

The Prediction of Sea Waves in Transitional Depth Water.

David J. Walker

Thesis presented for the degree of Master of Engineering Science at the University of Adelaide,

June 1980.

This thesis embodies the results of supervised project work making up all of the work for the degree.

ii

Page

CONTENTS

		194 - C.			
List	t of 1	Figures			iv
List	ist of Plates				iv
Sync	Synopsis				v
Synopsis					
Decl	larat	ion			VII
Ackı	nowle	dgements			viii
1.	Intr	oduction			1
2. Literature Review			3		
	2.1	Introduction			3
	2.2	The Early Work on Wave Generation			3
	2.3	The Early Work on Wave Prediction			4
	2.4	The Equation of Radiative Transfer of Energy			5
	2.5	Recent Work on Wave Generation			6
		2.5.1 The Phillips Theory of Linear Growth2.5.2 The Miles Theory of Exponential Growth2.5.3 Non Linear Wave-Wave Interactions2.5.4 Energy Dissipation by Bottom Friction		z. W	6 7 7 8
	2.6	Recent Wave Prediction Studies			9
		2.6.1 Early Numerical Models2.6.2 The Barnett Model2.6.3 The Ewing Model2.6.4 The DHI Model			9 10 12 14
	2.7	Parametric Wave Prediction Models			15
3.	The	Prototype Experiment			17
	3.1	Introduction			17
	3.2	Gulf St Vincent			17
	3.3	The Wave Recorder			19
	3.4	Computer Monitoring			21
	3.5	The Computer Interface			23
		3.5.1 Instrument Housing3.5.2 Electronic Hardware3.5.3 Signal Synchronization			23 23 26
	3.6	Data Collection Computer Programmes			29
		3.6.1 The "WAVES" Programme		- 8	32

•

iii

P	а	g	e
		\sim	

	3.7	Special Data Processing Arrangements		35-
		3.7.1 Editing the Data		35
		3.7.2 Spectral Analysis		37
		3.7.2.1 Programme SPECT		39
		3.7.2.2 Programme SPECPLT		39
4.	The 1	Numerical Model		43
	4.1	The Basic Equation .		43
	4.2	The Source Function Terms		44
		A 2 1 Phillips' Growth Term		44
		4.2.1 Millips Growth Term		44
		4.2.3 Wave Breaking Term		45
		4.2.4 Bottom Friction Decay Term		45
		4.2.5 Opposing Wind, No Wind Dissipation Terms		45
		4.2.6 Wave-Wave Interactions		46
	4.3	The General Solution Technique		46
	1	4.3.1 Introduction		46
		4.3.2 The Finite Difference Operator		48
		4.3.3 Boundary Conditions		48
		4.3.4 The Lax-Wendroff Scheme		49
		4.3.5 Scheme Stability		50
	4.4	Wind Data		50
	4.5	The Computer Programmes - SEA2, SEA2D		51
5	Pocu	Ite and Discussion		56
J.	E 1			56
	5.1			56
	5.2	Results		
		5.2.1 Proving Run 1		50
		5.2.1.1 Significant Wave Height - Run 1	4	20 50
		5.2.1.2 Spectral Energy Distribution - Run	1	58
		5.2.2 Proving Run 2		58
		5.2.2.1 Significant wave neights - Kun 2	2	58
		5.2.2.2 Spectral Energy Distribution - Run	2	63
		5.2.3 Proving Kun 5 5.2.3.1 Significant Wave Height - Run 3		63
		5.2.3.2 Spectral Energy Distribution - Run	3	63
	5.2	Discussion		63
	5+5	DIBORDETON		-
6.	Futu	ire Work		70
Apı	pendix	κ Α		, 71
			3	70
Bi	bliogı	caphy		12

LIST OF FIGURES

1.	Gulf St Vincent	18
2.	Wave Data Collection Equipment	25
3.	Data Signal Processing	27
4.	Synchronization Circuit	28
5.	Synchronization Logic	30
6.	Flow Chart - Programme WAVES	33
7.	Draper-Tucker Analysis Results	36
8	Programme SPECT Output	40
9.	Numerical Model Grid	47
10.	Flow Chart - Programme SEA2	52
11.	Programme SEA2 Output	54
12.	Input Data for Programme SEA2D	55
13.	Plots of Significant Wave Height	57
14.	Spectral Energy Plots - Run 1	59
15.	Spectral Energy Plots - Run 2	61
16.	Spectral Energy Plots - Run 3	64
17.	Wind Data - Run 1	67
18.	Wind Data - Run 2	68
19.	Wind Data - Run 3	69
	LIST OF PLATES	
1.	Wave Recording Beacon	20
2.	DEC PDP 11/34 Computer	22
3.	Instrument Rack	24
4.	Synchronization Unit	31
5.	Editing of Wave Data	38
6.	Spectral Energy Plotting	42

iv

Page

A research programme has been undertaken investigating the generation of sea waves in Gulf St Vincent, South Australia. The Gulf is a partially enclosed body of water of transitional depth for the waves generated over its fetches.

A computer based data collection system was initiated where wave data from a wave recording beacon was transmitted under computer control via VHF radio link to a receiver in the University of Adelaide which in turn was connected through an interface, to a PDP-11/34 computer with facilities for analog and digital input and output. The computer was programmed to manage the whole data collection programme from initiating the data transmission to the collection and storage of the data. By writing the data onto magnetic tape it was readily available for further processing and analysis which was carried out on the same machine. The interactive graphics capabilities of the computer were utilized to allow the ready plotting of the data in graphical form, editing (if necessary) and the display of the spectral analysis results.

The data collected was used to test a numerical simulation technique which has received much attention from numerous researchers. The technique, although having a broad theoretical base, has been used mainly in the open ocean situation and there was some doubt about how it would perform in the Gulf conditions of limited fetch, relatively shallow depth and, by comparison, slight seas.

The model gave acceptable results although it did tend to overestimate the predicted wave energy. This indicated that some allowance should be made for the energy dissipation caused by bottom friction. A simple energy dissipation term was added to the numerical model. However it overestimated the energy dissipation and the measured wave energy was often between the bounds set by the model running with and without the energy dissipation term. Further refinement of the dissipation parameters is required in future work.

DECLARATION

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university, and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference is made in the text.

30/6/80.

ACKNOWLEDGEMENTS

The author wishes to thank all those who helped to make this thesis possible. The Department of Marine and Harbours for the use of the wave recording beacon and for help in updating the recording system, especially by Jim Biggs and George Slow. The Civil Engineering Department, Instrumentation Laboratory staff, Lionel Badenock and Robert Battaglia for all their assistance and advice. Mr R. Culver without whose supervision, inspiration and persistance none of this would have been possible and last, but not least, his parents for their support.

LIST OF SYMBOLS

А	wave energy growth term
a	fourier component
В	wave energy growth term
bj	fourier component
С	phase velocity
c S	group velocity
c j	wave data point
Ē	wave energy function
e i,j	energy term
D _k	energy component
E	fully developed energy spectrum
F	wave energy dissipation term
f	frequency
fN	Nyquist frequency
F ₁	dissipation function
8	gravitational acceleration
Н	equivalent wave height
h	water depth
н _s	significant wave height
Hsig	significant wave height
i	$\sqrt{-1}$
k	wave number
^k 1, ^k 2	wave number components
N	number of data points
S _{i,j}	source term
t	time
U	wind velocity function
u*	friction velocity

ix