ z)
[(
Âk

(#—
t ,x

))/
z
]
, which is the right-hand side of the above diagram.

Let us now derive that all the дk and h are correct pre-terms. First of all, we obtain from the
induction hypothesis in the definition of the pre-type action the following derivation.

Θ,X : Γ _ ∗ | ∆k ⊢pre Ak : ∗ ∀1 ≤ i ≤ n.
(
Γi ,x : Ui ⊢pre t : �)

Γ,x : µ̂(
#—
V) ⊢pre x : �

∆k ,y
′ : Âk (

#—
U , µ̂(

#—
V)) ⊢pre Âk (#—

t ,x) : �
By the typing rules for the constructors of the inductive type µU , we also have the following.

∆k , z : Âk (
#—
U , µU) ⊢pre z : �

∆k , z : Âk (
#—
U , µU) ⊢pre αk @id∆k @ z : �

Putting these together, we have

∀1 ≤ i ≤ n.
(
Γi ,x : Ui ⊢pre t : �)

∀1 ≤ k ≤ m.
(
∆k ,y

′ : Âk (
#—
U , µ̂(

#—
V)) ⊢pre дk : �)

⊢pre iterµU
—

(∆k ,y.дk) : (Γ,y : µ̂(
#—
U)) _ �

Γ,y : µ̂(
#—
U) ⊢pre h : �

This shows that µ̂(#—
t) = h is indeed a pre-term in the expected context.

We now come to the definition of the reduction relations on pre-terms and pre-types. Analogously
to the development in Section 3.1.2, we define the reduction relation on pre-terms by first giving
a contraction relation, which carries out single-step computations, and then taking the compatible
closure of this contraction relation is reduction relation. The reduction relation on pre-types reduces
then parameters by means of the reduction relation on pre-terms. Moreover, it performs β-reduction
for instantiations.

So let us start by providing the reduction on pre-terms by appealing to the action of pre-types.

Definition 7.1.6. The reduction relation of λPµ −→ on pre-terms is defined as compatible closure63
of the contraction relation of λPµ ≻ given in Figure 7.3. We introduce in the definition of contraction
a fresh variable x , for which we immediately substitute (either u or дk). This is necessary for the
use of the action of types on terms, see Definition 7.1.5. ◀

233

Chapter 7. Constructive Logic Based on Inductive-Coinductive Types

On terms, the reduction relation for a destructor-coiterator pair essentially emulates the ho-
momorphism diagram for coinductive extensions. So suppose we are given a coinductive type
ν = ν(Y : Γ _ ∗ ; #—σ ;

#—
A) with Γk ⊢pre Ak : ∗ and a pre-type C with ⊢pre C : Γ _ ∗. Then the

contraction relation acts as in the following diagram, where composition is given by substitution.

Γk ,xk : C @σk Γk ,y : ν @σk

Γk ,y : Ak [C/X] Γk , z : Ak [ν/X]

coiter # —

(Γk ,y . дk)@σk @ x

дk ξk @idΓk @y≺

Âk (coiter
—

(Γk ,y . д)@σk @ x)

To be precise, this means that we have

(ξk @idΓk @y)
[
coiter

—

(Γk ,y.дk)@σk @x
/
y
]
= ξk @idΓk @

(
coiter

—

(Γk ,y.дk)@σk @x
)
y

≻ Âk (coiter
—

(Γk ,y.д)@σk @x)[дk/y].

The reduction relation for a iterator-constructor pair emulates the dual of this diagram for homo-
morphisms out of initial dialgebras.

From the reduction relation on pre-terms, we can now define reductions on pre-types.

Definition 7.1.7. The reduction relation on pre-types consists of two types of reductions: First,
β-reduction for parameter instantiations is given by parameter reduction64

((x).A)@ t −→p A[t/x].

Second, we lift the reduction relation on pre-terms to pre-types by taking the compatible closure of
reduction of parameters, which is given by

t −→ t ′

A@ t −→ A@ t ′
(7.2)

We combine these relations into one reduction relation on pre-types:

−→T B −→p ∪ −→.

One-step conversion of pre-types is then given by

A←→T B ⇐⇒ A −→T B or B −→T A. ◀

This concludes the definition of reductions on pre-types and -terms. So we can finally come to
the definition well-formed types and terms.

7.1.4. Well-Formed Types and Terms
The goal of this section is carve out the well-formed types and terms of the calculus λPµ from
the pre-terms and pre-types that we defined in the last section. We will do this through several
judgements, each of which has its own set of derivations rules. It is understood that the derivability
of these judgments is defined by simultaneous induction. So, Definitions 7.1.8, 7.1.9, 7.1.10 and 7.1.11
should be seen as one simultaneous definition. The judgements we are going to use are are the
following.

234

7.1. The Calculus λPµ

• ⊢ Θ TyCtx — The type constructor variable context Θ is well-formed.

• ⊢ Γ Ctx — The term variable context Γ is well-formed.

• σ : Γ1 ▷ Γ2 – The context morphism σ is a well-formed substitution for Γ2 with terms in
context Γ1.

• Θ | Γ1 ⊢ A : Γ2 _ ∗ — The type constructor A is well-formed in the combined context
Θ | Γ1 and can be instantiated with terms according to the parameter context Γ2, where it is
implicitly assumed that Θ, Γ1 and Γ2 are well-formed.

• Γ1 ⊢ t : Γ2 _ A — The term t is well-formed in the term variable context Γ1 and, after
instantiating it with arguments according to parameter context Γ2, is of type A with the
arguments substituted into A.

Definition 7.1.8. The judgements for singling out well-formed contexts (type variable contexts and
term variable contexts) are given by the following rules.

⊢ ∅ TyCtx
⊢ Θ TyCtx ⊢ Γ Ctx
⊢ Θ,X : Γ _ ∗ TyCtx ⊢ ∅ Ctx

∅ | Γ ⊢ A : ∗
⊢ Γ,x : A Ctx ◀

It is important to note that whenever a term variable declaration is added into the context, its
type is not allowed to have any free type constructor variables, which ensures that all types are
strictly positive. For example, we are not allowed to form the term context Γ = x : X in which X
occurs freely. This prevents us, as we will see in Ex. 7.2.4, from forming function spaces X → A.

Definition 7.1.9 (Context Morphism). We introduce the notion of context morphisms as a shorthand
notation for typed substitutions. Let Γ1 and Γ2 be contexts. A context morphism σ : Γ1 ▷ Γ2 is given
by the following two rules.

() : Γ1 ▷ ∅
σ : Γ1 ▷ Γ2 Γ1 ⊢ t : A[σ]

(σ , t) : Γ1 ▷ (Γ2,x : A)

where ∅ | Γ2 ⊢ A : ∗, and A[σ] denotes the simultaneous substitution of the terms in σ for the
corresponding variables, which is often also denoted by A[σ] = A[σ/ #—x]. ◀

Definition 7.1.10 (Well-formed Type Constructor of λPµ). The judgement for type constructors is
given inductively by the rules in Figure 7.4, where it is understood that all involved contexts are
well-formed. where in the (FP-Ty)-rule #—σ and #—

A are assumed to have the same length | #—A |. ◀

Note that type constructor variables come with a parameter context. This context determines the
parameters of an initial/final dialgebra, which essentially bundle the local context, the domain and
the codomain of their constructors respectively destructors. In other words, the types implement
precisely the closure rules for µP-complete categories.

This brings us finally to the rules for well-formed terms.

Definition 7.1.11 (Well-formed Terms of λPµ). The judgement for terms is given by the rules in
Fig. 7.5. To improve readability, we use the shorthand ρ = ρ(X : Γ _ ∗ ; #—σ ;

#—
A), ρ ∈ {µ,ν }, and

implicitly assume all involved types and contexts are well-formed. ◀

235

Chapter 7. Constructive Logic Based on Inductive-Coinductive Types

(⊤-I)⊢ ⊤ : ∗

⊢ Θ TyCtx ⊢ Γ Ctx
(TyVar-I)

Θ,X : Γ _ ∗ | ∅ ⊢ X : Γ _ ∗
Θ | Γ1 ⊢ A : Γ2 _ ∗ ⊢ Γ Ctx (TyVar-Weak)
Θ,X : Γ _ ∗ | Γ1 ⊢ A : Γ2 _ ∗
Θ | Γ1 ⊢ A : Γ2 _ ∗ Γ1 ⊢ B : ∗ (Ty-Weak)

Θ | Γ1,x : B ⊢ A : Γ2 _ ∗
Θ | Γ1 ⊢ A : (x : B,Γ2) _ ∗ Γ1 ⊢ t : B (Ty-Inst)

Θ | Γ1 ⊢ A@ t : Γ2[t/x] _ ∗
Θ | Γ1,x : A ⊢ B : Γ2 _ ∗ (Param-Abstr)

Θ | Γ1 ⊢ (x). B : (x : A,Γ2) _ ∗
∀1 ≤ k ≤

�� #—
A

��. σk : Γk ▷ Γ Θ,X : Γ _ ∗ | Γk ⊢ Ak : ∗ ρ ∈ {µ,ν }
(FP-Ty-ρ)

Θ | ∅ ⊢ ρ(X : Γ _ ∗ ; #—σ ;
#—
A) : Γ _ ∗

Figure 7.4.: Judgements for the well-formed types of λPµ

We will often leave out the type information in the superscript of constructors and destructors. The
domain of a constructor α µ(X :Γ_∗ ; #—σ ;

#—
A)

k is determined by Ak and its codomain by the instantiation
σk . Dually, the domain of a destructor ξk is given by the instantiation σk and its codomain by
Ak . It is important to note in that both the iteration and coiteration schemes variable binding is
introduced: Given terms дk with ∆,Γk ,yk : Ak [C/X] ⊢ дk : C @σk , the iterator iter

—

(Γk ,yk .дk)
binds the variables in Γk and the variable yk of each дk . For instance, this will give us the variable
binding that happens in λ-abstraction, see Example 7.2.4.

This concludes the definition of our proposed calculus λPµ. Note that there are no primitive type
constructors for →-, Π- or ∃-types, all of these are, together with the corresponding introduction
and elimination principles, definable in the above calculus, as we will see in the next section.

As the alert reader might have noticed, our calculus does not have dependent recursion and
corecursion, that is, the type C in (Ind-E) and (Coind-I) cannot depend on elements of the cor-
responding recursive type. This clearly makes the calculus weaker than if we had the dependent
version: In the case of inductive types we do not have an induction principle, cf. Example 7.2.6. We
will come back to this issue in Section 7.4. For coinductive types, on the other hand, one cannot
even formulate a dependent version of (Coind-I), rather one would expect a coinduction rule that
turns a bisimulation into an equality proof. This would imply that we have an extensional function
space, see Example 7.2.4. How to possibly add such a bisimulation proof principle will be discussed
in the future work in Section 7.6.

236

7.2. Examples

(⊤-I)⊢ ⟨ ⟩ : ⊤
Γ1 ⊢ t : (x : A,Γ2) _ B Γ1 ⊢ s : A (Inst)

Γ1 ⊢ t @ s : Γ2[s/x] _ B[s/x]

Γ ⊢ t : A A←→T B (Conv)
Γ ⊢ t : B

Γ ⊢ A : ∗ (Proj)
Γ,x : A ⊢ x : A

Γ1 ⊢ t : Γ2 _ A Γ1 ⊢ B : ∗ (Weak)
Γ1,x : B ⊢ t : Γ2 _ A

⊢ µ(X : Γ _ ∗ ; #—σ ;
#—
A) : Γ _ ∗ 1 ≤ k ≤ | #—A |

(Ind-I)
⊢ α µ(X :Γ_∗ ; #—σ ;

#—
A)

k : (Γk ,y : Ak [µ/X]) _ µ@σk

⊢ ν(X : Γ _ ∗ ; #—σ ;
#—
A) : Γ _ ∗ 1 ≤ k ≤ | #—A |

(Coind-E)
⊢ ξ ν (X :Γ_∗ ; #—σ ;

#—
A)

k : (Γk ,y : ν @σk) _ Ak [ν/X]

∆ ⊢ C : Γ _ ∗ ∆,Γk ,yk : Ak [C/X] ⊢ дk : (C @σk) ∀k = 1, . . . ,
�� #—
A

��
(Ind-E)

∆ ⊢ iter # —

(Γk ,yk .дk) : (Γ,y : µ@idΓ) _ C @idΓ

∆ ⊢ C : Γ _ ∗ ∆,Γk ,yk : (C @σk) ⊢ дk : Ak [C/X] ∀k = 1, . . . ,
�� #—
A

��
(Coind-I)

∆ ⊢ coiter # —

(Γk ,yk .дk) : (Γ,y : C @idΓ) _ ν @idΓ

Figure 7.5.: Judgements for well-formed terms of λPµ

7.2. Examples
In this section, we illustrate the calculus given in Section 7.1 on a variety of examples. We begin
with a few basic ones, then work our way through the encoding of logical operators, and finish with
lists indexed by their length (vectors) as an actually recursive type.

Before we go through the examples, let us introduce a notation for sequences of empty context
morphisms. We denote such a sequence of k empty context morphisms by

εk B ((), . . . , ()).

Given contexts Γ1, . . . ,Γk , we then have that εk is a sequence of context morphisms (Γ1 ▷ ∅, . . . ,Γk ▷
∅).

Let us start with one of the most basic types: the singleton type. This first example also gives us
the opportunity to explain the role of the base type ⊤.

Example 7.2.1 (Final Object). We first note that, in principle, we can encode ⊤ as a coinductive
type by 1 B ν(X : ∗ ; ε1;X):

X : ∗ | ∅ ⊢ X : ∗ ε1 : ∅ ▷ ∅ (FP-Ty)
⊢ ν(X : ∗ ; ε1;X) : ∗

237

Chapter 7. Constructive Logic Based on Inductive-Coinductive Types

This gives us the destructor ξ1 : (x : 1) _ 1 and the inference
⊢ C : ∗ y : C ⊢ y : C

(Coind-I)⊢ coiter (y.y) : (y : C) _ 1
So the analogue of the categorical concept of the (unique) morphism into a final object is given by
!C B coiter (y.y). Note that it is not possible to define a closed term of type 1 directly, rather we
only get one with the help of ⊤ by ⟨ ⟩′ B !⊤@ ⟨ ⟩. Thus, the purpose of ⊤ is to allow the formation
of closed terms. Now, these definitions and X̂ (t) = t , see Def. 7.1.5, give us the following reduction.

ξ1 @ ⟨ ⟩′ = ξ1 @ (coiter (y.y)@ ⟨ ⟩)

−→ X̂ (coiter (y.y)@x)[⟨ ⟩/y]

= (coiter (y.y)@x)[y/x][⟨ ⟩/y]

= coiter (y.y)@ ⟨ ⟩

= ⟨ ⟩′

Hence, ⟨ ⟩′ is the canonical element of 1 with no observable behaviour. ◀

Dual to the final object 1, we can form an initial object.
Example 7.2.2. We put 0 B ⊥ B µ(X : ∗ ; ε1;X), dual to the definition of 1. For a given type C ,
we can define the usual elimination principle for falsum by E⊥C B iter (y.y). As expected, we have

Γ ⊢ C : ∗
Γ ⊢ E⊥C : (y : ⊥) _ C

◀

Let us now move to more complex type formers, or logical connectives under the propositions-
as-types interpretation.
Example 7.2.3 (Binary Product and Coproduct). Suppose we are given types Γ ⊢ A1,A2 : ∗, then
their binary product is fully specified by the two projections and pairing. Thus, we can use the
following coinductive type for A1 ×Γ A2.

Γ ⊢ A1 : ∗ Γ ⊢ A2 : ∗
Γ ⊢ ν(X : Γ _ ∗ ; (idΓ, idΓ); (A1,A2))@idΓ : ∗

Then the projections are given by πk B ξk @idΓ, and pairing by ⟨t1, t2⟩ B Pt1,t2 @idΓ @ ⟨ ⟩, where we
abbreviate Pt1,t2 B coiter ((Γ, _. t1), (Γ, _. t2)). For this definition of pairing, we have the following
expected typing derivation.

⊢ (Γ).⊤ : Γ _ ∗ Γ ⊢ tk : Ak
Γ, _ : ⊤ ⊢ tk : Ak

⊢ Pt1,t2 : (Γ, _ : ⊤) _ A1 ×Γ A2

Γ ⊢ ⟨t1, t2⟩ : A1 ×Γ A2

This setup gives us the usual reductions for k ∈ {1, 2}:
πk @ ⟨t1, t2⟩ = ξk @idΓ @ (Pt1,t2 @idΓ @ ⟨ ⟩)

−→ Âk (Pt1,t2 @idΓ @x)[tk/y][(idΓ, ⟨ ⟩)]
= y[tk/y][(idΓ, ⟨ ⟩)]
= tk ,

238

7.2. Examples

where the third step is given by Âk = y, since Ak does not use type constructor variables,
see Def. 7.1.5.

Dually, the binary coproduct of A1 and A2 is given by

A1 +Γ A2 B µ(X : Γ _ ∗ ; (idΓ, idΓ); (A1,A2))@idΓ,

the corresponding injections by κi B αi @idΓ, and we can form the case distinction

{κ1 x1 7→ t1 ; κ2 x2 7→ t2} s B iter ((Γ,x . t1), (Γ,x . t2))@ s,

which is subject to the following typing rule.

Γ ⊢ C : ∗ Γ,xk : Ak ⊢ tk : C Γ ⊢ s : A1 +Γ A2

Γ ⊢ {κ1 x1 7→ t1 ; κ2 x2 7→ t2} s : C

Moreover, we get the expected reduction:

{κ1 x1 7→ t1 ; κ2 x2 7→ t2} (κk @ s) −→ tk [s/xk].

Thus, we have recovered binary products and coproducts with their introduction and elimination
rules, and the corresponding reduction rules in λPµ. These definitions correspond to our result in
Theorem 6.2.11 and the table that follows this theorem. ◀

Next, we show how to recover the dependent function space as coinductive type and dependent
sums as inductive types in λPµ. This follows again Theorem 6.2.11.

Example 7.2.4 (Dependent Product, Universal Quantifier). Given types A and B with ⊢ A : ∗ and
x : A ⊢ B : ∗, we expect the dependent product of B to be a type with ⊢ Πx : A. B : ∗. This leads us
to use ∅ as global context for the dependent product and Γ1 = x : A as local context. Since we have

x : A ⊢ B : ∗(TyVar-Weak)
X : ∗ | x : A ⊢ B : ∗ ε1 : Γ1 ▷ ∅ (FP-Ty)

⊢ ν(X : ∗ ; ε1;B) : ∗

we may define Πx : A.B B ν(X : ∗ ; ε1;B). If t is a term with Γ,x : A ⊢ t : B, we get its λ-abstraction
by putting λx .t B coiter (x ,u . t)@ ⟨ ⟩ for some fresh variable u. This term is indeed correctly typed:

Γ,x : A ⊢ t : B Γ,x : A ⊢ ⊤ : ∗ (Weak)
Γ,x : A,u : ⊤ ⊢ t : B (Coind-I)

Γ ⊢ coiter (x ,u . t) : (u : ⊤) _ Πx : A.B
(Inst)

Γ ⊢ λx .t : Πx : A.B

Function application is given by destructor application: s a B ξ1 @a@ s . Since we have that
B[Πx : A.B/X] = B and (Πx : A.B)[ε1] = Πx : A.B, we can derive the typing rule for application.

Γ ⊢ a : A Γ ⊢ s : Πx : A.B
Γ ⊢ s a : B[a/x]

239

Chapter 7. Constructive Logic Based on Inductive-Coinductive Types

In particular, we have that (λx .t) a is well-typed, and we can derive the usual β-reduction:

(λx .t) a = ξ1 @a@ (coiter (x ,u . t)@ ⟨ ⟩)

−→ B̂(coiter (x ,u . t)@x ′)[t/y][⟨ ⟩/u,a/x]

= x ′[y/x ′][t/y][⟨ ⟩/u,a/x]

= t [a/x],

where we again use that X < fv(B). As customary, we can derive from the dependent function space
also the non-dependent function space by putting

A→ B B Πx : A.B if x < fv(B).

We can now extend the correspondence between variables in context and terms of function type
to parameters as follows. First, from Γ ⊢ r : (x : A) _ B, we get Γ,x : A ⊢ r @x : B. Next, for
Γ,x : A ⊢ s : B we can form λx .s , and finally a term Γ ⊢ t : A → B gives rise to Γ,x : A ⊢ t x : B.
This situation can be summarised as follows.

Γ ⊢ r : (x : A) _ B

Γ,x : A ⊢ s : B
Γ ⊢ t : Πx : A.B

Here, a single line is a downwards correspondence, and the dashed double line signifies a two-way,
though not one-to-one, correspondence. These correspondences allow us, for example, to give the
product projections the function type A1 ×Γ A2 → Ak , and to write πk t instead of πk @ t . ◀

Let us briefly divert here on the issue of non-positive types and non-strictly positive types.

Example 7.2.5. We claimed earlier that type system only allows the formation of strictly positive
types. Let us show why this is indeed the case. Suppose we would want to form the type X → B for
some variable X and type B. Recall that X → B = ν(Y : ∗ ; ε1;B) with ε1 : (x : X) ▷ ∅. However, for
this to be a valid context morphism, we would need to derive ⊢ x : X Ctx (note the empty context),
which is not possible according to Def. 7.1.8. Hence, we cannot form X → B as a type in λPµ, which
prevents us from having non(-strictly) positive recursive types. ◀

After this interlude, let us continue with the dual of the dependent product type.

Example 7.2.6 (Dependent Coproduct, Existential Quantifier). In this example we show how de-
pendent coproducts/existential quantifier arise λPµ. Recall that we do not have dependent iteration,
hence no induction principle, in λPµ, cf. Section 7.4. This means that we are not able to encode
Σ-types à la Martin-Löf with projections, see Note 47 of Chapter 6 and the later Example 7.4.5.
Instead, we can define intuitionistic existential quantifiers, see 11.4.4 and 10.8.2 in [TvD88]. In fact,
∃-types occur as the dual of dependent products (Ex. 7.2.4) as follows.

Let x : A ⊢ B : ∗ and put ∃x : A. B B µ(X : ∗ ; ε1;B) for some fresh type variable X . The pairing
of terms t and s is given by ⟨t , s⟩ B α1 @ t @ s . One can easily derive that ⊢ ∃x : A. B : ∗ and

Γ ⊢ t : A Γ ⊢ s : B[t/x]
Γ ⊢ ⟨t , s⟩ : ∃x : A. B

240

7.2. Examples

from (Ind-I) and (Inst). Equally easy is also the derivation that the elimination principle for
existential quantifiers, defined by

unpack t as ⟨x ,y⟩ in p B iter (x : A,y : B.p)@ t ,

can be formed by the following rule.

⊢ C : ∗ Γ,x : A,y : B ⊢ p : C Γ ⊢ t : ∃x : A.B

Γ ⊢ unpack t as ⟨x ,y⟩ in p : C

Finally, we get the usual reduction rule

unpack ⟨t , s⟩ as ⟨x ,y⟩ in p −→ p [t/x , s/y] .

Even though we do not have a strong enough elimination principle for ∃-types to define the
second projection of pairs, we are still able to define the first projection by

π1 B λz. unpack z as ⟨x ,y⟩ in x .

Indeed, one easily derives that ⊢ π1 : (∃x : A. B)→ A. ◀

Example 7.2.7 (Generalised Dependent Product and Coproduct). From a categorical perspective, it
makes sense to not just consider product and coproducts that bind a variable in a type but also to
allow the restriction of terms we allow as values for this variable. We can achieve this by replacing
ε1 in Ex. 7.2.4 and Ex. 7.2.6 by an arbitrary term x : I ⊢ f : J . This gives us type constructors with

y : J ⊢⨿
f A : ∗ and y : J ⊢∏

f A : ∗

that are weakly adjoint
⨿

f ⊣ f ∗ ⊣ ∏
f , where f ∗ substitutes f . Similarly, propositional equality

arises as left adjoint to contraction δ ∗, where δ : (x : A) ▷ (x : A,y : A) is the diagonal substitution
δ B (x ,x), see Example 7.2.8 below. ◀

Example 7.2.8 (Propositional Equality). In Ex. 7.2.7, we remarked that the propositional equality
arises as left adjoint to the contraction δ ∗, cf. [Jac99, Def. 10.5.1], hence can be represented in λPµ as
a generalised dependent coproduct. Let us elaborate this a bit more. First, we represent the equality
type in λPµ as an inductive type by

EqA(s, t) B µ(X : (x : A,y : A) _ ∗ ;δ ;⊤)@ s @ t ,

where δ : (x : A) ▷ (x : A,y : A) is the diagonal δ = (x ,x). This type has the usual constructor

refl : Πx : A. EqA(x ,x)
refl B λx . α1 : (x : A) _ EqA(x ,x)

and the (weak) elimination rule

x : A,y : A ⊢ C : ∗ x : A ⊢ p : C[x/x ,x/y] Γ ⊢ q : EqA(s, t)
Γ ⊢ EEq(p,q) : C [s/x , t/y]

241

Chapter 7. Constructive Logic Based on Inductive-Coinductive Types

where EEq(p,q) B iter (x .p)@ s @ t @q. This is of course not the full J-rule (or path induction)
but it is already strong enough to prove, for example, the following replacement (or substitution or
transport) rule that allows us to replace equal terms in types.

Γ,x : A ⊢ P : ∗ Γ ⊢ p : P [s/x] Γ ⊢ q : EqA(s, t)
Γ ⊢ repl(p,q) : P [t/x]

This can be derived by using P [x/x]→ P [y/x] for C and putting
repl(p,q) B EEq(λr . r ,q) p.

That this term is of the correct type can be seen by the following derivation.

Γ ⊢ λr . r : P [x/x]→ P [x/x] Γ ⊢ q : EqA(s, t)
Γ ⊢ EEq(λr . r ,q) : P [s/x]→ P [t/x] Γ ⊢ p : P [s/x]

Γ ⊢ EEq(λr . r ,q) p : P [t/x]

As such, this derivation is a typical example of higher-order iteration, similar to Example 3.1.7. ◀
After we have recovered all of basic Martin-Löf type theory, with the caveat that the existential

quantifier does not have a second projection, it is time to move to truly recursive types. The first
type is that of the natural numbers, which we will use in the definition of length-indexed lists.
Example 7.2.9. We can define the type of natural numbers in λPµ by

Nat B µ(X : ∗ ; ε2; (⊤,X)),

with contexts Γ = Γ1 = Γ2 = ∅. We get the usual constructors for the zero and the successor:
0 = αNat

1 @ ⟨ ⟩ : Nat and s = αNat
2 : (y : Nat) _ Nat.

Moreover, we obtain the standard iteration principle:
⊢ t0 : C y : C ⊢ ts : C

⊢ iter (t0, (y. ts)) : (y : Nat) _ C
◀

The reader will have noticed that this representation of the natural numbers is essentially the same
as the definition that we gave in Example 3.1.2. In the calculus λPµ it is only easier to give the types
of the two constructors separately. We could have just as well represented Nat as µ(X : ∗ ; ε1;⊤+X)
by using the coproduct from Example 7.2.3. More generally, all types from Definition 3.1.1 together
with the corresponding terms of the simple calculus λµν can be represented in λPµ by appealing to
the above examples. ◀

Let us show now how length-indexed lists (vectors) arise as a dependent recursive in λPµ.
Example 7.2.10 (Vectors). We define vectors VecA : (n : Nat) _ ∗, which are lists over A indexed
by their length, as follows.

VecA B µ(X : Γ _ ∗ ; (σ1,σ2); (⊤,A × X @k))

Γ = n : Nat and Γ1 = ∅ and Γ2 = k : Nat
σ1 = (0) : Γ1 ▷ (n : Nat) and σ2 = (s @k) : Γ2 ▷ (n : Nat)
X : (n : Nat) _ ∗ | Γ1 ⊢ ⊤ : ∗
X : (n : Nat) _ ∗ | Γ2 ⊢ A × X @k : ∗

242

7.3. Meta Properties

This yields the usual constructors nil B α1 @ ⟨ ⟩ and cons B α2, which have the expected types:

α1 : VecA@ 0

α2 : (k : Nat,y : A × VecA@k) _ VecA@ (s @k).

The induced iteration scheme for B : (n : Nat) _ ∗ is then also the expected one:

y : ⊤ ⊢ д1 : B@ 0 k : Nat,y : A × VecB@k ⊢ д2 : B@ (s @k)

⊢ iter ((y.д1), (k,y.д2)) : (n : Nat,y : VecA@n) _ B@n

We can use this scheme to, for example, define the function map that applies a function entry-wise
to vectors. Let x : A ⊢ f : B be a term, then we define map f as follows. First, we put C = VecB,
д1 = α1 @y and д2 = cons@k @ ⟨f [π1 y/x],π2 y⟩. To define map f , we instantiate the above
iteration scheme:

y : ⊤ ⊢ д1 : VecB@ 0 k : Nat,y : A × VecB@k ⊢ д2 : VecB@ (s @k)

⊢ map f = iter ((y.д1), (k,y.д2)) : (n : Nat,y : VecA@n) _ VecB@n

It is straightforward to establish the expected reduction rules

map f @ 0 nil −→ nil and
map f @(k + 1)@ (cons@k @u) −→ cons@k @⟨f [π1 u/x],map f @(π2 u)⟩,

by using that

y : ⊤ ⊢ ⊤̂(mapf @k @x) : ⊤
⊤̂(mapf @k @x) = y

and
k : Nat,y : A × Vec A ⊢�A × X (mapf @k @x) : A × Vec B�A × X (mapf @k @x) = ⟨π1 @y,mapf @k @(π2 @y)⟩,

both of which can be derived from Definition 7.1.5. ◀

At this point, we could also recast the substream example from Example 6.2.13 in λPµ. We,
however, leave this to the applications in Section 7.5.3.

7.3. Meta Properties
To make the calculus λPµ useful as a logic we better ensured that the calculus is consistent as such.
In particular, we have to show that types of terms are preserved by reductions and that all terms
are strongly normalising. The former property ensures thereby that, for example, well-formedness
of types does not break in the conversion rule. Strong normalisation, on the other hand, guarantees
that types like ⊥ from Example 7.2.2 are not inhabited, as we could otherwise use the elimination
of ⊥ to prove any proposition. Before we come to these more interesting properties, we need to
prove some basic structural rules that allow us to manipulate variable contexts.

243

Chapter 7. Constructive Logic Based on Inductive-Coinductive Types

7.3.1. Derivable Structural Rules
Proposition 7.3.1. The following rules holds for the calculus λPµ.

• Substitution

Θ | Γ1,x : A,Γ2 ⊢ B : Γ3 _ ∗ Γ1 ⊢ t : A
Θ | Γ1,Γ2[t/x] ⊢ B[t/x] : Γ3[t/x] _ ∗
Γ1,x : A,Γ2 ⊢ s : B Γ1 ⊢ t : A

Γ1,Γ2[t/x] ⊢ s[t/x] : B[t/x]

• Exchange

Θ | Γ1,x : A,y : B,Γ2 ⊢ C : Γ3 _ ∗ x < fv(B)
Θ | Γ1,y : B,x : A,Γ2 ⊢ C : Γ3 _ ∗

Γ1,x : A,y : B,Γ2 ⊢ t : Γ3 _ C x < fv(B)
Γ1,y : B,x : A,Γ2 ⊢ t : Γ3 _ C

• Contraction

Θ | Γ1,x : A,y : A,Γ2 ⊢ C : Γ3 _ ∗
Θ | Γ1,x : A,Γ2[x/y] ⊢ C[x/y] : Γ3[x/y] _ ∗

Γ1,x : A,y : A,Γ2 ⊢ t : Γ3 _ C

Γ1,x : A,Γ2[x/y] ⊢ t [x/y] : Γ3[x/y] _ C[x/y]

Proof. In each case, the rules are straightforwardly proved by simultaneous induction over types
and terms. It should be noted that for types only the instantiation and weakening rules appear as
cases, since the other rules have only types without free variables in the conclusion. Similarly, only
terms constructed by means of the the projection, weakening or the instantiation rule appear as
cases in the proofs. □

Analogously, the substitution, exchange and contraction rules for type variables are valid in the
calculus, as well. Also these are easily proved by induction on the derivation of the corresponding
well-formedness proofs

Proposition 7.3.2. The following rules for type variable contexts hold in the calculus λPµ.

• Substitution

Θ1,X : ∆ _ ∗,Θ2 | Γ1 ⊢ A : Γ2 _ ∗ Θ1,Θ2 | Γ1 ⊢ B : ∆ _ ∗
Θ1,Θ2 | Γ1 ⊢ A[B/X] : Γ2 _ ∗

• Exchange

Θ1,X : ∆1 _ ∗,Y : ∆2 _ ∗,Θ2 | Γ1 ⊢ C : Γ2 _ ∗
Θ1,Y : ∆2 _ ∗,X : ∆1 _ ∗,Θ2 | Γ1 ⊢ C : Γ2 _ ∗

244

7.3. Meta Properties

• Contraction

Θ1,X : ∆1 _ ∗,Y : ∆2 _ ∗,Θ2 | Γ1 ⊢ C : Γ2 _ ∗
Θ1,X : ∆1 _ ∗,Θ2 | Γ1 ⊢ C[X/Y] : Γ2 _ ∗

It should be noted that the analogues of Proposition 7.3.1 and Proposition 7.3.2 are proved for
pre-types and pre-terms in the Agda formalisation [Bas18b]. These are necessary there to construct
the reduction relation.

7.3.2. Subject Reduction
Let us now come to a more interesting property: the preservation of types by the reduction relation.
This result is stated in Theorem 7.3.4. Towards the proof of it, we need the the following key lemma
first, which essentially states that the action of types on terms acts like a functor.

Lemma 7.3.3 (Type correctness of type action). Given the action of types on terms, see Def. 7.1.5, the
following inference rule holds.

X : Γ1 _ ∗ | Γ′2 ⊢ C : Γ2 _ ∗ Γ1,x : A ⊢ t : B
Γ′2,Γ2,x : Ĉ(A) ⊢ Ĉ(t) : Ĉ(B)

Proof. We want to prove this lemma by induction on the derivation of X : Γ1 _ ∗ | Γ′2 ⊢ C : Γ2 _ ∗,
thus we need to generalise the statement to arbitrary type constructor contexts Θ. So assume
that Θ is a context, such that Θ = X1 : Γ1 _ ∗, . . . ,Xn : Γn _ ∗, that Θ | Γ′ ⊢ C : Γ _ ∗ and
Γi ,x : Ai ⊢ ti : Bi terms for i = 1, . . . ,n. Our goal is then to show that Γ′,Γ,x : Ĉ(

#—
A) ⊢ Ĉ(#—

t) : Ĉ(
#—
B),

which we can do now by induction on the derivation of Θ | Γ′ ⊢ C : Γ _ ∗.
The induction base has two cases. First, it is clear that if Θ = ∅, then #—

A = ε and Ĉ(
#—
A) = C , thus

the definition is thus well-typed. Second, if C = Xi for some i , then we immediately have

Ĉ(
#—
A) = C[

—

(Γi).A/
#—
X] idΓi = ((Γi).Ai) idΓi −→p Ai ,

thus, by (Conv) and the type of ti , we have Γi ,x : Ĉ(
#—
A) ⊢ ti : Ĉ(

#—
B) as required.

In the induction step, we have five cases for C .

• The type correctness for Ĉ in case C has been constructed by Weakening for type and term
variables is immediate by induction and the definition of F in these cases.

• C = C ′@ s and Γ = ∆[s/y] with

Θ | Γ′ ⊢ C ′ : (y : D,∆) _ ∗ Γ′ ⊢ s : D
Θ | Γ′ ⊢ C ′@ s : ∆[s/y] _ ∗

By induction we have then that Γ′,y : D,∆,x : Ĉ ′(
#—
A) ⊢ Ĉ ′(#—

t) : Ĉ ′(
#—
A), thus, since

Ĉ ′(
#—
A) = C ′[

—

(Γ1).A/
#—
X]@idy:D,∆

= C ′[
—

(Γ1).A/
#—
X]@y@id∆,

245

Chapter 7. Constructive Logic Based on Inductive-Coinductive Types

we get by Prop. 7.3.1

Γ′,∆[s/y],x : C ′[
—

(Γ1).A/
#—
X]@ s @id∆[s/y]

⊢ Ĉ ′(#—
t)[s/y] : C ′[

—

(Γ1). B/
#—
X]@ s @id∆[s/y].

As we now have

�C ′@ s(
#—
A) = (C ′@ s)[

—

(Γ1).A/
#—
X]@id∆[s/y]

= C ′[
—

(Γ1).A/
#—
X]@ s @id∆[s/y]

and �C ′@ s(
#—
t) = Ĉ ′(

#—
t)[s/y], we find that

Γ′,∆[s/y],x : �C ′@ s(
#—
A) ⊢ �C ′@ s(

#—
t) : �C ′@ s(

#—
B)

as expected.

• C = (y).C ′ with Θ | Γ′,y : D ⊢ C ′ : Γ _ ∗. This gives us, by the induction hypothesis,
Γ′,y : D,Γ,x : Ĉ ′(

#—
A) ⊢ Ĉ ′(#—

t) : Ĉ ′(
#—
B). Now we observe that

Ĉ ′(
#—
A) = C ′[

—

(Γ1).A/
#—
X]@idΓ

←−p ((y).C ′[
—

(Γ1).A/
#—
X])@y@idΓ

= C[
—

(Γ1).A/
#—
X]@idy:D,Γ

= Ĉ(
#—
A),

which gives us, by (Conv), that Γ′,y : D,Γ,x : Ĉ(
#—
A) ⊢ Ĉ ′(#—

t) : Ĉ(
#—
B). Thus the definition�(x).C ′(#—

t) = Ĉ ′(
#—
t) is well-typed.

• C = µ(Y : Γ _ ∗ ; #—σ ;
#—
D) with

Θ,Y : Γ _ ∗ | ∆k ⊢ Dk : ∗ σk : ∆k ▷ Γ

Θ | ∅ ⊢ µ(Y : Γ _ ∗ ; #—σ ;
#—
D) : Γ _ ∗

For brevity, we define R #—
B = µ(Y : Γ _ ∗ ; #—σ ;

#—
D [

#—
B /

#—
X]). Then, by induction, we have

Γ,x : D̂k (
#—
A ,R #—

B) ⊢ D̂k (
#—
t ,x) : D̂k (

#—
B ,R #—

B)

Now we have that D̂k (
#—
A ,R #—

B) = Dk [
—

(Γi).A/
#—
X][R #—

B /Y]. Note that the second substitution
does not contain a parameter abstraction, as R #—

B is closed. If we define

дk = αk @id∆k @
(
D̂k

(#—
t , idR #—B

))
,

246

7.3. Meta Properties

where αk refers to α µ(Y :Γ_∗ ; #—σ ;
#—
D [

—

(Γi). B/
#—
X])

k (see the definition of F), then we can derive the
following.

⊢ αk : ∆k (D̂k (
#—
A ,R #—

B) _ R #—
B @σk) (Inst)

∆k ⊢ αk @id∆k : D̂k (
#—
A ,R #—

B) _ R #—
B @σk (Inst)

∆k ,x : Dk [
—

(Γi).A/
#—
X][R #—

B /Y] ⊢ дk : R #—
B (Ind-E)

Γ ⊢ iter
—

(∆k ,y
′.дk)@idΓ : R #—

A @idΓ _ R #—
B @idΓ (Inst)

Γ,x : R #—
A @idΓ ⊢ iter

—

(∆k ,y
′.дk)@idΓ @x : R #—

B @idΓ
Finally, we have

Ĉ(
#—
A) = µ(Y : Γ _ ∗ ; #—σ ;

#—
D)[

—

(Γi).A/
#—
X]@idΓ = R #—

A @idΓ,

which implies, by the above derivitations, that we indeed have

Γ,x : Ĉ(
#—
A) ⊢ Ĉ(#—

t) : Ĉ(
#—
B).

• C = ν(Y : Γ _ ∗ ; #—σ ;
#—
D). This case is treated analogously to that for inductive types.

This concludes the induction, thus (7.3.3) indeed holds for types C with one free variable. □

The following is now an easy consequence of Lemma 7.3.3.

Theorem 7.3.4 (Subject reduction). If Γ ⊢ t1 : A and t1 −→ t2, then Γ ⊢ t2 : A.

Proof. Lemma 7.3.3 gives us immediately subject reduction for the contraction relation. Since the
reduction relation is the compatible closure of contraction, type preservation −→ follows at once. □

7.3.3. Strong Normalisation
This section is devoted to show that all well-formed terms of λPµ are strongly normalising, which
means that all reduction sequences in the calculus terminate. We would intuitively expect this, given
that we introduced the reduction relation by following the homomorphism property of (co)recursion
for initial and final dialgebras. But since the proof is not obvious, we fully present it here.

The proof of strong normalisation uses the saturated sets approach, see for example [Geu94]. In
this approach, one defines a model of strongly normalising (pre-)terms for the types as follows. First,
we define what it means for a set of pre-terms to be saturated, where, most importantly, all terms
in a saturated set are strongly normalising. Next, we give an interpretation JAK of dependent types
A as families of saturated sets. Finally, we show that if Γ ⊢ t : A, then for all assignments ρ of
terms to variables in Γ, we have t ∈ JAK(ρ). This proof proceeds by induction on the derivation of
Γ ⊢ t : A, and the interpretation of terms as saturated sets give us precisely the necessary induction
hypothesis for this proof to go through. Since JAK(ρ) ⊆ SN, strong normalisation for all well-formed
terms follows.

Towards this model, we need to define all of the above concepts, starting with a few basic notations.

Definition 7.3.5. We use the following notations.

247

Chapter 7. Constructive Logic Based on Inductive-Coinductive Types

• Λ is the set of pre-terms.

• SN is the set of strongly normalising pre-terms.

• ⌈Γ⌉ is the set of variables in context Γ.

For simplicity, we identify context morphisms σ : Γ1 ▷ Γ2 and valuations ρ : ⌈Γ2⌉ → Λ, if we
know that the terms of ρ are typeable in Γ1. This allows us to write σ(x) for x ∈ ⌈Γ2⌉, and M @ ρ
for pre-terms M . It is helpful though to make explicit the action of context morphisms on valuations,
essentially given by composition, and write

Jσ : Γ1 ▷ Γ2K : Λ ⌈Γ1 ⌉ → Λ ⌈Γ2 ⌉Jσ : Γ1 ▷ Γ2K(γ)(y) = σ(y)[γ].
(7.3)

Saturated sets are defined by containing certain open terms (base terms) and by being closed under
key reductions. The idea of base terms is that they are neutral, i.e. they do not admit any reductions,
but it is possible to substitute variables so that new reductions are possible. Moreover, they will
ensure that all variables are in the interpretation of types as saturated sets, see Definition 7.3.8.
Key redexes, on the other hand, will allow us to prove that saturated sets are backwards closed
under constructors for inductive types and coiteration for coinductive types, see Lemma 7.3.22 and
Lemma 7.3.24. We introduce these two notions in the following two definitions.

Definition 7.3.6 (Base Terms). The set of base terms B is defined inductively by the following three
closure rules.

• Var ⊆ B

• iter
—

(Γk ,x .Nk)@σ @M ∈ B, provided that M ∈ B, Nk ∈ SN and σ ∈ SN.

• ξ
ν (X :Γ_∗ ; #—τ ;

#—
A)

k @σ @M ∈ B, provided that M ∈ B, σ ∈ SN and ∃γ . (σ = Jτk K(γ)). ◀

Definition 7.3.7 (Key Redex). A pre-term M is a redex, if there is a P with M ≻ P . M is the key
redex

1. of M itself, if M is a redex,

2. of iter
—

(Γk ,yk .Nk)@σ @N , if M the key redex of N , or

3. of ξk @σ @N , if M the key redex of N .

We denote by redk (M) the term that is obtained by contracting the key redex of M . ◀

Note that a key redex is given both for inductive and coinductive types by the corresponding
elimination principles (iteration and destructors, respectively).

We are now in the position to define what a saturated set is.

Definition 7.3.8 (Saturated Sets). A set X ⊆ Λ is saturated, if

1. X ⊆ SN

248

7.3. Meta Properties

2. B ⊆ X

3. If redk (M) ∈ X and M ∈ SN, then M ∈ X .

We denote by SAT the set of all saturated sets. ◀

It is easy to see that SN ∈ SAT, and that every saturated set is non-empty. Moreover, it is easy
to show that SAT is a complete lattice with set inclusion as order. Besides these standard facts, we
will use the following constructions on saturated sets.

Definition 7.3.9. Let Γ be a context. We define a semantical context extension (comprehension) of
pairs (E,U) with E ⊆ Λ ⌈Γ⌉ and U : E → SAT with respect to a given variable x < ⌈Γ⌉ by

{(E,U)}x =
{
ρ[x 7→ M]

�� ρ ∈ E and M ∈ U (ρ)
}
, (7.4)

where ρ[x 7→ M] : ⌈Γ⌉ ∪ {x} → Λ extends ρ by mapping x to M . Moreover, we define a semantical
version of the typing judgement:

E ⊩ U = {M | ∀γ ∈ E. M[γ] ∈ U (γ)}. (7.5)

We now show that we can give a model of well-formed types by means of saturated sets. To
achieve this, we define simultaneously an interpretation of contexts and the interpretation of types.
The intention is that we have that

• if ⊢ Γ Ctx, then JΓK is the set of valuations for variables in Γ with JΓK ⊆ Λ ⌈Γ⌉ ;

• if ⊢ Θ TyCtx, then JΘK(X) : JΓK→ SAT for all X : Γ _ ∗ in Θ, and

• if Θ | Γ1 ⊢ A : Γ2 _ ∗, then JAK : JΘK × JΓ1,Γ2K→ SAT.

Definition 7.3.10 (Interpretations). We interpret type variable contexts, term variable contexts and
types simultaneously. First, we assign to each term context is a set of allowed possible valuations:

J∅K B {! : ∅ → Λ}JΓ,x : AK B {(JΓK, JAK)}x = {ρ[x 7→ M] | ρ ∈ JΓK and M ∈ JAK(ρ)}
For Θ = X1 : Γ1 _ ∗, . . . ,Xn : Γn _ ∗ we define

JΘK B ∏
Xi ∈ ⌈Θ⌉

IΓi ,

where IΓ is the set of valuations that respect convertibility:

IΓ = {U : JΓK→ SAT | ∀ρ, ρ ′. ρ −→T ρ ′⇒ U (ρ) = U (ρ ′)}

Finally, we define in Fig. 7.6 the interpretation of types as families of term sets. In the clause for
inductive types, A∆

k denotes the type that is obtained by weakening Γk ⊢ Ak : ∗ to ∆,Γk ⊢ A∆
k : ∗,

π : (Γk ,y : A∆
k) ▷ Γk projects y away, and Jσk • πK∗(U) B U ◦ Jσk • πK is the reindexing for set

families. ◀

249

Chapter 7. Constructive Logic Based on Inductive-Coinductive Types

J⊢ ⊤ : ∗K(δ , ρ) = ∩
{X ∈ SAT | ⟨ ⟩ ∈ X }JΘ,X : Γ _ ∗ | ∅ ⊢ X : Γ _ ∗K(δ , ρ) = δ(X)(ρ)JΘ,X | Γ1 ⊢ A : Γ2 _ ∗K(δ , ρ) = JΘ | Γ1 ⊢ A : Γ2 _ ∗K(δ | ⌈Θ⌉ , ρ)JΘ | Γ1,x : B ⊢ A : Γ2 _ ∗K(δ , ρ) = JΘ | Γ1 ⊢ A : Γ2 _ ∗K(δ , ρ | ⌈Γ1 ⌉)JΘ | Γ1 ⊢ A@ t : Γ2[t/x] _ ∗K(δ , ρ) = JΘ | Γ1 ⊢ A : (x : B,Γ2) _ ∗K(δ , ρ[x 7→ t [ρ]])JΘ | Γ1 ⊢ (x).A : (x : B,Γ2) _ ∗K(δ , ρ) = JΘ | Γ1,x : B ⊢ A : Γ2 _ ∗K(δ , ρ)JΘ | ∅ ⊢ µ(X : Γ _ ∗ ; #—σ ;

#—
A) : Γ _ ∗K(δ , ρ) ={

M | ∀U ∈ IΓ. ∀∆. ∀k . ∀Nk ∈
{JΓk K,JA∆

k K(δ [X 7→ U])
}
y ⊩ Jσk • πK∗(U).

iter
—

(Γk ,y.Nk)@ ρ@M ∈ U (ρ)
}

JΘ | ∅ ⊢ ν(X : Γ _ ∗ ; #—σ ;
#—
A) : Γ _ ∗K(δ , ρ) ={

M | ∃U ∈ IΓ. ∀k . ∀γ ∈ Jσk K−1(ρ). ξk @γ @M ∈ JAk K(δ [X 7→ U],γ)
}

Figure 7.6.: Interpretation of types as families of saturated sets

Most of the clauses in the interpretation in Figure 7.6 are straightforward. The only two interesting
cases are the recursive types. In both the inductive and the coinductive case we interpret the types
as sets that are closed under the corresponding elimination principles. For inductive case we use
thereby a least fixed point, impredicatively defined by the use of a universal quantification. On
the other hand, coinductive types are interpreted as a greatest fixed point by means of existential
quantification.

Before we continue stating the key results about this interpretation of types, let us briefly look
at an example.

Example 7.3.11. Suppose A,B are closed types. Recall that the function space was defined by
A → B = ν(X : ∗ ; ε1 : (x : A) ▷ ∅;B), and the application by t a = ξ1 @a@ t . Note that the
conditition γ ∈ Jε1K−1(ρ) reduces to γ (x) ∈ JAK because Jε1K(γ)(y ∈ ∅) = ρ(y)[ε1] holds for any
γ ∈ J(x : A)K. So we write N instead of γ (x). We further note that, since A, B and thus A→ B are
closed, we can leave out the type variable valuation δ . Taking all of this into account, we obtain

JA→ BK(γ) = {M | ∀N ∈ JAK. ξ1 @γ @M ∈ JBK}
= {M | ∀N ∈ JAK.M N ∈ JBK},

which is the usual definition definition, see [Geu94]. ◀

We just state here the key lemmas and the main result.65 The interested reader may find the proofs
and the supporting lemmas in Section 7.3.4 below.

Lemma 7.3.12 (Soundness of type action). Suppose C is a type with Θ | Γ ⊢ C : Γ′ _ ∗ that Θ is
a type variable context with Θ = X1 : Γ1 _ ∗, . . . ,Xn : Γn _ ∗. Assume further that that for all
parameters ∆ ⊢ r : C ′ occurring in C and τ : ∆′ ▷ ∆, we have r [τ] ∈ JC ′K(τ). Let δA,δB ∈ JΘK and
Γi ,x : Ai ⊢ ti : Bi , such that for all σ ∈ JΓiK, ti ∈ δB(Xi)(τ). Then for all contexts ∆, all σ : ∆ ▷ Γ,Γ′

250

7.3. Meta Properties

and all s ∈ JCK(δA,σ)
Ĉ(

#—
t)[σ , s] ∈ JCK(δB ,σ). (7.6)

Lemma 7.3.13. The interpretation of types J−K given in Def. 7.3.10 is well-defined and JAK(δ , ρ) ∈ SAT
for all A,δ , ρ.

Lemma 7.3.14 (Soundness). If Γ ⊢ t : A, then for all ρ ∈ JΓK we have t [ρ] ∈ JAK(ρ).
From the soundness, we immediately derive strong normalisation.

Theorem 7.3.15. All well-typed terms are strongly normalising, that is, if Γ1 ⊢ t : Γ2 _ A then t ∈ SN.

Proof. We first note that terms only reduce if Γ2 = ∅. In that case we can apply we can apply
Lem. 7.3.14 with ρ being the identity, so that t ∈ JAK(ρ). Thus, by Lem. 7.3.13 and the definition of
saturated sets, we can conclude that t ∈ SN. Since t does not reduce if Γ2 is non-trivial, we also
have in that case that t ∈ SN. Hence every well-typed term is strongly normalising. □

7.3.4. Soundness proof for saturated sets model
In this section, we present the technical details of the proof of the soundness Lemma 7.3.14 and the
results leading up to it. These details are presented here mainly for completeness and without much
further comment, as it is not expected that the reader will dive into the details at first read.

This first lemma proves that the composition of context morphisms is the same as the composition
of their interpretation.

Lemma 7.3.16. For all σ : Γ1 ▷ Γ2 and τ : Γ2 ▷ Γ3 we have Jτ • σK = Jτ K ◦ JσK.
Proof. For all ρ : ⌈Γ1⌉ → Λ and x ∈ ⌈Γ3⌉ we have

Jτ • σK(ρ)(x) = (τ • σ)(x)[ρ] = τ (x)[σ][ρ]

= Jτ K(JσK(ρ))(x) = (Jτ K ◦ JσK)(ρ)(x)
as required. □

Next, we show that instantiation of types is given equivalently by updating valuations.

Lemma 7.3.17. If Γ1 ⊢ A : Γ2 _ ∗, σ : Γ1 ▷ Γ2 and ρ ∈ JΓ1K, then JA@σK(ρ) = JAK([ρ, JσK(ρ)]),
where [ρ, JσK(ρ)] ∈ JΓ1,Γ2K is given by

[ρ, JσK(ρ)] (x) = {
ρ(x), x ∈ ⌈Γ1⌉JσK(ρ)(x), x ∈ ⌈Γ2⌉

.

Proof. Simply by repeatedly applying the case of the semantics of type instantiations. □

The following four lemmas 7.3.18-7.3.21 are easily proved by induction on the derivation of well-
formedness of the corresponding type A.

Lemma 7.3.18. If Γ1,x : B,Γ2 ⊢ A : ∗ and Γ1 ⊢ t : B, then for all ρ ∈ JΓ1,Γ2[t/x]K we haveJA[t/x]K = JAK(ρ[x 7→ t]).

251

Chapter 7. Constructive Logic Based on Inductive-Coinductive Types

Lemma 7.3.18 shows that subsitution is, just as instantiation, is equally given by updating valu-
ations. This is generalised in the following lemma to context morphisms.

Lemma 7.3.19. If Θ | Γ2 ⊢ A : ∗ and σ : Γ1 ▷ Γ2, then for all δ ∈ JΘK and ρ ∈ JΓ1K we haveJA[σ]K(δ , ρ) = JAK(δ , JσK(ρ)).
Analogously, also substitution of types for type variables is equally given by updating the corres-

ponding type variable valuations.

Lemma 7.3.20. If Θ1,X : Γ _ ∗,Θ2 | Γ1 ⊢ A : ∗ and ⊢ B : Γ _ ∗, then we have for the type variable
substitution that JA[B/X]K(δ , ρ) = JAK(δ [X 7→ JBK], ρ).

The last of these four straightforward lemmas gives us that the interpretation of types is monotone
in the interpretation of type variables.

Lemma 7.3.21. If Θ | Γ ⊢ A : ∗ and δ ,δ ′ ∈ JΘK with δ ⊑ δ ′ (point-wise order), then for all ρ ∈ JΘK
JAK(δ , ρ) ⊆ JAK(δ ′, ρ).

Given these basic results, we can now show that the interpretation of inductive types contain all
constructor terms.

Lemma 7.3.22. Let µ = µ(X : Γ _ ∗ ; #—σ ;
#—
A) where we have Θ | ∅ ⊢ µ : Γ _ ∗. If δ ∈ JΘK, ρ ∈ JΓk K

and P ∈ JAk K(δ [X 7→ JµK(δ)], ρ), then
αk @ ρ@ P ∈ JµK(δ , Jσk K(ρ)).

Proof. Let δ , ρ and P be given as in the lemma, and put M = αk @ ρ@ P . We need to show for any
choice of U ∈ IΓ and

Nk ∈ {JΓk K, JA∆
k K(δ [X 7→ U])}y ⊩ Jσk • πK∗(U)

that
K = iter

—

(Γk ,y.Nk)@ (σk • ρ)@M

is in U (Jσk K(ρ)). Now we define r = iter
—

(Γk ,y.Nk) and

K ′ = Nk

[
Âk (r @idΓ @x ′)

/
y
]
[ρ, P]

so that K ≻ K ′. Let us furthermore put

V = U (Jσk K(ρ)).
By V ∈ SAT, it suffices to prove that K ′ ∈ V . Note that we can rearrange the substitution in K ′ to
get K ′ = Nk [ρ, P

′] with P ′ = Âk (r @idΓ @x ′)[ρ, P].
We get K ′ ∈ V from Nk ∈ {JΓk K, JAk K(δ [X 7→ U])}y ⊩ Jσk • πK∗(U), provided that ρ ∈ JΓk K and

P ′ ∈ JAk K(δ [X 7→ U], ρ). The former is given from the assumption of the lemma. The latter we get
from Lem. 7.3.12, since we have assumed soundness for the components of µ and P ∈ JÂk K(ρ). Thus
we have K ′ = Nk [ρ, P

′] ∈ V .
So by saturation we have K ∈ V = U (Jσk K(ρ)) for any choice of U and Nk , thus if follows that

M ∈ JµK(δ , Jσk K(ρ)). □

252

7.3. Meta Properties

Similarly, we wish to prove that the interpretation of a coinductive type contains all its coiteration
scheme instances. Towards this, we first show that coinductive types give rise to greatest fixed points,
as one would expect.

Lemma 7.3.23. Let ν = ν(X : Γ _ ∗ ; #—σ ;
#—
A) where we have Θ | ∅ ⊢ ν : Γ _ ∗. IfU ∈ IΓ and δ ∈ JΘK,

such that for all M ∈ U (ρ), all k , all ρ ∈ JΓK and all γ ∈ Jσk K−1(ρ), ξk @γ @M ∈ JAk K(δ [X 7→ U],γ),
then

∀ρ.U (ρ) ⊆ JνK(δ , ρ).
Proof. This follows immediately from the definition of JνK, just instantiate the definition with the
given U . Then all all M ∈ U (ρ) are in JνK(δ , ρ). □

Given the greatest fixed point property in Lemma 7.3.23, we can prove that the interpretation of
a coinductive type contains all instances of the coiteration scheme.

Lemma 7.3.24. Let ν = ν(X : Γ _ ∗ ; #—σ ;
#—
A) where we have Θ | ∅ ⊢ ν : Γ _ ∗. If δ ∈ JΘK, U ∈ IΓ,

ρ ∈ JΓk K and
Nk ∈ {JΓk K, Jσk K∗(U)}y ⊩ JAk K(δ [X 7→ U])

for k = 1, . . . ,n, then
coiter

—

(Γk ,y.Nk)@ ρ@M ∈ JνK(δ , ρ).
Proof. Similar to the proof of Lem. 7.3.22 by using that the interpretation of ν-types is a largest fixed
point Lem. 7.3.23 and that the interpretation is monotone Lem. 7.3.21. □

The last lemma that we need to prove that the action of types on terms is sound for the saturated
sets interpretation is that the interpretation respects reduction steps.

Lemma 7.3.25. Suppose C is a type with Θ | Γ1 ⊢ C : Γ2 _ ∗. If ρ, ρ ′ ∈ JΓ1,Γ2K with ρ −→ ρ ′, then
∀δ . JCK(δ , ρ) = JCK(δ , ρ ′). Furthermore, if C −→ C ′, then JCK = JC ′K.
Proof. The first part follows by an easy induction, in which the only interesting case C = X is. Here
we have JCK(δ , ρ) = δ(X)(ρ) = δ(X)(ρ ′) = JCK(δ , ρ ′),
since δ(X) ∈ IΓi and thus respects conversions.

For the second part, let D be given by replacing all terms in parameter position in C by variables,
so that C = D[ρ] for some substitution ρ. But then there is a ρ ′ with ρ −→ ρ ′ and C ′ = D[ρ ′], and
the claim follows from the first part. □

We are now in the position to give the proofs that we left out before. First, we have to show that
the action of types on terms is sound for the interpretation.

Proof of Lemma 7.3.12. We proceed by induction on the derivation of Θ | Γ ⊢ C : Γ′ _ ∗.
• ⊢ ⊤ : ∗ by (⊤-I). In this case we have that ⊤̂(ε) = x ∈ B, thus ⊤̂(ε) ∈ JCK(δ) by by saturation.

• Θ,Xn+1 : Γn+1 _ ∗ | ∅ ⊢ X : Γn+1 _ ∗ by (TyVar-I). Note that �Xn+1(
#—
t , tn+1) = tn+1 andJXn+1K(δ ,σ) = δ(Xn+1)(σ) = JBn+1K(σ). thus the claim follows directly from the assumption

of the lemma.

253

Chapter 7. Constructive Logic Based on Inductive-Coinductive Types

• Θ,X : Γ′′ _ ∗ | Γ ⊢ C : Γ′ _ ∗ by (TyVar-Weak). Immediate by induction.

• Θ | Γ,y : D ⊢ C : Γ′ _ ∗ by (Ty-Weak). Again immediate by induction.

• Θ | Γ ⊢ C @ r : Γ′[s/x] _ ∗ with Γ ⊢ r : C ′ by (Ty-Inst). First, we note that σ = (σ1,σ2)
with σ1 : ∆ ▷ Γ and σ2 : ∆ ▷ Γ′[σ1, r]. Let us put τ = (σ1, r [σ1],σ2), so that we have�(C @ r)(

#—
t)[σ , s] = Ĉ(

#—
t)[s/x][σ , s] = Ĉ(

#—
t)[σ1, r [σ1],σ2, s] = Ĉ(

#—
t)[τ , s].

By the assumption of the lemma on parameters we have r [σ1] ∈ JC ′K(σ1), and thus τ ∈JΓ,x : C ′[σ1],Γ′[σ1, r [σ1]]K, which gives JC @ rK(δ ,σ) = JCK(δ ,τ). By induction, we have
Ĉ(

#—
t)[τ , s] ∈ JCK(δ ,τ), and it follows that�(C @ r)(

#—
t)[σ , s] ∈ JC @ rK(δ ,σ).

• Θ | Γ1 ⊢ (x). B : (x : A,Γ2) _ ∗ by (Param-Abstr). Immediate by induction.

• Θ | ∅ ⊢ µ(Y : Γ _ ∗ ; #—τ ;
#—
D) : Γ _ ∗ by (FP-Ty). We abbreviate, as before, this type just by

µ. Recall the definition of µ̂:

µ̂(
#—
t) = iterRA

—

(∆k ,x .дk)@idΓ @x

with дk = αk @id∆k @
(
D̂k

(#—
t ,y

))
and RA = µ[

—

(Γi).Ai /
#—
X]

for Θ,Y : Γ _ ∗ | ∆k ⊢ Dk : ∗

Now, put δ ′ = δ [Y 7→ JRBK], then we have by induction that D̂k (
#—
t ,y)[id∆k ,y] ∈ JDk K(δ ′, id∆k).

Since idΓk ∈ SNwe have by Lem. 7.3.22 for all ρ ∈ J∆k , D̂k (
#—
A,RB)K that дk [ρ] ∈ JµK(δ , Jτk K(ρ)).

By assumption, we have s ∈ JRAK(σ), hence by choosing U = JRBK in the definition of JRAK
we find µ̂(

#—
t)[σ , s] ∈ JRBK(σ) = JµK(δ ,σ).

• Θ | ∅ ⊢ ν(Y : Γ _ ∗ ; #—τ ;
#—
D) : Γ _ ∗ by (FP-Ty). Analogous to the case for inductive types,

only that we use Lemma 7.3.24. □

Finally, we can use all of the above results to show that the interpretation of types as saturated
sets is sound with respect to the typing rules of λPµ.

Proof of Lemma 7.3.14. We proceed by induction on the type derivation for t . Since t does not have
any parameters, we only have to deal with fully applied terms and will thus leave out the case for
instantiation in the induction. Instead, we will have cases for fully instantiated α , ξ , etc. So let
ρ ∈ JΓK and proceed by the cases for t .

• ⟨ ⟩ ∈ J⊤K(ρ) by definition.

• For Γ,x : A ⊢ x : A we have x [ρ] = ρ(x). From the definition of JΓ,x : AK, we obtain
ρ(x) ∈ JΓ ⊢ A : ∗K(ρ | ⌈Γ⌉) = JΓ,x : A ⊢ A : ∗ K(ρ). Thus x [ρ] ∈ JAK(ρ) as required.

• Weakening is dealt with immediately by induction.

254

7.4. Dependent Iteration

• If t is of type B by (Conv), then by induction t ∈ JAK(ρ). Since by Lem. 7.3.25 JBK(ρ) = JAK(ρ),
we have t ∈ JBK(ρ).

• Suppose we are given µ = µ(X : Γ _ ∗ ; #—σ ;
#—
A) and ∆ ⊢ αk @τ @ t : µ[σk • τ] with τ : ∆ ▷ Γ

and ∆ ⊢ t : Ak [µ/X][τ].
Then, by induction, we have t ∈ JAk K(X 7→ JµK,τ) and soundness for the components of µ,
thus by Lem. 7.3.22

αk @τ @ t ∈ JµK(Jσk • τ K(ρ)) = Jµ[σk • τ]K(ρ).
• Suppose we have µ = µ(X : Γ _ ∗ ; #—σ ;

#—
A) and ∆ ⊢ iterµ # —

(Γk ,x .дk)@τ @ t : C @τ . Then by
induction we get from ∆ ⊢ t : µ[τ] that t ∈ Jµ[τ]K(ρ), hence if we chose U = JC @τ K and
Nk = дk the definition of JµK yields iterµ

—

(Γk ,x .дk)@τ @ t ∈ JC @τ K(ρ).
• Suppose we have ν = ν(X : Γ _ ∗ ; #—σ ;

#—
A), and ∆ ⊢ ξk @τ @ t : Ak [ν/X][τ] with τ : ∆ ▷ Γk

and with ∆ ⊢ t : ν [σk • τ]. By induction, t ∈ Jν [σk • τ]K(ρ) thus there is a U such that
ξk @τ @ t ∈ JAk K(X 7→ U , Jτ K(ρ)). By Lem. 7.3.23 and Lem. 7.3.21 we thus obtain that
ξk @τ @ t ∈ JAk K(X 7→ JνK, Jτ K(ρ)). Since JAk K(X 7→ JνK, Jτ K(ρ)) = JAk [ν/X][τ]K(ρ), the
claim follows.

• For coiter-terms we just apply Lem. 7.3.24, similar to the αk -case.

This concludes the induction, thus the interpretation of types is sound with respect to the typing
judgement for terms. □

7.4. Dependent Iteration
In Section 7.1 we have introduced the calculus λPµ of dependent inductive and coinductive types.
As we saw in Section 7.2, this calculus subsumes all of first-order intuitionistic logic or Martin-Löf
type theory. However, we were not able to define the second projection for dependent coproducts
or existential quantifiers. Similarly, we are also not able to carry out proofs by induction in λPµ.
Both of these problems are rectified once we extend the calculus with a dependent iteration scheme,
cf. Section 6.4.2.

The goal of the present section is to propose an extension of λPµ by a dependent iteration principle
for inductive types. Such a dependent iteration principle will be necessary to carry out the proofs
in the application section below. For now it is left open whether the calculus that results from
extending λPµ with dependent iteration is still strongly normalising. It seems, however, that the
proof we gave in Section 7.3.3 can be adapted accordingly.

One may ask what the dual extension of λPµ for coinductive types is that corresponds to dependent
iteration. It is clear that there is no such thing as dependent coiteration that generalises coiteration
in the way dependent iteration extends iteration. As we discussed in Section 6.4.3 the dual concept
of induction is the bisimulation proof principle, which we referred to as coinduction. We will not
extend λPµ here with coinduction, rather we will discuss possible future work in this direction in
Section 7.6.

255

Chapter 7. Constructive Logic Based on Inductive-Coinductive Types

(⊢ ⊤ : ∗)(θ) = ⊤
(Θ,X : Γ _ ∗ | ∅ ⊢ X : Γ _ ∗)(θ ,B) = YX @idΓ,y:B@idΓ

(Θ,X | Γ1 ⊢ A : Γ2 _ ∗)(θ ,B) = A(θ)

(Θ | Γ1,x : B ⊢ A : Γ2 _ ∗)(θ) = A(θ)

(Θ | Γ1 ⊢ A@ t : Γ2[t/x] _ ∗)(θ) = A[t/x]

(Θ | Γ1 ⊢ (x).A : (x : B,Γ2) _ ∗)(θ) = A(θ)(
Θ | ∅ ⊢ ρ(X : Γ _ ∗ ; #—σ ;

#—
A) : Γ _ ∗)(θ) = ρ(X : Γ, z : R@id _ ∗ ; #—σ ′;

#—
A ′)@idΓ,y

where R = ρ(Y : Γ _ ∗ ; #—σ ;
#—
A)

σ ′k = (σ ,αk @id@yk)

A′k = Ak (θ ,R)[θ]

Figure 7.7.: Lifting of Dependent Types to Predicates

To be able to formulate the dependent iteration scheme, we first need to lift types to predicates.
As in Section 6.4.1, a predicate is here meant to be a type that depends on terms of the type that
it is a predicate for. More precisely, given a type B with ⊢ B : ∆ _ ∗, a B-predicate is a type P
with Γ,x : B@id∆ ⊢ P : ∗. A lifting of an open type A with X : ∆ _ ∗ | Γ ⊢ A : ∗ to B-predicates
is then a type A(B) with a free type variable that ranges over B-predicates, cf. Definition 2.5.7. In
other words, the lifting should satisfy the following rule.

X : ∆ _ ∗ | Γ ⊢ A : ∗ ⊢ B : ∆ _ ∗
Y : (∆,x : B@id∆) _ ∗ | Γ,y : A[B/X] ⊢ A(B) : ∗

We give such a lifting in the following definition. That the above rule holds is proved below.

Definition 7.4.1. Let A be a type with Θ | Γ1 ⊢ A : Γ2 _ ∗ and θ be a sequence of types, such
that θ = B1 : ∆1 _ ∗, . . . ,Bn : ∆n _ ∗ if Θ = X1 : ∆1 _ ∗, . . . ,Xn : ∆n _ ∗. We define then
the lifting A(θ) of A to predicates over θ . If Θ is empty, we just put A() = ⊤. Otherwise, A is by
induction on the well-formedness derivation of A in Figure 7.6. ◀

The following lemma shows that the predicate lifting results in well-formed types. This will enable
us to prove subject reduction.

Lemma 7.4.2. The following rule holds for the predicate lifting in Definition 7.4.1.

X : ∆ _ ∗ | Γ ⊢ A : ∗ ⊢ B : ∆ _ ∗
Y : (∆,x : B@id∆) _ ∗ | Γ,y : A[B/X] ⊢ A : ∗

Proof. Let us write, analogously to the notation for context morphisms, θ : Θ1 ▷Θ2, if θ is a sequence
of types in context Θ1 that matches Θ2. More precisely, θ is a sequence constructed by the following
two rules.

() : Θ1 ▷ ∅
θ : Θ1 ▷Θ2 ⊢ B : Γ _ ∗
(θ ,B) : Θ1 ▷ (Θ2,X : Γ _ ∗)

256

7.4. Dependent Iteration

Given such a sequence θ : ∅ ▷Θ of types, we define a lifted context Θ(θ) as follows by induction.

∅(θ) = ∅
(Θ,X : Γ _ ∗)(θ ,B : Γ _ ∗) = Θ(θ),Y : (Γ,B@idΓ) _ ∗

This allows us to give a typing rule for the general lifting that we can use in a proof by induction.

Θ | Γ1 ⊢ A : Γ2 _ ∗ θ : ∅ ▷Θ
Θ(θ) | Γ1,Γ2,y : A[θ]@idΓ2

⊢ A : ∗
(7.7)

If we can show that this typing rule holds, then we are done because the typing rule of the lemma
holds then by picking Θ = X : ∆ _ ∗, Γ1 = Γ and Γ2 = ∅. The rule (7.7) can now be shown
by a straightforward induction on the typing derivation of A. Details are provided in the Agda
formalisation [Bas18b]. □

Definition 7.4.3. We define an extension of λPµ with a dependent iteration principle as follows.66
Suppose that µ(X : Γ _ ∗ ; #—

f ;
#—
A) is an inductive type, which we refer to as µ here. Dependent

iteration is a term diter
—

(Γk ,yk , zk .дk) that is subject to the following typing rule.

∆ ⊢ C : (Γ,x : µ@idΓ) _ ∗
∆,Γk ,yk : Ak [µ/X], zk : Ak (µ)[C/X] ⊢ дk : (C @σk @ (αk @idΓk @yk)) ∀1 ≤ k ≤

�� #—
A

��
(D-Rec)

∆ ⊢ diter # —

(Γk ,yk , zk .дk) : (Γ,y : µ@idΓ) _ C @idΓ @y

Additionally, we introduce an induction principle for the type ⊤. This induction principle is given
by terms diter⊤ д, subject to the following rule.

Γ ⊢ C : (x : ⊤) _ ∗ Γ ⊢ д : C @ ⟨ ⟩
(D-Rec-⊤)

Γ ⊢ diter⊤ д : (y : ⊤) _ C @y

We refer to the extension of λPµ by the above dependent iteration and induction principles by
λPµ+. The contraction relation of λPµ+ on terms is given by that of λPµ with the additional following
two clauses: one for general dependent iteration

diter
—

(Γk ,yk , zk .дk)@(σk • τ)@(αk @τ @u)

≻ дk
[
Âk (diter

—

(Γk ,yk .дk)@idΓ @x)
/
zk

]
[τ ,u]

and one for the induction principle for ⊤

diter⊤ д ⟨ ⟩ ≻ д.

The reduction relation of λPµ+ is then again the compatible closure of its contraction relation. ◀

Let us illustrate the usefulness of the extended calculus λPµ+ by means of two examples.

257

Chapter 7. Constructive Logic Based on Inductive-Coinductive Types

Example 7.4.4. Let us first derive that ⟨ ⟩ is the unique inhabitant of ⊤, which allows us to generally
ignore variables of type ⊤. We write

s �A t B EqA(s, t)

and if A is understood from the context, we drop the subscript. The proposition we thus want to
prove is

y : ⊤ ⊢ y � ⟨ ⟩ : ∗,

in other words, we need to establish a term canon⊤ with

y : ⊤ ⊢ canon⊤ : y � ⟨ ⟩.

This term is given by canon⊤ B diter⊤ refl@y, as we show now. First, we put

C B (y).y � ⟨ ⟩

and thus have C @y ≡ y � ⟨ ⟩. Since refl : ⟨ ⟩ � ⟨ ⟩, we then obtain

⊢ C : (y : ⊤) _ ∗ ⊢ refl : C @ ⟨ ⟩
(D-Rec-⊤)⊢ diter⊤ refl : (y : ⊤) _ C @y

(Inst)
y : ⊤ ⊢ diter⊤ refl@y : C @y

(Conv)
y : ⊤ ⊢ canon⊤ : y � ⟨ ⟩

This proves that ⟨ ⟩ is the unique inhabitant of ⊤, up to propositional equality. Our main use of this
fact is to eliminate variables of type ⊤, that is, we consider terms t with Γ,x : ⊤ ⊢ t : A to be
essentially the same as terms s with Γ ⊢ s : A. ◀

The following example shows that we can now define a second projection for coproduct types,
we thereby show that coproducts are strong in λPµ+, cf. Definition 6.3.2 and Section 6.4.2.

Example 7.4.5. In Example 7.2.6 we have seen that the existential quantifier can be represented by

∃x : A. B = µ(X : ∗ ; ε1;B),

where ε1 : (x : A) ▷ ∅ is the empty context morphism. Moreover, we have also seen there that the
first projection π1 : (∃x : A. B)→ A can be defined by simple iteration. The goal of this example is
to show that dependent iteration allows us to define also the second projection

π2 : Π(z : ∃x : A. B). B[π1 z/x].

In other words, under the assumption of dependent iteration, the existential quantifier is becomes
a strong sum67 or coproduct type, cf. Section 6.4.2.

First, we note that, since B has no free type variable, the predicate lifting B is defined to be the
type ⊤. Thus, the dependent iteration scheme for the existential quantifier amounts to the following
rule.

Γ ⊢ C : (∃x : A. B) _ ∗ Γ,x : A,y : B ⊢ д : C @⟨x ,y⟩
(D-Rec-∃)

Γ ⊢ diter (x ,y.д) : (z : (∃x : A. B)) _ C @ z

258

7.5. An Application: Transitivity of the Substream Relation

To define the second projection, we use the type C given by

C B (z). B[π1 z/x].

Since
C @⟨x ,y⟩ ≡ B[π1 ⟨x ,y⟩/x] ≡ B[x/x] = B,

we can derive the following from (D-Rec-∃).
Γ,x : A,y : B ⊢ y : C @⟨x ,y⟩

(D-Rec-∃)
Γ ⊢ diter (x ,y.y) : (z : (∃x : A. B)) _ C @ z

This allows us to define
π2 B λz. diter (x ,y.y)@ z,

so that we have π2 : Π(z : ∃x : A. B). B[π1 z/x], as required. ◀

This concludes the discussion of an extension of λPµ by dependent iteration principles for inductive
types and ⊤. These principles will prove necessary in the next section, where we discuss an
application of inductive and coinductive types in logical reasoning.

7.5. An Application: Transitivity of the Substream Relation
In this section, we put our dependent type theory to use. The aim of this section is to give a direct
definition of the substream relation inside the type theory, see also Example 6.2.14, and then prove
that this definition is equivalent to the definition based on stream filtering. This allows us to show
that the substream relation is transitive.

As we have seen in Section 3.2, it can be very difficult to use iteration and coiteration schemes,
especially whenever we mix inductive and coinductive types. This situation is not getting any better
in the presence of dependent types and if we carry out mixed inductive-coinductive proofs. For this
reason, it would be preferable to use also equational specification upon defining dependently typed
terms. However, the problem with using recursive equations is that one needs to be careful not to
introduce non-normalising terms. We discussed this at length in Section 4.1. Having non-normalising
terms in a dependent type theory has two detrimental consequences. First, it usually makes the
theory inconsistent under the propositions-as-types interpretation, if we are able to construct a
(non-normalising) term of type ⊥. Second, the conversion rule (Conv) of the type system requires
us to decide whether two terms are convertible. This becomes troublesome in the presence of
non-normalising terms, since conversion is usually decided by reducing terms to normal forms and
comparing these normal forms. If no such normal forms exist or cannot be deterministically reached,
then this naive approach fails. Both problems can be overcome but we will not discuss this here
further. Rather, we will give the definitions and (proof) terms in Agda, which has mechanisms to
ensure that equational specifications are well-defined and thus lead to normalising terms.

It is understood that all the proofs that are given in this section can be translated into our calculus
λPµ+. In general, it is unknown at this stage whether all Agda terms can be encoded as (dependent)
iteration and coiteration. We leave this for future work, though there is some good evidence that
such an encoding should be possible as the work of Goguen et al. [GMM06] shows.

259

Chapter 7. Constructive Logic Based on Inductive-Coinductive Types

7.5.1. Some Preliminaries in Agda

This first section is devoted to the introduction of the propositions-as-types interpretation in Agda
syntax. We will interleave the given Agda code with the necessary explanation. All the indented
code is formally verified in Agda and will be explained as we go.

We start off by introducing the propositions-as-types interpretation in its own module called
PropsAsTypes. Agda allows the separation of code into modules that can be imported in other files,
as we will see later.

module PropsAsTypes where

Inside the module, we now introduce our first type, which implements the dependent sum that
we encountered earlier. The following code declares a new inductive data type called Σ with two
parameters I and X . So far, we denoted the universe of valid types by ∗, whereas Agda uses the
notation Set instead. Thus, I is a type parameter. The parameter X , on the other hand, is a family
of types. In our syntax, we would denote this by X : (i : I) _ ∗ and instantiation of X with a
parameter t would be written as X @ t . Agda uses for types with parameters the same notation as
for the function space,68 so that the instantiation of X is written as X t .

Another mechanism of Agda that appears in the definition of Σ is that I is an implicit parameter,
signified by the curly braces, and that X is an explicit parameter. The idea of the implicit parameter
mechanism is that Agda ought to be able to infer the argument I from the context. For example, if
we have a type U : Nat → Set, then Agda can infer from the instantiation ΣU that I needs to be
instantiated with Nat. Should this inference not be possible, then one can always resort to writing
Σ {Nat}U to explicitly give the parameter I . We will see this below in the definition of the binary
product.

The type Σ itself has one constructor “,” with two arguments, where the argument positions are
marked by the underscores. This allows us to write (i,x) if i : I and x : X i , thereby resembling the
pairing notation that we used before.

data Σ {I : Set} (X : I → Set) : Set where
_, _ : (i : I) → X i → Σ X

In Example 7.2.6, we denoted the type Σ by ∃ to emphasise its relation to existential quantification.
This was done in the light of the fact that the iteration scheme for that type corresponded exactly to
the usual elimination rule the existential quantifier. Later we introduced dependent iteration, which
we could use in Example 7.4.5 to define both projections from the existential type. In this section, we
will distinguish between Σ as a data type, which has both projections, and the existential quantifier
as a proposition. The latter will only come with the non-dependent elimination principle.

We now give the dependent iteration scheme for the dependent sum type Σ. Let A be a type
family that depends on Σ X , that is, A : Σ X → Set. Recall from Example 7.4.5 that, if we want to
eliminate ΣX into A, then we need to provide a term of type A (i,x) with parameters i : I and x : X i .
Such a term can equivalently be given as a dependent function f of type Πi : I .Πx : X i .A (i,x).
In Agda, this function type is written as (i : I) → (x : X i) → A (i , x), in the style of de Bruijn’s
telescopes [dBru68]. Conveniently, we can define the dependent iteration scheme in Agda then by
using pattern matching as follows.

260

7.5. An Application: Transitivity of the Substream Relation

drec−Σ : {I : Set} {X : I → Set} {A : Σ X → Set} →
((i : I) → (x : X i) → A (i , x)) →
(u : Σ X) → A u

drec−Σ f (i , x) = f i x

It is also straightforward to define, as we did in Example 7.4.5, the two projections for the
dependent sum by appealing to dependent iteration.

π₁ : {I : Set} {X : I → Set} → Σ X → I
π₁ = drec−Σ (λ i x → i)

π₂ : {I : Set} {X : I → Set} → (u : Σ X) → X (π₁ u)
π₂ = drec−Σ (λ i x → x)

From the dependent sum type we can also derive the binary product type. Note that we introduced
this type before as a coinductive type. It saves us here, however, some work to define the binary
product in terms of the dependent sum.

× : Set → Set → Set
A × B = Σ {A} λ _ → B

In the propositions-as-types interpretation, one uses a type system to represent logical propositions.
To make clear whenever we write a proof of a proposition that has been internalised into Agda, we
will use Prop instead of Set. Thus, if ϕ is a proposition that we encoded in Agda, we will denote
this as ϕ : Prop. This notation is introduced by the following definition.

Prop = Set

An important logical connective that we will need later is conjunction. Even though conjunction
is defined in terms the binary product, we use separate notations to emphasise its logical nature.

∧ : Prop → Prop → Prop
A ∧ B = A × B

∧−elim₁ : {A₁ A₂ : Prop} → A₁ ∧ A₂ → A₁
∧−elim₁ = π₁

∧−elim₂ : {A₁ A₂ : Prop} → A₁ ∧ A₂ → A₂
∧−elim₂ = π₂

∧−intro : {A₁ A₂ : Prop} → A₁ → A₂ → A₁ ∧ A₂
∧−intro a₁ a₂ = (a₁ , a₂)

As already mentioned, we also introduce a separate notation for the existential quantifier.

∃ : {X : Set} → (A : X → Prop) → Prop
∃ = Σ

261

Chapter 7. Constructive Logic Based on Inductive-Coinductive Types

Agda allows us to provide a syntax for the existential quantifier that matches the usual notation
with explicit quantification domain. It is not so relevant to precisely understand the following
definition, the reader should just remember that we can write ∃[x ∈ X] A instead of ∃x : X .A for
propositions A with a free occurrence of x .

∃−syntax : ∀ X → (X → Prop) → Prop
∃−syntax X A = ∃ A

syntax ∃−syntax X (λ x → A) = ∃[x ∈ X] A

From the pairing constructor and the iteration scheme for the dependent sum type we obtain the
usual introduction and elimination rules for the existential quantifier that we already discussed in
Example 7.2.6. For convenience, we also provide a scheme for the simultaneous elimination of two
existential quantifiers. None of these definitions should come at a surprise to the reader at this stage.

∃−intro : {X : Set} {A : X → Prop} → (x : X) → A x → ∃[x ∈ X] (A x)
∃−intro x a = (x , a)

∃−elim : {X : Set} {A : X → Prop} {B : Prop} →
((x : X) → A x → B) → ∃[x ∈ X] (A x) → B

∃−elim = drec−Σ

∃₂−elim : {X Y : Set} {A : X → Prop} {B : Y → Prop} {C : Prop} →
((x : X) (y : Y) → A x → B y → C) →
∃[x ∈ X] (A x) → ∃[x ∈ Y] (B x) → C

∃₂−elim f p q = ∃−elim (λ x p′ → ∃−elim (λ y q′ → f x y p′ q′) q) p

Finally, we define bi-implication between propositions, which is is of course just given as the
conjunction of implications in both directions.

⇔ : Prop → Prop → Prop
A ⇔ B = (A → B) ∧ (B → A)

equivalence : {A B : Prop} → (A → B) → (B → A) → A ⇔ B
equivalence = ∧−intro

Having set up the necessary definitions of the propositions-as-types interpretation, we can now
move to more interesting topics.

7.5.2. Streams and Bisimilarity
To define the substream relation, we first need to introduce streams. We have done this already in
the simple type system in Example 3.1.2 but to have a complete example, we recast the definition of
streams here again in Agda. This allows us to also explain the syntax of Agda’s coinductive types.
Moreover, we will introduce bisimilarity on streams as a coinductively defined relation and prove
that it is an equivalence relation.

262

7.5. An Application: Transitivity of the Substream Relation

module Stream where

Before we come to the actual definitions, we import a few modules that we use throughout this
section. The module Relation.Binary contains definitions surrounding binary relations. In particular,
we can write R : Rel A to express that R is a type with two parameters of type A, that is, if R is
of type A → A → Set. We will later show that bisimilarity of streams implies point-wise equality.
Since point-wise equality is defined in terms of indexing into streams by natural numbers, we also
need to import the module Data.Nat. Finally, the module PropsAsTypes was given in Section 7.5.1
above.

import Relation.Binary as BinRel

open import Data.Nat using (ℕ; zero; suc)
open import PropsAsTypes

Let us now come to the definition of streams and their corresponding coiteration principle. The
following coinductive record type corresponds to what we have called so far codata types. Thus,
instead of

codata Stream (A : Set) : Set where
hd : A
tl : Stream A

the type of streams is given in Agda by the following record type.

record Stream (A : Set) : Set where
coinductive
field
hd : A
tl : Stream A

A record type in Agda is a type that is defined by its destructors, which are called fields in
Agda. If a record is recursive, that is, it uses itself in its own definition, then we need to specify
whether it this recursion is to be interpreted inductively or coinductively. Since we never encounter
inductive record types here, we stick to the codata terminology. The reader should thus just replace
the verbose coinductive record syntax in her head by the simpler codata syntax.

The coiteration principle for streams is given in Agda by the following equational specification.

coiter : {X A : Set} → (X → A × X) → (X → Stream A)
coiter c x .hd = π₁ (c x)
coiter c x .tl = coiter c (π₂ (c x))

Note that we define the coiteration principle in terms of copattern equations, which are the same
as in the calculus λµν=. Agda ensures that this definition is well-formed by performing covering
and guardedness checks.69 These checks intuitively work for coinductive types as follows. First, if
we specify an element of a coinductive type, like for example a stream, then we are required to
specify the outcome of each destructor. In the case of streams, we need to give both head and tail

263

Chapter 7. Constructive Logic Based on Inductive-Coinductive Types

of a stream. Second, the guardedness condition requires that the element we are specifying does
not occur in another term on the right-hand side of an equation. This ensures that the result of a
destructor application does not depend on this very result itself, an instance of which we have seen
in Example 4.1.18. Note that coiter, as given above, is thus well-defined because it appears directly
and in another term on the right-hand side of the equation that specifies the tail.

It is possible, though very tedious, to translate all the following equational specification into
instances of iteration and coiteration schemes. But this translation largely obscures the proof idea
and so we refrain from carrying it out. However, we should also make clear that this translation
from such Agda specifications into the given calculus has the status of a conjecture for the time
being. Some evidence that such a translation should be possible is given by [Gim95] and [GMM06].

The following two functions are straightforward definitions of higher derivatives of streams, that
is, repeated applications of the tail destructor, and indexing of stream positions by natural numbers.
Since we have seen such definitions before, we will not explain these further here.

δ : ∀{A} → ℕ → Stream A → Stream A
δ 0 s = s
δ (suc n) s = δ n (s .tl)

at : ∀{A} → Stream A → ℕ → A
s at n = (δ n s) .hd

We now come to the definition of bisimilarity for streams. In Example 6.2.13, we defined stream
bisimilarity as a coinductive relation in the category theoretical setup of recursive type closed
categories. The idea of that definition was that stream bisimilarity is given by two destructors: one
that extracts from a proof of bisimilarity a proof that the heads of related streams are equivalent,
and one that extracts a bisimilarity proof for their tails. To facilitate reuse, we define bisimilarity
in terms of a so called setoid, which is a set A together with an equivalence relation ≈ on it. Such
a pair is given by the term S of type Setoid. To avoid further complications, we directly introduce
names for the carrier A of the setoid, the relation ≈ and for the proof that that ≈ is an equivalence
relation.

module Bisim (S : Setoid) where
open BinRel.Setoid S
renaming (Carrier to A; _≈_ to _≈_; isEquivalence to S-equiv)

Given such a setoid, let us now define bisimilarity for streams over A. We define it as a binary
relations that can be written in infix notation. This is signalled by the following declaration, which
says that ∼ is a relation with two positions (marked by the underscores). The relation itself is then
defined as a coinductive type in the expected way.

record _~_ (s t : Stream A) : Prop where
coinductive
field
hd≈ : s .hd ≈ t .hd
tl~ : s .tl ~ t .tl

264

7.5. An Application: Transitivity of the Substream Relation

Since bisimilarity is a coinductive type, it comes with a coiteration principle. This principle is,
as we have explained in Example 6.2.13, by the usual bisimulation proof (or coinduction) principle.
We briefly show how this principle can be derived from equational specifications. First, we define
what it means for a relation R to be a bisimulation on streams. This is witnessed by the following
predicate on relations, which should be intuitively clear: A relation R is a bisimulation if for all
streams s and t that are related by R, their heads must be equivalent (in the setoid A) and their tails
must again be related by R.

isBisim : Rel (Stream A) → Prop
isBisim _R_ = ∀ s t → s R t → (s .hd ≈ t .hd) ∧ (s .tl R t .tl)

Given this notion of bisimulation relation we can now derive the usual proof principle:

∃−bisim→~ : ∀ {_R_} → isBisim _R_ →
∀ (s t : Stream A) → s R t → s ~ t

∃−bisim→~ R−isBisim s t q .hd≈ = ∧−elim₁ (R−isBisim s t q)
∃−bisim→~ R−isBisim s t q .tl~ =

∃−bisim→~ R−isBisim (s .tl) (t .tl) (∧−elim₂ (R−isBisim s t q))

Note the striking similarity to the coiteration principle for streams, only that in this case we construct
a bisimilarity proof rather than a stream. Let us briefly go through the types that appear in the
definition of ∃−bisim→ . First, we are given a binary relation R and the following arguments.

R−isBisim : isBisim R

s, t : Stream A

q : s R t

To show that s and t are bisimilar, we need to provide now proofs that their heads are equivalent
and that the tails are related. These are the two copattern cases of ∃−bisim→ . By the definition of
isBisim, we have

R−isBisim s t : (s .hd ≈ t .hd) ∧ (s .tl R t .tl).

Thus, the first conjunction elimination gives us the sought after proof for the head case. The tail
case is given by recursively constructing a bisimilarity proof for the tails from the second part of
the above conjunction. This should intuitively clarify how proofs of coinductive predicates are given
in Agda, and it should also highlight the similarity to the definition of the coiteration principle for
streams.

As a sanity check for the correctness of the definition of bisimilarity, we prove that bisimilar
streams are point-wise equivalent.

bisim→ext−≈ : ∀ {s t} → s ~ t → (∀ n → s at n ≈ t at n)
bisim→ext−≈ p zero = p .hd≈
bisim→ext−≈ p (suc n) = bisim→ext−≈ (p .tl~) n

We finish this section by showing that bisimilarity is an equivalence relation, where we appeal
to the fact that ≈ is an equivalence relation. This allows us to show that streams form a setoid with

265

Chapter 7. Constructive Logic Based on Inductive-Coinductive Types

bisimilarity as equivalence relation on them. These proofs should speak for themselves, thus we will
not go through them in detail.

module SE = IsEquivalence S−equiv

s−bisim−refl : ∀ {s : Stream A} → s ~ s
s−bisim−refl .hd≈ = SE.refl
s−bisim−refl {s} .tl~ = s−bisim−refl {s .tl}

s−bisim−sym : ∀ {s t : Stream A} → s ~ t → t ~ s
s−bisim−sym p .hd≈ = SE.sym (p .hd≈)
s−bisim−sym p .tl~ = s−bisim−sym (p .tl~)

s−bisim−trans : ∀ {r s t : Stream A} → r ~ s → s ~ t → r ~ t
s−bisim−trans p q .hd≈ = SE.trans (p .hd≈) (q .hd≈)
s−bisim−trans p q .tl~ = s−bisim−trans (p .tl~) (q .tl~)

stream−setoid : Setoid
stream−setoid = record
{ Carrier = Stream A
; _≈_ = _~_
; isEquivalence = record
{ refl = s−bisim−refl
; sym = s−bisim−sym
; trans = s−bisim−trans
}
}

This concludes the definition of streams and bisimilarity as their canonical notion of equivalence.

7.5.3. Stream-entry Selection and the Substream Relation
We come now to the definition of the substream relation and the proof that it is transitive. As
in Section 5.1.3, first define the substream relation in terms of selection from streams, which we
call here ≤′. Also we repeat, for the sake of completeness, in Agda code the proof that selecting
distributes over composition of selectors, from which we derived that ≤′ is transitive in Section 5.1.3.
In Example 6.2.14, we showed how the substream relation can be directly defined as an inductive-
coinductive relation. The second part of this section is concerned with restating this definition in
Agda and proving that it is equivalent to the definition in terms of selecting. We end by deriving
transitivity of the directly defined substream relation from the distribution of selecting over selector
composition.

module Substream (A : Set) where

In this section, it suffices to instantiate bisimilarity for streams over A so that we compare heads by
propositional equality. Recall that we introduced in Example 7.2.8 for terms s and t a type EqA(s, t)

266

7.5. An Application: Transitivity of the Substream Relation

with one constructor: refl : (x : A) _ EqA(x ,x). This types is meant to model propositional equality,
that it, the notion of equality on A internal to the type theory. In Agda, propositional equality is a
binary relation _≡_, which we import from the module Relation.Binary. Since propositional equality
is an equivalence relation, (A,≡) is a setoid. Thus, we can instantiate Bisim that setoid to obtain
that streams over A form a setoid with bisimilarity.

open import Relation.Binary
open import Relation.Binary.PropositionalEquality renaming (setoid to ≡−setoid)
open import PropsAsTypes
open import Stream

open Bisim (≡−setoid A)

Recall that we defined in Example 3.2.11 the type of stream selectors Sel to be the inductive-
coinductive type νX . µY .X + Y , and that the first unfolding Selµ to the finitary steps was given by
µY . Sel + Y . In Agda, we declare these types mutually as follows, where we directly give readable
names to the corresponding destructors and constructors.

mutual
record Sel : Set where
coinductive
field out : Selμ

data Selμ : Set where
pres : Sel → Selμ
drop : Selμ → Selμ

Given this definition of selectors, we can define selection from streams exactly as in Example 3.2.11
by the following equational specification.

selectμ : Selμ → Stream A → Stream A
select : Sel → Stream A → Stream A

select x = selectμ (x .out)

selectμ (pres x) s .hd = s .hd
selectμ (pres x) s .tl = select x (s .tl)
selectμ (drop u) s = selectμ u (s .tl)

Stream selecting allows us now to define the first version of the substream relation.70 Since it will
turn out to be useful to be explicit about the x selector that witnesses that s is a substream of t ,
we first define a ternary relation. This relation should be read as saying that if s ≤μ[x] t, then s is a
substream of t witnessed by the selector x . In the later proofs, we also need to be able to witness
the substream relation by elements of Selµ , hence we also introduce the corresponding version of
the substream relation.

267

Chapter 7. Constructive Logic Based on Inductive-Coinductive Types

≤[]_ : Stream A → Sel → Stream A → Prop
s ≤[x] t = s ~ select x t

≤μ[]_ : Stream A → Selμ → Stream A → Prop
s ≤μ[u] t = s ~ selectμ u t

From the ternary substream relation we can recover the definition that we used in Example 5.1.13.

≤′ : Stream A → Stream A → Prop
s ≤′ t = ∃[x ∈ Sel] (s ≤[x] t)

To prove transitivity of ≤′, we defined in Section 5.1.3 also composition of stream selectors, the
definition of which we repeat here now in Agda syntax.

• : Sel → Sel → Sel
•μ : Selμ → Selμ → Selμ

(x • y) .out = (x .out) •μ (y .out)

(pres x′) •μ (pres y′) = pres (x′ • y′)
(drop u′) •μ (pres y′) = drop (u′ •μ (y′ .out))
u •μ (drop v′) = drop (u •μ v′)

The main result of Section 5.1.3, Proposition 5.1.19, was that selecting from streams by a composi-
tion of selectors is equally given by composition of select functions. We went in that section through
great pain to prove this result. This was caused by the fact that we had to separate the induction
principle for Selµ from the coinduction principle of Sel. Using recursive equational specifications,
we can merge these two and thereby give now a very compact proof. Note that we use bisimilarity
in the following propositions to compare streams, rather than the weaker notion of propositional
equality.

select−hom : ∀ x y s → select (y • x) s ~ select y (select x s)
selectμ−hom : ∀ u v s → selectμ (v •μ u) s ~ selectμ v (selectμ u s)

select−hom x y s = selectμ−hom (x .out) (y .out) s

selectμ−hom (pres x) (pres y) s .hd≈ = refl
selectμ−hom (pres x) (pres y) s .tl~ = select−hom x y (s .tl)
selectμ−hom (pres x) (drop v) s = selectμ−hom (x .out) v (s .tl)
selectμ−hom (drop u) (pres x) s = selectμ−hom u (pres x) (s .tl)
selectμ−hom (drop u) (drop v) s = selectμ−hom u (drop v) (s .tl)

This is our first proof that proceeds by mixing induction and coinduction, so let us briefly explain what
is going on here. First of all, we are simultaneously proving two propositions, namely select−hom
and selectμ−hom. The first is the statement we are after and constitutes the coinductive part of
the proof, whereas the second proposition encapsulates the induction. select−hom is fairly simple

268

7.5. An Application: Transitivity of the Substream Relation

and is only used in the case when we have to prove that the tails of of both outputs are bisimilar
(second case of selectμ−hom). In the proof of the second proposition selectμ−hom, we proceed by
induction on the two Selµ arguments. The cases that appear here are essentially those that appear
in the definition of selector composition. Note, however, that in the last two cases of selectμ−hom
we do the same. At the time of writing, they both need to be there for Agda to be able to reduce
the definition of •μ while checking the correctness of the proof. This is a slight nuisance, which
might be improved in the future though.

To use that selecting preserves composition for proving transitivity of ≤′, we will need the
following lemma. This lemma states that selecting respects bisimilarity, that is, bisimilar streams are
mapped to bisimilar streams by select.

select−resp~ : ∀{s t} (x : Sel) → s ~ t → select x s ~ select x t
selectμ−resp~ : ∀{s t} (u : Selμ) → s ~ t → selectμ u s ~ selectμ u t

select−resp~ x p = selectμ−resp~ (x .out) p

selectμ−resp~ (pres x) p .hd≈ = p .hd≈
selectμ−resp~ (pres x) p .tl~ = select−resp~ x (p .tl~)
selectμ−resp~ (drop u) p = selectμ−resp~ u (p .tl~)

We are now in the position to show that the relation ≤′ is transitive. To do so, we first show
transitivity for the substream relation with explicit witnesses. This proof proceeds by chaining
together bisimilarity proofs that are given in the begin … ■ block. Since the technicalities of how
such blocks can be defined in Agda would lead us of track, we will skip these details and just explain
the intuition of the proof. By definition of r ≤[x] s , p is a proof of r ∼ select (x •y) t . Inside the block,
we write this as r ∼⟨p⟩ select (x • y) t . Next, we use that selecting respects bisimilarity to replace
s by select y t . Finally, we turn the composition of selecting into composition of the witnessing
selectors. This proves r ∼ select (x • y) t , which is by definition r ≤[x • y] t . The proof term
≤−select−trans could be given by using transitivity of bisimilarity (S.trans) twice, but the presented
version is certainly preferable in terms of readability.

≤−select−trans : ∀{r s t} {x y} → r ≤[x] s → s ≤[y] t → r ≤[x • y] t
≤−select−trans {r} {s} {t} {x} {y} p q =
begin

r
~⟨ p ⟩
select x s

~⟨ select−resp~ x q ⟩
select x (select y t)

~⟨ S.sym (select−hom y x t) ⟩
select (x • y) t
■
where
module S = Setoid stream−setoid

Now that we have proved transitivity with explicit witnesses, transitivity of ≤′ follows by an easy
manipulation of existential quantifiers:

269

Chapter 7. Constructive Logic Based on Inductive-Coinductive Types

≤′−trans : ∀{r s t} → r ≤′ s → s ≤′ t → r ≤′ t
≤′−trans = ∃₂−elim (λ x y p q →

∃−intro (x • y) (≤−select−trans {x = x} {y} p q))

This concludes the recasting of the proof of transitivity relation based of stream selecting in Agda.
We come now to the direct definition of the substream relation as mixed inductive-coinductive
relation. The intuition for this definition was explained in Example 6.2.14, we merely repeat the
definition here in Agda syntax.

mutual
record _≤_ (s t : Stream A) : Prop where
coinductive
field out≤ : s ≤μ t

data _≤μ_ (s t : Stream A) : Prop where
match : (s .hd ≡ t .hd) → (s .tl ≤ t .tl) → s ≤μ t
skip : (s ≤μ t .tl) → s ≤μ t

In the remainder of the section we show that this direct definition is equivalent to the selecting-
based one and derive transitivity of ≤ from there. The first step towards this is to extract from a
proof of ≤ a selector witness.

witness : {s t : Stream A} → s ≤ t → Sel
witnessμ : {s t : Stream A} → s ≤μ t → Selμ

witness p .out = witnessμ (p .out≤)

witnessμ (match _ t≤) = pres (witness t≤)
witnessμ (skip u) = drop (witnessμ u)

We can now use the extracted witness to show that the substream relation is included in the
witness-based substream relation and hence in the select-based substream relation.

≤−implies−select≤ : ∀{s t} → (p : s ≤ t) → s ≤[witness p] t
≤μ−implies−selectμ≤ : ∀{s t} → (p : s ≤μ t) → s ≤μ[witnessμ p] t

≤−implies−select≤ {s} {t} p = ≤μ−implies−selectμ≤ (p .out≤)

≤μ−implies−selectμ≤ (match h≡ t≤) .hd≈ = h≡
≤μ−implies−selectμ≤ (match h≡ t≤) .tl~ = ≤−implies−select≤ t≤
≤μ−implies−selectμ≤ (skip q) = ≤μ−implies−selectμ≤ q

≤−implies−≤′ : ∀{s t} → s ≤ t → s ≤′ t
≤−implies−≤′ p = ∃−intro (witness p) (≤−implies−select≤ p)

Conversely, we can construct from a selector witness a proof for the substream relation. This
allows us then to show that the select-based substream relation is in included in the substream
relation.

270

7.6. Discussion

select≤−implies−≤ : ∀{s t} (x : Sel) → s ≤[x] t → s ≤ t
selectμ≤⇒≤μ : ∀{s t} (u : Selμ) → s ≤μ[u] t → s ≤μ t

select≤−implies−≤ x p .out≤ = selectμ≤⇒≤μ (x .out) p

selectμ≤⇒≤μ (pres x) p = match (p .hd≈) (select≤−implies−≤ x (p .tl~))
selectμ≤⇒≤μ (drop u) p = skip (selectμ≤⇒≤μ u p)

≤′−implies−≤ : ∀{s t} → s ≤′ t → s ≤ t
≤′−implies−≤ = ∃−elim select≤−implies−≤

Putting these to results together, we obtain a proof that the two definitions for the substream
relation are equivalent.

≤−and−≤′−equiv : ∀ s t → s ≤ t ⇔ s ≤′ t
≤−and−≤′−equiv s t = equivalence ≤−implies−≤′ ≤′−implies−≤

Finally, using this equivalence, we can derive from the fact that ≤′ is transitive that also ≤ is
transitive.

≤−trans : ∀{r s t} → r ≤ s → s ≤ t → r ≤ t
≤−trans p q = ≤′−implies−≤ (≤′−trans (≤−implies−≤′ p) (≤−implies−≤′ q))

7.6. Discussion
In this chapter we have have introduced a type theory λPµ that is solely based on inductive and
coinductive types, following the ideas of the category theoretical development in Chapter 6. This
is in contrast to other type theories that usually have separate type constructors for, for example,
the (dependent) function space or coproducts. The result is a theory with a small set of rules for its
judgements and reduction relation. To justify the use of our type theory as logic, we also proved that
the reduction relation preserves types and is strongly normalising on well-typed terms. Combining
the present theory with that in [Nor07] would give us a justification for a large part Agda’s current
type system, especially including coinductive types.

Contributions
Let us briefly sum up the contributions made in this chapter. First of all, we introduced the
dependent type theory λPµ and showed how important logical operators and type formers can be
represented in this theory. We also discussed how the, somewhat worn-out, standard example of
vectors arises as a recursive (inductive) type in λPµ. Other examples, like the substream relation,
were given as an application in Section 7.5. Second, we showed that computations of terms, given
in form of a reduction relation, are meaningful, in the sense that the reduction relation preserves
types (subject reduction) and that all computations are terminating (strong normalisation). Thus,
under the propositions-as-types interpretation, our type theory can serve as formal framework

271

Chapter 7. Constructive Logic Based on Inductive-Coinductive Types

for intuitionistic reasoning. Finally, we have shown how the calculus λPµ can be extended with
dependent iteration to a calculus λPµ+, so that an induction principle for inductive types is also
available in the propositions-as-types interpretation.

Related Work
A major source of inspiration for the setup of our type theory is categorical logic. Especially,
the use of fibrations, brought forward in [Jac99], helped a great deal in understanding how the
work of Hagino [Hag87] can be extended to dependent types. Another source of inspiration is the
view of type theories as internal language or even free models for classes of categories, see for
example [LS88]. This view is especially important in topos theory, where final coalgebras have been
used as foundation for predicative, constructive set theory [Acz88; vdBer06; vdBdM07]. In Chapter 6
we saw how these ideas can be extended to general strictly positive inductive and coinductive types,
which form the category theoretical analogue of the type theory λPµ.

Let us briefly discuss other type theories that the present work relates to. Especially close is the
copattern calculus introduced in [Abe+13] and Section 3.2, as there the coinductive types are also
specified by the types of their destructors. However, said calculus does not have dependent types,
and it is based on systems of equations to define terms, whereas the calculus in the present paper is
based on iteration and coiteration schemes, similar to the calculus λµν from Section 3.1. There are
other calculi that use iteration and coiteration as basis for defining operations on non-dependent
inductive and coinductive types, respectively, see Section 3.4 for further discussion.

To ensure strong normalisation, the copatterns have been combined with size annotations in [AP13].
Due to the nature of the reduction relation in these copattern-based calculi, strong normalisation
also ensures productivity for coinductive types or, more generally, observational normalisation,
cf. Section 4.1. As another way to ensure productivity, guarded recursive types were proposed
and in [Biz+16a] guarded iteration was extended to dependent types. Guarded recursive types go
beyond strictly positive types, which is what we restricted ourselves to in this chapter, but also to
positive and even negative types. However, it is not clear how one can include inductive types into
such a type theory, which are, in the author’s opinion, crucial to mathematics and computer science.
Finally, in [Sac13] another type theory with type-based termination conditions and a type former for
streams has been introduced. This type theory, however, lacks again dependent coinductive types.

Future Work
There are still some open questions, regarding the present type theory, that we wish to settle in
the future. First of all, a basic property of the reduction relation that is still missing is confluence.
Second, we have constructed the type theory with certain categorical structures in mind, and it
is easy to interpret the types and terms in data type closed categories as we introduced them in
Section 6.2. However, one has to be careful in showing the soundness of such an interpretation, in
which two subtleties occur. First, if for types A and B we have that A←→T B, then we had better
ensured that their interpretations agree, that is JAK = JBK, because of the conversion rule of λPµ.
This property corresponds to using split fibrations, instead of merely cloven fibrations, in Section 6.2,
cf. [Jac99, Sec. 10.3]. The second subtlety, which might be in the way of a sound interpretation,
is the definition of substitution on recursive types. However, the Beck-Chevalley condition that
we proposed in Section 6.5 is designed precisely to give us the soundness of substitution for the

272

7.6. Discussion

interpretation of types. Though it seems that these conditions suffice to give an interpretation of
λPµ, these conditions need to be carefully checked, as we have learned from previous attempts on
category theoretical semantics for dependent type theories [Str91].

In Section 7.4, we mentioned already that the strong normalisation proof from Section 7.3.3 does
not subsume dependent iteration. It is expected that the proof can be extended accordingly, but
this certainly needs to be checked carefully. Moreover, one has to ask what the dual principle to
dependent iteration is for coinductive types. The expectation would be coinduction, that is, that
internally provable bisimilarity of terms implies their propositional equality. However, setting up
a calculus in which coinduction holds is far from trivial, if we want to preserve decidability of
type checking. In particular, this is because bisimilarity on function types corresponds to point-
wise equality, so that the coinduction principle would give us therefore extensional function types,
cf. Section 6.4.3 and Example 7.2.4. An idea in this direction would be to combine observational type
theory [AMS07] with ideas of cubical/homotopy type theory [Coh+16; Uni13], which would result
in more complex calculi, albeit with decidable type checking. This is inspired by an idea that was
communicated by Conor McBride in a talk at the Agda Implementors’ Meeting XXIII in Glasgow,
and it was further developed by the author in talks given at the TYPES’16 meeting [BG16b] and the
Chocola Seminar at the ENS Lyon in September 2016. Due to the complexity of this task, we leave
the extension of λPµ or λPµ+ with coinduction open for now.

Finally, certain acceptable facts are not provable in λPµ+, since, for instance, we do not have uni-
verses. Another common feature that is missing from the type theory, is predicative polymorphism,
which is in fact justified and desirable from the categorical point of view. Both extensions go in the
direction of turning the calculus into a foundation for Agda. It is expected that such extensions are
straightforward but tedious to carry out.

Notes
58 Noam Chomsky, “Language and Freedom”. In “On Anarchism”, Nathan Schneider (Ed.), 2014.

59 Indeed, subject reduction is broken in Coq, which is caused by the fact that coinductive types are
defined through constructors that can be pattern matched against. Consider the following example.

1 CoInductive Stream := Cons : Stream→ Stream.
2 CoFixpoint c : Stream := Cons c.
3 Definition foo : c = Cons c :=
4 match c as t return match t with Cons t’ ⇒ t = Cons t’ end
5 with Cons _⇒ eq_refl end.
6 Eval compute in foo.
7 Definition bar : c = Cons c := Eval compute in foo.

In Coq 8.6, line 6 outputs

= eq_refl

: c = Cons c

but the definition in the last line leads to the error

273

Chapter 7. Constructive Logic Based on Inductive-Coinductive Types

Error

The term "eq_refl" has type

"Cons (cofix c : Stream := Cons c) =

Cons (cofix c : Stream := Cons c)"

while it is expected to have type "c = Cons c".

Thus, Coq accepts the definition of foo, which computes to eq_refl, but it cannot infer that eq_refl
is of type c = Cons c. In other words, the computation of foo gives the resulting value another type
than it actually has. Hence, subject reduction is broken in Coq with coinductive types.

This has in fact already been observed as an inherit limitation of the constructor-based approach
to coinductive types by Giménez in his thesis [Gim96]. The problem is that one either only ob-
tains a weak form of subject reduction or that constructor expansion for coinductive types needs
to be added, where the latter would make type checking undecidable. At https://sympa.inria.fr/
sympa/arc/coq-club/2008-06/msg00022.html and https://sympa.inria.fr/sympa/arc/coq-club/

2008-06/msg00045.html one may find the corresponding discussions in the context of Coq.
60 In the case of streams, which is not really representative of general coinductive types however, the

usual representation in terms of inductive types is to take functions Nat → A as streams over A.
But even in this simple representation one only obtains a useful computation principle in presence
of η-reduction. This can be seen as follows. First, one defines an alternative type of streams by
StrA B Nat → A. On this type, we can define coiteration for c : X → A × X and x : X by pattern
matching:

coiter′ c x 0 = π1 (c x)

coiter′ c x (n + 1) = coiter′ c (π2 (c x)) n

Moreover, the tail observation is defined to be tl′ s B λn. s (n + 1). Then we have

tl′ (coiter′ c x) = λn. coiter′ c x (n + 1) ≡ λn. coiter′ c (π2 (c x)) n.

But this is only convertible to coiter′c (π2 (c x)) in the presence of η-conversion. Adding η-conversion
might not be considered so bad, but the reader is invited to derive the computational rules for more
general coinductive types as they are encoded in [cLa16], which is only possible with general function
extensionality.

61 This mechanism of handling dependencies in type constructors is very similar to that for handling
assumption valid relative to a context in [NPP08]. We thank an anonymous referee of [BG16a] for
the pointer.

62 It should be noted that the arrow _ is not meant to be the function space in a higher universe, as
one finds it in MLTT with (higher) universes or in Agda. Rather, parameter contexts are a syntactic
tool to deal elegantly with parameters of type constructors. On terms, parameters and function
spaces are of course not unrelated. We explain this in Example 7.2.4.

63 The precise definition of the compatible closure can be found in the Agda formalisation [Bas18b].
64 Essentially, parameter abstraction and instantiation for types corresponds to a simply typed λ-calculus

on the type level.

274

https://sympa.inria.fr/sympa/arc/coq-club/2008-06/msg00022.html
https://sympa.inria.fr/sympa/arc/coq-club/2008-06/msg00022.html
https://sympa.inria.fr/sympa/arc/coq-club/2008-06/msg00045.html
https://sympa.inria.fr/sympa/arc/coq-club/2008-06/msg00045.html

7.6. Discussion

65 One interesting result, used to prove the following lemmas, is that the interpretation of types is
monotone in δ , and that the interpretation of coinductive types is the largest set closed under
destructors. This suggests that it might be possible to formulate the definition of the interpretation
in categorical terms.

66 We note that the calculus with dependent iteration does not satisfy the uniqueness of identity proofs
(UIP) principle. The reason is that the dependent iteration scheme amounts for EqA to

Γ,x : A,y : ⊤, z : ⊤ ⊢ д : C @x @x @(α1 @x @y)

Γ ⊢ diter (x ,y, z.д) : x : A,y : A, z : EqA(x ,y) _ C @x @y@ z

Leaving out variables of type ⊤, cf. Example 7.4.4, and writing refl s for α1 @ s @ ⟨ ⟩, we obtain from
there the following rule.

Γ,x : A ⊢ д : C @x @x @(refl x)
Γ ⊢ diter (x .д) : x : A,y : A, z : EqA(x ,y) _ C @x @y@ z

If we now try to prove that all proofs of EqA(x ,y) are given by reflexivity, we are obliged to find a
type C with

C @x @x @(refl x) ≡ Eq(refl x , refl x).

A natural candidate would thus be C = (x ,y, z). Eq(z, refl x). The problem with this is that z is of
type EqA(x ,y) but refl x is of type EqA(x ,x). Hence, C is not a well-formed type.

This is of course not a formal argument that the calculus does not fulfil the UIP principle, but it
gives some good evidence. For detailed discussions of the failure of UIP in Martin-Löf type theory,
which should be adaptable to our calculus, see the work by Hofmann and Streicher [HS94].

67 The commonly used definition of coproducts (Σ-types) in Agda is the following.

record Σ (A : Set) (B : A → Set) : Set where
field
proj1 : A
proj2 : B proj1

Note that the second destructor refers to the first, which is not allowed in our setup and leads to a
strong elimination principle for Σ, which we obtained in Example 7.4.5 from dependent iteration.

68 In fact, X : I → Set is a function in Agda, only that it is a type in the universe Set1. This is similar
to the situation in category theory, where a family of sets can be given by a functor from I , seen as
a discrete category, to the category of sets. Such a functor is then an object in the large category of
functors between categories.

69 Agda also supports more sophisticated termination checks by using sized types. We will not discuss
these further here though.

70 Bertot [Ber05] defines a different notion of stream selection that allows one to select from streams
by productive predicates. This way of selecting from streams is essentially equivalent to our notion
of selecting by positions, see.

275

CHAPTER 8

Epilogue

Everything Faustian is far away from me. […] Thousands of questions are silenced as if dissolved. There are
neither doctrines nor heresies. The possibilities are endless. Only faith in them lives creatively in me.

— Paul Klee, 1916.

Towards the end of writing this thesis, in July 2017, I was invited to give a tutorial on the topics
of Chapters 6 and 7 at the Université Savoie in the magnificent area of Lac de Bourget. This tutorial
was part of a “Workshop on Coinduction in Type Theory”, organised by Tom Hirschowitz. The
workshop was a perfect illustration of the diversity that can be found in the views on induction
and coinduction. There were people whose main interest was indeed type theory, others came
from a category theoretical background, and still others came from logic or base their work mostly
on classical set theory. Having all these different views leads to very stimulating but also intense
discussions, in particular because everyone has seen or used inductive-coinductive objects in some
form or even worked on them.

Trying to accommodate all these different views in one thesis is impossible, and even though I
tried to reach as wide an audience as possible, I had to make a selection. In the end, I chose those
topics that give a general account to inductive-coinductive objects, in the hope that the provided
theory may serve as a foundation for reasoning about such objects. Unfortunately, selecting the
more abstract theory as a focus means that many of the wonderful and interesting applications of
inductive-coinductive reasoning could not be covered here. Though one has to say that the point of
Mathematics is in any case not to generate examples but to construct general theories that account
for and explain these examples.

But I’m digressing. We have seen some usages of inductive-coinductive reasoning in this thesis,
like the substream relation or the correctness proof for µ-recursion. However, there are many more,
some of which we discussed in the intro, and plenty of them are not explored. For instance, Kőnig’s
lemma and Brouwer’s fan theorem mix inductive and coinductive reasoning, but only the latter of
which has been studied so far from this perspective [NUB11]. Similarly, Cauchy sequences and
weak bisimilarity also involve both induction and coinduction, which again is hardly ever made
explicit. Finally, a recurring theme in this thesis is that already the very notion of function, on
which most of Mathematics is built, is itself coinductive. A striking consequence of this is that the
coinduction principle for function spaces, namely that bisimilarity implies equality, corresponds to
the usual principle of function extensionality: two functions are equal precisely if they agree on all
arguments. This is another insight that arose from the abstract treatment of inductive-coinductive
objects, even though I was told that this is sort of “folklore”. I hope that these examples show that
it is worthwhile to study mixed inductive-coinductive reasoning and to take it seriously. So, I hope
that this thesis may inspire others to study inductive-coinductive objects, and advance the theory
provided here beyond its, now very basic, state.

277

Chapter 8. Epilogue

The Way Onward
So where to go from here? There are many problems that this thesis leaves open and many directions
for future research that it suggests. Out of those that we discussed throughout the chapters, let me
highlight a few that I deem most important.

One of the observations that we made was that iteration and coiteration schemes require a lot of
work and ingenuity to bring mixed inductive-coinductive specifications into a form to which these
schemes can be applied. For this reason, we generally preferred specifications in terms of recursive
equations. This leaves open the problem of reconciling iteration and coiteration with recursive
equations by, for instance, expressing observationally normalising terms in λµν= as terms in λµν .
A similar direction is to explore how one can dualise the principle of well-founded induction to
coiteration and coinduction. Well-founded induction can be used to implement a recursive function
by establishing a well-founded relation on its arguments and showing that the recursion descends
the relation. Since this principle allows for fairly general recursive specifications, one has to ask
whether there is a similar principle to specify productive processes.

Another major obstacle to the usability of type theories as foundation for mathematical reasoning
is, in my opinion, the lack of a proper coinduction principle. The trouble is that without a coinduction
principle, one has to explicitly use hand-crafted equivalence relations (bisimilarity) everywhere. This
is very irritating and puts an enormous load on the user of a type theory. As we sketched in
Section 7.6, it should be possible to extend λPµ+ with a coinduction principle through a combination
of ideas from observational type theory and cubical type theory. Together with type theoretical
universes we would obtain a type theory that covers already a large part of Mathematics and
Computer Science. What is missing then are only quotients and subobjects or, more generally,
colimit and limit constructions. These arise by suitably extending the dependent inductive and
coinductive types of λPµ+ — to higher inductive and coinductive types, if the reader is familiar with
these concepts. If we are able to pull off these developments, then this would lead to a type theory
that should cover, except for non-constructive proofs, most of Mathematics and Computer Science.

Apart from developments in the field of type theory, there are also other aspects of inductive-
coinductive reasoning that I think need to be explored further. First of all, the logic FOL▶ that we
developed in Section 5.2 needs to be fleshed out for mixed inductive-coinductive proofs. Moreover,
the use of the later modality to ensure correctness of recursive proofs is not limited to bisimilarity,
but should work for more general coinductive, and perhaps even for inductive-coinductive, predicates
and relations. Therefore, it would in my opinion be fruitful to explore this logic further. Next, we
found that up-to techniques allowed us to carry out the soundness proof for the logic FOL▶ more
easily. This seems to be a general phenomenon that needs to be explored for other logics and also
for type theories. Finally, in the light of the goal to develop type theories that feature general
coinduction, it would be worthwhile to study also the category theoretical side of such type theories.
To be more precise, I think that it would be interesting to study Universal Coalgebra, as it was
coined by Rutten, in so-called (∞, 1)-categories. Combining all these endeavours would result in a
convergence of type theory and category theory.

278

References

[Abb03] Michael Abbott. ‘Categories of Containers’. Leicester, 2003. url: http://www.cs.le.
ac.uk/people/ma139/docs/thesis.pdf (visited on 19/06/2016) (cit. on pp. 164, 190,
191, 194–197, 199, 217).

[AAG05] Michael Abbott, Thorsten Altenkirch and Neil Ghani. ‘Containers: Constructing Strictly
Positive Types’. In: Theoretical Computer Science. Applied Semantics: Selected Topics
Applied Semantics: Selected Topics 342.1 (2005), pp. 3–27. issn: 0304-3975. doi: 10.
1016/j.tcs.2005.06.002 (cit. on pp. 9, 164, 181, 188–191, 193, 217).

[Abe04] Andreas Abel. ‘Termination Checking with Types’. In: ITA 38.4 (2004), pp. 277–319.
doi: 10.1051/ita:2004015 (cit. on p. 39).

[AA99] Andreas Abel and Thorsten Altenkirch. ‘A Predicative Strong Normalisation Proof for
a Lambda-Calculus with Interleaving Inductive Types’. In: TYPES’99. Vol. 1956. LNCS.
Springer, 1999, pp. 21–40. doi: 10.1007/3-540-44557-9_2 (cit. on pp. 69, 101, 103).

[AMU05] Andreas Abel, Ralph Matthes and Tarmo Uustalu. ‘Iteration and Coiteration Schemes
for Higher-Order and Nested Datatypes’. In: Theor. Comput. Sci. 333 (1-2 2005), pp. 3–66.
doi: 10.1016/j.tcs.2004.10.017 (cit. on p. 9).

[AP13] Andreas Abel and Brigitte Pientka. ‘Wellfounded Recursion with Copatterns: A Unified
Approach to Termination and Productivity’. In: ICFP. 2013, pp. 185–196. doi: 10.1145/
2500365.2500591 (cit. on pp. 9, 68, 77, 126, 272, 309).

[Abe+13] Andreas Abel, Brigitte Pientka, David Thibodeau and Anton Setzer. ‘Copatterns: Pro-
gramming Infinite Structures by Observations’. In: Proc. of POPL. Symposium on Prin-
ciples of Programming Languages. ACM, 2013, pp. 27–38. isbn: 978-1-4503-1832-7. doi:
10.1145/2429069.2429075 (cit. on pp. 9, 37, 49, 63, 65, 68, 272, 309).

[Abr90] Samson Abramsky. ‘The Lazy Lambda Calculus’. In: Research Topics in Functional Pro-
gramming. Addison-Wesley, 1990, pp. 65–116 (cit. on pp. 102, 105, 152, 153).

[Acz88] Peter Aczel. Non-Well-Founded Sets. Lecture Notes 14. Center for the Study of Language
and Information, Stanford University, 1988. isbn: 0-937073-22-9 (cit. on pp. 7, 272).

[Acz+03] Peter Aczel, Jiří Adámek, Stefan Milius and Jiří Velebil. ‘Infinite Trees and Completely
Iterative Theories: A Coalgebraic View’. In: Theoretical Computer Science 300 (1–3 2003),
pp. 1–45. issn: 0304-3975. doi: 10.1016/S0304-3975(02)00728-4 (cit. on p. 218).

[AM89] Peter Aczel and Nax Paul Mendler. ‘A Final Coalgebra Theorem’. In: Proceedings of
CategoryTheory and Computer Science. Vol. 389. LNCS. Springer, 1989, pp. 357–365. doi:
10.1007/BFb0018361 (cit. on p. 7).

[AMV11] Jiří Adámek, Stefan Milius and Jiří Velebil. ‘Semantics of Higher-Order Recursion
Schemes’. In: Logical Methods in Computer Science 7.1 (2011), pp. 1–43. doi: 10.2168/
LMCS-7(1:15)2011 (cit. on p. 101).

279

http://www.cs.le.ac.uk/people/ma139/docs/thesis.pdf
http://www.cs.le.ac.uk/people/ma139/docs/thesis.pdf
https://doi.org/10.1016/j.tcs.2005.06.002
https://doi.org/10.1016/j.tcs.2005.06.002
https://doi.org/10.1051/ita:2004015
https://doi.org/10.1007/3-540-44557-9_2
https://doi.org/10.1016/j.tcs.2004.10.017
https://doi.org/10.1145/2500365.2500591
https://doi.org/10.1145/2500365.2500591
https://doi.org/10.1145/2429069.2429075
https://doi.org/10.1016/S0304-3975(02)00728-4
https://doi.org/10.1007/BFb0018361
https://doi.org/10.2168/LMCS-7(1:15)2011
https://doi.org/10.2168/LMCS-7(1:15)2011

References

[Agd15] Programming Logic group on Agda. Agda Documentation. Version 2.4.2.5. Chalmers
and Gothenburg University, 2015. url: http://wiki.portal.chalmers.se/agda/
(cit. on pp. 9, 154, 167, 224).

[AU79] Alfred V. Aho and Jeffrey D. Ullman. ‘The Universality of Data Retrieval Languages’. In:
Conference Record of POPL 1979. ACM Press, 1979, pp. 110–120. doi: 10.1145/567752.
567763 (cit. on p. 163).

[ACS15] Benedikt Ahrens, Paolo Capriotti and Régis Spadotti. ‘Non-Wellfounded Trees in Ho-
motopy Type Theory’. In: (2015). arXiv: 1504.02949 [cs, math] (cit. on p. 224).

[AMM05] Thorsten Altenkirch, Conor McBride and James McKinna. WhyDependent Types Matter.
2005. url: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.106.8190
(cit. on p. 167).

[AMS07] Thorsten Altenkirch, Conor McBride and Wouter Swierstra. ‘Observational Equality,
Now!’ In: Proc. of PLPV ’07. Workshop on Programming Languages Meets Program
Verification. ACM, 2007, pp. 57–68. isbn: 978-1-59593-677-6. doi: 10.1145/1292597.
1292608 (cit. on pp. 101, 155, 273).

[AM09] Thorsten Altenkirch and Peter Morris. ‘Indexed Containers’. In: LICS. IEEE Computer
Society, 2009, pp. 277–285. doi: 10.1109/LICS.2009.33 (cit. on pp. 181, 190).

[App+07] Andrew W. Appel, Paul-André Melliès, Christopher D. Richards and Jérôme Vouillon.
‘A Very Modal Model of a Modern, Major, General Type System’. In: POPL. ACM, 2007,
pp. 109–122. doi: 10.1145/1190216.1190235 (cit. on pp. 126, 137, 154).

[AM13] Robert Atkey and Conor McBride. ‘Productive Coprogramming with Guarded Recur-
sion’. In: ICFP. ACM, 2013, pp. 197–208. doi: 10.1145/2500365.2500597 (cit. on pp. 68,
126, 130, 132, 157).

[Awo10] Steve Awodey. Category Theory. 2nd ed. Oxford Logic Guides 52. Oxford University
Press, 2010. isbn: 978-0-19-923718-0 (cit. on pp. 22, 25).

[Bae09] David Baelde. ‘On the ProofTheory of Regular Fixed Points’. In: Proceedings of TABLEAUX
2009. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 93–107. isbn: 978-3-642-
02716-1. doi: 10.1007/978-3-642-02716-1_8 (cit. on p. 126).

[Bar85] Henk Barendregt.TheLambdaCalculus, Its Syntax and Semantics. Revised edition. Vol. 103.
Studies in Logic and the Foundations of Mathematics. Amsterdam; New York; Oxford:
North Holland, 1985. 621 pp. isbn: 978-0-444-87508-2 (cit. on p. 89).

[Bar91] Henk Barendregt. ‘Introduction to Generalized Type Systems’. In: J. Funct. Program.
1.2 (1991), pp. 125–154. doi: 10.1017/S0956796800020025 (cit. on p. 182).

[Bar13] Henk Barendregt. ‘Foundations of Mathematics from the Perspective of Computer
Verification’. In: Mathematics, Computer Science and Logic - A Never Ending Story: The
Bruno Buchberger Festschrift. Springer, 2013, pp. 1–49. isbn: 978-3-319-00966-7. doi:
10.1007/978-3-319-00966-7_1 (cit. on p. 9).

[BDS13] Henk Barendregt, Wil Dekkers and Richard Statman. Lambda Calculus with Types.
Cambridge ; New York: Cambridge University Press, 2013. 854 pp. isbn: 978-0-521-
76614-2 (cit. on pp. 39, 68, 69, 105, 168).

280

http://wiki.portal.chalmers.se/agda/
https://doi.org/10.1145/567752.567763
https://doi.org/10.1145/567752.567763
http://arxiv.org/abs/1504.02949
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.106.8190
https://doi.org/10.1145/1292597.1292608
https://doi.org/10.1145/1292597.1292608
https://doi.org/10.1109/LICS.2009.33
https://doi.org/10.1145/1190216.1190235
https://doi.org/10.1145/2500365.2500597
https://doi.org/10.1007/978-3-642-02716-1_8
https://doi.org/10.1017/S0956796800020025
https://doi.org/10.1007/978-3-319-00966-7_1

[Bar93] Michael Barr. ‘Terminal Coalgebras in Well-Founded Set Theory’. In: Theoretical Com-
puter Science 114.2 (1993), pp. 299–315. doi: 10.1016/0304-3975(93)90076-6 (cit. on
p. 193).

[Bar04] Falk Bartels. ‘On Generalised Coinduction and Probabilistic Specification Formats’.
PhD. Amsterdam: Vrije Universiteit, 2004. url: http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.9.4992&rep=rep1&type=pdf (visited on 12/12/2016)
(cit. on pp. 8, 76).

[Bar+04] Gilles Barthe, Maria João Frade, Eduardo Giménez, Lúıs Pinto and Tarmo Uustalu.
‘Type-Based Termination of Recursive Definitions’. In: Mathematical Structures in Com-
puter Science 14.1 (2004), pp. 97–141. doi: 10.1017/S0960129503004122 (cit. on pp. 68,
126).

[BGM71] K. Jon Barwise, Robin O. Gandy and Yiannis N. Moschovakis. ‘The Next Admissible
Set’. In: J. Symb. Log. 36.1 (1971), pp. 108–120. doi: 10.2307/2271519 (cit. on p. 7).

[BM96] K. Jon Barwise and Lawrence S. Moss. Vicious Circles. On the Mathematics of Non-
Wellfounded Phenomena. CSLI Lecture Notes 60. Center for the Study of Language and
Information, Chigaco University Press, 1996. isbn: 1-57586-008-2 (cit. on p. 7).

[Bas15b] Henning Basold. Higher Coinductive Types - cLab. 2015. url: http://coalg.org/clab/
Higher_Coinductive_Types (visited on 25/11/2016) (cit. on p. 69).

[Bas16] Henning Basold. Stream Differential Equations in Agda. GitHub. 2016. url: https://
github.com/hbasold/Sandbox (visited on 12/12/2016) (cit. on p. 77).

[Bas18b] Henning Basold. Code Repository. 2018. url: https://perso.ens-lyon.fr/henning.
basold/code/ (cit. on pp. 8, 228, 229, 245, 257, 274).

[Bek99] Lev D. Beklemishev. ‘Parameter Free Induction and Provably Total Computable Func-
tions’. In: Theor. Comput. Sci. 224 (1-2 1999), pp. 13–33. doi: 10.1016/S0304-3975(98)
00305-3 (cit. on pp. 126, 154).

[Ber05] Yves Bertot. ‘Filters on CoInductive Streams, an Application to Eratosthenes’ Sieve’.
In: Proceedings of TLCA 2005. Vol. 3461. LNCS. Springer, 2005, pp. 102–115. doi: 10.
1007/11417170_9 (cit. on pp. 8, 58, 275).

[BC04] Yves Bertot and Pierre Castéran. InteractiveTheorem Proving and Program Development -
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science.
An EATCS Series. Springer, 2004 (cit. on p. 223).

[Bir+16] Lars Birkedal, Alěs Bizjak, Ranald Clouston, Hans Bugge Grathwohl, Bas Spitters and
Andrea Vezzosi. ‘Guarded Cubical Type Theory: Path Equality for Guarded Recursion’.
In: CSL 2016. Vol. 62. LIPIcs. Schloss Dagstuhl, 2016, 23:1–23:17. isbn: 978-3-95977-022-4.
doi: 10.4230/LIPIcs.CSL.2016.23 (cit. on p. 155).

[BH99] Lars Birkedal and Robert Harper. ‘Relational Interpretations of Recursive Types in an
Operational Setting’. In: Inf. Comput. 155 (1-2 1999), pp. 3–63. doi: 10.1006/inco.1999.
2828 (cit. on p. 153).

[BM13] Lars Birkedal and Rasmus Ejlers Møgelberg. ‘Intensional Type Theory with Guarded
Recursive Types qua Fixed Points on Universes’. In: LICS. IEEE Computer Society, 2013,
pp. 213–222. doi: 10.1109/LICS.2013.27 (cit. on pp. 143, 155).

281

https://doi.org/10.1016/0304-3975(93)90076-6
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.9.4992&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.9.4992&rep=rep1&type=pdf
https://doi.org/10.1017/S0960129503004122
https://doi.org/10.2307/2271519
http://coalg.org/clab/Higher_Coinductive_Types
http://coalg.org/clab/Higher_Coinductive_Types
https://github.com/hbasold/Sandbox
https://github.com/hbasold/Sandbox
https://perso.ens-lyon.fr/henning.basold/code/
https://perso.ens-lyon.fr/henning.basold/code/
https://doi.org/10.1016/S0304-3975(98)00305-3
https://doi.org/10.1016/S0304-3975(98)00305-3
https://doi.org/10.1007/11417170_9
https://doi.org/10.1007/11417170_9
https://doi.org/10.4230/LIPIcs.CSL.2016.23
https://doi.org/10.1006/inco.1999.2828
https://doi.org/10.1006/inco.1999.2828
https://doi.org/10.1109/LICS.2013.27

References

[Bir+11] Lars Birkedal, Rasmus Ejlers Møgelberg, Jan Schwinghammer and Kristian Støvring.
‘First Steps in Synthetic Guarded Domain Theory: Step-Indexing in the Topos of Trees’.
In: Proceedings LICS 2011. IEEE Computer Society, 2011, pp. 55–64. doi: 10.1109/LICS.
2011.16 (cit. on pp. 22, 23, 137, 155).

[Biz+16a] Aleš Bizjak, Ranald Clouston, Hans Bugge Grathwohl, Rasmus Ejlers Møgelberg and
Lars Birkedal. ‘Guarded Dependent Type Theory with Coinductive Types’. In: Proceed-
ings of FOSSACS’16. FOSSACS’16. 2016 (cit. on p. 272).

[Biz+16b] Ales Bizjak, Hans Bugge Grathwohl, Ranald Clouston, Rasmus Ejlers Møgelberg and
Lars Birkedal. ‘Guarded Dependent Type Theory with Coinductive Types’. In: FoSSaCS.
Vol. 9634. Lecture Notes in Computer Science. Springer, 2016, pp. 20–35. arXiv: 1601.
01586 (cit. on pp. 126, 155).

[BRV01] Patrick Blackburn, Maarten de Rijke and Yde Venema. Modal Logic. Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 2001. doi: 10.1017/
CBO9781107050884 (cit. on p. 85).

[BvB07] Patrick Blackburn and Johan van Benthem. ‘Modal Logic: A Semantic Perspective’. In:
Patrick Blackburn, Johan van Benthem and Frank Wolter. Handbook of Modal Logic.
Vol. 3. Studies in Logic and Practical Reasoning. Elsevier, 2007, pp. 1–84. isbn: 978-0-
444-51690-9. doi: 10.1016/S1570-2464(07)80004-8. url: http://cgi.csc.liv.ac.uk/
~frank/MLHandbook/ (cit. on p. 85).

[Bla+14] Jasmin Christian Blanchette, Johannes Hölzl, Andreas Lochbihler, Lorenz Panny, An-
drei Popescu and Dmitriy Traytel. ‘Truly Modular (Co)Datatypes for Isabelle/HOL’. In:
Proceedings of ITP 2014. Vol. 8558. Lecture Notes in Computer Science. Springer, 2014,
pp. 93–110. doi: 10.1007/978-3-319-08970-6_7 (cit. on p. 125).

[Bon+13] Filippo Bonchi, Georgiana Caltais, Damien Pous and Alexandra Silva. ‘Brzozowski’s
and Up-To Algorithms for Must Testing’. In: Proceedings of APLAS 2013. Vol. 8301.
Lecture Notes in Computer Science. Springer, 2013, pp. 1–16. doi: 10.1007/978-3-
319-03542-0_1 (cit. on p. 156).

[Bon+14] Filippo Bonchi, Daniela Petrişan, Damien Pous and Jurriaan Rot. ‘Coinduction Up-to in
a Fibrational Setting’. In: Proc. of CSL-LICS ’14. New York, USA: ACM, 2014, 20:1–20:9.
isbn: 978-1-4503-2886-9. doi: 10.1145/2603088.2603149 (cit. on pp. 8, 27, 28, 118, 142,
154, 158).

[BP13] Filippo Bonchi and Damien Pous. ‘Checking NFA Equivalence with Bisimulations up
to Congruence’. In: Proceedings of POPL ’13. ACM, 2013, pp. 457–468. doi: 10.1145/
2429069.2429124 (cit. on p. 156).

[BRS09] Marcello M. Bonsangue, Jan Rutten and Alexandra Silva. ‘An Algebra for Kripke
Polynomial Coalgebras’. In: Proceedings of LICS 2009. IEEE Computer Society, 2009,
pp. 49–58. doi: 10.1109/LICS.2009.18 (cit. on p. 217).

[Bor08] Francis Borceux. Handbook of Categorical Algebra: Volume 1, Basic CategoryTheory. Cam-
bridge University Press, 2008. 364 pp. isbn: 978-0-521-06119-3 (cit. on pp. 20, 21, 29–31,
33).

282

https://doi.org/10.1109/LICS.2011.16
https://doi.org/10.1109/LICS.2011.16
http://arxiv.org/abs/1601.01586
http://arxiv.org/abs/1601.01586
https://doi.org/10.1017/CBO9781107050884
https://doi.org/10.1017/CBO9781107050884
https://doi.org/10.1016/S1570-2464(07)80004-8
http://cgi.csc.liv.ac.uk/~frank/MLHandbook/
http://cgi.csc.liv.ac.uk/~frank/MLHandbook/
https://doi.org/10.1007/978-3-319-08970-6_7
https://doi.org/10.1007/978-3-319-03542-0_1
https://doi.org/10.1007/978-3-319-03542-0_1
https://doi.org/10.1145/2603088.2603149
https://doi.org/10.1145/2429069.2429124
https://doi.org/10.1145/2429069.2429124
https://doi.org/10.1109/LICS.2009.18

[BMH07] Edwin Brady, James McKinna and Kevin Hammond. ‘Constructing Correct Circuits:
Verification of Functional Aspects of Hardware Specifications with Dependent Types’.
In: Proceedings of TFP 2007. Vol. 8. Trends in Functional Programming. Intellect, 2007,
pp. 159–176 (cit. on p. 167).

[Bro05] James Brotherston. ‘Cyclic Proofs for First-Order Logic with Inductive Definitions’. In:
Proceedings of TABLEAUX 2005. Vol. 3702. Lecture Notes in Computer Science. Springer,
2005, pp. 78–92. doi: 10.1007/11554554_8 (cit. on p. 126).

[BBC08] James Brotherston, Richard Bornat and Cristiano Calcagno. ‘Cyclic Proofs of Program
Termination in Separation Logic’. In: Proceedings of POPL 2008. ACM, 2008, pp. 101–112.
doi: 10.1145/1328438.1328453 (cit. on p. 126).

[BDP11] James Brotherston, Dino Distefano and Rasmus Lerchedahl Petersen. ‘Automated Cyc-
lic Entailment Proofs in Separation Logic’. In: Proceedings of CADE-23. Vol. 6803. LNCS.
Springer, 2011, pp. 131–146. doi: 10.1007/978-3-642-22438-6_12 (cit. on p. 126).

[BG14] James Brotherston and Nikos Gorogiannis. ‘Cyclic Abduction of Inductively Defined
Safety and Termination Preconditions’. In: Proceedings of SAS 2014. Vol. 8723. LNCS.
Springer, 2014, pp. 68–84. doi: 10.1007/978-3-319-10936-7_5 (cit. on p. 126).

[BGP12] James Brotherston, Nikos Gorogiannis and Rasmus Lerchedahl Petersen. ‘A Generic
Cyclic Theorem Prover’. In: Proceedings of APLAS 2012. Vol. 7705. LNCS. Springer, 2012,
pp. 350–367. doi: 10.1007/978-3-642-35182-2_25 (cit. on p. 126).

[BS07] James Brotherston and Alex Simpson. ‘Complete Sequent Calculi for Induction and
Infinite Descent’. In: Proceedings of LICS 2007. IEEE Computer Society, 2007, pp. 51–62.
doi: 10.1109/LICS.2007.16 (cit. on p. 126).

[BS11] James Brotherston and Alex Simpson. ‘Sequent Calculi for Induction and Infinite
Descent’. In: J. Log. Comput. 21.6 (2011), pp. 1177–1216. doi: 10.1093/logcom/exq052
(cit. on p. 126).

[Brz64] Janusz A. Brzozowski. ‘Derivatives of Regular Expressions’. In: J. ACM 11.4 (1964),
pp. 481–494. doi: 10.1145/321239.321249 (cit. on p. 8).

[Bur69] R. M. Burstall. ‘Proving Properties of Programs by Structural Induction’. In: The Com-
puter Journal 12.1 (1969), pp. 41–48. doi: 10.1093/comjnl/12.1.41 (cit. on p. 7).

[Caj18] Florian Cajori. ‘Origin of the Name ”Mathematical Induction”’. In: The American Math-
ematical Monthly 25.5 (1918), pp. 197–201. issn: 00029890, 19300972. JSTOR: 2972638
(cit. on p. 7).

[Cap05] Venanzio Capretta. ‘General Recursion via Coinductive Types’. In: Logical Methods in
Computer Science 1.2 (2005). issn: 18605974. doi: 10.2168/LMCS-1(2:1)2005. arXiv:
cs/0505037 (cit. on pp. 8, 103, 104).

[Car78] John Cartmell. ‘Generalised Algebraic Theories and Contextual Categories’. PhD Thesis.
Oxford University, 1978 (cit. on p. 176).

[Car86] John Cartmell. ‘Generalised Algebraic Theories and Contextual Categories’. In: Ann.
Pure Appl. Logic 32 (1986), pp. 209–243. doi: 10.1016/0168-0072(86)90053-9 (cit. on
p. 176).

283

https://doi.org/10.1007/11554554_8
https://doi.org/10.1145/1328438.1328453
https://doi.org/10.1007/978-3-642-22438-6_12
https://doi.org/10.1007/978-3-319-10936-7_5
https://doi.org/10.1007/978-3-642-35182-2_25
https://doi.org/10.1109/LICS.2007.16
https://doi.org/10.1093/logcom/exq052
https://doi.org/10.1145/321239.321249
https://doi.org/10.1093/comjnl/12.1.41
http://www.jstor.org/stable/2972638
https://doi.org/10.2168/LMCS-1(2:1)2005
http://arxiv.org/abs/cs/0505037
https://doi.org/10.1016/0168-0072(86)90053-9

References

[Cha+10] James Chapman, Pierre-Évariste Dagand, Conor McBride and Peter Morris. ‘The Gentle
Art of Levitation’. In: Proceedings of the 15th ACM SIGPLAN International Conference on
Functional Programming. ICFP ’10. New York, NY, USA: ACM, 2010, pp. 3–14. isbn:
978-1-60558-794-3. doi: 10.1145/1863543.1863547 (cit. on p. 181).

[CUV15] James Chapman, Tarmo Uustalu and Niccolò Veltri. ‘Quotienting the Delay Monad
by Weak Bisimilarity’. In: ICTAC. Vol. 9399. LNCS. Springer, 2015, pp. 110–125. doi:
10.1007/978-3-319-25150-9_8 (cit. on p. 8).

[Chu32] Alonzo Church. ‘A Set of Postulates for the Foundation of Logic’. In: Annals of Mathem-
atics 33.2 (1932), pp. 346–366. issn: 0003486X. doi: 10.2307/1968337. JSTOR: 1968337
(cit. on pp. 168, 170).

[Chu36] Alonzo Church. ‘An Unsolvable Problem of Elementary Number Theory’. In: American
Journal of Mathematics 58.2 (1936), pp. 345–363. issn: 00029327. doi: 10.2307/2371045.
JSTOR: 2371045 (cit. on p. 168).

[Chu40] Alonzo Church. ‘A Formulation of the Simple Theory of Types’. In: J. Symb. Log. 5.2
(1940), pp. 56–68. doi: 10.2307/2266170 (cit. on p. 168).

[CF07] Horatiu Cirstea and Germain Faure. ‘Confluence of Pattern-Based Calculi’. In: Proceed-
ings of RTA ’07. Term Rewriting and Applications. LNCS. Springer Berlin Heidelberg,
2007, pp. 78–92. isbn: 978-3-540-73447-5. doi: 10.1007/978-3-540-73449-9_8 (cit. on
pp. 310, 311).

[cLa16] cLab. Type Theoretic Interpretation of the Final Chain. 2016. url: https://coalg.org/
clab/Type_Theoretic_Interpretation_of_the_Final_Chain (visited on 14/01/2016)
(cit. on pp. 224, 274).

[CH89] Rance Cleaveland and Matthew Hennessy. ‘Testing Equivalence as a Bisimulation
Equivalence’. In: Automatic VerificationMethods for Finite State Systems. Vol. 407. Lecture
Notes in Computer Science. Springer, 1989, pp. 11–23. doi: 10.1007/3-540-52148-8_2
(cit. on p. 156).

[Coc01] J. Robin B. Cockett. ‘Deforestation, Program Transformation, and Cut-Elimination’. In:
Electr. Notes Theor. Comput. Sci. 44.1 (2001), pp. 88–127. doi: 10.1016/S1571-0661(04)
80904-6 (cit. on pp. 69, 126).

[CDP16] Jesper Cockx, Dominique Devriese and Frank Piessens. ‘Eliminating Dependent Pattern
Matching without K’. In: J. Funct. Program. 26 (2016). doi: 10.1017/S0956796816000174
(cit. on p. 218).

[Coh+16] Cyril Cohen, Thierry Coquand, Simon Huber and Anders Mörtberg. ‘Cubical Type The-
ory: A Constructive Interpretation of the Univalence Axiom’. In: CoRR abs/1611.02108
(2016). url: http://arxiv.org/abs/1611.02108 (cit. on p. 273).

[Con97] Robert L. Constable. ‘The Structure of Nuprl’s Type Theory’. In: Logic of Computation.
NATO ASI Series 157. Springer Berlin Heidelberg, 1997, pp. 123–155. isbn: 978-3-642-
63832-9. doi: 10.1007/978-3-642-59048-1_4 (cit. on pp. 68, 168, 224).

[Con71] John H. Conway. Regular Algebra and Finite Machines. London: Chapman and Hall,
1971. 160 pp. isbn: 978-0-412-10620-0 (cit. on p. 8).

284

https://doi.org/10.1145/1863543.1863547
https://doi.org/10.1007/978-3-319-25150-9_8
https://doi.org/10.2307/1968337
http://www.jstor.org/stable/1968337
https://doi.org/10.2307/2371045
http://www.jstor.org/stable/2371045
https://doi.org/10.2307/2266170
https://doi.org/10.1007/978-3-540-73449-9_8
https://coalg.org/clab/Type_Theoretic_Interpretation_of_the_Final_Chain
https://coalg.org/clab/Type_Theoretic_Interpretation_of_the_Final_Chain
https://doi.org/10.1007/3-540-52148-8_2
https://doi.org/10.1016/S1571-0661(04)80904-6
https://doi.org/10.1016/S1571-0661(04)80904-6
https://doi.org/10.1017/S0956796816000174
http://arxiv.org/abs/1611.02108
https://doi.org/10.1007/978-3-642-59048-1_4

[Coq12] The Coq Development Team. The Coq Proof Assistant Reference Manual. Version 8.4.
LogiCal Project, 2012. url: http://coq.inria.fr (cit. on pp. 9, 168, 224).

[Coq89] Thierry Coquand. Metamathematical Investigations of a Calculus of Constructions. INRIA,
1989. url: https://hal.inria.fr/inria-00075471 (cit. on p. 218).

[Coq93] Thierry Coquand. ‘Infinite Objects in Type Theory’. In: TYPES. Vol. 806. Lecture Notes
in Computer Science. Springer, 1993, pp. 62–78 (cit. on p. 68).

[CH88] Thierry Coquand and Gérard P. Huet. ‘The Calculus of Constructions’. In: Inf. Comput.
76 (2/3 1988), pp. 95–120. doi: 10.1016/0890-5401(88)90005-3 (cit. on p. 168).

[CC79] Patrick Cousot and Radhia Cousot. ‘Constructive Versions of Tarski’s Fixed Point
Theorems’. In: Pacific J. Math. 82.1 (1979), pp. 43–57. url: http://projecteuclid.org/
euclid.pjm/1102785059 (cit. on pp. 27, 139).

[CH07] Karl Crary and Robert Harper. ‘Syntactic Logical Relations for Polymorphic and
Recursive Types’. In: Electr. Notes Theor. Comput. Sci. 172 (2007), pp. 259–299. doi:
10.1016/j.entcs.2007.02.010 (cit. on p. 153).

[Cro75] J. N. Crossley. ‘Reminiscences of Logicians’. In: Algebra and Logic: Papers from the
1974 Summer Research Institute of the AustralianMathematical Society, Monash University,
Australia. Berlin, Heidelberg: Springer Berlin Heidelberg, 1975, pp. 1–62. isbn: 978-3-
540-37480-0. doi: 10.1007/BFb0062850 (cit. on p. 69).

[DM13] P.-E. Dagand and C. McBride. ‘A Categorical Treatment of Ornaments’. In: 2013 28th
Annual IEEE/ACM Symposium on Logic in Computer Science (LICS). 2013 28th Annual
IEEE/ACM Symposium on Logic in Computer Science (LICS). 2013, pp. 530–539. doi:
10.1109/LICS.2013.60 (cit. on p. 181).

[DHL06] Christian Dax, Martin Hofmann and Martin Lange. ‘A Proof System for the Linear Time
μ-Calculus’. In: Proceedings of FSTTCS 2006. Vol. 4337. LNCS. Springer, 2006, pp. 273–
284. doi: 10.1007/11944836_26 (cit. on pp. 9, 126).

[dBru66] Nicolaas Govert de Bruijn. ‘Verification of Mathematical Proofs by a Computer. A
Preparatory Study for a Project Automath’. In: Rob Nederpelt, Herman Geuvers and
Roel de Vrijer. Selected Papers on Automath. Studies in Logic and the Foundations of
Mathematics 133. North-Holland, 1966, pp. 57–72. isbn: 0-444-89822-0 (cit. on p. 168).

[dBru68] Nicolaas Govert de Bruijn. ‘The Mathematical Language Automath, Its Usage, and Some
of Its Extensions.’ In: Rob Nederpelt, Herman Geuvers and Roel de Vrijer. Selected Papers
on Automath. Studies in Logic and the Foundations of Mathematics 133. North-Holland,
1968, pp. 73–100. isbn: 0-444-89822-0 (cit. on pp. 168, 260).

[Ded88] Richard Dedekind. Was Sind Und Was Sollen Die Zahlen? 1st ed. Braunschweig: Vieweg,
1888. url: http://resolver.sub.uni-goettingen.de/purl?PPN23569441X (cit. on
p. 7).

[DAB11] Derek Dreyer, Amal Ahmed and Lars Birkedal. ‘Logical Step-Indexed Logical Relations’.
In: Logical Methods in Computer Science 7.2 (2011). doi: 10.2168/LMCS-7(2:16)2011
(cit. on p. 155).

285

http://coq.inria.fr
https://hal.inria.fr/inria-00075471
https://doi.org/10.1016/0890-5401(88)90005-3
http://projecteuclid.org/euclid.pjm/1102785059
http://projecteuclid.org/euclid.pjm/1102785059
https://doi.org/10.1016/j.entcs.2007.02.010
https://doi.org/10.1007/BFb0062850
https://doi.org/10.1109/LICS.2013.60
https://doi.org/10.1007/11944836_26
http://resolver.sub.uni-goettingen.de/purl?PPN23569441X
https://doi.org/10.2168/LMCS-7(2:16)2011

References

[Dyb95] Peter Dybjer. ‘Internal Type Theory’. In: Selected Papers of TYPES’95. Vol. 1158. Lecture
Notes in Computer Science. Springer, 1995, pp. 120–134. doi: 10.1007/3-540-61780-
9_6 (cit. on p. 176).

[EGH08] Jörg Endrullis, Clemens Grabmayer and Dimitri Hendriks. ‘Data-Oblivious Stream
Productivity’. In: Proc.Conf.on Logic for ProgrammingArtificial Intelligence and Reasoning
(LPAR 2008). LNCS. Springer, 2008, pp. 79–96. doi: 10.1007/978-3-540-89439-1 (cit.
on p. 101).

[End+10] Jörg Endrullis, Clemens Grabmayer, Dimitri Hendriks, Ariya Isihara and Jan Willem
Klop. ‘Productivity of Stream Definitions’. In: TCS 411 (4–5 2010), pp. 765–782. issn:
0304-3975. doi: 10.1016/j.tcs.2009.10.014 (cit. on pp. 84, 101).

[EH11] Jörg Endrullis and Dimitri Hendriks. ‘Lazy Productivity via Termination’. In: TCS
412.28 (2011), pp. 3203–3225. doi: 10.1016/j.tcs.2011.03.024 (cit. on pp. 84, 101).

[Fio12] Marcelo Fiore. ‘Discrete Generalised Polynomial Functors’. In: Proceedings of ICALP
2012. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 214–226. isbn: 978-3-
642-31585-5. doi: 10.1007/978-3-642-31585-5_22 (cit. on p. 217).

[Fle07] Peter Fletcher. ‘Infinity’. In: Philosophy of Logic. Handbook of the Philosophy of Science.
Amsterdam: North-Holland, 2007, pp. 523–585. isbn: 0-444-51541-0. url: http : / /

eprints.keele.ac.uk/id/eprint/62 (cit. on p. 12).
[Fre90] Peter J. Freyd. ‘Recursive Types Reduced to Inductive Types’. In: Proceedings of LICS ’90.

IEEE Computer Society, 1990, pp. 498–507. doi: 10.1109/LICS.1990.113772 (cit. on
p. 68).

[FGJ11] Clément Fumex, Neil Ghani and Patricia Johann. ‘Indexed Induction and Coinduction,
Fibrationally’. In: Proc. of CALCO ’11. CALCO. Vol. 6859. Lecture Notes in Computer
Science. Springer, 2011, pp. 176–191. doi: 10.1007/978-3-642-22944-2_13 (cit. on
pp. 164, 187, 199, 206, 210, 217).

[GH04] Nicola Gambino and Martin Hyland. ‘Wellfounded Trees and Dependent Polynomial
Functors’. In: Types for Proofs and Programs. Vol. 3085. Lecture Notes in Computer
Science. Springer, 2004, pp. 210–225. doi: 10.1007/978-3-540-24849-1_14 (cit. on
pp. 191, 195, 196, 217).

[GK13] Nicola Gambino and Joachim Kock. ‘Polynomial Functors and Polynomial Monads’. In:
Math. Proc. Cambridge Phil. Soc. 154 (01 2013), pp. 153–192. issn: 0305-0041, 1469-8064.
doi: 10.1017/S0305004112000394. arXiv: 0906.4931 (cit. on pp. 164, 188–190, 217).

[Gen35] Gerhard Gentzen. ‘Untersuchungen Über Das Logische Schließen. I’. In: Mathematische
Zeitschrift 39.1 (1935), pp. 176–210. issn: 1432-1823. doi: 10.1007/BF01201353 (cit. on
p. 154).

[Geu92] Herman Geuvers. ‘Inductive and Coinductive Types with Iteration and Recursion’. In:
Proceedings of the 1992Workshop on Types for Proofs and Programs, Bastad. 1992, pp. 193–
217 (cit. on pp. 9, 25, 68, 69, 101, 102).

286

https://doi.org/10.1007/3-540-61780-9_6
https://doi.org/10.1007/3-540-61780-9_6
https://doi.org/10.1007/978-3-540-89439-1
https://doi.org/10.1016/j.tcs.2009.10.014
https://doi.org/10.1016/j.tcs.2011.03.024
https://doi.org/10.1007/978-3-642-31585-5_22
http://eprints.keele.ac.uk/id/eprint/62
http://eprints.keele.ac.uk/id/eprint/62
https://doi.org/10.1109/LICS.1990.113772
https://doi.org/10.1007/978-3-642-22944-2_13
https://doi.org/10.1007/978-3-540-24849-1_14
https://doi.org/10.1017/S0305004112000394
http://arxiv.org/abs/0906.4931
https://doi.org/10.1007/BF01201353

[Geu94] Herman Geuvers. ‘A Short and Flexible Proof of Strong Normalization for the Cal-
culus of Constructions’. In: Types for Proofs and Programs. LNCS 996. Springer Berlin
Heidelberg, 1994, pp. 14–38. isbn: 978-3-540-60579-9. doi: 10.1007/3-540-60579-7_2
(cit. on pp. 247, 250).

[GN91] Herman Geuvers and Mark-Jan Nederhof. ‘Modular Proof of Strong Normalization for
the Calculus of Constructions’. In: J. Funct. Program. 1.2 (1991), pp. 155–189 (cit. on
p. 168).

[GP07] Herman Geuvers and Erik Poll. ‘Iteration and Primitive Recursion in Categorical Terms’.
In: Reflections on Type Theory, λ-Calculus, and the Mind. Essays Dedicated to Henk Baren-
dregt on the Occasion of His 60th Birthday. Radboud University Nijmegen, 2007, pp. 101–
114. isbn: 978-90-90-22446-6 (cit. on p. 102).

[GFO16] Neil Ghani, Fredrik Nordvall Forsberg and Federico Orsanigo. ‘Proof-Relevant Para-
metricity’. In: A List of Successes That Can Change the World. Vol. 9600. Lecture Notes
in Computer Science. Springer, 2016, pp. 109–131 (cit. on p. 101).

[GHP09a] Neil Ghani, Peter Hancock and Dirk Pattinson. ‘Continuous Functions on Final Coal-
gebras’. In: ENTCS 249 (2009), pp. 3–18. doi: 10.1016/j.entcs.2009.07.081 (cit. on
p. 8).

[GHP09b] Neil Ghani, Peter Hancock and Dirk Pattinson. ‘Representations of Stream Processors
Using Nested Fixed Points’. In: LMCS 5.3 (2009). arXiv: 0905.4813 (cit. on p. 8).

[GJF12] Neil Ghani, Patricia Johann and Clement Fumex. ‘Generic Fibrational Induction’. In:
Logical Methods in Computer Science 8.2 (2012). issn: 18605974. doi: 10.2168/LMCS-8(2:
12)2012. arXiv: 1206.0357 (cit. on p. 206).

[Gim95] Eduardo Giménez. ‘Codifying Guarded Definitions with Recursive Schemes’. In: Selec-
ted Papers from the TYPES ’94 Workshop. London, UK: Springer-Verlag, 1995, pp. 39–59.
isbn: 3-540-60579-7. doi: 10.1007/3-540-60579-7_3 (cit. on pp. 51, 68, 76, 125, 223,
224, 264).

[Gim96] Eduardo Giménez. ‘Un Calcul De Constructions Infinies Et Son Application A La
Verification De Systemes Communicants’. PhD Thesis. École Normale Supérieure de
Lyon, 1996. url: ftp://ftp.ens-lyon.fr/pub/LIP/Rapports/PhD/PhD96-11.ps.Z
(cit. on p. 274).

[Gir71] Jean-Yves Girard. ‘Une Extension De L’Interpretation De Gödel a L’Analyse, Et Son
Application a L’Elimination Des Coupures Dans L’Analyse Et La Theorie Des Types’.
In: Studies in Logic and the Foundations of Mathematics 63 (1971), pp. 63–92 (cit. on
pp. 9, 168).

[Gir72] Jean-Yves Girard. ‘Interprétation fonctionnelle et élimination des coupures de l’arithmétique
d’ordre supérieur’. PhD. Université Paris VII, 1972 (cit. on pp. 153, 168).

[GTL89] Jean-Yves Girard, Paul Taylor and Yves Lafont. Proofs and Types. New York, NY, USA:
Cambridge University Press, 1989. isbn: 0-521-37181-3. url: http://www.paultaylor.
eu/stable/Proofs+Types.html (cit. on p. 176).

287

https://doi.org/10.1007/3-540-60579-7_2
https://doi.org/10.1016/j.entcs.2009.07.081
http://arxiv.org/abs/0905.4813
https://doi.org/10.2168/LMCS-8(2:12)2012
https://doi.org/10.2168/LMCS-8(2:12)2012
http://arxiv.org/abs/1206.0357
https://doi.org/10.1007/3-540-60579-7_3
ftp://ftp.ens-lyon.fr/pub/LIP/Rapports/PhD/PhD96-11.ps.Z
http://www.paultaylor.eu/stable/Proofs+Types.html
http://www.paultaylor.eu/stable/Proofs+Types.html

References

[Göd58] Kurt Gödel. ‘Über Eine Bisher Noch Nicht Benützte Erweiterung Des Finiten Stand-
punktes’. In: Dialectica 12 (3-4 1958), pp. 280–287. issn: 1746-8361. doi: 10.1111/j.
1746-8361.1958.tb01464.x (cit. on p. 168).

[GMM06] Healfdene Goguen, Conor Mcbride and James Mckinna. ‘Eliminating Dependent Pat-
tern Matching’. In: Of Lecture Notes in Computer Science. Springer, 2006, pp. 521–540
(cit. on pp. 218, 259, 264).

[Gol84] Robert Goldblatt. Topoi:The Categorial Analysis of Logic. Vol. 98. Studies in Logic and the
Foundations of Mathematics. Amsterdam: Elsevier, 1984. 551 pp. isbn: 0-444-86711-2.
url: http://projecteuclid.org/euclid.bia/1403013939 (cit. on p. 101).

[Gol01] Robert Goldblatt. ‘A Calculus of Terms for Coalgebras of Polynomial Functors’. In:
Electr. Notes Theor. Comput. Sci. 44.1 (2001), pp. 161–184. doi: 10.1016/S1571-0661(04)
80907-1 (cit. on p. 217).

[GMS14] Sergey Goncharov, Stefan Milius and Alexandra Silva. ‘Towards a Coalgebraic Chom-
sky Hierarchy’. In: Theoretical Computer Science. LNCS 8705. Springer, 2014, pp. 265–
280. isbn: 978-3-662-44601-0. doi: 10.1007/978-3-662-44602-7_21 (cit. on p. 8).

[Gor95] Andrew D. Gordon. ‘Bisimilarity as a Theory of Functional Programming’. In: Electronic
Notes in Theoretical Computer Science. MFPS XI, Mathematical Foundations of Program-
ming Semantics, Eleventh Annual Conference 1 (1995), pp. 232–252. issn: 1571-0661.
doi: 10.1016/S1571-0661(04)80013-6 (cit. on p. 102).

[Gor+11] Eugen-Ioan Goriac, Georgiana Caltais, Dorel Lucanu and Grigore Roşu. CIRC Tutorial
and User Manual Info. 2011. url: http://fsl.cs.illinois.edu/images/3/3b/CIRC_
Tutorial.pdf (cit. on p. 154).

[Gre92] John Greiner. Programming with Inductive and Co-Inductive Types. Pittsburgh, PA, USA:
Carnegie Mellon University, 1992. url: http://www.dtic.mil/cgi-bin/GetTRDoc?AD=
ADA249562 (cit. on pp. 9, 39, 68).

[GV92] Jan Friso Groote and Frits W. Vaandrager. ‘Structured Operational Semantics and
Bisimulation as a Congruence’. In: Inf. Comput. 100.2 (1992), pp. 202–260. doi: 10.
1016/0890-5401(92)90013-6 (cit. on p. 158).

[GS00] H. Peter Gumm and Tobias Schröder. ‘Coalgebraic Structure from Weak Limit Pre-
serving Functors’. In: Electr. Notes Theor. Comput. Sci. 33 (2000), pp. 111–131. doi:
10.1016/S1571-0661(05)80346-9 (cit. on p. 142).

[GS86] Yuri Gurevich and Saharon Shelah. ‘Fixed-Point Extensions of First-Order Logic’. In:
Annals of pure and applied logic 32 (1986), pp. 265–280 (cit. on p. 163).

[Hag87] Tatsuya Hagino. ‘A Typed Lambda Calculus with Categorical Type Constructors’. In:
Category Theory in Computer Science. Lecture Notes in Computer Science. Springer,
1987, pp. 140–157. doi: 10.1007/3-540-18508-9_24 (cit. on pp. 9, 15, 17, 25, 68, 164,
177, 178, 216, 217, 272).

[HF11] Makoto Hamana and Marcelo Fiore. ‘A Foundation for GADTs and Inductive Families:
Dependent Polynomial Functor Approach’. In: Proceedings of the Seventh WGP. WGP
’11. New York, NY, USA: ACM, 2011, pp. 59–70. isbn: 978-1-4503-0861-8. doi: 10.1145/
2036918.2036927 (cit. on pp. 181, 217, 227).

288

https://doi.org/10.1111/j.1746-8361.1958.tb01464.x
https://doi.org/10.1111/j.1746-8361.1958.tb01464.x
http://projecteuclid.org/euclid.bia/1403013939
https://doi.org/10.1016/S1571-0661(04)80907-1
https://doi.org/10.1016/S1571-0661(04)80907-1
https://doi.org/10.1007/978-3-662-44602-7_21
https://doi.org/10.1016/S1571-0661(04)80013-6
http://fsl.cs.illinois.edu/images/3/3b/CIRC_Tutorial.pdf
http://fsl.cs.illinois.edu/images/3/3b/CIRC_Tutorial.pdf
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA249562
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA249562
https://doi.org/10.1016/0890-5401(92)90013-6
https://doi.org/10.1016/0890-5401(92)90013-6
https://doi.org/10.1016/S1571-0661(05)80346-9
https://doi.org/10.1007/3-540-18508-9_24
https://doi.org/10.1145/2036918.2036927
https://doi.org/10.1145/2036918.2036927

[HDL90] F. Keith Hanna, Neil Daeche and Mark Longley. ‘Specification and Verification Using
Dependent Types’. In: IEEE Trans. Software Eng. 16.9 (1990), pp. 949–964. doi: 10.1109/
32.58783 (cit. on p. 167).

[HKR14] Helle Hvid Hansen, Clemens Kupke and Jan Rutten. Stream Differential Equations:
Specification Formats and SolutionMethods. Technical Report FM-1404. CWI Amsterdam,
2014 (cit. on p. 101).

[HKR17] Helle Hvid Hansen, Clemens Kupke and Jan Rutten. ‘Stream Differential Equations:
Specification Formats and Solution Methods’. In: LMCS 13.1 (2017). doi: 10.23638/LMCS-
13(1:3)2017. arXiv: 1609.08367 (cit. on pp. 8, 56, 68, 76, 84).

[Han+14] Helle Hvid Hansen, Clemens Kupke, Jan Rutten and Joost Winter. ‘A Final Coalgebra
for K-Regular Sequences’. In: Horizons of the Mind. A Tribute to Prakash Panangaden -
Essays Dedicated to Prakash Panangaden on the Occasion of His 60th Birthday. Vol. 8464.
LNCS. Springer, 2014, pp. 363–383. doi: 10.1007/978-3-319-06880-0_19 (cit. on p. 8).

[Has94] Ryu Hasegawa. ‘Categorical Data Types in Parametric Polymorphism’. In: Mathemat-
ical Structures in Computer Science 4 (01 1994), pp. 71–109. doi: 10.1017/S0960129500000372
(cit. on p. 101).

[Has+13] Ichiro Hasuo, Kenta Cho, Toshiki Kataoka and Bart Jacobs. ‘Coinductive Predicates
and Final Sequences in a Fibration’. In: Electronic Notes in Theoretical Computer Science
298 (2013), pp. 197–214. issn: 1571-0661. doi: 10.1016/j.entcs.2013.09.014 (cit. on
pp. 27, 154).

[Hay85] Susumu Hayashi. ‘Adjunction of Semifunctors: Categorical Structures in Nonexten-
sional Lambda Calculus’. In: Theor. Comput. Sci. 41 (1985), pp. 95–104. doi: 10.1016/
0304-3975(85)90062-3 (cit. on pp. 92, 105).

[Her05] Hugo Herbelin. ‘On the Degeneracy of Sigma-Types in Presence of Computational
Classical Logic’. In: Proceedings of TLCA 2005. Vol. 3461. Lecture Notes in Computer
Science. Springer, 2005, pp. 209–220. doi: 10.1007/11417170_16 (cit. on p. 219).

[HJ97] Claudio Hermida and Bart Jacobs. ‘Structural Induction and Coinduction in a Fibra-
tional Setting’. In: Information and Computation 145 (1997), pp. 107–152. doi: 10.1006/
inco.1998.2725 (cit. on pp. 10, 27, 146, 154, 164, 184, 199, 209, 210, 217).

[Hof97] Martin Hofmann. ‘Syntax and Semantics of Dependent Types’. In: Semantics and Logics
of Computation. Cambridge University Press, 1997, pp. 79–130 (cit. on p. 176).

[HS94] Martin Hofmann and Thomas Streicher. ‘The Groupoid Model Refutes Uniqueness of
Identity Proofs’. In: Proceedings of LICS ’94. IEEE Computer Society, 1994, pp. 208–212.
doi: 10.1109/LICS.1994.316071 (cit. on p. 275).

[How92] Brian T. Howard. ‘Fixed Points and Extensionality in Typed Functional Programming
Languages’. Published as Stanford Computer Science Department Technical Report
STAN-CS-92-1455. Stanford, CA, USA: Stanford University / Stanford University, 1992
(cit. on pp. 68, 69).

[How95] Brian T. Howard. Lemon: A Functional Language with Inductive and Coinductive Types.
1995. url: http://people.cs.ksu.edu/~bhoward/lemon.html (cit. on p. 68).

289

https://doi.org/10.1109/32.58783
https://doi.org/10.1109/32.58783
https://doi.org/10.23638/LMCS-13(1:3)2017
https://doi.org/10.23638/LMCS-13(1:3)2017
http://arxiv.org/abs/1609.08367
https://doi.org/10.1007/978-3-319-06880-0_19
https://doi.org/10.1017/S0960129500000372
https://doi.org/10.1016/j.entcs.2013.09.014
https://doi.org/10.1016/0304-3975(85)90062-3
https://doi.org/10.1016/0304-3975(85)90062-3
https://doi.org/10.1007/11417170_16
https://doi.org/10.1006/inco.1998.2725
https://doi.org/10.1006/inco.1998.2725
https://doi.org/10.1109/LICS.1994.316071
http://people.cs.ksu.edu/~bhoward/lemon.html

References

[How96a] Brian T. Howard. ‘Inductive, Coinductive, and Pointed Types’. In: Proceedings of ICFP
’96. ACM, 1996, pp. 102–109. doi: 10.1145/232627.232640 (cit. on pp. 9, 68, 102).

[How89] Douglas J. Howe. ‘Equality in Lazy Computation Systems’. In: , Fourth Annual Sym-
posium on Logic in Computer Science, 1989. LICS ’89, Proceedings. , Fourth Annual Sym-
posium on Logic in Computer Science, 1989. LICS ’89, Proceedings. 1989, pp. 198–203.
doi: 10.1109/LICS.1989.39174 (cit. on p. 102).

[How96b] Douglas J. Howe. ‘Proving Congruence of Bisimulation in Functional Programming
Languages’. In: Information and Computation 124 (1996), pp. 103–112 (cit. on p. 102).

[Hur+13] Chung-Kil Hur, Georg Neis, Derek Dreyer and Viktor Vafeiadis. ‘The Power of Paramet-
erization in Coinductive Proof’. In: Proceedings of POPL 2013. POPL ’13. New York, NY,
USA: ACM, 2013, pp. 193–206. isbn: 978-1-4503-1832-7. doi: 10.1145/2429069.2429093
(cit. on pp. 125, 126).

[Idr17] The Idris Development Team. Idris – A Language with Dependent Types. 2017. url:
https://www.idris-lang.org/ (visited on 23/04/2017) (cit. on p. 167).

[Jac99] B. Jacobs. Categorical Logic and Type Theory. Studies in Logic and the Foundations of
Mathematics 141. Amsterdam: North Holland, 1999 (cit. on pp. 24, 25, 102, 105, 129,
145, 166, 176, 184, 187, 189, 190, 192, 200, 204, 206, 217, 220, 241, 272).

[Jac91] Bart Jacobs. ‘Categorical Type Theory’. PhD Thesis. University of Nijmegen, 1991. url:
http://www.cs.ru.nl/B.Jacobs/PAPERS/PhD.ps (cit. on p. 204).

[Jac93] Bart Jacobs. ‘Comprehension Categories and the Semantics of Type Dependency’. In:
Theor. Comput. Sci. 107.2 (1993), pp. 169–207. doi: 10.1016/0304-3975(93)90169-T
(cit. on pp. 176, 217).

[Jac01] Bart Jacobs. ‘Many-Sorted Coalgebraic Modal Logic: A Model-Theoretic Study’. In:
RAIRO - Theoretical Informatics and Applications 35 (01 2001), pp. 31–59. issn: 1290-
385X. doi: 10.1051/ita:2001108 (cit. on p. 73).

[Jac16] Bart Jacobs. Introduction to Coalgebra: Towards Mathematics of States and Observation.
Cambridge Tracts in Theoretical Computer Science 59. Cambridge University Press,
2016. isbn: 978-1-107-17789-5. doi: 10.1017/CBO9781316823187 (cit. on pp. 7, 25, 217).

[JR97] Bart Jacobs and Jan Rutten. ‘A Tutorial on (Co)Algebras and (Co)Induction’. In: EATCS
Bulletin 62 (1997), pp. 62–222 (cit. on p. 7).

[JR11] Bart Jacobs and Jan Rutten. ‘An Introduction to (Co)Algebras and (Co)Induction’. In:
Advanced Topics in Bisimulation and Coinduction. Vol. 52. Cambridge Tracts in Theor-
etical Computer Science. Cambridge University Press, 2011 (cit. on pp. 7, 10, 25).

[Joh02] Peter T. Johnstone. Sketches of an Elephant: A Topos Theory Compendium. Vol. 1. Oxford
Logic Guides. Oxford University Press, 2002. isbn: 978-0-19-853425-9 (cit. on p. 22).

[KLN04] Fairouz D. Kamareddine, Twan Laan and Rob Nederpelt. ‘Pure Type Systems’. In: A
Modern Perspective on Type Theory: From Its Origins until Today. Applied Logic Series
29. Springer, 2004, p. 116. isbn: 1-4020-2334-0 (cit. on p. 168).

[KL16] Chris Kapulkin and Peter LeFanu Lumsdaine. ‘The Simplicial Model of Univalent Found-
ations (after Voevodsky)’. In: arXiv:1211.2851 [math] (2016). arXiv: 1211.2851 (cit. on
p. 176).

290

https://doi.org/10.1145/232627.232640
https://doi.org/10.1109/LICS.1989.39174
https://doi.org/10.1145/2429069.2429093
https://www.idris-lang.org/
http://www.cs.ru.nl/B.Jacobs/PAPERS/PhD.ps
https://doi.org/10.1016/0304-3975(93)90169-T
https://doi.org/10.1051/ita:2001108
https://doi.org/10.1017/CBO9781316823187
http://arxiv.org/abs/1211.2851

[Kim10] Jiho Kim. ‘Higher-Order Algebras and Coalgebras from Parameterized Endofunctors’.
In: Electronic Notes in Theoretical Computer Science. Electronic Notes in Theoretical
Computer Science 264.2 (2010), pp. 141–154. issn: 1571-0661. doi: 10.1016/j.entcs.
2010.07.018 (cit. on pp. 9, 98, 179).

[Kli07] Bartek Klin. ‘Coalgebraic Modal Logic Beyond Sets’. In: Electr. Notes Theor. Comput. Sci.
173 (2007), pp. 177–201. doi: 10.1016/j.entcs.2007.02.034 (cit. on p. 158).

[Kli11] Bartek Klin. ‘Bialgebras for Structural Operational Semantics: An Introduction’. In:
TCS 412.38 (2011), pp. 5043–5069. issn: 0304-3975. doi: 10.1016/j.tcs.2011.03.023
(cit. on pp. 8, 101, 158).

[KN14] Bartek Klin and Beata Nachyla. ‘Distributive Laws and Decidable Properties of SOS Spe-
cifications’. In: Proceedings EXPRESS 2014 and SOS 2014. Vol. 160. EPTCS. 2014, pp. 79–
93. doi: 10.4204/EPTCS.160.8 (cit. on p. 158).

[Klo92] Jan Willem Klop. Term Rewriting Systems. 1992 (cit. on p. 19).
[KI13] Naoki Kobayashi and Atsushi Igarashi. ‘Model-Checking Higher-Order Programs with

Recursive Types’. In: Proceedings of ESOP 2013. Vol. 7792. Lecture Notes in Computer
Science. Springer, 2013, pp. 431–450. doi: 10.1007/978-3-642-37036-6_24 (cit. on
p. 157).

[Koc11] Joachim Kock. ‘Polynomial Functors and Trees’. In: International Mathematics Research
Notices 2011.3 (2011), pp. 609–673. doi: 10.1093/imrn/rnq068. arXiv: 0807.2874 (cit.
on p. 217).

[KL17] Ekaterina Komendantskaya and Yue Li. ‘Productive Corecursion in Logic Program-
ming’. In: TPLP 17 (5-6 2017), pp. 906–923. doi: 10.1017/S147106841700028X (cit. on
p. 8).

[KP11] Ekaterina Komendantskaya and John Power. ‘Coalgebraic Derivations in Logic Pro-
gramming’. In: CSL. Vol. 12. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2011, pp. 352–366. doi: 10.4230/LIPIcs.CSL.2011.352 (cit. on p. 8).

[Koz83] Dexter Kozen. ‘Results on the Propositional μ-Calculus’. In: Theor. Comput. Sci. 27
(1983), pp. 333–354. doi: 10.1016/0304-3975(82)90125-6 (cit. on p. 9).

[Kup06] Clemens Kupke. ‘Finitary Coalgebraic Logics’. PhD Thesis. Amsterdam: Institute for Lo-
gic, Language and Computation, 2006. url: http://www.illc.uva.nl/Publications/
Dissertations/DS-2006-03.text.pdf (cit. on pp. 73, 106).

[KNR11] Clemens Kupke, Milad Niqui and Jan Rutten. Stream Differential Equations: Concrete
Formats for Coinductive Definitions. To appear as a book chapter RR-11-10. University
of Oxford, 2011 (cit. on p. 8).

[KR08] Clemens Kupke and Jan Rutten. ‘Observational Coalgebras and Complete Sets of Co-
Operations’. In: Electron. Notes Theor. Comput. Sci. 203.5 (2008), pp. 153–174. issn: 1571-
0661. doi: 10.1016/j.entcs.2008.05.024 (cit. on pp. 8, 68, 69).

[KR12] Clemens Kupke and Jan Rutten. ‘On the Final Coalgebra of Automatic Sequences’. In:
Logic and Program Semantics - Essays Dedicated to Dexter Kozen on the Occasion of His
60th Birthday. Vol. 7230. LNCS. Springer, 2012, pp. 149–164. doi: 10.1007/978-3-642-
29485-3_10 (cit. on p. 8).

291

https://doi.org/10.1016/j.entcs.2010.07.018
https://doi.org/10.1016/j.entcs.2010.07.018
https://doi.org/10.1016/j.entcs.2007.02.034
https://doi.org/10.1016/j.tcs.2011.03.023
https://doi.org/10.4204/EPTCS.160.8
https://doi.org/10.1007/978-3-642-37036-6_24
https://doi.org/10.1093/imrn/rnq068
http://arxiv.org/abs/0807.2874
https://doi.org/10.1017/S147106841700028X
https://doi.org/10.4230/LIPIcs.CSL.2011.352
https://doi.org/10.1016/0304-3975(82)90125-6
http://www.illc.uva.nl/Publications/Dissertations/DS-2006-03.text.pdf
http://www.illc.uva.nl/Publications/Dissertations/DS-2006-03.text.pdf
https://doi.org/10.1016/j.entcs.2008.05.024
https://doi.org/10.1007/978-3-642-29485-3_10
https://doi.org/10.1007/978-3-642-29485-3_10

References

[Lac10] Stephen Lack. ‘A 2-Categories Companion’. In: John C. Baez and J. Peter May. Towards
Higher Categories. Vol. 152. The IMA Volumes in Mathematics and its Applications.
New York, NY: Springer New York, 2010. isbn: 978-1-4419-1523-8. doi: 10.1007/978-
1-4419-1524-5_4. arXiv: math/0702535 (cit. on pp. 31, 106).

[LS88] Joachim Lambek and Philip J. Scott. Introduction to Higher-Order Categorical Logic. Cam-
bridge University Press, 1988. 308 pp. isbn: 978-0-521-35653-4 (cit. on pp. 12, 20, 101,
102, 104, 145, 172, 173, 176, 272).

[LJB01] Chin Soon Lee, Neil D. Jones and Amir M. Ben-Amram. ‘The Size-Change Principle
for Program Termination’. In: Conference Record of POPL 2001. ACM, 2001, pp. 81–92.
doi: 10.1145/360204.360210 (cit. on p. 126).

[Lei04] Tom Leinster. Higher Operads, Higher Categories. Vol. 298. Cambridge University Press,
2004. isbn: 0-521-53215-9. arXiv: math.CT/0305049 (cit. on pp. 29, 36).

[Lei89] Daniel Leivant. Contracting Proofs to Programs. CMU-CS-89-170. Carnegie Mellon Uni-
versity, 1989 (cit. on p. 69).

[Luo89] Zhaohui Luo. ‘ECC, an Extended Calculus of Constructions’. In: Proceedings of LICS
’89. IEEE Computer Society, 1989, pp. 386–395. doi: 10.1109/LICS.1989.39193 (cit. on
p. 168).

[Mac98] Saunders Mac Lane. Categories for the Working Mathematician. 2nd ed. Graduate Texts
in Mathematics 5. Springer, 1998. isbn: 0-387-98403-8 (cit. on p. 21).

[Mar75a] Per Martin-Löf. ‘About Models for Intuitionistic Type Theories and the Notion of
Definitional Equality’. In: 3rd Scandinavian Logic Symposium. Scandinavian Logic Sym-
posium. North Holland and American Elsevier, 1975, pp. 81–109 (cit. on pp. 128, 223).

[Mar75b] Per Martin-Löf. ‘An Intuitionistic Theory of Types: Predicative Part’. In: Proceedings of
the Logic Colloquium ’73. Vol. 80. Studies in Logic and the Foundations of Mathematics.
Elsevier, 1975, pp. 73–118. doi: 10.1016/S0049-237X(08)71945-1 (cit. on pp. 168, 176).

[Mat99] Ralph Matthes. ‘Extensions of System F by Iteration and Primitive Recursion on Mono-
tone Inductive Types’. PhD. Ludwig Maximilian University of Munich, Germany, 1999.
url: http://d-nb.info/956895891 (cit. on pp. 9, 39, 68, 69).

[Men87] Nex Paul Mendler. ‘Recursive Types and Type Constraints in Second-Order Lambda
Calculus’. In: Proceedings of LICS ’87. IEEE Computer Society, 1987, pp. 30–36 (cit. on
pp. 9, 68).

[Men91] Nex Paul Mendler. ‘Inductive Types and Type Constraints in the Second-Order Lambda
Calculus’. In: Ann. Pure Appl. Logic 51 (1-2 1991), pp. 159–172. doi: 10.1016/0168-
0072(91)90069-X (cit. on pp. 9, 39, 68).

[Mil77] Robin Milner. ‘Fully Abstract Models of Typed λ-Calculi’. In: Theoretical Computer
Science 4.1 (1977), pp. 1–22. issn: 0304-3975. doi: 10.1016/0304-3975(77)90053-6
(cit. on p. 102).

[Mil80] Robin Milner. ACalculus of Communicating Systems. Vol. 92. Lecture Notes in Computer
Science. Springer, 1980. isbn: 3-540-10235-3. doi: 10.1007/3-540-10235-3 (cit. on
p. 7).

292

https://doi.org/10.1007/978-1-4419-1524-5_4
https://doi.org/10.1007/978-1-4419-1524-5_4
http://arxiv.org/abs/math/0702535
https://doi.org/10.1145/360204.360210
http://arxiv.org/abs/math.CT/0305049
https://doi.org/10.1109/LICS.1989.39193
https://doi.org/10.1016/S0049-237X(08)71945-1
http://d-nb.info/956895891
https://doi.org/10.1016/0168-0072(91)90069-X
https://doi.org/10.1016/0168-0072(91)90069-X
https://doi.org/10.1016/0304-3975(77)90053-6
https://doi.org/10.1007/3-540-10235-3

[Mil89] Robin Milner. Communication and Concurrency. PHI Series in computer science. Pren-
tice Hall, 1989 (cit. on pp. 8, 28).

[MP00] Ieke Moerdijk and Erik Palmgren. ‘Wellfounded Trees in Categories’. In: Annals of Pure
and Applied Logic 104 (1–3 2000), pp. 189–218. issn: 0168-0072. doi: 10.1016/S0168-
0072(00)00012-9 (cit. on p. 191).

[Møg14] Rasmus Ejlers Møgelberg. ‘A Type Theory for Productive Coprogramming via Guarded
Recursion’. In: CSL-LICS. ACM, 2014, 71:1–71:10. doi: 10.1145/2603088.2603132 (cit.
on pp. 68, 126, 155).

[Mog89] Eugenio Moggi. ‘A Category-Theoretic Account of Program Modules’. In: Proceedings
of Category Theory and Computer Science. Vol. 389. LNCS. Springer, 1989, pp. 101–117
(cit. on p. 176).

[Nak00] Hiroshi Nakano. ‘A Modality for Recursion’. In: LICS. IEEE Computer Society, 2000,
pp. 255–266. doi: 10.1109/LICS.2000.855774 (cit. on pp. 107, 126, 154).

[NU10] Keiko Nakata and Tarmo Uustalu. ‘Resumptions, Weak Bisimilarity and Big-Step Se-
mantics for While with Interactive I/O: An Exercise in Mixed Induction-Coinduction’.
In: Electronic Proceedings in Theoretical Computer Science 32 (2010), pp. 57–75. issn:
2075-2180. doi: 10.4204/EPTCS.32.5. arXiv: 1008.2112 (cit. on p. 8).

[NUB11] Keiko Nakata, Tarmo Uustalu and Marc Bezem. ‘A Proof Pearl with the Fan Theorem
and Bar Induction - Walking through Infinite Trees with Mixed Induction and Coin-
duction’. In: Proceedings of APLAS 2011. Vol. 7078. LNCS. Springer, 2011, pp. 353–368.
doi: 10.1007/978-3-642-25318-8_26 (cit. on pp. 8, 277).

[NPP08] Aleksandar Nanevski, Frank Pfenning and Brigitte Pientka. ‘Contextual Modal Type
Theory’. In: ACM Trans. Comput. Log. 9.3 (2008) (cit. on p. 274).

[NGdV94] Rob Nederpelt, Herman Geuvers and Roel de Vrijer. Selected Papers on Automath. Stud-
ies in Logic and the Foundations of Mathematics 133. North-Holland, 1994. isbn:
0-444-89822-0 (cit. on pp. 168, 176).

[NG14] Rob Nederpelt and Professor Herman Geuvers. Type Theory and Formal Proof: An Intro-
duction. 1st. New York, NY, USA: Cambridge University Press, 2014. isbn: 1-107-03650-
X (cit. on pp. 168, 176, 182, 219).

[NR11] Milad Niqui and Jan Rutten. ‘A Proof of Moessner’s Theorem by Coinduction’. In:
Higher-Order and Symbolic Computation 24.3 (2011), pp. 191–206 (cit. on p. 43).

[NW96] Damian Niwinski and Igor Walukiewicz. ‘Games for the μ-Calculus’. In: Theor. Comput.
Sci. 163 (1&2 1996), pp. 99–116. doi: 10.1016/0304-3975(95)00136-0 (cit. on pp. 9,
126).

[nLa16] nLab. Principle of Equivalence. nLab. 2016. url: https://ncatlab.org/nlab/show/
principle+of+equivalence (visited on 31/08/2016) (cit. on p. 90).

[nLa17] nLab. Categorical Models of Dependent Types. In: 2017. url: https://ncatlab.org/
nlab/show/categorical+model+of+dependent+types (visited on 23/04/2017) (cit. on
p. 176).

293

https://doi.org/10.1016/S0168-0072(00)00012-9
https://doi.org/10.1016/S0168-0072(00)00012-9
https://doi.org/10.1145/2603088.2603132
https://doi.org/10.1109/LICS.2000.855774
https://doi.org/10.4204/EPTCS.32.5
http://arxiv.org/abs/1008.2112
https://doi.org/10.1007/978-3-642-25318-8_26
https://doi.org/10.1016/0304-3975(95)00136-0
https://ncatlab.org/nlab/show/principle+of+equivalence
https://ncatlab.org/nlab/show/principle+of+equivalence
https://ncatlab.org/nlab/show/categorical+model+of+dependent+types
https://ncatlab.org/nlab/show/categorical+model+of+dependent+types

References

[Nor07] Ulf Norell. ‘Towards a Practical Programming Language Based on Dependent Type
Theory’. PhD thesis. Göteborg, Sweden: Chalmers University of Technology, 2007 (cit.
on pp. 168, 271).

[Ong15] Luke Ong. ‘Higher-Order Model Checking: An Overview’. In: LICS 2015. IEEE Computer
Society, 2015, pp. 1–15. doi: 10.1109/LICS.2015.9 (cit. on p. 157).

[Par79] David Michael Ritchie Park. ‘On the Semantics of Fair Parallelism’. In: Proceedings of
Abstract Software Specifications, 1979 Copenhagen Winter School. Vol. 86. Lecture Notes
in Computer Science. Springer, 1979, pp. 504–526. doi: 10.1007/3-540-10007-5_47
(cit. on p. 9).

[Par81] David Michael Ritchie Park. ‘Concurrency and Automata on Infinite Sequences’. In:
Proceedings of TCS’81. Vol. 104. LNCS. Springer, 1981, pp. 167–183. doi: 10.1007/

BFb0017309 (cit. on p. 7).
[PSW76] David Lorge Parnas, John E. Shore and David M. Weiss. ‘Abstract Types Defined as

Classes of Variables’. In: Proceedings of the SIGPLAN ’76 Conference on Data: Abstraction,
Definition and Structure. ACM, 1976, pp. 149–153. doi: 10.1145/942574.807133 (cit. on
p. 176).

[Pau93] Christine Paulin-Mohring. ‘Inductive Definitions in the System Coq - Rules and Prop-
erties’. In: International Conference on Typed Lambda Calculi and Applications, TLCA,
Proceedings. Vol. 664. LNCS. Springer, 1993, pp. 328–345 (cit. on p. 223).

[Pau15] Christine Paulin-Mohring. ‘Introduction to the Calculus of Inductive Constructions’. In:
All about Proofs, Proofs for All. Studies in Logic (Mathematical Logic and Foundations) 55.
College Publications, 2015. isbn: 978-1-84890-166-7. url: https://hal.inria.fr/hal-
01094195/file/CIC.pdf (cit. on p. 168).

[PE98] Dusko Pavlovic and Mart́ın Hötzel Escardó. ‘Calculus in Coinductive Form’. In: Pro-
ceedings LICS 1998. IEEE Computer Society, 1998, pp. 408–417. doi: 10.1109/LICS.
1998.705675 (cit. on p. 8).

[Pea89] Guiseppe Peano. Arithmetices Principia: Nova Methodo Exposita. Fratres Bocca, 1889.
url: https://archive.org/details/arithmeticespri00peangoog (cit. on p. 7).

[Pét61] Rózsa Péter. ‘Über Die Verallgemeinerung Der Theorie Der Rekursiven Funktionen Für
Abstrakte Mengen Geeigneter Struktur Als Definitionsbereiche’. In: Acta Mathematica
Hungarica 12 (3-4 1961), pp. 271–314. doi: 10.1007/BF02023919 (cit. on p. 7).

[Pie02] Benjamin C. Pierce. Types and Programming Languages. The MIT Press, 2002. isbn:
0-262-16209-1 (cit. on p. 166).

[Pie04] Benjamin C. Pierce. Advanced Topics in Types and Programming Languages. MIT Press,
2004. isbn: 0-262-16228-8 (cit. on p. 176).

[Pit04] Andrew Pitts. ‘Typed Operational Reasoning’. In: Benjamin C. Pierce. Advanced Topics
in Types and Programming Languages. MIT Press, 2004, pp. 245–289. isbn: 0-262-16228-8
(cit. on p. 88).

[Pit00] Andrew M. Pitts. ‘Parametric Polymorphism and Operational Equivalence’. In: Math-
ematical Structures in Computer Science 10 (03 2000), pp. 321–359 (cit. on pp. 102, 153).

294

https://doi.org/10.1109/LICS.2015.9
https://doi.org/10.1007/3-540-10007-5_47
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1145/942574.807133
https://hal.inria.fr/hal-01094195/file/CIC.pdf
https://hal.inria.fr/hal-01094195/file/CIC.pdf
https://doi.org/10.1109/LICS.1998.705675
https://doi.org/10.1109/LICS.1998.705675
https://archive.org/details/arithmeticespri00peangoog
https://doi.org/10.1007/BF02023919

[Pit01] Andrew M. Pitts. ‘Categorical Logic’. In: Samson Abramsky, Dov M. Gabbay and
Thomas S. E. Maibaum. Handbook of Logic in Computer Science: Algebraic and Logical
Structures. Vol. 5. Oxford University Press, 2001, pp. 39–128. isbn: 978-0-19-853781-6
(cit. on p. 176).

[PS15] João Paulo Pizani Flor and Wouter Swierstra. ‘Π-Ware: An Embedded Hardware De-
scription Language Using Dependent Types’. In: Extended Abstracts for International
Conference on Types for Proofs and Programs (TYPES). TYPES’15. 2015. isbn: 978-9949-
430-86-4. url: http://cs.ioc.ee/types15/abstracts-book/ (cit. on p. 167).

[Plo77] Gordon D. Plotkin. ‘LCF Considered as a Programming Language’. In: Theoretical
Computer Science 5.3 (1977), pp. 223–255. issn: 0304-3975. doi: 10.1016/0304-3975(77)
90044-5 (cit. on p. 102).

[PA93] Gordon D. Plotkin and Martín Abadi. ‘A Logic for Parametric Polymorphism’. In:
Typed Lambda Calculi and Applications. International Conference on Typed Lambda
Calculi and Applications TLCA ’93. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 1993, pp. 361–375. isbn: 978-3-540-56517-8. doi: 10.1007/BFb0037118 (cit.
on p. 101).

[Pnu77] Amir Pnueli. ‘The Temporal Logic of Programs’. In: 18th Annual Symposium on Founda-
tions of Computer Science. IEEE Computer Society, 1977, pp. 46–57. doi: 10.1109/SFCS.
1977.32 (cit. on p. 9).

[Pou07] Damien Pous. ‘Complete Lattices and Up-To Techniques’. In: Proceedings of APLAS 2007.
Vol. 4807. LNCS. Springer, 2007, pp. 351–366. doi: 10.1007/978-3-540-76637-7_24
(cit. on pp. 8, 28, 154).

[Pou16] Damien Pous. ‘Coinduction All the Way Up’. In: Proceedings of LICS ’16. ACM, 2016,
pp. 307–316. doi: 10.1145/2933575.2934564 (cit. on pp. 29, 154).

[PR17] Damien Pous and Jurriaan Rot. ‘Companions, Codensity, and Causality’. In: Proceedings
of FOSSACS 2017. 2017. doi: 10.1007/978-3-662-54458-7_7 (cit. on pp. 29, 154).

[PS11] Damien Pous and Davide Sangiorgi. ‘Enhancements of the Coinductive Proof Method’.
In: Advanced Topics in Bisimulation and Coinduction. New York, NY, USA: Cambridge
University Press, 2011 (cit. on pp. 28, 154).

[Rey74] John C. Reynolds. ‘Towards a Theory of Type Structure’. In: Programming Symposium,
Proceedings Colloque Sur La Programmation. Vol. 19. LNCS. Springer, 1974, pp. 408–423.
doi: 10.1007/3-540-06859-7_148 (cit. on p. 153).

[RL09] Grigore Roşu and Dorel Lucanu. ‘Circular Coinduction: A Proof Theoretical Founda-
tion’. In: CALCO. Vol. 5728. LNCS. Springer, 2009, pp. 127–144. doi: 10.1007/978-3-
642-03741-2_10 (cit. on pp. 126, 154).

[Rot15] Jurriaan Rot. ‘Enhanced Coinduction’. PhD. Leiden: University Leiden, 2015 (cit. on
pp. 8, 28).

[Rot+17] Jurriaan Rot, Filippo Bonchi, Marcello Bonsangue, Damien Pous, Jan Rutten and Alex-
andra Silva. ‘Enhanced Coalgebraic Bisimulation’. In: MSCS 27.7 (2017), pp. 1236–1264.
doi: 10.1017/S0960129515000523 (cit. on pp. 28, 154).

295

http://cs.ioc.ee/types15/abstracts-book/
https://doi.org/10.1016/0304-3975(77)90044-5
https://doi.org/10.1016/0304-3975(77)90044-5
https://doi.org/10.1007/BFb0037118
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1007/978-3-540-76637-7_24
https://doi.org/10.1145/2933575.2934564
https://doi.org/10.1007/978-3-662-54458-7_7
https://doi.org/10.1007/3-540-06859-7_148
https://doi.org/10.1007/978-3-642-03741-2_10
https://doi.org/10.1007/978-3-642-03741-2_10
https://doi.org/10.1017/S0960129515000523

References

[RB17] Reuben N. S. Rowe and James Brotherston. ‘Automatic Cyclic Termination Proofs for
Recursive Procedures in Separation Logic’. In: Proceedings of CPP 2017. ACM, 2017,
pp. 53–65. doi: 10.1145/3018610.3018623 (cit. on p. 126).

[Rut99] Jan Rutten. ‘A Note on Coinduction and Weak Bisimilarity for While Programs’. In:
ITA 33 (4/5 1999), pp. 393–400. doi: 10.1051/ita:1999125 (cit. on p. 8).

[Rut00] Jan Rutten. ‘Universal Coalgebra: A Theory of Systems’. In: Theor. Comput. Sci. 249.1
(2000), pp. 3–80. issn: 0304-3975. doi: 10.1016/S0304-3975(00)00056-6 (cit. on pp. 7,
10, 25, 154).

[Rut03] Jan Rutten. ‘Behavioural Differential Equations: A Coinductive Calculus of Streams,
Automata, and Power Series’. In: TCS. Theor. Comput. Sci. 308 (1-3 2003), pp. 1–53.
doi: 10.1016/S0304-3975(02)00895-2 (cit. on pp. 1, 8, 49, 68).

[Rut05] Jan Rutten. ‘A Coinductive Calculus of Streams’. In: Mathematical Structures in Com-
puter Science 15.1 (2005), pp. 93–147. doi: 10.1017/S0960129504004517 (cit. on pp. 1,
8).

[Sac13] Jorge Luis Sacchini. ‘Type-Based Productivity of Stream Definitions in the Calculus of
Constructions’. In: 2013 28th Annual IEEE/ACM Symposium on Logic in Computer Science
(LICS). 2013 28th Annual IEEE/ACM Symposium on Logic in Computer Science (LICS).
2013, pp. 233–242. doi: 10.1109/LICS.2013.29 (cit. on pp. 68, 223, 272).

[SV82] Giovanni Sambin and Silvio Valentini. ‘The Modal Logic of Provability. The Sequential
Approach’. In: Journal of Philosophical Logic 11.3 (1982), pp. 311–342. issn: 1573-0433.
doi: 10.1007/BF00293433 (cit. on p. 154).

[San98] Davide Sangiorgi. ‘On the Bisimulation Proof Method’. In: Mathematical Structures in
Computer Science 8.5 (1998), pp. 447–479 (cit. on pp. 8, 28).

[San09] Davide Sangiorgi. ‘On the Origins of Bisimulation and Coinduction’. In: ACM Trans.
Program. Lang. Syst. 31.4 (2009), 15:1–15:41. doi: 10.1145/1516507.1516510 (cit. on
pp. 7, 139).

[San11] Davide Sangiorgi. Introduction to Bisimulation and Coinduction. New York, NY, USA:
Cambridge University Press, 2011. isbn: 978-1-107-00363-7 (cit. on pp. 8, 10, 16, 28, 73,
154, 157).

[SKS11] Davide Sangiorgi, Naoki Kobayashi and Eijiro Sumii. ‘Environmental Bisimulations
for Higher-Order Languages’. In: ACM Trans. Program. Lang. Syst. 33.1 (2011), 5:1–5:69.
doi: 10.1145/1889997.1890002 (cit. on pp. 153, 156).

[San02a] Luigi Santocanale. ‘A Calculus of Circular Proofs and Its Categorical Semantics’. In:
FoSSaCS. 2002, pp. 357–371. doi: 10.1007/3-540-45931-6_25 (cit. on pp. 69, 126).

[San02b] Luigi Santocanale. ‘μ-Bicomplete Categories and Parity Games’. In: 36.2 (2002), pp. 195–
227. url: https://doi.org/10.1051/ita:2002010 (cit. on pp. 9, 69, 182).

[SR10] Alexandra Silva and Jan Rutten. ‘A Coinductive Calculus of Binary Trees’. In: Inf.
Comput. 208.5 (2010), pp. 578–593. doi: 10.1016/j.ic.2008.08.006 (cit. on p. 8).

[Sim17] Alex Simpson. ‘Cyclic Arithmetic Is Equivalent to Peano Arithmetic’. In: Proceedings
of FoSSaCS’17. FoSSaCS. LNCS. 2017. doi: 10.1007/978-3-662-54458-7_17 (cit. on
p. 126).

296

https://doi.org/10.1145/3018610.3018623
https://doi.org/10.1051/ita:1999125
https://doi.org/10.1016/S0304-3975(00)00056-6
https://doi.org/10.1016/S0304-3975(02)00895-2
https://doi.org/10.1017/S0960129504004517
https://doi.org/10.1109/LICS.2013.29
https://doi.org/10.1007/BF00293433
https://doi.org/10.1145/1516507.1516510
https://doi.org/10.1145/1889997.1890002
https://doi.org/10.1007/3-540-45931-6_25
https://doi.org/10.1051/ita:2002010
https://doi.org/10.1016/j.ic.2008.08.006
https://doi.org/10.1007/978-3-662-54458-7_17

[Smo85] Craig Smoryński. Self-Reference and Modal Logic. Universitext. Springer-Verlag, 1985.
isbn: 0-387-96209-3 (cit. on pp. 154, 159).

[Smy92] Michael B. Smyth. ‘Topology’. In: Samson Abramsky and Thomas S. E. Maibaum.
Handbook of Logic in Computer Science: Background:Mathematical Structures. Vol. 1. New
York, NY, USA: Oxford University Press, Inc., 1992, pp. 641–761. isbn: 0-19-853735-2.
url: http://dl.acm.org/citation.cfm?id=162573.162536 (cit. on p. 58).

[Sol76] Robert M. Solovay. ‘Provability Interpretations of Modal Logic’. In: Israel Journal of
Mathematics 25.3 (1976), pp. 287–304. issn: 1565-8511. doi: 10.1007/BF02757006 (cit.
on pp. 126, 130, 154, 159).

[SD03] Christoph Sprenger and Mads Dam. ‘On the Structure of Inductive Reasoning: Circular
and Tree-Shaped Proofs in the μ-Calculus’. In: Proceedings of FOSSACS 2003. Vol. 2620.
LNCS. Springer, 2003, pp. 425–440. doi: 10.1007/3-540-36576-1_27 (cit. on p. 126).

[Sta08] Sam Staton. ‘General Structural Operational Semantics through Categorical Logic’. In:
Proceedings of LICS 2008. IEEE Computer Society, 2008, pp. 166–177. doi: 10.1109/
LICS.2008.43 (cit. on p. 158).

[Sta11] Sam Staton. ‘Relating Coalgebraic Notions of Bisimulation’. In: Logical Methods in
Computer Science 7.1 (2011), pp. 1–21. doi: 10.2168/LMCS-7(1:13)2011 (cit. on pp. 10,
27, 114, 154, 221).

[Str89] Thomas Streicher. ‘Independence Results for Calculi of Dependent Types’. In: Proceed-
ings of Category Theory and Computer Science. Vol. 389. Lecture Notes in Computer
Science. Springer, 1989, pp. 141–154. doi: 10.1007/BFb0018350 (cit. on p. 219).

[Str91] Thomas Streicher. Semantics of TypeTheory - Correctness, Completeness and Independence
Results. Progress in Theoretical Computer Science. Birkhäuser Basel, 1991. XII, 299.
isbn: 978-1-4612-6757-7. doi: 10.1007/978-1-4612-0433-6 (cit. on pp. 176, 273).

[Stu08] Thomas Studer. ‘On the Proof Theory of the Modal Mu-Calculus’. In: Studia Logica
89.3 (2008), pp. 343–363. doi: 10.1007/s11225-008-9133-6 (cit. on p. 126).

[SP07] Eijiro Sumii and Benjamin C. Pierce. ‘A Bisimulation for Type Abstraction and Recur-
sion’. In: J. ACM 54.5 (2007), p. 26. doi: 10.1145/1284320.1284325 (cit. on pp. 153,
156).

[Tay99] Paul Taylor. Practical Foundations of Mathematics. Cambridge Studies in Advanced
Mathematics 59. Cambridge University Press, 1999. 588 pp. isbn: 978-0-521-63107-5.
url: http://paultaylor.eu/prafm/ (cit. on p. 176).

[Tro11] Anne Sjerp Troelstra. ‘History of Constructivism in the 20th Century’. In: Set Theory,
Arithmetic, and Foundations of Mathematics. Cambridge University Press, 2011, pp. 150–
179. isbn: 978-0-511-91061-6. url: http://dx.doi.org/10.1017/CBO9780511910616.
009 (cit. on p. 168).

[TvD88] Anne Sjerp Troelstra and Dirk van Dalen. Constructivism in Mathematics: An Introduc-
tion. Vol. 1 & 2. Studies in Logic and the Foundations of Mathematics 121 & 123.
North-Holland, 1988. 384 pp. isbn: 978-0-444-70266-1 (cit. on pp. 8, 154, 160, 168, 219,
240).

297

http://dl.acm.org/citation.cfm?id=162573.162536
https://doi.org/10.1007/BF02757006
https://doi.org/10.1007/3-540-36576-1_27
https://doi.org/10.1109/LICS.2008.43
https://doi.org/10.1109/LICS.2008.43
https://doi.org/10.2168/LMCS-7(1:13)2011
https://doi.org/10.1007/BFb0018350
https://doi.org/10.1007/978-1-4612-0433-6
https://doi.org/10.1007/s11225-008-9133-6
https://doi.org/10.1145/1284320.1284325
http://paultaylor.eu/prafm/
http://dx.doi.org/10.1017/CBO9780511910616.009
http://dx.doi.org/10.1017/CBO9780511910616.009

References

[TP97] Daniele Turi and Gordon D. Plotkin. ‘Towards a Mathematical Operational Semantics’.
In: Proceedings LICS’97. IEEE Computer Society Press, 1997, pp. 280–291. doi: 10.1109/
LICS.1997.614955 (cit. on pp. 8, 101, 158).

[Uni13] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of
Mathematics. Institute for Advanced Study, 2013. url: http://homotopytypetheory.
org/book (cit. on pp. 155, 273).

[UV96] Tarmo Uustalu and Varmo Vene. ‘A Cube of Proof Systems for the Intuitionistic
Predicate μ,ν-Logic’. In: Selected Papers from the 8th Nordic Workshop on Programming
Theory, NWPT. Vol. 96. 1996, pp. 237–246 (cit. on pp. 39, 68).

[UV99a] Tarmo Uustalu and Varmo Vene. ‘Mendler-Style Inductive Types, Categorically’. In:
Nordic J. of Computing 6.3 (1999), pp. 343–361. issn: 1236-6064. url: http://dl.acm.
org/citation.cfm?id=774455.774462 (cit. on pp. 68, 102).

[UV99b] Tarmo Uustalu and Varmo Vene. ‘Primitive (Co)Recursion and Course-of-Value (Co)Iteration,
Categorically’. In: Informatica 10 (1999), pp. 5–26 (cit. on p. 9).

[UV99c] Tarmo Uustalu and Varmo Vene. ‘Primitive (Co)Recursion and Course-of-Value (Co)Iteration,
Categorically’. In: Informatica, Lith. Acad. Sci. 10.1 (1999), pp. 5–26 (cit. on p. 69).

[UV02] Tarmo Uustalu and Varmo Vene. ‘Least and Greatest Fixed Points in Intuitionistic
Natural Deduction’. In: Theor. Comput. Sci. 272 (1-2 2002), pp. 315–339. doi: 10.1016/
S0304-3975(00)00355-8 (cit. on pp. 68, 69).

[vdBer06] Benno van den Berg. ‘Predicative Topos Theory and Models for Constructive Set
Theory’. PhD. University of Utrecht, 2006 (cit. on p. 272).

[vdBdM04] Benno van den Berg and Federico de Marchi. ‘Non-Well-Founded Trees in Categories’.
In: (2004). arXiv: math/0409158 (cit. on pp. 9, 191).

[vdBdM07] Benno van den Berg and Federico de Marchi. ‘Non-Well-Founded Trees in Categories’.
In: Annals of Pure and Applied Logic 146.1 (2007), pp. 40–59. issn: 0168-0072. doi: 10.
1016/j.apal.2006.12.001 (cit. on pp. 191, 193, 217, 272).

[Ven00] Varmo Vene. ‘Categorical Programming with Inductive and Coinductive Types’. PhD
Thesis. University of Tartu, 2000 (cit. on pp. 68, 69, 102).

[VU98] Varmo Vene and Tarmo Uustalu. ‘Functional Programming with Apomorphisms (Core-
cursion)’. In: Proceedings of the Estonian Academy of Sciences: Physics, Mathematics. 1998,
pp. 147–161. url: http://www.cs.ioc.ee/~tarmo/papers/nwpt97-peas.pdf (cit. on
p. 69).

[Wal93] Igor Walukiewicz. ‘On Completeness of the Mu-Calculus’. In: Proceedings of LICS ’93.
IEEE Computer Society, 1993, pp. 136–146. doi: 10.1109/LICS.1993.287593 (cit. on
p. 9).

[Wer94] Benjamin Werner. ‘Une Théorie Des Constructions Inductives’. PhD. Université Paris
VII, 1994 (cit. on pp. 68, 223).

[Wet14] Linda Wetzel. Types and Tokens. The Stanford Encyclopedia of Philosophy. Ed. by
Edward N. Zalta. 2014. url: https : / / plato . stanford . edu / archives / spr2014 /

entries/types-tokens/ (cit. on p. 16).

298

https://doi.org/10.1109/LICS.1997.614955
https://doi.org/10.1109/LICS.1997.614955
http://homotopytypetheory.org/book
http://homotopytypetheory.org/book
http://dl.acm.org/citation.cfm?id=774455.774462
http://dl.acm.org/citation.cfm?id=774455.774462
https://doi.org/10.1016/S0304-3975(00)00355-8
https://doi.org/10.1016/S0304-3975(00)00355-8
http://arxiv.org/abs/math/0409158
https://doi.org/10.1016/j.apal.2006.12.001
https://doi.org/10.1016/j.apal.2006.12.001
http://www.cs.ioc.ee/~tarmo/papers/nwpt97-peas.pdf
https://doi.org/10.1109/LICS.1993.287593
https://plato.stanford.edu/archives/spr2014/entries/types-tokens/
https://plato.stanford.edu/archives/spr2014/entries/types-tokens/

Own Publications

[WBR11] Joost Winter, Marcello M. Bonsangue and Jan Rutten. ‘Context-Free Languages, Coal-
gebraically’. In: Proceedings of CALCO’11. Vol. 6859. LNCS. Springer, 2011, pp. 359–376.
doi: 10.1007/978-3-642-22944-2_25 (cit. on p. 8).

[Wir04] Claus-Peter Wirth. ‘Descente Infinie + Deduction’. In: Logic Journal of the IGPL 12.1
(2004), pp. 1–96. issn: 1367-0751. doi: 10.1093/jigpal/12.1.1 (cit. on pp. 125, 126).

[Wor05] James Worrell. ‘On the Final Sequence of a Finitary Set Functor’. In: Theor. Comput.
Sci. 338 (1-3 2005), pp. 184–199. doi: 10.1016/j.tcs.2004.12.009 (cit. on p. 27).

[Xi01] Hongwei Xi. ‘Dependent Types for Program Termination Verification’. In: 16th Annual
IEEE Symposium on Logic in Computer Science, Boston, Massachusetts, USA, June 16-19,
2001, Proceedings. IEEE Computer Society, 2001, pp. 231–242. doi: 10.1109/LICS.2001.
932500 (cit. on pp. 68, 126).

[Zei09] Noam Zeilberger. ‘The Logical Basis of Evaluation Order and Pattern-Matching’. PhD.
Pittsburgh: Carnegie Mellon, 2009 (cit. on p. 102).

Own Publications
[Bas15a] Henning Basold. ‘Dependent Inductive and Coinductive Types Are Fibrational Dial-

gebras’. In: Proceedings of FICS ’15. Vol. 191. EPTCS. Open Publishing Association, 2015,
pp. 3–17. doi: 10.4204/EPTCS.191.3 (cit. on pp. 14, 165, 191).

[Bas18a] Henning Basold. ‘Breaking the Loop: Recursive Proofs for Coinductive Predicates in
Fibrations’. In: arXiv (2018). arXiv: 1802.07143 (cit. on pp. 14, 108).

[Bas+14a] Henning Basold, Marcello Bonsangue, Helle Hvid Hansen and Jan Rutten. ‘(Co)Algebraic
Characterizations of Signal Flow Graphs’. In:Horizons of theMind – Prakash Panangaden
Festschrift. 2014, pp. 124–145. doi: 10.1007/978-3-319-06880-0_6 (cit. on p. 15).

[BG16a] Henning Basold and Herman Geuvers. ‘Type Theory Based on Dependent Inductive
and Coinductive Types’. In: Proceedings of LICS ’16. Logic In Computer Science. ACM,
2016, pp. 327–336. doi: 10.1145/2933575.2934514 (cit. on pp. 15, 225, 274).

[BG16b] Henning Basold and Herman Geuvers. ‘Type Theory Based on Dependent Inductive
and Coinductive Types’. In: Extended Abstracts for International Conference on Types for
Proofs and Programs (TYPES). TYPES’16. 2016. doi: 10.5281/zenodo.1175868 (cit. on
p. 273).

[BG16c] Henning Basold and Herman Geuvers. ‘Type Theory Based on Dependent Inductive
and Coinductive Types’. In: CoRR abs/1605.02206 (2016). url: http://arxiv.org/abs/
1605.02206 (cit. on pp. 15, 225).

[BGvdW17] Henning Basold, Herman Geuvers and Niels van der Weide. ‘Higher Inductive Types in
Programming’. In: J.UCS David Turner’s Festschrift – Functional Programming: Past,
Present, and Future (2017). url: http://www.jucs.org/jucs_23_1/higher_inductive_
types_in (cit. on p. 15).

299

https://doi.org/10.1007/978-3-642-22944-2_25
https://doi.org/10.1093/jigpal/12.1.1
https://doi.org/10.1016/j.tcs.2004.12.009
https://doi.org/10.1109/LICS.2001.932500
https://doi.org/10.1109/LICS.2001.932500
https://doi.org/10.4204/EPTCS.191.3
http://arxiv.org/abs/1802.07143
https://doi.org/10.1007/978-3-319-06880-0_6
https://doi.org/10.1145/2933575.2934514
https://doi.org/10.5281/zenodo.1175868
http://arxiv.org/abs/1605.02206
http://arxiv.org/abs/1605.02206
http://www.jucs.org/jucs_23_1/higher_inductive_types_in
http://www.jucs.org/jucs_23_1/higher_inductive_types_in

References

[Bas+14b] Henning Basold, Henning Günther, Michaela Huhn and Stefan Milius. ‘An Open Altern-
ative for SMT-Based Verification of Scade Models’. In: Proceedings of Formal Methods
for Industrial Critical Systems, FMICS 2014. 2014, pp. 124–139. doi: 10.1007/978-3-319-
10702-8_9 (cit. on p. 15).

[BH16] Henning Basold and Helle Hvid Hansen. ‘Well-Definedness and Observational Equi-
valence for Inductive-Coinductive Programs’. In: J. Log. Comput. (2016). doi: 10.1093/
logcom/exv091 (cit. on pp. 13, 14, 37, 49, 62, 72, 88, 105, 108, 309).

[Bas+15] Henning Basold, Helle Hvid Hansen, Jean-Éric Pin and Jan Rutten. ‘Newton Series,
Coinductively’. In: Proceedings of ICTAC ’15. 2015, pp. 91–109. doi: 10.1007/978-3-
319-25150-9_7 (cit. on p. 15).

[Bas+17] Henning Basold, Helle Hvid Hansen, Jean-Éric Pin and Jan Rutten. ‘Newton Series,
Coinductively: A Comparative Study of Composition’. In: MSCS (2017), pp. 1–29. doi:
10.1017/S0960129517000159 (cit. on p. 15).

[BK16] Henning Basold and Ekaterina Komendantskaya. ‘Models of Inductive-Coinductive
Logic Programs’. In: Pre-Proceedings of the Workshop on Coalgebra, Horn Clause Logic
Programming and Types. 2016. arXiv: 1612.03032 (cit. on p. 15).

[BPR17] Henning Basold, Damien Pous and Jurriaan Rot. ‘Monoidal Company for Accessible
Functors’. In: CALCO 2017. Vol. 72. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2017. doi: 10.4230/LIPIcs.CALCO.2017.5 (cit. on p. 15).

300

https://doi.org/10.1007/978-3-319-10702-8_9
https://doi.org/10.1007/978-3-319-10702-8_9
https://doi.org/10.1093/logcom/exv091
https://doi.org/10.1093/logcom/exv091
https://doi.org/10.1007/978-3-319-25150-9_7
https://doi.org/10.1007/978-3-319-25150-9_7
https://doi.org/10.1017/S0960129517000159
http://arxiv.org/abs/1612.03032
https://doi.org/10.4230/LIPIcs.CALCO.2017.5

Subject Index

Fµ -closure, 121
Γ-substitution, 59
Φ-compatible, 28
Φ-invariant up to T , 28
≡-closed, 114
µP-complete category, 181
2-category

bicategory, 30
weak, 30

2-functor
strict, 33

adequate, 113
algebra, 3, 4, 26, 35

initial, 3, 4, 26
weakly initial, 94

apartness relation, 160

backwards closed
under reductions, 78

base term, 248
Beck-Chevalley condition, 25, 214

for coproducts, 213
behavioural differential equation, 1, 8
BHK-interpretation, 168
bialgebra, 8
bisimilarity

applicative, 152
environmental, 153

bisimulation
game, 107
proof method, 10

Brouwer-Heyting-Kolmogorov interpretation,
see BHK-interpretation

canonical predicate lifting
of a functor, 207
of a signature, 207

cartesian
over, 24

category, 4

arrow, 20
base, 24
slice, 20
total, 24

category of relations, 113
CCompC, see closed comprehension category
CCU

full, 187
CCU, see comprehension category with unit
chain

final, 26
initial, 26

chain construction
final, 26
initial, 26

classifiable calculus, 90
classifying category, 90

modulo computations, 91
simple, 91

closing substitution, 74
coalgebra, 3, 4, 26, 35

final, 3, 7, 26
weakly final, 94

coinduction, 4, 10, 151, 210
coinductive

proof principle, 10
coinductive extension, 94
coinductive predicate

G-, 27
coiteration, 10
companion, 29, 119
compatible closure, 45
complete lattice

fibre-wise, 27
component, 138
comprehension, 175, 187
comprehension category

closed, 190
with unit, 187

computation

301

Subject Index

terminating, 2
computational behaviour, 71, 95
confluence, 69
confluent, 19
congruence, 88
constructor, 3, 4
context, 40, 49
contraction, 45, 59, 183
contraction relation

of λPµ, 233
contractive, 155
conversion rule, 228
convertibility, 19, 45, 59
convertible, 19
copattern, 9, 49, 50

annotated, 63
linear, 52

coproduct
along u, 25
strong, 164, 190

cover, 63
Curry-Howard correspondence, 219

data fragment, 86
declaration block, 50
declaration body, 50
definitionally equal, 128
dependent iteration, 209, 257
dependent polynomial functor, 190
dependent recursive type closed category, 164
dialgebra, 17, 26

final, 26
initial, 26

domain, 59
dual, 2, 3

equational theory, 89
consistent, 89

evaluation context
on type A with result in B, 59

exchange law, 30
exhaustive, 63
exponential ideal, 21
exponential objects

weak, 92

expressive, 113
extension

coinductive, 26
inductive, 26

fibration, 24
classifying, 25, 173
cloven, 24
codomain, 24
split, 24, 272

fibre above I , 24
final, 5
final object functor, 187
formula

of FOL▶ , 128
well-formed, 128

free variables, 38
functor, 4
functor category, 20

head, 51
higher order iteration, 42
hom-set, 20
homomorphism, 26

dialgebra, 26
horizontal composition, 30

impredicative, 152
induction, 4, 7
inductive extension, 94
inductive type, 180
ingredients, 106
inhabited, 172
internal computations, 157
invariant

G-, 27
iteration, 7

key redex, 248

later modality, 14, 22, 126
left-fair streams, 39
length-indexed lists, 177
lifting, 27
linear time logic (LTL), 9
locally small, 20

302

Subject Index

look-ahead, 58
Löb induction, 23, 127

M-type, 190
map, 4
modal µ-calculus, 9
modulus of continuity, 58
morphism, 4

non-overlapping, 63
normal form, 19
normalising, 19

persistently strongly, 105

object, 4
observation, 3, 5, 71
observational behaviour, 71, 95
observational bisimulation, 114

compressed, 138
observational equivalence, 85
observationally equivalent, 71
observationally normalising term, 75

parameter context, 225
parameter instantiation, 225
parameter reduction, 234
parameterised term, 226
pattern, 49, 50
polynomial

dependent, 190
extension of a, 190
non-dependent, 190

pre-context morphism, 229
pre-functor, 93
pre-terms, 229
pre-type, 229
presheaf

S-valued, 21
Principia Mathematica, 168
process

observable, 3
product

along u, 25
weak, 92

productive, 73, 84

progress, 69
projection, 187
proof irrelevant, 204
propositional equality, 183
propositions-as-types, 170
provability relation, 129
pseudo-adjunction, 34
pseudo-coproducts, 34

with strict choice, 96
pseudo-exponents, 34

with strict choice, 96
pseudo-final coalgebra, 36, 90

with strict choice, 97
pseudo-final object, 34
pseudo-functor, 32, 90
pseudo-homomorphism, 35
pseudo-initial algebra, 36

with strict choice, 97
pseudo-natural transformation, 33
pseudo-products, 34

with strict choice, 96

quotient category, 21

raw declaration block, 49
raw declaration body, 49
raw syntax, 227
raw term

of λµν=, 49
of λµν , 39

recursive dependent type closed category, 177
recursive dependent type complete category,

177
recursive-type closed category, 188
recursive-type complete category, 181
redex, 248
reduction

iterated, 45
reduction relation, 19

of λPµ, 233
of λµν=, 59
of λµν , 45

reindexing
along u, 24

relation lifting

303

Subject Index

canonical, 114

saturated set, 228, 248
saturation, 157
selector

stream, 57
set-indexed family, 24
setoid, 264
signature

strictly positive, 182
sized types, 77
stabilise, 26
stream differential equation, 76
strong normalisation, 69
strongly normalising, 19
subcategory

reflective, 21
subject reduction, 47, 69
substitution, 59

updated, 128
substitutivity, 88
substream, 5, 119
substream relation, 15
successor, 2

tail, 51
term, 11, 19, 91

of λµν=, 49
of λµν , 40

term rewriting system, 19
term variables, 39
test

interpretation, 83

on A, 82
satisfaction, 85

truth formula
in FOL▶ , 130

truth-preserving, 207
type, 11, 38

action of, 44
closed, 38
coinductive, 180
raw, 38
strictly positive, 177, 182

type of partial elements, 103
type substitution, 38

empty, 38

UMP, see universal mapping property
uniformly continuous, 58
uniqueness of identity proofs (UIP), 275
universal mapping property, 4, 91
up-to technique, 8, 151

value, 2, 65, 69
vector, 177
vertical composition, 30

W-type, 190
weak head normal form, 65
well-covering, 64
well-formed assumptions, 128
WHNF, see weak head normal form

Yoneda embedding, 20

zero, 2

304

Notation Index

u B (Cartesian lifting of u to B), 24
u∗ (reindexing along u), 24
⊑ (set family inclusion), 25
Θ ⊩ A : Ty (well-formed type), 38
Ty (set of closed types), 38
fv(A) (free variables), 38
TySubst(Θ) (type substitution), 38
() (empty type substitution), 38
LFair (Left-fair streams), 39
Tr (non-empty, labelled, finite-branching, po-

tentially infinite trees), 39
TeVar (term variables), 39
Γ (context), 40
Γ ⊢ t : A (Typing for terms of λµν), 40
Λ (Terms of λµν), 40
⟨t , s⟩ : A × B (term pair), 40
≻ (contraction in λµν), 45
−→ (reduction relation of λµν), 45

(iterated reduction), 45
≡ (convertibility), 45
L (unfolding of LFair), 48
Γ;Σ ⊢ t : A (typing for terms of λµν=), 50
Γ;Σ ⊢bdy D : A (typing for bodies in λµν=), 50
Σ1 ⊢dec Σ2 (typing for declaration blocks of

λµν=), 50
Γ ⊢pat p : A (typing for patterns of λµν=), 50
Γ ⊢cop q : A ⇒ B (typing for copatterns of

λµν=), 50
.hd (head), 51
.tl (tail), 51
⟨s, t⟩ : A × B (term pair notation in λµν=), 53
projA (left-fair stream projection), 54
F (stream selectors), 57
Fµ (unfolding of F), 57
dom(σ) (domain), 59
≻ (contraction in λµν=), 59
−→Σ (reduction relative to signature), 59
−→ (reduction relation of λµν=), 59

(reflexive, transitive closure of −→), 59

≡ (convertibility relation of λµν=), 59
(Γ;q;B) (annotated copatterns), 63
A ◁| Q (cover), 64
Λ= (terms of λµν=), 65
ONA (observationally normalising terms), 75
ϕ :↓ A (typing of tests), 82
Tests(U)A (set of tests relative to U on type

A), 82
⟦-⟧ (interpretation of tests), 83
t ⊨A ϕ (satisfaction relation for tests), 85
≡obs (observational equivalence), 85
Cℓs (U) (simple classifying category), 91
Cℓ≡s (U) (classifying category modulo compu-

tations), 91
a (inductive extension), 94
c̃ (coinductive extension), 94
Cℓ≡s,obs(Λ) (classifying 2-category of λµν), 96
Cℓ≡s,obs(ON) (classifying 2-category of λµν=),

96
Φ (defining operator for observational bisimu-

lations), 114
Γ ⊢Ty t : A (typing relation of λµν=, renamed),

128
σ [x 7→ t] (updated substitution), 128
⊢ (provability relation), 129
⊤ (truth formula in FOL▶), 130
Φc (defining operator for compressed observa-

tional bisimulations), 138
S (strictly positive signatures), 182
D (strictly positive types), 182
{−} (comprehension), 187
πA (projection), 187
⟦-⟧ (extension of a polynomial), 190
−→ (reduction relation of λPµ), 233
≻ (contraction relation of λPµ), 233
−→p (parameter reduction), 234
−→T (reduction of types in λPµ), 234
←→T (one-step conversion of types in λPµ),

234

305

Appendices

307

APPENDIX A

Confluence for λµν=

In this appendix, we develop the details of the proof that −→ is confluent on Λ=(A) for all types
A (Proposition 3.2.32). This proof was was given in [BH16].

Recall that we have introduced in Section 3.2.2 a reduction relation −→Σ for terms of λµν= as
the compatible closure of contraction. To be able to prove that this reduction relation is confluent,
we have to be careful with nested rlet-bindings. For this reason, we define −→Σ as the union of
reduction relations −→k

Σ, k ∈ N, where −→k
Σ is a relation on terms of rlet-nesting depth k . More

precisely, as in [AP13; Abe+13], −→k
Σ is the compatible closure of ≻kΣ outside of declaration blocks,

≻0Σ = ≻Σ, and ≻k+1
Σ is defined inductively by

t −→k
Σ1,Σ2

t ′

rlet Σ2 in t ≻k+1
Σ1

rlet Σ2 in t ′

rlet Σ2 in (α t) ≻k+1
Σ1

α (rlet Σ2 in t) rlet Σ2 in (κi t) ≻k+1
Σ1

κi (rlet Σ2 in t)

(rlet Σ2 in t).out ≻k+1
Σ1

rlet Σ2 in (t .out) (rlet Σ2 in t).pri ≻k+1
Σ1

rlet Σ2 in (t .pri)

(rlet Σ2 in t) s ≻k+1
Σ1

rlet Σ2 in (t s)

Terms of the form rletΣ in t without further declarations in t can be translated into the calculus
of [Abe+13], while preserving reduction steps. Therefore, we inherit that −→0

Σ preserves types.
Recall from Definition 3.2.29 that Λ=(A) contains only well-covering terms, that is, terms in which

all declaration bodies are well-covering with respect to ◁|. We show now that the reduction relation
is confluent on Λ= in three steps. First, we prove that (co)pattern matching is deterministic on
well-covering terms. This allows us, in a second step, to prove that −→0

Σ that is confluent. Finally,
we show, by induction, that −→n

Σ is confluent for all n, thus −→ =
∪
n∈N −→∅n is confluent as all

−→n
∅ are disjoint.

We start by showing that copattern matching is deterministic.

Lemma A.1. Let A be a type, Q a copattern sequence with A ◁| Q and e an evaluation context on A.
If there exists a copattern q with Γ ⊢cop q : A ⇒ B in Q and contexts e1, e2 with e = e1[e2], such that
q[σ] = e2, then q, e1 and e2 are unique with this property.

Proof. Since any copattern sequence Q covering A is constructed using the rules in Definition 3.2.24
starting at Q0 = (∅ ⊢cop · : A⇒ A), we can proceed by induction on the application of said rules.

In the base case Q = Q0, there is only one choice, namely q = · and e1 = e and e2 = ·.
So assume that for any Q we have a unique choice of q and e = e1[e2]. We make a case distinction

on the rule used to construct Q ′ from Q . Note that we can distinguish two types of rules: CProd,

309

Appendix A. Confluence for λµν=

CApp and COut increase the size of copatterns, whereas CIncl and CIn increase the size of patterns. We
only prove the induction step for CApp and CIncl as exemplary cases.

• Assume that Q ′ is constructed from Q = Q ′′ ; (Γ ⊢cop q : A⇒ (B → C)) by an application of
CApp, so that Q ′ = Q ′′ ; (Γ,x : B ⊢cop q x : A⇒ C). Moreover, assume that q0 in Q ′ matches
e2 for some splitting e = e1[e2]. If q0 , q x , then q0 ∈ Q ′′ and uniqueness of e1, e2 and q0
follows by induction. Otherwise, if q0 = q x , then by the typing of e we must have e2 = e3 t
for some term t : B and context e3. Hence, we have that q ∈ Q matches e3 and, by induction,
the splitting e = e1[e3 t] is unique, as the choice of q is. Combining these cases, we have that
the splitting e = e1[e2] and the choice of q0 is still unique in Q ′.

• Assume that Q ′ is constructed from Q = Q ′′ ; (Γ,x : B1 + B2 ⊢cop q : A ⇒ C) using the
rule CIncl, resulting in Q ′ = Q ′′ ;

(
Γ,x ′ : Bi ⊢cop q[κi x ′/x] : A⇒ C

)
i=1,2

. If we now have a
splitting e = e1[e2] and a match q[κi x

′/x][σ] = e2, then we can define a substitution τ such
that q[τ] = e2 by putting

τ (y) =

{
κi σ(x

′), y = x

σ(y), otherwise
.

By the induction hypothesis, we now have that the splitting and q are unique for this match,
thus the splitting and the choice of q[κi x ′/x] is unique. □

The next step is to prove confluence of the reduction in the base case, that is, of −→0
Σ. To do

so, we invoke a result by Cirstea and Faure [CF07], which proves confluence of a reduction relation
induced by a pattern matching algorithm for the so-called dynamic pattern λ-calculus. This calculus
is an extension of (untyped) λ-calculus, in which λ-abstraction is allowed to have arbitrary terms
in the abstraction, not just variable, that is to say, abstractions are of the for λM .N for arbitrary
terms M and N . To interpret such an abstraction, we need to provide a pattern matching algorithm,
which is a partial map from pairs of terms and sets of variables to substitutions, and is written as
Sol(M ≪ N). Such a pattern matching algorithm induces a reduction relation by taking the parallel
reduction closure of

(λM .N)P −→ N [σ], if σ = Sol(M ≪ P).

For more details, the reader should consult [CF07].
The idea of how to encode the calculus we study in this paper into the dynamic pattern λ-calculus

and the (co)pattern matching into a pattern matching algorithm is very simple. Since we are allowed
to use arbitrary constants, we can encode all term constructors of our calculus directly, only that
we need to turn the projections .pri and .out into function arguments. For instance, t .out.pr2
becomes M .out .pr2, where M is the encoding of M . For a fixed declaration block Σ, the pattern
matching algorithm is then the adaption of the matching with respect to evaluation context we used
in Definition 3.2.13. This is similar to the case branching example given in [CF07].

The induced parallel reduction is not exactly the same as the compatible closure of contraction
because they differ in the reduction of applications. However, the reduction relations can simulate
each other, in the sense that if we can reduce a term, then the other relation can simulate this
reduction in one or more steps. This is good enough to prove confluence: if parallel reduction is
confluent for this encoding, then our reduction is confluent as well.

310

The heart of the matter are now the following three conditions from [CF07], which are sufficient
to ensure that parallel reduction is confluent. Let us denote by fv(M) the free variables of M and
by dom(σ) the domain of σ . Then the conditions are given by.

• H0: If Sol(M ≪ N) = σ , then fv(M) = dom(σ) and for all x ∈ dom(σ), fv(σ(x)) ⊆ fv(N).

• H1: Pattern matching commutes with substitution of variables not bound by the pattern: If
Sol(M ≪ N) = σ and dom(τ) ∩ fv(M) = ∅, then Sol(M ≪ N [τ]) = τ ◦ σ .

• H2: Pattern matching commutes with one-step reduction: If Sol(M ≪ N) = σ and N −→ N ′,
then Sol(M ≪ N) = σ ′ where σ ′ is the point-wise reduction of σ .

It is now straightforward to prove that the (co)pattern matching we used to define contraction
fulfils these conditions.

Lemma A.2. The (co)pattern matching on well-covering copattern sequences fulfils the conditionsH0, H1

and H2.

Proof. Let A and Q be so that A ◁| Q , and let q[σ] = e for an evaluation context e and q ∈ Q . Note
that q is unique by Lem. A.1.

H0 Clearly, σ binds all variables in q and does not introduce fresh variables.

H1 The condition H1 requires, given a substitution τ with dom(τ)∩ fv(q) = ∅, that q[σ][τ] = e[τ].
This is clearly the case, as no variable in q are substituted.

H2 Assume we have e −→ e ′, we need to show that q[σ ′] = e ′ with σ −→ σ ′, where we can use
the same q by uniqueness. Here we use the obvious lifting of −→ to evaluation contexts and
substitutions. If e was closed e ′ is still closed and by Lem. A.1 we still have a match q[σ ′] = e ′.
The only interesting case to show that σ −→ σ ′ is q = x , i.e. x [t ′/x] = t ′, but since t −→ t ′

we clearly have σ = [t/x] −→ [t ′/x] = σ ′. The rest follows by induction on q. □

By the above discussion, confluence follows on terms without rlet-bindings from [CF07].

Lemma A.3. On Λ=
Σ(A), −→0

Σ is confluent for all well-covering Σ.

Lemma A.3 is the base case for the main result, the confluence of −→k
Σ for any k , which we prove

by induction. To justify that this induction is actually well-formed, we need the following technical
lemma. Let us denote the rlet-nesting depth of any syntactic entity S by d(S), where S can be a
term, a declaration block etc.

Lemma A.4. For all terms t , t ′ with t −→Σ t ′, we have d(t ′) ≤ max{d(t),d(Σ)}.

Proof. Let t and t ′ with t −→Σ t ′, and note that we then have that t −→d(t)
Σ t ′, by definition of −→Σ.

We observe that the only possibility to change the rlet-nesting is a use of contraction e[f] ≻Σ′ r ,
where e[f] is a subterm of t .

There are now two possibilities: Either there there is a declaration block Σ′′ ⊆ Σ′ that contains
f and a term s that contains e[f] as a subterm, such that rlet Σ′′ in s is a subterm of t , or f is
already contained in Σ.

311

Appendix A. Confluence for λµν=

In the first case, we reduce the subterm rletΣ′′ in s to rletΣ′′ in s ′, which induces the reduction
t −→Σ t ′ by the compatible closure and the rlet-rules. In turn, this reduction of subterms must be
given by a reduction s −→Σ′ s

′, where Σ′′ ⊆ Σ′, which is then induced by a contraction e[f] ≻Σ′ r
with (f : A = D) ∈ Σ′′. By definition, we now have d(rlet Σ′′ in s) = max{d(Σ′′) + 1,d(s)}, thus
d(r) ≤ d(D) and d(s ′) ≤ max{d(r),d(s)} ≤ max{d(D),d(s)}. This implies that d(rlet Σ′′ in s ′) =
max{d(Σ′′) + 1,d(s ′)} ≤ max{d(Σ′′) + 1,d(D),d(s)} = d(rletΣ′′ in s), where the last step follows
from (f : A = D) ∈ Σ′′. Since the only change caused by the reduction t −→ t ′ happens in s , we
have d(t ′) ≤ d(t).

In the second case, we similarly get that d(r) ≤ d(Σ). Together with the first case, we have that
d(r) ≤ max{d(t),d(Σ)}. □

This result allows us to prove that −→k
Σ is confluent using induction on k , as the nesting depth

cannot be increased by reduction steps.

Proof of Proposition 3.2.32. We show that −→k
Σ is confluent by induction on k , which implies that

−→Σ is confluent because every term has a unique rlet-depth. This induction is well-founded by
Lem. A.4. The base case is dealt with in Lem. A.3, so we immediately continue with the induction
step.

Assume that −→k
Σ is confluent for any well-covering Σ, we show that for any well-covering Σ

the relation −→k+1
Σ confluent. As usual, we show that for terms t , t1 and t2 with t −→k+1

Σ ti there
is a term t3 with ti

k+1
Σ t3, which is called weak confluence and implies confluence. First, we

note that if the reductions to t1 and t2 both come from the compatible closure, then we can find t3
by induction on the definition of the compatible closure. The base case of this induction requires
the existence of t3 for the case where t −→k+1

Σ t1 and t ≻k+1
Σ t2, which we prove in the following.

i) If t = rlet Σ′ in s , then we have the following cases.
a) ti = rletΣ′ in si with s −→k

Σ,Σ′ si . Since −→k
Σ,Σ′ is confluent by induction, there is an

s3 with si −→k
Σ,Σ′ s3 and we can join t1 and t2 with rlet Σ in s3.

b) t1 = rlet Σ′ in s1 with s −→k
Σ,Σ′ s1, s = α s ′ and t2 = α (rlet Σ′ in s ′). Then we must

have that s1 = α s ′1 with s1 −→k
Σ,Σ′ s

′
1, hence we can t1 and t2 by

t = rlet Σ′ in (α s ′)

t1 = rlet Σ′ in (α s ′1) t2 = α (rlet Σ′ in s ′)

α (rlet Σ′ in s ′1)

c) We proceed analogously if s = κi s
′.

d) The other cases follow by symmetry.

ii) If t = (rletΣ′ in s).out, t2 = rletΣ′ in (s .out) and t1 = (rletΣ′ in s1).out with s −→k
Σ,Σ′ s1,

then we can reduce t1 to rlet Σ′ in (s1.out) and s to s1. Thus the joining term is rlet Σ′ in
(s1.out).

312

iii) We proceed analogously if t is an rlet in context of an application or πi .

iv) The remaining cases are either trivial because the same reduction happens on both t1 and t2,
they follow by symmetry, or combinations of reductions by ≻k+1

Σ are excluded by the types
of t1 and t2.

This proves that, if t −→k+1
Σ t1 and t ≻k+1

Σ t2, then there exists t3 with ti
k+1
Σ t3. It is straightfor-

ward to extend this by induction to the compatible closure, hence to arbitrary reductions towards t2.
This shows that −→k+1

Σ is confluent for any well-covering Σ, provided −→k
Σ′ is for any well-covering

Σ′. Thus, by induction on k , −→Σ is confluent. □ □

313

APPENDIX B

Proofs of Section 6.3

We need the following technical tool.
Lemma B.1 (Primitive corecursion). Let C be a category with binary coproducts and F : C → C an
endofunctor on C with a final coalgebra (M, ξ : M → FM). For every morphism c : X → F (X +M) in
C, there is a unique map h : X +M → M , such that h ◦ κ2 = idM and the following diagram commutes.

X M

F (X +M) FM

c

h ◦κ1

ξ

Fh

Proof. We define h as the coinductive extension as in the following diagram.

X X +M M

F (X +M) F (X +M) FM

c

κ1 h

[c,Fκ2◦ξ] ξ

Fh

It is easily checked that the rectangle on the right commutes if and only if the above identities hold.
Thus uniqueness of h follows from uniqueness of coinductive extensions. □

Primitive corecursion allows us to define one-step behaviour as follows.
Lemma B.2 (One-step extension). Let F and (M, ξ) as above, and let f : M → FM be a morphism.
Then there exists a unique д : M → M , such that ξ ◦ д = f .

Proof. We define д = h ◦ κ1, where h arises by primitive corecursion of Fκ2 ◦ f . It is then straight-
forward to show that ξ ◦ д = f if and only the identities of primitive corecursion hold. Thus д is
the unique morphism for which this identity holds. □

Using the definition of V as equaliser of u1 and u2, we can characterise elements of V as follows.
First we note that V is indexed over I by q = V

д
−→ Mf

ρ
−→ A

t−→ I , where ρ is the root map given
by composing ξf with projection for coproducts. Abusing notation, we will use V instead of q, and
write x : Vi if x : V and q x = i .

Let X be an object in B. An object R ∈ B/X 2 is called a relation, and we say that elements x ,y : X
are related by are, denoted (x ,y) : R, if there is a z : R, such that π1(R z) = x and π2(R z) = y.
Lemma B.3 (Internal bisimulations). Let f : B → A be a polynomial and R ∈ B/M2

f a relation over Mf
such that

∀(x1,x2) : R. if ξf (xk) = (ak ,vk)

then a1 = a2 = a

and (∀b : B. f b = a ⇒ (v1 b,v2 b) : R).

315

Appendix B. Proofs of Section 6.3

Then for all (x1,x2) : R, we have that x1 = x2.

Proof. It is easy to see that this allows us to define a coalgebra structure on R : U → M2
f such

that πk ◦ R : U → M2 are homomorphism for k = 1, 2, which implies by finality of Mf that
π1 ◦ R = π2 ◦ R. □

In the following lemmas we use the notation introduced in the proof of Thm. 6.3.6.

Lemma B.4. If y : Mf and b : B such that φ(u1 y,b) = u1 y, then qy = s b and u1 y = u2 y.

Proof. We let ξf y = (a,v) and then find that

ξf ×I (φ(u1 y,b)) = (a, s b, λb ′.φ(u1 (v b
′),b ′))

= (a, t a, λb ′.u1 (v b
′)) by assumption

= ξf ×I (u1 y).

Thus s b = t a = qy and φ(u1 (v b ′),b ′) = u1 (v b
′) for all b ′ : B with f b = a. This gives us

ξf ×I (u1 y) = (a, t a, λb ′.u1 (v b
′))

= (a, t a, λb ′.φ(u1 (v b
′),b ′)) see above

= ξf ×I (u2 y)

as required. □

Lemma B.5. Let i : I and x : Mf , then the following are equivalent

1. x : Vi

2. u1 x = u2 x and q x = i

3. ξf x = (a : A,v : ΠfMf), t a = i and (∀b : B. f b = a ⇒ v b : Vs b)

4. ξf x = (a : A,v : ΠfMf), t a = i and v : Πf (s
∗V)

Proof. The equivalences 1 ⇐⇒ 2 and 3 ⇐⇒ 4 are the definitions, so let us prove 2 ⇐⇒ 3.
We begin by proving 2 ⇒ 3. Let x : Mf with u1 x = u2 x and q x = i . Then we have for

xf x = (a,v) that t a = q x = i ,

ξf ×I (u1 x) = Jf × IK(u1) (pMf (ξf x)) = (a, t a, λb .u1(v b))

and

ξf ×I (u2 x) = Jf × IK(φ) (ΣA×IK (ξf ×I (u1 x)))

= Jf × IK(φ) (ΣA×IK (a, t a, λb .u1 (v b))

= (a, t a, λb .φ(u1 (v b),b)).

By these calculations and Since u1 x = u2 x , we also have for all b : B with f b = a that u1(v b) =
φ(u1 (v b),b). Applying Lem. B.4 to y = v b we get that q (v b) = s b and u1 (v b) = u2 (v b), thus
v b : Vs b and 3 holds.

316

For the other direction, assume that ξf x = (a : A,v : ΠfMf), t a = i and (∀b : B. f b = a ⇒ v b :
Vs b). We show that u1 x = u2 x by giving a bisimulation R that relates u1 x and u2 x . We put

X = 1+ΣB . s
∗V

R : X → Mf ×Mf

R(∗) = (u1 x ,u2 x)

R(b,y) = (u1 y,φ(y,b))

which is a relation over Mf . To prove that R is a bisimulation, there are two cases to consider. First,
we have (u1 x ,u2 x) : R. Note that

ξf ×I (u1 x) = (a, t a, λb .u1 (v b))

and

ξf ×I (u2 x) = (a, t a, λb .φ(u1 (v b),b))

so that ρf ×I (u1 x) = (a, t a) = ρf ×I (u1 x). Moreover, we have for all b : B that u1 (v b) and
φ(u1 (v b),b) are related by R. For the second case, let b : B and y : Vs b . Then for xf y = (a′,v ′) we
have

ξf ×I (u1 y) = (a′, t a′, λb ′.u1 (v
′b ′))

and

ξf ×I φ(y,b) = (a′, s b, λb ′.φ(u1 (v
′b ′),b ′)).

Since y : Vs b , we have, by definition, that s b = qy = t a′, thus (a′, t a′) = (a′, s b). Moreover,
u1 (v

′b ′) and u1(v
′b ′,b ′) are again related by R. Hence, we can conclude that R is a bisimulation,

and so u1 x = u2 x . □

Theorem 6.3.6. By Lemma B.5.4, we immediately have that ξf : Mf → Jf K(Mf) restricts to ξ ′ : V →JPK(V). To prove that ξ ′ is also final we need another ingredient. We define a natural transformation
ι : ΣI JPK ⇒ Jf KΣI (where ΣI : B/I → B) for each k : X → I by ιk

(
i : I ,a : A,v : Πf (s

∗ k)
)
=

(a, λb .(s b,v b)) where t(a) = i .
Now, let k : X → I be in B/I and c : k → JPK(k) be a coalgebra on k . Using ι, we can define a

morphism h as in the following diagram.

ΣIk Mf

Jf K(ΣIk) Jf K(Mf)

ιk ◦ΣI c

h

ξfJf K(h)
Thus for i : I and x : X with k(x) = i , and c(x) = (a,v), we have

ξf (h(i,x)) = Jf K(h)(ιk (i,a,v)) = (a, λb .h(s b,v b)). (B.1)

317

Appendix B. Proofs of Section 6.3

Using (B.1), we can now show that h(k x ,x) : Vk x for x : X . For brevity, we put i B k x . By
Lemma B.5.3, we need to show that for ξf (h(i,x)) = (a, λb .h(s b,v b)) with c x = (a,v) we have
t a = i and h(s b,v b) : Vs b . The first is immediate, since (a,v) : JPK(k), thus t a = i by definition of
the extension JPK of P . The second follows by coinduction, as k (v b) = s b.

This allows us to define the coinductive extension c̃ : X → V of c by c̃ x = h(k x ,x) as a morphism
k → q in B/I . That c̃ is a homomorphism c → ξ ′ is easily checked as follows.

ξ ′(̃c x) = ξ ′(h(k x ,x))

= ξf (h(k x ,x))

= (a, λb .h(s b,v b)) (a,v) = c x

= (a, λb .h(k (v b),v b)) k (v b) = s b

= (a, λb .̃c v b)

= (JPK c̃)(c x)
Finally, we show how uniqueness of c̃ follows from uniqueness of h. Let д : (k, c)→ (q, ξ ′) be aJPK-homomorphism, and define д′ : ΣIk → Mf by д′(i : I ,x : Xi) = д x . It is easy to see that д′ is aJf K-homomorphism from ιk ◦ ΣIc to ξf :

ξf (д
′ (i,x)) = ξf (д x)

= (JPKд)(c x) д homomorphism
= (a, λb .(s∗ д)(v b)) (a,v) = c x

= (a, λb .д′(s b,v b)) (∗)
= (Jf Kд′)(ιk ((ΣIc)(i,x)))

where (∗) follows since v b : Vs b and q(д(v b)) = k(v b) = s b by д being a morphism from k to q.
Thus, by finality of ξf , д′ = h and so д = c̃ . □

318

Summary

Induction and coinduction are threads that cross the landscape of Mathematics and Computer
Science as methods to define objects and reason about them. Of these two, induction is by far the
better known technique, although coinduction has always been around in disguise. It was only in
recent years that we began to see through this disguise and developed coinduction as a technique in
its own right. This led to some remarkable theory under the umbrella of coalgebra and to striking
applications of coinduction.

As it turns out, induction and coinduction are complementary techniques, they are dual in a
precise sense. Being complementary, it is often necessary to use both techniques or even intertwine
them. In this thesis, we show that combined induction-coinduction is often used implicitly, just like
induction and coinduction used to be before they were studied systematically. Thus, the purpose of
this thesis is to carefully study the combination of induction and coinduction, which hopefully, if
anything, inspires others to work on and use inductive-coinductive techniques.

One example, which pervades the thesis, illustrates the combination particularly well: the so-called
substream relation. A stream s, that is an infinite sequence, is a substream of stream t if all the
entries of s occur in order in t. Intuitively, one has to find for all entries in s an entry in t with the
same value in finitely many steps. The fact that we may only use a finite number of steps to find each
entry is an iterative process, while its repetition for all entries is a coiterative process. Since these
two processes are interleaved, the substream relation is a mixed inductive-coinductive relation.

To be able to deal with such examples, we aim in this thesis to find and study languages for inductive-
coinductive definitions and reasoning, which lend themselves to being automatically verifiable, can be
equipped with formal semantics, and allow human-readable specifications and proofs. Put in general
terms, the intention of studying languages for inductive-coinductive definitions and reasoning is
to provide a framework that is sufficiently rich to accommodate category theory and set theory.
Moreover, this framework should allow for semantics that are, in principle, independent of those
theories, and for proofs that can be formalised and automatically verified. This is of course an
ambitious goal that will not be fully attained in this thesis, but we will nonetheless contribute to it.

Towards these aims, we proceed in several steps. The first step is to have some objects to reason
about, which means specifically for this thesis that we provide two programming languages for
inductive-coinductive types. In the first language, one can only write terminating programs, while the
second allows arbitrary recursive specification. Such recursive specifications ease programming with
mixed inductive-coinductive types dramatically over programming with the iteration and coiteration
schemes in the first language. However, this increased expressiveness also comes at the price that
we give up simple syntactic conditions for well-defined programs (programs that terminate under
any observation) and have to characterise such programs in a different way.

To this end, we establish notions of observationally normalising programs, the well-defined pro-
grams, and an observational program equivalence in the presence of inductive-coinductive types
and arbitrary recursive specifications. As it turns out, the characterisation of observationally norm-
alising programs is itself an inductive-coinductive predicate. In contrast, the program equivalence
is introduced through a modal logic and turns out to be purely coinductive. Given such a program
equivalence, we have to ask whether it is well-motivated. An important property of the equivalence

319

Summary

is that is allows us to construct 2-categories of types and terms, in which equality captures com-
putations, while 2-cells represent program equivalences. In particular, least fixed point types and
greatest fixed point types carry, respectively, pseudo-initial algebras and pseudo-final coalgebras in
these 2-categories.

Even though the 2-category theoretical results give us some principles to reason about programs,
these principles are not always the most convenient ones to work with. For this reason, we develop
in the next step more convenient reasoning techniques: a bisimulation proof method, a syntactic first-
order logic that is itself recursive, and an algorithm that operates on fragments of the programming
languages. The bisimulation proof method can be enhanced by using so-called up-to techniques,
which we demonstrate by showing that the substream relation is transitive. In particular, we use an
up-to technique that allows us to use induction inside a bisimulation proof.

This setup becomes, unfortunately, rather complex because implementing induction as up-to
technique forces a stratification of a mixed inductive-coinductive proof into a coinduction and two
inductions. What is worse, the induction proofs must be proven independently of the coinduction,
which makes finding the correct induction hypothesis a highly non-trivial task. To overcome such
problems, we construe a recursive logic, in which inductive and coinductive proofs are incrementally
constructed together. Recursion in proofs of this logic is thereby controlled through the so-called
later modality. This modality allows us to ensure the correctness of a proof through each proof rule
separately, which makes both proof checking and the soundness proof easy to implement.

Up to this point, the thesis is about programming with simple types, and reasoning about a very
specific inductive-coinductive predicate (observational normalisation) and a very specific coinductive
relation (observational equivalence). Both are defined in naive set theory, which means that neither
are given in a principled manner nor that proofs about them can be directly formally expressed.
This clearly violates our aims and is what caused us to invent, for example, a new logic from scratch.
The remainder of the thesis deals with this issue in that we develop a category theoretic and a type
theoretic approach that allow us to formally express results about simple inductive-coinductive types,
and inductive-coinductive predicates and relations. It turns out that inductive-coinductive predicates
and relations are best expressed as certain dialgebras in fibrations. This approach subsumes simple
types and general dependent types. What is more, we are able to define a class of strictly positive
dependent types and reduce them to initial algebras and final coalgebras of polynomial functors. This
reduction to minimal requirement allows us to interpret dependent types in well-studied models.
The category theoretical approach to dependent types is concluded by an analysis of the logical
principles that are available in a fibration that is closed under strictly positive dependent types.

Following the guiding principles of the category theoretical development, we construct also a
(syntactic) dependent type theory. This results in a small type theory that is merely based on
inductive-coinductive dependent types, yet it admits all basic logical operators like conjunction,
implication, quantification etc. Since this type theory is built on iteration and coiteration principles,
we are able to show that all terms in that theory are strongly normalising. The thesis is concluded
by giving a general induction principle for this type theory and an elaborate example of inductive-
coinductive reasoning in Agda.

320

Samenvatting

Inductie en coinductie vormen twee technieken in het landschap van Wiskunde en Informatica
die gebruikt worden om objecten te definiëren en om eigenschappen van deze objecten te laten zien.
Inductie is bekender dan coinductie, maar coinductie was er op de achtergrond ook altijd al. In de
laatste jaren is men begonnen coinductie als een op zich zelf staande techniek te ontwikkelen. In
het kader van coalgebra is daar een uitgebreide theorie met opmerkelijke toepassingen uitgekomen.

Het blijkt dat inductie en coinductie complementair zijn: ze zijn op een bepaalde manier duaal.
Omdat dat ze complementair zijn, moeten beide technieken vaak samen gebruikt worden. In dit
proefschrift laten wij zien dat dit vaak impliciet gebeurt, op dezelfde manier als inductie en coinductie
vroeger impliciet gebruikt werden voordat ze systematisch bestudeerd werden. Het doel van dit
proefschrift is dus de combinatie van inductie en coinductie in detail te bestuderen, wat hopelijk
inspiratie geeft om inductieve/coinductieve technieken verder te ontwikkelen en te gebruiken.

Een voorbeeld, die als een rode draad door dit proefschrift loopt en de combinatie verduidelijkt,
is de zogenaamde deelstroomrelatie. Die relateert stromen, dus oneindige rijen, s and t dan en
slechts dan als alle elementen in s in dezelfde volgorde in t voorkomen. De intuïtie is dat we voor
iedere positie in s een element met dezelfde waarde in t moeten vinden, in eindig veel stappen. Het
feit dat wij slechts eindig veel stappen mogen gebruiken om de positie te vinden, maakt het een
iteratief proces, terwijl de herhaling een coiteratief proces is. Omdat deze twee processen van elkaar
afhankelijk zijn, is de deelstroomrelatie een gemengde inductieve/coinductieve relatie.

Om met dit soort voorbeelden om te kunnen gaan, bestuderen en zoeken we in dit proefschrift ta-
len voor inductieve/coinductieve definities en eigenschappen, die als basis voor de automatische verificatie
van bewijzen gebruikt kunnen worden, die een formele semantiek hebben, en die makkelijk inzetbaar zijn
door anderen. Vanuit een abstract perspectief is het doel van deze studie van inductieve/coinductieve
definities en bewijsprincipes het geven van een raamwerk dat als logische basis voor categorieën-
theorie een verzamelingstheorie kan dienen. Verder moet het mogelijk zijn een semantiek voor dit
raamwerk te geven, die in beginsel onafhankelijk van deze theorieën is, en moet het mogelijk zijn
bewijzen uit dit raamwerk te formaliseren en automatisch te verifiëren. Dit is een ambitieus doel
dat niet geheel gehaald kan worden in dit proefschrift, maar waartoe we zeker een bijdrage leveren.

We gaan in meerdere stappen te werk om in richting van de bovengenoemde doelen te gaan.
De eerste stap is dat we objecten nodig hebben waarvan we eigenschappen willen beschrijven. In
dit proefschrift betekent dit specifiek dat wij twee talen voor het programmeren met inductieve en
coinductieve typen introduceren. In de eerste taal is het mogelijk alleen convergerende programma’s
op te schrijven, terwijl de tweede taal willekeurige, recursieve specificaties toestaat. Zulke recursieve
specificaties maken het programmeren met gemengde inductieve/coinductieve typen veel makkelij-
ker, vergeleken met het programmeren met iteratie- en coiteratieschema’s in de eerste taal. Het
probleem met algemene recursie is dat wij eenvoudige, syntactische condities voor welgedefinieerde
programma’s—die bij het toepassen van iedere observatie termineren—verliezen en dat we deze
programma’s op een andere manier moeten karakteriseren.

Om dit te bereiken, introduceren we een begrip van welgedefinieerde programma’s, dat we “ob-
servationally normalising” noemen, en een programma-equivalentie in de context van inductie-
ve/coinductieve typen en algemene recursieve specificaties. Het blijkt dat de karakterisering van

321

Samenvatting

welgedefinieerde programma’s zelf een inductief/coinductief predicaat is. Daarentegen wordt de pro-
grammaequivalentie als een modale logica geïntroduceerd, en is deze equivalentie puur coinductief.
Om een goede motivatie voor deze programmaequivalentie te geven, introduceren we een 2-categorie
van typen, termen en equivalenties als 2-cellen. In deze 2-categorie komen kleinste fixpunten overeen
met pseudo-initiële algebra’s, en grootste fixpunten met pseudo-finale coalgebra’s.

Hoewel we bepaalde technieken uit 2-categorieëntheoretische resultaten kunnen halen, zijn deze
technieken niet altijd het meest geschikt. Daarom ontwikkelen wij in een volgende stap praktischere
bewijsmethoden: een methode gebaseerd op bisimulaties, een syntactische, recursieve eerste-orde
logica, en een algoritme voor een fragment van de programmeertalen. De bisimulatieaanpak kan
door zogenaamde up-to technieken verbeterd worden. Wij demonstreren dit door een voorbeeld,
waarin we laten zien dat de deelstroomrelatie transitief is. Daarbij maken maken wij vooral gebruik
van een up-to techniek waarmee we inductie in een bisimulatiebewijs kunnen gebruiken.

Deze opzet wordt helaas best ingewikkeld, omdat door de implementatie van inductie als up-
techniek een stratificatie van een gemengd inductief/coinductief bewijs in een coinductie en twee
inducties gebeurt. Sterker nog, de inductieve bewijzen moeten onafhankelijk van de coinductieve
stap bewezen worden, waardoor het vinden van de juiste inductiehypotheses zelf een ingewikkelde
opgave wordt. Om dit probleem op te lossen, ontwikkelen we een recursieve logica waarin inductieve
en coinductieve bewijzen samen en incrementeel geconstrueerd worden. Om te voorkomen dat de
recursie in bewijzen misgaat, gebruiken wij de zogenaamde “later modality”. Omdat het door deze
modaliteit mogelijk is de correctheid van bewijzen op het niveau van regels te waarborgen, worden
ook het controleren van bewijzen en het correctheidsbewijs vereenvoudigd.

Tot dit punt gaat het in het proefschrift alleen maar over het programmeren met eenvoudige typen,
en over eigenschappen van een specifiek inductief/coinductief predicaat (observational normalisa-
tion) en een specifieke coinductieve relatie (observational equivalence). Beide zijn in een naïeve
verzamelingstheorie gedefinieerd, dus zijn deze definities niet op fundamentele principes gebaseerd,
en kunnen bewijzen over dit predicaat/deze relatie niet direct formeel uitgedrukt worden. Dit gaat
tegen onze doelen in, en is een reden om de recursieve logica te ontwikkelen. In het resterende deel
van het proefschrift lossen we dit op door categorieëntheoretische en typentheoretische aanpakken
te ontwikkelen die het mogelijk maken resultaten over eenvoudige inductieve/coinductieve typen,
predicaten en relaties formeel uit te drukken. Het blijkt dat dialgebra’s in vezelingen de beste manier
zijn om inductieve/coinductieve predicaten en relaties uit te drukken. Door deze aanpak wordt het
ook mogelijk met eenvoudige typen en algemene afhankelijke typen om te gaan. Bovendien kun-
nen wij een klasse van strikt positieve, afhankelijke typen definiëren, waarvoor wij een semantiek
in vorm van initiële algebra’s en finale coalgebra’s van polynomiale functoren krijgen. Door deze
reductie naar minimale eisen wordt het mogelijk afhankelijke typen over welbekende modellen te in-
terpreteren. We sluiten de categorieëntheoretische aanpak af met een analyse van logische principes
die gelden in een vezeling die gesloten is onder strikt positieve, afhankelijke typen.

De laatste stap is de constructie van een (syntactische) afhankelijke typentheorie, waarbij wij de
principes van de categorieëntheoretische aanpak volgen. Daardoor krijgen wij een typentheorie
met weinig regels die alleen maar op inductieve/coinductieve, afhankelijke typen gebaseerd is, maar
nog steeds logische operatoren zoals conjunctie, implicatie en kwantificering toestaat. Omdat deze
typentheorie alleen op iteratie en coiteratie gebaseerd is kunnen wij laten zien dat alle termen in
deze theorie sterk-normaliserend zijn. We sluiten het proefschrift met een algemeen inductieprincipe
voor deze typentheorie en een uitgebreid voorbeeld van een inductief/coinductief bewijs in Agda.

322

Zusammenfassung

Induktion und Koinduktion ziehen sich durch die mathematische und informatische Landschaft
wie zwei Ströme, die genutzt werden um Objekte zu definieren und Eigenschaften dieser Objekte
herzuleiten. Von den beiden Techniken ist Induktion die besser bekannte, obwohl Koinduktion schon
immer, wenn auch implizit, genutzt worden ist. Lediglich in den letzten Jahren wurde Koinduktion als
eigenständige Technik entwickelt, wobei sich das Gebiet der sogenannten Koalgebren herausgebildet
hat. Dieses Gebiet umfasst mittlerweile eine weitläufige Theorie und bemerkenswerte Anwendungen.

Es hat sich herausgestellt, dass Induktion und Koinduktion komplementäre Techniken sind: um
genau zu sein, sind sie dual. Da sie komplementär sind, ist es häufig notwendig beide Techniken
zusammen zu gebrauchen. In dieser Dissertation zeigen wir, dass dies zumeist implizit passiert, ge-
nauso wie früher Induktion und Koinduktion implizit genutzt worden sind, bevor sie systematisch
untersucht worden sind. Der Zweck dieser Dissertation ist daher systematisch und im Detail die
Kombination von Induktion und Koinduktion zu untersuchen. Falls irgendetwas aus dieser Disserta-
tion hervorgeht, dann dass sie hoffentlich andere inspiriert induktiv-koinduktive Techniken weiter
zu entwickeln und zu gebrauchen.

Ein Beispiel, das sich als roter Faden durch diese Arbeit zieht und das die Kombination von
Induktion und Koinduktion verdeutlicht, ist die sogenannte Teilstromrelation. In dieser Relation
stehen Ströme (unendliche Folgen) s und t genau dann in Beziehung, wenn alle Einträge in s in der
gleichen Reihenfolge in t auftauchen. Die Intuition dieser Beziehung ist, dass wir für jede Position
in s mit Gebrauch von endlich vielen Schritten einen Eintrag in t mit dem gleichen Wert finden
müssen. Tatsächlich ist die Suche in endlich vielen Schritten ein iterativer Prozess, wohingegen ihre
Wiederholung für jede Position ein koiterativer Prozess ist. Da diese beiden Prozessen verzahnt sind,
ist die Teilstromrelation eine gemischt induktiv-koinduktive Relation.

Um mit derartigen Beispielen umgehen zu können, untersuchen wir in dieser Arbeit Sprachen für
induktiv-koinduktive Definitionen und Eigenschaften, welche als Basis für die automatische Verifikation
von Beweisen genutzt werden können, welche eine formale Semantik haben, und welche es ermögli-
chen Spezifikationen und Beweise derart zu formulieren, dass diese für Menschen verständlich sind. Aus
der Vogelperspektive ist das Ziel unserer Untersuchungen von induktiv-koinduktiven Definitionen
und Beweisen das Schaffen eines Rahmens, welcher als logisches Fundament für Kategorien- und
Mengentheorie fungieren kann. Außerdem muss es möglich sein, diesem Rahmen eine Interpretation
zu geben, die im Prinzip unabhängig von diesen Theorien ist und es muss möglich sein die Beweise,
die in diesem Rahmen gegeben werden, zu formalisieren. Das ist ein ehrgeiziges Ziel, das wir in
dieser Arbeit nicht erreichen, und doch werden wir sicher einen Beitrag in diese Richtung leisten.

Um die genannten Ziele zu erreichen, werden wir in mehreren Schritten vorgehen. Zunächst
benötigen wir Objekte, über die wir Aussagen treffen können. In dieser Arbeit bedeutet das im
Speziellen, dass wir zwei Programmiersprachen zum Programmieren mit induktiven und koinduk-
tiven Typen entwickeln. In der ersten Sprache können nur terminierende Programme beschrieben
werden, während die zweite Sprache beliebige rekursive Programme zulässt. Im Vergleich zu den
Iterations- und Koiterationsschemata der ersten Sprache, wird das Programmieren durch das Erlau-
ben beliebiger Rekursionen immens vereinfacht. Allerdings ist der Preis, den wir für die stärkere
Ausdruckskraft zahlen müssen, dass es nicht mehr möglich ist wohldefinierte Programme, die unter

323

Zusammenfassung

jeder Beobachtung terminieren, durch einfache syntaktische Kriterien zu charakterisieren.
Um eine solche Charakterisierung dennoch zu erreichen und umAussagen über induktiv-koinduktive

Programme mit beliebiger Rekursion treffen zu können, führen wir einen Begriff von wohldefinierten
Programmen, die wir “observationally normalising” nennen, und eine Programmäquivalenz ein. Es
stellt sich heraus, dass die Charakterisierung von wohldefinierten Programmen selbst ein induktiv-
koinduktives Prädikat ist. Dahingegen ist die Programmäquivalenz durch eine Modallogik gegeben
und rein koinduktiv. Um die Programmäquivalenz zu motivieren, definieren wir eine 2-Kategorie,
bestehend aus Typen als Objekte, Programmen als Morphismen und Programmäquivalenzen als
2-Zellen. In dieser 2-Kategorie werden Berechnungen durch Gleichungen zwischen Morphismen
repräsentiert, während herleitbare Programmäquivalenzen Isomorphismen von Morphismen sind.
Im Speziellen zeigen wir, dass kleinste Fixpunkttypen mit pseudo-initialen Algebren und größte
Fixpunkttypen mit pseudo-finalen Koalgebren zusammenfallen.

Auch wenn die Resultate über 2-Kategorien uns bereits einige Prinzipien geben, um Beweise
über Programme zu führen, ist dieser Ansatz nicht immer der geeignetste. Daher entwickeln wir im
Folgenden praktischere Beweistechniken: eine auf Bisimulationen basierte Methode, eine syntaktische
Prädikatenlogik erster Stufe mit rekursiven Beweisen, und einen Algorithmus, der die Äquivalenz
für ein Fragment der Programmiersprachen entscheiden kann. Die Bisimulationenmethode kann
durch sogenannte up-to-Techniken verbessert werden. Wir führen dies anhand eines Beispiels vor,
in welchem wir zeigen, dass die Teilstromrelation transitiv ist. Hierbei benutzen wir vor allem eine
up-to-Technik, durch welche wir Induktion innerhalb eines Bisimulationsbeweis gebrauchen können.

Leider wird dieser Ansatz ziemlich komplex, da die Umsetzung von Induktion als up-to-Technik
einen gemischt induktiv-koinduktiven Beweis in eine Koinduktion und zwei Induktionen schichtet.
Schwerer wiegt aber, dass die induktiven Beweise unabhängig von dem koinduktiven Schritt geführt
werden müssen, wodurch das Finden der richtigen Induktionsannahme selbst zu einer schwierigen
Aufgabe wird. Um dieses Problem zu lösen, entwickeln wir eine rekursive Logik, in der induktive
und koinduktive Beweise zusammen und inkrementell konstruiert werden. Rekursion wird in dieser
Logik durch die sogenannte “later modality” kontrolliert. Mit Hilfe dieser Modalität können wir die
Korrektheit von formalen Beweisen in jedem Beweisschritt einzeln sicherstellen, wodurch das Prüfen
von Beweisen und der Korrektheitsbeweis für die Logik relativ einfach werden.

Bis hierin geht es in der Dissertation allein um das Programmieren mit einfachen Typen, und
um Eigenschaften eines spezifischen induktiv-koinduktiven Prädikates (observational normalisation)
und einer spezifischen koinduktiven Relation (observational equivalence). Beide sind in naiver Men-
genlehre definiert, das heißt, dass ihre Definitionen weder auf fundamentalen Prinzipien basieren
noch, dass Aussagen über sie direkt formalisiert werden können. Dies widerspricht unseren Zielen
und ist einer der Gründe, warum wir die rekursive Logik entwickeln mussten. Im übrigen Teil der
Dissertation lösen wir dieses Problem auf, indem wir kategorientheoretische und typentheoretische
Ansätze entwickeln, welche es uns erlauben Aussagen über induktiv-koinduktive Typen, Prädikate
und Relationen formal auszudrücken. Dabei stellt sich heraus, dass induktiv-koinduktive Prädikate
und Relationen am besten als sogenannte Dialgebren in Faserkategorien präsentiert werden. Dieser
Ansatz erlaubt es uns mit einfachen und abhängigen Typen umzugehen. Darüber hinaus können wir
in diesem Aufbau eine Klasse von strikt positiven, abhängigen Typen definieren, für die wir eine
Interpretation durch initiale Algebren und finale Koalgebren von polynomiellen Funktoren angeben
können. Durch dies Reduktion auf minimale Anforderungen wird es möglich, unsere abhängigen
Typen in wohlbekannten Modellen zu interpretieren. Wir schließen den kategorientheoretischen

324

Ansatz mit einer Analyse der logischen Prinzipien, die aus einer, unter strikt positiven abhängigen
Typen abgeschlossenen, Faserkategorie hervorgehen.

Im letzten Schritt konstruieren wir, den Prinzipien des kategorientheoretischen Ansatzes fol-
gend, eine (syntaktische) abhängige Typentheorie. Daraus resultiert eine Typentheorie, die allein
auf induktiv-koinduktiven Typen basiert ist und die mit wenigen Schlussregeln auskommt, in der
aber trotzdem alle Operatoren (Konjunktion, Implikation,Quantoren etc.) einer Prädikatenlogik erster
Stufe ausgedrückt werden können. Da diese Typentheorie ausschließlich auf Iteration und Koiterati-
on basiert, können wir zeigen, dass jede Reduktion zu einer Normalform führt. Dies stellt, zusammen
mit Konfluenz und kanonischen Normalformen, die Konsistenz der Typentheorie als Logik sicher.
Wir schließen die Dissertation mit einem allgemeinen Induktionsprinzip für diese Typentheorie und
einem ausführlichen Beispiel eines induktiv-koinduktiven Beweises in Agda.

325

Curriculum Vitae

2000 – 2006 Abitur (university entrance qualification), Grammar school Gaußschule, Braun-
schweig.

2006 – 2007 Alternative Civilian Service, Umweltinformations- und Innovationszentrum
(Centre for environment information and innovation), Städtisches Klinikum
Braunschweig.

2007 – 2011 Software development for train control and communication system, BBR Verkehrs-
technik, Braunschweig.

2007 – 2010 Bachelor Computer Science, TU Braunschweig, Bachelor’s Thesis: Parallelism
investigation for elliptic curve key exchange, Institute of Computer and Network
Engineering.

2011 – 2012 Research Assistant: Project VerSyKo Institute of Theoretical Computer Science,
TU Braunschweig, Supervised by Stefan Milius.

2010 – 2012 Master Computer Science, TU Braunschweig, Master’s Thesis: Transformation of
SCADE models for SMT based verification, Institute of Theoretical Computer
Science.

2012 – 2013 Internship: Research on coalgebra-based descriptions of systems, CWI (Centre for
Mathematics and Computer Science), Amsterdam, Supervised by Marcello Bon-
sague and Jan Rutten.

2013 – 2017 PhD Computer Science, Radboud University, Nijmegen. Thesis Title: Mixed
Inductive-Coinductive Reasoning – Types, Programs and Logic.

2017 – Post-Doc, PLUME Team of the LIP, ENS Lyon, CNRS.

327

Titles in the IPA Dissertation Series since 2015

G. Alpár. Attribute-Based Identity Management:
Bridging the Cryptographic Design of ABCs with
the Real World. Faculty of Science, Mathematics
and Computer Science, RU. 2015-01

A.J. van der Ploeg. Efficient Abstractions for
Visualization and Interaction. Faculty of Science,
UvA. 2015-02

R.J.M. Theunissen. Supervisory Control in
Health Care Systems. Faculty of Mechanical En-
gineering, TU/e. 2015-03

T.V. Bui. A Software Architecture for Body Area
Sensor Networks: Flexibility and Trustworthiness.
Faculty of Mathematics and Computer Science,
TU/e. 2015-04

A. Guzzi. Supporting Developers’ Teamwork
from within the IDE. Faculty of Electrical En-
gineering, Mathematics, and Computer Science,
TUD. 2015-05

T. Espinha. Web Service Growing Pains: Under-
standing Services and Their Clients. Faculty of
Electrical Engineering, Mathematics, and Com-
puter Science, TUD. 2015-06

S. Dietzel. Resilient In-network Aggregation for
Vehicular Networks. Faculty of Electrical En-
gineering, Mathematics & Computer Science,
UT. 2015-07

E. Costante. Privacy throughout the Data Cycle.
Faculty of Mathematics and Computer Science,
TU/e. 2015-08

S. Cranen. Getting the point — Obtaining and
understanding fixpoints in model checking. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2015-09

R. Verdult. The (in)security of proprietary cryp-
tography. Faculty of Science, Mathematics and
Computer Science, RU. 2015-10

J.E.J. de Ruiter. Lessons learned in the analysis
of the EMV and TLS security protocols. Faculty

of Science, Mathematics and Computer Science,
RU. 2015-11
Y. Dajsuren. On the Design of an Architecture
Framework and Quality Evaluation for Automot-
ive Software Systems. Faculty of Mathematics
and Computer Science, TU/e. 2015-12
J. Bransen. On the Incremental Evaluation of
Higher-Order Attribute Grammars. Faculty of
Science, UU. 2015-13
S. Picek. Applications of Evolutionary Computa-
tion to Cryptology. Faculty of Science, Mathem-
atics and Computer Science, RU. 2015-14
C. Chen. Automated Fault Localization for
Service-Oriented Software Systems. Faculty of
Electrical Engineering, Mathematics, and Com-
puter Science, TUD. 2015-15
S. te Brinke. Developing Energy-Aware Software.
Faculty of Electrical Engineering, Mathematics
& Computer Science, UT. 2015-16
R.W.J. Kersten. Software Analysis Methods
for Resource-Sensitive Systems. Faculty of Sci-
ence, Mathematics and Computer Science,
RU. 2015-17
J.C. Rot. Enhanced coinduction. Faculty of Math-
ematics and Natural Sciences, UL. 2015-18
M. Stolikj. Building Blocks for the Internet of
Things. Faculty of Mathematics and Computer
Science, TU/e. 2015-19
D. Gebler. Robust SOS Specifications of Probabil-
istic Processes. Faculty of Sciences, Department
of Computer Science, VUA. 2015-20
M. Zaharieva-Stojanovski. Closer to Reliable
Software: Verifying functional behaviour of con-
current programs. Faculty of Electrical En-
gineering, Mathematics & Computer Science,
UT. 2015-21
R.J. Krebbers. The C standard formalized in Coq.
Faculty of Science, Mathematics and Computer
Science, RU. 2015-22

R. van Vliet. DNA Expressions – A Formal Nota-
tion for DNA. Faculty of Mathematics and Nat-
ural Sciences, UL. 2015-23

S.-S.T.Q. Jongmans. Automata-Theoretic Pro-
tocol Programming. Faculty of Mathematics and
Natural Sciences, UL. 2016-01

S.J.C. Joosten. Verification of Interconnects. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2016-02

M.W. Gazda. Fixpoint Logic, Games, and Rela-
tions of Consequence. Faculty of Mathematics
and Computer Science, TU/e. 2016-03

S. Keshishzadeh. Formal Analysis and Verific-
ation of Embedded Systems for Healthcare. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2016-04

P.M. Heck. Quality of Just-in-Time Require-
ments: Just-Enough and Just-in-Time. Faculty of
Electrical Engineering, Mathematics, and Com-
puter Science, TUD. 2016-05

Y. Luo. From Conceptual Models to Safety Assur-
ance – Applying Model-Based Techniques to Sup-
port Safety Assurance. Faculty of Mathematics
and Computer Science, TU/e. 2016-06

B. Ege. Physical Security Analysis of Embedded
Devices. Faculty of Science, Mathematics and
Computer Science, RU. 2016-07

A.I. van Goethem. Algorithms for Curved
Schematization. Faculty of Mathematics and
Computer Science, TU/e. 2016-08

T. van Dijk. Sylvan: Multi-core Decision Dia-
grams. Faculty of Electrical Engineering, Math-
ematics & Computer Science, UT. 2016-09

I. David. Run-time resource management for
component-based systems. Faculty of Mathem-
atics and Computer Science, TU/e. 2016-10

A.C. van Hulst. Control Synthesis using Modal
Logic and Partial Bisimilarity – A Treatise Suppor-
ted by Computer Verified Proofs. Faculty of Mech-
anical Engineering, TU/e. 2016-11

A. Zawedde. Modeling the Dynamics of Require-
ments Process Improvement. Faculty of Mathem-
atics and Computer Science, TU/e. 2016-12

F.M.J. van den Broek. Mobile Communication
Security. Faculty of Science, Mathematics and
Computer Science, RU. 2016-13

J.N. van Rijn. Massively Collaborative Machine
Learning. Faculty of Mathematics and Natural
Sciences, UL. 2016-14

M.J. Steindorfer. Efficient Immutable Collec-
tions. Faculty of Science, UvA. 2017-01

W. Ahmad. Green Computing: Efficient Energy
Management of Multiprocessor Streaming Applic-
ations via Model Checking. Faculty of Electrical
Engineering, Mathematics & Computer Science,
UT. 2017-02

D. Guck. Reliable Systems – Fault tree analysis
via Markov reward automata. Faculty of Elec-
trical Engineering, Mathematics & Computer
Science, UT. 2017-03

H.L. Salunkhe. Modeling and Buffer Ana-
lysis of Real-time Streaming Radio Applications
Scheduled on Heterogeneous Multiprocessors. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2017-04

A. Krasnova. Smart invaders of private mat-
ters: Privacy of communication on the Internet
and in the Internet of Things (IoT). Faculty of
Science, Mathematics and Computer Science,
RU. 2017-05

A.D. Mehrabi. Data Structures for Analyzing
Geometric Data. Faculty of Mathematics and
Computer Science, TU/e. 2017-06

D. Landman. Reverse Engineering Source Code:
Empirical Studies of Limitations and Opportunit-
ies. Faculty of Science, UvA. 2017-07

W. Lueks. Security and Privacy via Crypto-
graphy – Having your cake and eating it too. Fac-
ulty of Science, Mathematics and Computer Sci-
ence, RU. 2017-08

Curriculum Vitae

A.M. Şutîi. Modularity and Reuse of Domain-
Specific Languages: an exploration with MetaMod.
Faculty of Mathematics and Computer Science,
TU/e. 2017-09
U. Tikhonova. Engineering the Dynamic Se-
mantics of Domain Specific Languages. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2017-10
Q.W. Bouts. Geographic Graph Construction and
Visualization. Faculty of Mathematics and Com-
puter Science, TU/e. 2017-11
A. Amighi. Specification and Verification of
Synchronisation Classes in Java: A Practical Ap-
proach. Faculty of Electrical Engineering, Math-
ematics & Computer Science, UT. 2018-01
S. Darabi. Verification of Program Parallelization.
Faculty of Electrical Engineering, Mathematics

& Computer Science, UT. 2018-02

J.R. Salamanca Tellez. Coequations and
Eilenberg-type Correspondences. Faculty of
Science, Mathematics and Computer Science,
RU. 2018-03

P. Fiterău-Broştean. Active Model Learning for
the Analysis of Network Protocols. Faculty of
Science, Mathematics and Computer Science,
RU. 2018-04

D. Zhang. From Concurrent State Machines to Re-
liable Multi-threaded Java Code. Faculty of Math-
ematics and Computer Science, TU/e. 2018-05

H. Basold. Mixed Inductive-Coinductive Reas-
oning: Types, Programs and Logic. Faculty of
Science, Mathematics and Computer Science,
RU. 2018-06

330

	Acknowledgements
	Introduction
	Notes

	Preliminaries
	Reduction Relations
	General Category Theory
	Presheaves
	Fibrations
	Algebras, Coalgebras and Dialgebras
	Coinductive Predicates and Up-To Techniques in Lattices

	2-Categories
	Adjunctions, Products, Coproducts and Exponents in 2-Categories
	Algebras and Coalgebras for Pseudo-Functors

	Notes

	Inductive-Coinductive Programming
	Programming with Iteration and Coiteration
	Types and Terms of the Calculus
	Computations in

	Programming with Equations
	Types and Terms of the Calculus =
	Computations in =

	Relation Between and =
	Conclusion and Related Work
	Notes

	Observations
	Observational Equivalence and Normalisation
	Observational Normalisation
	Tests and Observational Equivalence

	Category Theoretical Properties of and =
	Simple Classifying Categories
	Classifying 2-Categories

	Conclusion and Related Work
	Notes

	Inductive-Coinductive Reasoning
	Program Properties as Coinductive Predicates
	Terms as Transition System
	Observational Equivalence as Bisimilarity
	An Extensive Example: Transitivity of the Substream Relation

	A First-Order Logic for Observational Equivalence
	The Logic FOL`3́9`42`"̇613A``45`47`"603A
	A Model, Soundness and Incompleteness

	(Un)Decidability of Observational Equivalence
	Observational Equivalence is Undecidable
	Decidability on a Language Fragment

	Discussion
	Notes

	Categorical Logic Based on Inductive-Coinductive Types
	Hitchhiker's Guide to Dependent Type Theory
	Categorical Dependent Recursive Types
	Introductory Example
	Signatures and Recursive Types
	Recursive-Type Complete Categories
	Recursive-Type Closed Categories

	Constructing Recursive Types as Polynomials
	Internal Reasoning Principles
	Internal Logic
	Induction and Dependent Iteration
	Coinduction

	A Beck-Chevalley Condition for Recursive Types
	Discussion
	Notes

	Constructive Logic Based on Inductive-Coinductive Types
	The Calculus P
	Raw Syntax
	Pre-Types and Pre-Terms
	Reductions on Pre-Types and Pre-Terms
	Well-Formed Types and Terms

	Examples
	Meta Properties
	Derivable Structural Rules
	Subject Reduction
	Strong Normalisation
	Soundness proof for saturated sets model

	Dependent Iteration
	An Application: Transitivity of the Substream Relation
	Some Preliminaries in Agda
	Streams and Bisimilarity
	Stream-entry Selection and the Substream Relation

	Discussion
	Notes

	Epilogue
	References
	Own Publications

	Subject Index
	Notation Index
	Confluence for =
	Proofs of Section 6.3
	Summary
	Samenvatting
	Zusammenfassung
	Curriculum Vitae

