

THE RELATIONSHIPS BETWEEN EICOSANOID PRODUCTION AND PRO-INFLAMMATORY CYTOKINES

by

PETER SAVAS PENGLIS, MBBS, FRACP

A thesis submitted to the University of Adelaide

As the requirement for the degree of Doctor of Philosophy

Department of Medicine, University of Adelaide

and

Rheumatology Unit, Royal Adelaide Hospital

31/12/01

Archival Copy

TABLE OF CONTENTS

UBLICATIONS AND ABSTRACTS ARISING FROM THIS THESISI
BBREVIATIONSIV
UMMARYVIII
UTHORS DECLARATIONIX
ACKNOWLEDGMENTSX

LITERATURE REVIEW 1	
1.1. INTRODUCTION 1	E
1.2. FATTY ACID BIOCHEMISTRY 4	4
1.2.1. Dietary fatty acids and their metabolites	4
1.2.2. Phospholipase A_2	6
1.2.2.1. Classification	
1.2.3. Cyclooxygenase	
1.2.3.1. Catalysis and isozymes	
1.2.3.2. Non-steroidal anti-inflammatory drugs 1	0
1.2.3.3. Cyclooxygenase and inflammation1	.3
1.2.3.4. Differential cyclooxygenase-1 and -2 activities in response to cell stimulation	
1.2.3.5. Intracellular location of cyclooxygenase-1 and -2	
1.2.3.6. Cyclooxygenase–1 and -2 and differential production of eicosanoids	
1.2.4. Prostaglandin E_2 1	
1.2.5. Prostaglandin E synthase2	
1.2.6. Thromboxane A_2	21

1.2.7.	Thromboxane A synthase	23
1.3. EICC	SANOID RECEPTORS	25
1.3.1.	PGE_2 receptors (EP)	26
1.3.2.	Thromboxane A_2 /prostaglandin H_2 (TXA) receptors	27
1.4. CELI	LULAR SIGNALLING	28
1.4.1.	G proteins	28
1.4.2.	Intracellular calcium	
1.4.3.	Protein kinases	32
1.4.3	.1. Protein kinase A	32
1.4.3		
1.4.4.	Mitogen activated protein kinases	35
1.4.5.	Signalling events altered by eicosanoids	37
1.4.6.	Signalling events which are affected by non-steroidal anti-inflammatory drugs	38
1.5. CYT	rokines	39
1.5.1.	Cytokine families	40
1.5.2.	Interleukin-1	41
1.5.3.	Tumour necrosis factor	41
1.5.4.	Cytokines and rheumatoid arthritis	43
1.5.5.	Interleukin-1 β and rheumatoid arthritis	44
1.5.6.	Tumour necrosis factor $lpha$ and rheumatoid arthritis	44
1.5.7	Eicosanoids and regulation of interleukin-1 β synthesis	45
1.5.8.	Eicosanoids and regulation of tumour necrosis factor α synthesis	47
1.6. SU	BCUTANEOUS AIR POUCH	48
1.7. RH	EUMATOID ARTHRITIS	51
1.7.1.	Pathology and pathogenesis	
1.7.2.	Effector mechanisms involved in tissue destruction	
1.7.3.	Treatment	

1.8.	AIMS AND JUSTIFICATIONS OF THE THESIS	54
------	---------------------------------------	----

GENERAL METHODOLOGY AND MATERIALS 56	
2.1. CULTURED U937 CELLS	
2.2. U937 CELL DIFFERENTIATION BY 1α ,25 (OH) ₂ VITAMIN D ₃	
2.3. PREPARATION OF SERUM-TREATED ZYMOSAN	
2.4. PREPARATION OF HUMAN SERUM	
2.5. U937 CELL STIMULATION	
2.6. COUNTER-CURRENT ELUTRIATION	
2.7. MONOCYTE STIMULATION	
2.8. SONICATED CELL PREPARATIONS	
2.9. PGH ₂ PREPARATION	
2.10. PGE ₂ ANTIBODY PREPARATION	
2.11. ELISA	
2.11.1. IL-1 β (U937 and human elutriated monocytes)	
2.11.2. TNFα (U937 and human elutriated monocytes)64	!
2.12. PGE_2 , TXA ₂ AND PGI_2 RADIOIMMUNOASSAY	5
2.13. WESTERN IMMUNOBLOT	Ó
2.13.1. Cell protein preparation	5
2.13.2. Gel preparation	
2.13.3. Protein electrophoresis	7
2.13.4. Protein transfer	7
2.13.5. Membrane probing	8

EICOSANOID PRODUCTION IN HUMAN U937 MONOCYTIC CELLS IN RESPONSE 10
EXOGENOUS AND ENDOGENOUS ARACHIDONIC ACID
3.1. INTRODUCTION
3.2. MATERIALS AND METHODS71
3.2.1. Materials
3.2.2. Methods
3.2.2.1. U937 cells
3.2.2.2. Disrupted cell preparations
3.3. RESULTS
3.3. RESOLTS
3.3.2. Eicosanoid production in untreated U937 cells from exogenous AA
3.3.3. COX-1 and -2 expression and eicosanoid production from exogenous AA
3.3.4. Effect of TXA synthase inhibition on eicosanoid production from exogenous AA in untreated
and 1α ,25-(OH)D ₃ /STZ-treated U937 cells
3.3.5. Eicosanoid production from exogenous PGH_2 in sonicated untreated U937 cells
3.3.6. Effect of aspirin on eicosanoid production from exogenous AA in untreated and 1α , 25-
(OH)D₃/STZ-treated U937 cells7
3.3.7. Effect of p38 MAP kinase inhibition on eicosanoid production from exogenous AA in 1α , 25-
dihydroxyvitamin D_3 /STZ-treated U937 cells7
3.3.8. Effect of COX-2 inhibition on eicosanoid production from endogenous AA in 1α , 25-
dihydroxyvitamin D_3 /STZ-treated U937 cells7
3.3.9. Effect of TXA synthase inhibition on eicosanoid production from endogenous AA in 1α , 25-
dihydroxyvitamin D_3 /STZ-treated cells
3.4. DISCUSSION

		Q4
3.5.	CONCLUSION	 0.

EICOSANOII	PRODUCTION IN HUMAN MONOCYTES IN RESPONSE TO EXOGENOUS AND
ENDOGENO	US ARACHIDONIC ACID
4.1. INTRO	ODUCTION
4.2. MATI	ERIALS AND METHODS
4.2.1.	Materials
4.2.2.	Methods
4.3. RESU	JLTS
4.3.1.	Time-course for PGE_2 and TXA_2 production from exogenous AA
4.3.2.	Relative PGE_2 and TXA_2 production from exogenous AA
4.3.3.	Eicosanoid production from exogenous AA in resting versus LPS-treated monocytes91
4.3.4.	Eicosanoid production from exogenous AA in resting monocytes in the presence of TXA
	synthase inhibition
4.3.5.	Cumulative eicosanoid production from endogenous AA93
4.3.6.	Cumulative eicosanoid production from endogenous AA in the presence of TXA synthase
	inhibition
4.3.7.	Effect of inhibition of COX expression or COX activity on the proportionate synthesis of
	TXA ₂ and PGE ₂
4.4. DISC	CUSSION95
4.5. CON	ICLUSION

PHARMACO	LOGICAL DISSECTION OF THE RELATIONSHIP BETWEEN THE SYNTHESIS
BY MONOCY	(TES OF PGE ₂ AND TXA ₂ AND IL-1 β AND TNF α
5.1. INTR	ODUCTION
5.1.1.	Thromboxane A synthase inhibitors
5.1.2.	Thromboxane A receptor antagonists
5.1.3.	Combination TXA synthase inhibition and TXA receptor antagonism
5.2. MAT	ERIALS AND METHODS104
5.2.1.	Materials
5.2.2.	Methods 105
5.2.2.	1. Transient aspirin exposure and washes
5.3. RESU	JLTS 106
5.3.1.	LPS dose-response and time-course for IL-1 β , TNF α , PGE ₂ and TXA ₂ in monocytes 106
5.3.2.	Effect of TXA synthase inhibition on IL-1 β , TNF α , PGE ₂ and TXA ₂ production in monocytes
5.3.3.	Effect of TXA receptor antagonism on cytokine and eicosanoid production in monocytes. 107
5.3.4.	Effect of p38 MAP kinase inhibition on cytokine and eicosanoid production in monocytes 108
5.3.5.	Effect of selective COX-2 inhibition on cytokine and eicosanoid production in monocytes 109
5.3.6.	Effect of COX-1 and/or COX-2 inhibition on cytokine and eicosanoid production in
	monocytes
5.3.7.	Dose-response of a selective or non-selective COX inhibitor on cytokine and eicosanoid
	production111
5,3.8.	Effect of a TXA receptor antagonist and TXA synthase inhibition, alone and in combination,
	on cytokine production in monocytes111
5.3.9.	Effect of TXA synthase inhibition and p38 MAP kinase inhibition, alone and in combination,
	on cytokine production in monocytes112
5.3.10.	Effect of TXA synthase inhibition and selective COX-2 inhibition, alone and in combination,
	on cytokine production in monocytes113

5.3.11	Effect of eicosanoid modulation and inflammatory cytokine production in U937 cells 114	4
5.3.12,	Relationship between TXA_2 , PGE_2 and TXA_2/PGE_2 ratio and inflammatory cytokine	
	production in human monocytes11.	5
5.4. DISCU	USSION	6
5.4.1.	Anti-TXA ₂ strategies and inhibition of TNF α or IL-1 β synthesis	6
5.4.2.	U937 cells versus human elutriated monocytes11	7
5.4.3.	NS-398 and increased TNF α production	7
5.5 CON(TLUSION	8

PROSTAGLANDIN E2 AND THROMBOXANE A2 HAVE OPPOSING REGULATORY EFFECTS		
ON THE P38 MAP KINASE CELL SIGNALLING PATHWAY		
6.1. INTRODUCTION		
6.1.1. MAP kinases, cytokine synthesis and COX-2 induction		
6.2. MATERIALS AND METHODS 122		
6.2.1. Materials		
6.2.2. Methods		
6.2.2.1. MAP kinase western immunoblots 122		
6.2.2.2. Western immunoblot membrane scan		
6.3. RESULTS 123		
6.3.1. Time-course and dose-response of p38 and p42/44 MAP kinase phosphorylation in response		
to LPS		
6.3.2. Effect of COX-1 inhibition on phosphorylated p38 MAP kinase 124		
6.3.3. Effect of COX-2 inhibition on phosphorylated p38 MAP kinase 125		
6.3.4. Effect of TXA synthase inhibition on phosphorylated p38 MAP kinase		
6.3.5. Effect of exogenous PGE_2 or TXA receptor agonist on phosphorylated p38 MAP kinase 120		
6.3.6. Effect of PKC inhibition and increased cAMP on phosphorylated p38 MAP kinase		

6.	3.7.	Effect of selective COX-2 inhibition on the induction of COX-2 protein	127
6.4.	DISC	USSION	128
6.5	CON	TI USION	130

EICOSANOII	D MODULATION AND TNFα PRODUCTION IN VIVO132
7.1. INTR	ODUCTION
7.1.1.	Rat air pouch ethical considerations 132
7,1.2.	Dietary strategies
7.2. MAT	ERIALS AND METHODS 134
7.2.1.	Materials
7.2.2.	Methods 135
7.2.2.	1. Rat chow
7.2.2.	2. Creation of the rat subcutaneous air pouch
7.2.2.	3. Rat air pouch experiments
7.2.2.	4. Protein assay
7.2.2.	5. Rat TNFα ELISA
7.2.2.	.6. Tissue sectioning
7.2.2	.7. Haematoxylin and eosin staining
7.3. RES	ULTS
7.3.1.	Eicosanoid production in the rat subcutaneous air pouch in response to STZ
7.3.2.	TNF α production in the rat subcutaneous air pouch in response to STZ
7.3.3.	Cell count and differential in the rat subcutaneous air pouch in response to STZ
7.3.4.	Protein production in the rat subcutaneous air pouch in response to STZ
7.3.5.	Effect of TXA synthase inhibition on TNF $lpha$ and eicosanoid production in the rat air pouch
7.3.6.	Dose-response for TXA synthase inhibition on TNF α production in the rat air pouch 143

7.3.7. TXA synthase in	hibitor dose-response and time-course on TXA_2 release into serum 143	
7.3.8. TXA receptor an	tagonist dose-response effect on TNF $lpha$ production in the rat air pouch 144	
7.3.9. Effect of combin	ed TXA synthase inhibition and/or TXA receptor antagonism on TNF $lpha$	
production in th	e rat air pouch144	
7.3.10. Effect of TXA sy	nthase inhibition or TXA receptor antagonism on cell infiltration and	
protein producti	on in the rat air pouch145	
7.3.11. Selective COX-2	? inhibition and TNF $lpha$ and eicosanoid production in the rat air pouch 145	
7.3.12. Non-selective C	OX-2 inhibition on TNF $lpha$ and eicosanoid production in the rat air pouch 146	
7.3.13. Dietary effects of	on TNF α and eicosanoid production in the rat air pouch	
7.3.14. Effect of combin	nations of anti-TXA $_2$ therapy and dietary treatments on TNF $lpha$ and eicosanoid	
production in th	e rat air pouch148	
7.3.15. Histology		
7.4. DISCUSSION		
7.5. CONCLUSION		

CONCLUSION AND FUTURE DIRECTIONS 158
8.1. SALIENT FINDINGS 158
8.2. TREATMENTS WHICH REDUCE TXA ₂ EFFECTS WHILE SPARING OR INCREASING PGE_2
AND PGI_2 EFFECTS IN RHEUMATOID ARTHRITIS AND OTHER INFLAMMATORY
DISEASES 160
8.3. THE CONSEQUENCES OF INCREASED SYNTHESIS OF TXA_2 RELATIVE TO PGE ₂ WITH
COX-2 INHIBITION163
8.4. SCOPE FOR FURTHER STUDIES165

APPENDIX

REAGENTS 167			
I		RADIOIMMUNOASSAY REAGENTS	7
Π	I.	ELUTRIATION REAGENTS 16	9
Ι	II.	ELISA REAGENTS	1
I	V.	WESTERN IMMUNOBLOT REAGENTS 17	'3
١	√.	GEL PREPARATION 17	7
, N	VI.	ELECTROPHORESIS17	78
v	VII.	PROTEIN TRANSFER	79
1	VIII.	PROBING MEMBRANE	30
ן	IX.	ECL DETECTION	81

PFFFRFNCFS	 2
KEFEKENCES	

PUBLICATIONS AND ABSTRACTS ARISING FROM THIS THESIS

EFFECT OF COMBINATION ANTAGONIST THROMBOXANE TREATMENT AND P38 MAP KINASE INHIBITION ON IL-1β PRODUCTION; Authors; **Penglis PS**, Caughey GE, Cleland LG, James MJ; National Annual Scientific and Clinical Meeting, Australian Rheumatology Association, Perth, 1999

CHARACTERISATION OF EICOSANOID PRODUCTION BY CYCLOOXYGENASE-1 and -2 IN RESPONSE TO ARACHIDONIC ACID; Authors; **Penglis PS**, Caughey GE, Cleland LG, James MJ; National Annual Scientific and Clinical Meeting, Australian Rheumatology Association, Perth, 1999

CORRELATION BETWEEN EICOSANOID RATIO AND TNFα PRODUCTION IN LPS-STIMULATED HUMAN MONOCYTES; Authors; **Penglis PS**, Caughey GE, Cleland LG, James MJ; National Annual Scientific and Clinical Meeting, Australian Rheumatology Association, Perth, 1999

DIFFERENTIAL REGULATION OF PROSTAGLANDIN E₂ AND THROMBOXANE A₂ PRODUCTION IN HUMAN MONOCYTES: IMPLICATIONS FOR THE USE OF CYCLOOXYGENASE (COX) INHIBITORS; **Penglis PS**, Caughey GE, Cleland LG, James MJ; Tenth Annual Scientific and Clinical Meeting, South Australian Branch of the

1

Australian Rheumatology Association, 1999; (Awarded Philip Alpers Rheumatology Prize for best Scientific Presentation)

DIFFERENTIAL REGULATION OF PROSTAGLANDIN E₂ AND THROMBOXANE A₂ PRODUCTION IN HUMAN MONOCYTES: IMPLICATIONS FOR THE USE OF CYCLOOXYGENASE (COX) INHIBITORS; 43rd Annual Scientific Meeting of the Australian Rheumatology Association, 2000; **Penglis PS**, Caughey GE, Cleland LG, James MJ; (Awarded Young Investigator/Wyeth Prize for best Scientific Presentation)

DIFFERENTIAL REGULATION OF PROSTAGLANDIN E₂ AND THROMBOXANE A₂ PRODUCTION IN HUMAN MONOCYTES: IMPLICATIONS FOR THE USE OF CYCLOOXYGENASE (COX) INHIBITORS; Royal Adelaide Hospital, Young Investigator Forum 2000; **Penglis PS**, Caughey GE, Cleland LG, James MJ; *(Awarded the Nimmo Prize for best Scientific Presentation)*

DIFFERENTIAL REGULATION OF PROSTAGLANDIN E₂ AND THROMBOXANE A₂ PRODUCTION IN HUMAN MONOCYTES: IMPLICATIONS FOR THE USE OF CYCLOOXYGENASE (COX) INHIBITORS; **Penglis PS**, Cleland LG, Demasi M, Caughey GE, James MJ; Journal of Immunology 2000; August 1, 165, 1605-1611

INCREASED TXA₂/PGE₂ RATIO WITH COX-2 INHIBITION: MODULATION OF TNFα PRODUCTION IN HUMAN MONOCYTES; **Penglis PS**, James MJ, Cleland LG; 64th Annual Scientific Meeting of the American College of Rheumatology 2000

CYCLOOXYGENASE INHIBITORS – ANY RESERVATIONS?; **Penglis PS**, James MJ, Cleland LG, Internal Medicine Journal 2001, 31, 37-41

EICOSANOID PRODUCTION BY HUMAN MONOCYTES: DOES COX-2 CONTRIBUTE TO A SELF-LIMITING INFLAMMATORY RESPONSE?; James MJ, **Penglis PS**, Caughey GE, Demasi M, Cleland LG, Inflammation Research, 2001, 50, 249-253

ROLES OF CYCLOOXYGENASE-1 AND –2 IN PROSTANOID PRODUCTION BY HUMAN ENDOTHELIAL CELLS: SELECTIVE UPREGULATION OF PROSTACYCLIN SYNTHESIS BY COX-2; Caughey GE, Cleland LG, **Penglis PS**, Gamble JR, James MJ, Journal of Immunology, 2001, 167, 2831-2838

COX-2 INHIBITION AND THROMBOTIC TENDENCY: A NEED FOR SURVEILLANCE; James MJ, Cleland LG, Stamp L, **Penglis PS**, Medical Journal of Australia, 2001, 175, 214-217

COX-2 INHIBITION PROLONGS PHOSPHORYLATED p38 MAP KINASE ACTIVITY AND TNFα PRODUCTION IN HUMAN MONOCYTES; **Penglis PS**, James MJ, Cleland LG; Australian Rheumatology Association 44th Annual Scientific Conference, 2001

TNFα SYNTHESIS IS INCREASED BY INHIBITION OF CYCLOOXYGENASE-2 AND REDUCED BY INHIBITION OF THROMBOXANE SYNTHASE THROUGH EFFECTS ON P38 MITOGEN ACTIVATED PROTEIN KINASE; **Penglis PS**, Caughey G, Cleland LG, James MJ, submitted

iii

ABBREVIATIONS

The following abbreviations are used in this thesis.

1α,25-(OH)D ₃	1α ,25-dihydroxyvitamin D ₃
AA	arachidonic acid (20:4 n-6)
Abs	antibodies
α-LNA	α -linolenic acid (18:3 n-3)
А	amp (s)
BCA	bicinchoninic acid
BSA	bovine serum albumin
cAMP	cyclic 3', 5'-adenosine
	monophosphate
°C	degrees Celsius
Ca ⁺⁺	calcium
CI	carboxyheptyl imidazole
COX	cyclooxygenase
cPLA ₂	cytosolic phospholipase A_2
CSF	colony stimulating factor
d	day (s)
Da	Dalton
DAG	diacylglycerol (s)

DHA	docosahexaenoic acid
DPBS	Dulbecco's PBS
DTT	dithiothreitol
ELISA	enzyme linked immuno assay
EP	prostaglandin E receptor
EPA	eicosapentaenoic acid
ERK	extracellular regulated kinases
ETrA	eicosatrienoic acid
FA	fatty acid (s)
FCS	fetal calf serum
g	gram
GSH	glutathione
h	hour (s)
H_2O_2	hydrogen peroxide
IBMX	1-methyl-3-isobutylxanthine
I-BOP	5-heptenoic acid, 7-{3-{3-hydroxy-4-
	$(4-iodophenoxy)-1-{2.2.1}hept-2-yl}-$
	,{1S-1 α ,2 α {Z},3 β (1E,3S*),4 α }
IFN	interferon
IL-1	interleukin-1
IL-1R	interleukin-1 receptor
IL-1Ra	interleukin-1 receptor antagonist
Ig	immunoglobulin(s)
IP ₃	inositol triphosphate
JNK	c-Jun NH ₂ -terminal kinase,

-

1.0440.0

aligned and a local

 \approx

v

	1.11-
k	kilo
1	litre
LA	linoleic acid
LPS	lipopolysaccharide
m	milli
Μ	molar
MAP	mitogen activated protein
MeOH	methanol
min	minute (s)
n	nano
NSAID	non-steroidal anti-inflammatory drug
O ₂	oxygen
OA	oleic acid
р	pico
PBS	phosphate-buffered saline
, PGA ₂	prostaglandin A ₂
PGE ₂	prostaglandin E_2
$PGF_{2\alpha}$	prostaglandin $F_{2\alpha}$
PGG ₂	prostaglandin G ₂
PGH ₂	prostaglandin H_2
PGI ₂	prostacyclin I ₂
PKA	protein kinase A
РКС	protein kinase C
PLA ₂	phospholipase A ₂
PLC	phospholipase C

ł

vi

PUFA	polyunsaturated fatty acid (s)
PMA	phorbol myristol acetate
RA	rheumatoid arthritis
RIA	radioimmunoassay
S	second (s)
SD	standard deviation
SKF86002	[5-(4-Pyridyl)-6 (4-fluorophenyl)-2,3-
	dihydroimidazo (2,1-b) thiazole]
sPLA ₂	secretory phospholipase A_2
sTNFR	secretory tumour necrosis factor
	receptor
STZ	serum-treated zymosan
TNF	tumour necrosis factor
TNFR	tumour necrosis factor receptor
TXA ₂	thromboxane A ₂
TXB_2	thromboxane B ₂

SUMMARY

Rheumatoid arthritis is an inflammatory disease of unknown cause associated with progressive joint damage and functional disability. Current therapy for rheumatoid arthritis is toxic and is associated with a high incidence of side effects.

Recently, the inflammatory cytokine tumour necrosis factor α has been reported to be an important, proximal mediator of rheumatoid arthritis. Antibodies or receptor antagonists for this molecule have been shown to be effective therapy for rheumatoid arthritis. However, such therapy remains expensive, inaccessible for the majority of patients and associated with adverse effects.

The aim of this thesis was to explore alternate strategies that may alter inflammatory cytokine production, particularly tumour necrosis factor α , and therefore provide a possible treatment for rheumatoid arthritis. The focus of the alternate strategies as described in this thesis are the eicosanoids, thromboxane A₂ and prostaglandin E₂. These strategies are safe, accessible and not associated with significant adverse events. Alteration of these eicosanoids was shown to modulate tumour necrosis factor α both *in vitro* and *in vivo*. The significance of this alteration of tumour necrosis factor α by these strategies as it might apply to rheumatoid arthritis remains to be tested.

AUTHORS DECLARATION

31/12/01

This work contains no material which has been accepted for the award of any degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying.

Peter Savas Penglis

31/12/01

ix

ACKNOWLEDGMENTS

- Associate Professor Michael J James, whose daily presence in the laboratory and ready guidance when needed, combined with a respectful distance to allow freedom to pursue different avenues as part of this thesis, was the ideal supervisor,
- Associate Professor Leslie G Cleland, for his personal and clinical support while working as a registrar attached with his unit, his encouragement to pursue an academic career and in his assistance with grant application. His contribution to reading and marking of this thesis and publications was greatly appreciated, as was the generous spirit in which he performed these time-consuming chores,
- MarieAnne Demasi, for her assistance with experiments and techniques in the laboratory, especially in the first year and for utilising her diagram of COX-1, Figure 3.4,
- Gillian Caughey, for her ready assistance with experiments, and especially for her helpful advice when things went wrong. Her excellent thesis generated some of the ideas for this current one and I greatly appreciated the freedom and generosity in which she shared her findings,
- IMVS Animal House, for their assistance with rabbit injections and collection of PGE₂ antisera (section 2.10),

- Cindy Hall, for her assistance with making the rat chow and advice on animal experiments,
- Ashley Connolly, for using some of his ELISA techniques in measurement of rat TNFα (Connolly 1998),
- To the SA Blood bank for the provision of buffy coats, from which monocytes were prepared,
- To my brother in law and friend, Brad Cowain, for his assistance with computer technology and formatting,
- Finally and most importantly, to my wife, Taryn Cowain, my best friend, for her acceptance and reassurance that enabled this thesis to be a positive and worthwhile experience.