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Abstract 

In spatial statistics in general, and in geostatistics in particular, the choice between a spatial 

model with drift and a model with constant global mean is often critical, especially when only 

a small number of samples are available. A statistical test provides an objective means of 

making this choice. Among the many available statistical tests, a variance-ratio test has been 

widely used for making this choice because of its good statistical properties but, in addition to 

a semi-variogram model, it also requires an alternative drift model hypothesis. Another test 

statistic is the global D-statistic, which is a complementary test in the sense that it does not 

require an alternative hypothesis model. In this paper, we use sparse data from simulated 

random fields to evaluate and compare the performances of these two methods for testing the 

hypothesis of constant global mean in spatial statistics. We do so by considering the influence 
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of four factors: the amount of data, the type of random field, the amount of spatial or temporal 

correlation and parametric drifts. In addition, we evaluate their performances in time series 

analysis, in which testing the hypothesis of constant global mean is also of significant interest. 

The two test statistics are compared in terms of their achieved confidence level and achieved 

power. The better method is the one that achieves the nominal confidence level and has higher 

power. We discuss departures from the nominal values and the results are used to highlight 

the importance of this problem in spatial statistics.  

Key words: Test statistics; semi-variogram; parametric drift; non-linear drift; Monte Carlo 

simulation. 
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1 Introduction 

Trend detection is important in many disciplines ranging from astronomy (Park et al., 2011) 

to medicine (Avent, Charlton, 1990). In the environmental sciences, detecting trends in global 

warming is becoming an increasingly important application area (Hall and Rajvidi, 2000; Wu 

and Zhao, 2007; Renard et al., 2008; Chandler and Scott, 2011). The random function model, 

comprising the sum of a trend and a residual, has significant practical applications in both 

geostatistics and time series analysis. The trend corresponds to a regional, or broad-scale, 

variation and the residual corresponds to local anomalies such as those often interpreted in 

geophysical applications. In time series analysis, the trend is viewed as a low frequency 

variation while the residual is the high frequency variation component. In geostatistics, if the 

interest is solely in providing an interpolated map by kriging with a moving window, there 

may be no need to model an explicit trend (Journel and Rossi, 1989) provided that an 

appropriate moving window can be defined that will implicitly accommodate a changing local 

mean. For many other applications, however, the modelling of a trend is important (Lark and 

Webster, 2006; Ma et al., 2010; Oy and Deutsch, 2004; Visser et al., 2009). In time series 

analysis, trend modelling is important in applications for detecting systematic temporal 

changes (Sethi et al., 2015; Tomozeiu et al., 2000; Unal et al., 2012; Yin et al., 2015; Zhang et 

al., 2009; Zhou et al., 2015) or for spectral analysis (Joshi et al., 2011; Posa and Rossi, 1989; 

Pardo-Igúzquiza and Rodríguez-Tovar, 2000, 2012). In these applications, the first step is to 

decide whether there is a significant trend (non-constant global mean). A constant global 

mean (absence of a trend) implies that the random function is stationary (Myers, 1989). It is 

good practice to have a statistical test for deciding whether the constant global mean 

hypothesis is supported by the data.  

In spatial statistics, several statistical tests have been proposed for testing the constant global 

mean hypothesis (e.g., Fuentes, 2005; Jun and Genton, 2012; Kitanidis, 1991,1997; Leung, 
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2000; Pardo-Igúzquiza and Dowd, 2003). Many of these tests were devised to address specific 

problems and are thus somewhat application-specific. For example, Leung (2000) proposed a 

statistical test for spatial non-stationarity based on a geographically weighted regression 

model. However, this is an extension of ordinary least squares for the case in which the 

residuals are independent Gaussian variables. In the work presented here we focus on the 

more general case in which the residuals are correlated. Fuentes (2005) proposed a spectral 

method for testing a given spatial process for stationarity and isotropy. The spectral method 

works for gridded data whereas here we address the general case in which the data may be 

irregularly, and sparsely, distributed. Jun and Genton (2012) focus on the non-stationarity of 

the covariance structure, assuming the mean of the random field is zero. Here we deal with 

the identification of non-stationarity in the mean.  

We consider two geostatistical tests: a variance-ratio (VR) test (Kitanidis, 1997) and the 

global D-statistic test (Pardo-Igúzquiza and Dowd, 2003). The VR test is based on the sum of 

squared orthonormal residuals (Kitanidis, 1991). In the application proposed here, it requires 

a semi-variogram model and a test in which the null hypothesis is a constant global mean and 

the alternative hypothesis is an hypothesized drift model. The global D-statistic requires only 

a semi-variogram model with no need for specifying the form of the alternative drift 

hypothesis model.  

The purpose of this paper is to evaluate and compare the performances of both methods in 

testing the hypothesis of constant global mean. For geostatistical applications we use several 

two-dimensional simulated random fields each with a different spatial covariance model 

and/or drift model; the data for the tests are obtained by sparsely sampling these fields. For 

one-dimensional time series applications, we compare the two methods using the widely-

acknowledged Mann-Kendall (MK) test. Finally, we calculate and compare the achieved 

confidence level and the achieved power in a Monte Carlo experiment with varying amounts 
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of data, types of random field, spatial correlation (semi-variogram ranges) and parametric 

linear and non-linear drifts.  

The remainder of this paper is organised as follows. Section 2 introduces the methodology 

used in the study, the simulation study is presented in section 3 and the conclusions are given 

in section 4. 

 

2 Methodologies  

2.1 The global D-statistic  

The global D-statistic test was proposed by Pardo-Igúzquiza and Dowd (2003) in which a 

detailed description of the procedure can be found. This test statistic is based on differences of 

pairs of data values and the test is whether the null hypothesis of a constant global mean is 

supported by the available data. The alternative hypothesis is that the constant global mean 

cannot be accepted; this alternative hypothesis does not require the specification of a 

particular drift model.  

The usual way of estimating the drift (or spatial D-statistic) from a set of values of a variable 

ܼ is: 

ሺ݀௞ܦ	
ାሻ 	ൌ 		

1
ܰሺ݇ሻ

	෍ሾܼଵ
௟ െ	ܼଶ

௟ ሿ

ேሺ௞ሻ

௟ୀଵ

												for	݇ ൌ 1,  ሺ1ሻ																												ܭ

where ܭ is the number of separation distance (lag) classes for which the drift is calculated;  

 ܰሺ݇ሻ is the number of pairs of values of ܼ in the ݇୲୦ distance class defined by the tolerance 

interval ݄௞ േ  would ߝ is a tolerance; the values of ݄௞ and ߝ where ݄௞ is the nominal lag and ,ߝ

normally be the same as those used in the associated semi-variogram calculation; ݀௞
ା is the 

mean separation distance and the ‘+’ superscript denotes orientation, which must be constant; 

for example, if the D-statistic is calculated for the North-South direction, the first datum in a 

data pair is always the more northerly (or always the more southerly); ܼଵ
௟  and ܼଶ

௟ 	are the first 
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and second values of the orientation-ordered lth data pair used in the computation of ܦሺ݀௞
ାሻ.  

If the data are regularly spaced, ߝ ൌ 0 and ݀௞
ା ൌ 	݄௞

ା. Note that for directional calculations a 

direction tolerance would also be required. 

The global D-statistic is obtained by setting the lag tolerance ߝ to a value greater than the 

maximum distance between all data pairs, so that there is a single class that includes all data 

and a single (global) value for the D (drift) statistic defined as: 

ሺ݀ீܦ
ାሻ ൌ

1
்ܰ

෍ሾܼଵ
௟ െ ܼଶ

௟ ሿ

ே೅

௟ୀଵ

	,																																																											ሺ2ሻ 

where ்ܰ is the total number of pairs of values for all separation distances; ݀ீ
ା is the mean 

distance between all data locations. 

The test statistic,	ܦ෩ሺ݀ீ
ାሻ, is the standardized global D-statistic and is calculated as: 

෩ሺ݀ீܦ		
ାሻ ൌ

ሺ݀ீܦ
ାሻ

ඥvarሾܦሺ݀ீ
ାሻሿ

	.																																																				ሺ3ሻ		 

A major reason for using the global D-statistic rather than the lag-based version is that the 

distribution of ܦ෩ሺ݀ீ
ାሻ is, for all practical purposes, standard Gaussian, irrespective of the 

number of data and the underlying distribution of the random function, as demonstrated in 

Pardo-Igúzquiza and Dowd (2003). Thus, the null hypothesis of a constant global mean can 

be accepted with a given significance level (ߙ) if ܦ෩ሺ݀ீ
ାሻ falls in the 100(1-ߙ) % confidence 

interval as determined from the standard Gaussian distribution.   

2.2 The variance-ratio test 

The variance-ratio (VR) test (Kitanidis, 1991,1997) is based on the sum of squared 

orthonormal residuals and tests a simpler basic drift model against a more complex alternative 

drift model using the standard forms of drift models (Matheron, 1971). The sum of squared 

orthonormal residuals (Kitanidis, 1997) of the two models are given by 

ܹܵܵ଴ ൌ ଵିۿሺ்ܢ െ  ሺ4ሻ																																					ܢଵሻିۿ்܆ሻିଵ܆ଵିۿ்܆ሺ܆ଵିۿ
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ܹܵ ଵܵ ൌ ଵିۿሺ்ܢ െ ଵ܆ଵሺ܆ଵିۿ
ଵ܆ଵሻିଵ܆ଵିۿ்

 ሺ5ሻ																																				ܢଵሻିۿ்

where ܢ is an ݊ ൈ 1 vector of the data; ۿ is the ݊ ൈ ݊ covariance matrix of the residuals of the 

݊ data; ܆ is the ݊ ൈ 	݊ ଵ is the܆ drift matrix of the basic model and ݌ ൈ	ሺ݌ ൅  ሻ drift matrixݍ

of the alternative model; ݌ is the number of drift coefficients of the basic model; ݌ ൅  is the ݍ

number of drift coefficients of the alternative model. A requirement of the model is that the ݌ 

columns of ܆ can be obtained from ܆ଵ by eliminating, or linearly combining, ݍ of its columns. 

Here we take the basic model to be a constant global mean, which satisfies the requirement. 

The null hypothesis (basic model) is a constant spatial global mean and the alternative 

hypothesis (alternative model) is a variable global mean that must be specified as a particular 

parametric model. The normalized relative difference of the two models is 

	ߥ											 ൌ

ሺܹܵܵ଴ െܹܵ ଵܵሻ ൗݍ

	ܹܵ ଵܵ
ሺ݊ െ ݌ െ ሻൗݍ

		.																																																												 ሺ6ሻ 

If ߥ ൐ ,ݍሺܨ ݊ െ ݌ െ ;ݍ ሺ1 െ ,ݍሺܨ ሻሻ, whereߙ ݊ െ ݌ െ ;ݍ ሺ1 െ  ሻሻ is the corresponding valueߙ

of the F-distribution (Draper and Smith 1998), the null hypothesis of a constant mean can be 

rejected with a significance level of ߙ. 

2.3 A classical non-parametric test in 1D: the Mann-Kendall test 

The Mann-Kendall (MK) test is a widely used standard test in time series analysis and we use 

it here to compare the two methods in time series applications. The MK test (Mann, 1945; 

Kendall, 1975) is a rank-based, non-parametric method. In this test, the null hypothesis is the 

constant global mean and the alternative hypothesis is that there is a trend in the data. The 

MK statistic ܵ is calculated as 

ܵ ൌ 	෍ ෍ sgn൫ݔ௝ െ ௜൯ݔ

௡

௝ୀ௜ାଵ

,

௡ିଵ

௜ୀଵ

																																										ሺ7ሻ 

where ݔ௝ are the sequential data values, ݊ is the length of the data set, and 
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sgn൫ݔ௝ െ ௜൯ݔ ൌ ൝
1
0
െ1

if	ݔ௝ െ ௜ݔ ൐ 0
if	ݔ௝ െ ௜ݔ ൌ 0
if	ݔ௝ െ ௜ݔ ൏ 0

	.																																																ሺ8ሻ 

For ݊ ൒ 8, the statistic ܵ is approximately normally distributed with variance:  

Varሺܵሻ ൌ
1
18

൥݊ሺ݊ െ 1ሻሺ2݊ ൅ 5ሻ െ෍ݐ௞ሺݐ௞ െ 1ሻሺ2ݐ௞ ൅ 5ሻ
௠

௞ୀଵ

൩,																									ሺ9ሻ 

where ݉ is the number of tied groups and ݐ௞ is the number of data in tied group ݇. 

The standardized test statistic ܼ is computed as 

ܼ ൌ 	

ە
ۖ
۔

ۖ
ۓ

ܵ െ 1

ඥVarሺܵሻ
			if	ܵ ൐ 0

0																		if	ܵ ൌ 0
ܵ ൅ 1

ඥVarሺܵሻ
				if	ܵ ൏ 0

	.																																												ሺ10ሻ 

The standardized test statistic ܼ follows the standard normal distribution ܼ~ܰሺ0,1ሻ. 

If ܼ ൐ ܼଵିഀ
మ
	or	ܼ ൏ ܼഀ

మ
, the null hypothesis of constant global mean is rejected with the 

specified significance level of ߙ. 

The MK test assumes serial independence of the data and the presence of serial correlation in 

the data increases the rejection rate of the null hypothesis because of the redundancy of 

correlated data. The application of the MK test to realizations of correlated stochastic 

processes requires a pre-whitening procedure to remove, or least significantly reduce, the 

influence of serial correlation (Bayazit and Önoz, 2007; Von Storch, 1995).  

2.4 The achieved confidence level and achieved power 

The confidence level (equal to 1-ߙ, where	ߙ is type I error) is the probability of accepting the 

null hypothesis when it is true. The power (equal to 1-ߚ, where ߚ is type II error) is the 

probability of rejecting the null hypothesis when it is false. We estimate the achieved 

confidence level and achieved power in a Monte Carlo experiment as follows. 
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Given a stationary random field of ܰ values of a variable ܼ ൌ ሼܼଵ, ܼଶ, … , ܼேሽ, a Monte Carlo 

sample, denoted by ܼ∗ ൌ ሼܼଵ
∗, ܼଶ

∗, … , ܼெ
∗ ሽ, can be obtained by randomly sampling the field M 

times (M<N) without replacement. The test statistic of interest is applied to each of the Monte 

Carlo samples. The achieved confidence level (ACL) is then estimated by:  

ܮܥܣ ൌ
ܵ௔௖௣
ܵ

,																																																																					ሺ11ሻ 

where ܵ  is the total number of Monte Carlo samples and ܵ௔௖௣  is the number of samples 

(experiments) for which the null hypothesis is accepted.  

In the same way, the achieved power (AP) can be estimated using the procedure of estimating 

the achieved confidence level but using the original random field plus drift. It is calculated as 

ܲܣ ൌ 	
ܵ௥௘௝
ܵ
	,																																																																		ሺ12ሻ 

where ܵ  is the total number of Monte Carlo samples and ܵ௥௘௝  is the number of samples 

(experiments) for which the null hypothesis is rejected.  

The simulation settings and performances of each test in terms of achieved confidence level 

and achieved power are given in the following section. 

 

3 Simulation study 

3.1 Simulation setting  

To assess the performances of the statistical tests of the hypothesis of constant global mean, 

we generate multiple simulated random fields with the following specifications (similar to the 

experiment set up by Russo and Jury, 1987): 

(i) Two types of spatially correlated random field: a Gaussian random field and a Chi-square 

random field. The realizations of the Gaussian random field are generated by using 

Sequential Gaussian Simulation (Remy et al., 2020) and the realizations of the Chi-square 

random field are obtained by squaring the corresponding Gaussian random field to 
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produce a highly-skewed distribution of values. 

(ii) Two values of the semi-variogram ranges, equal to 10% and 30% of the side-length of the 

geometric field, respectively. These are representative short and long ranges; it is highly 

unlikely that any natural processes of interest would be completely spatially uncorrelated 

(i.e., zero range). 

(iii) Three types of parametric drift: two linear and one non-linear drift. The two types of 

linear drift are polynomial, linear and quadratic, defined as: 

݉ሺݔ, ሻݕ ൌ ଴ߚ ൅ ݔଵߚ ൅ ݕଶߚ ൅ ݕݔଷߚ ൅ ଶݔସߚ ൅  ଶݕହߚ

In the one-dimensional case, for a linear drift, we set  ߚ଴ = ߚଶ = ߚଷ = ߚସ = ߚହ= 0; for a 

quadratic drift ߚ଴ =  ߚଶ = ߚଷ = ߚହ = 0 and in the two-dimensional case, for a linear drift, 

଴ߚ ൌ ଶߚ 	ൌ ଷߚ ൌ ସߚ ൌ ହߚ ൌ 0 . For the quadratic drift, we have set ߚ଴ ൌ ଷߚ ൌ 0  and 

ଵߚ ൌ ଶߚ ൌ െߚସ ൌ െߚହ. The actual values of the parameters are calculated in each case to 

satisfy a given relationship between the variance of the drift and the variance of the 

residual. 

The non-linear drift is the step function along the x direction: 

݉ሺݔ, ሻݕ ൌ ൝
0

଴ߚ ൐ 0
					
ݔ ൑ ௫ܮ

ݔ ൐ ௫ܮ
 

where  ܮ௫ is 50% of the side-length of the geometric field along the X direction and ߚ଴ is 

the size of the step, which is defined to satisfy a given relationship between the variance 

of the drift and the variance of the residual.  

(iv) Four values of the ratio ߪ௅ ⁄ுߪ  , equal to 0.0, 0.5, 1.0 and 2.0, where ߪ௅ and ߪு denote the 

standard deviation of the drift and the standard deviation of the residual random field, 

respectively.  
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(v) Four different sample sizes: 30, 40, 50 and 60 locations, the co-ordinates of which are 

selected randomly from the random field (the size of the random field is 1×128 for the 

1D case and 64×64 for the 2D case). All four sample sizes are considered small. 

For each of the 40 (2×2×3×3+4) different random fields, the four different-sized samplings (v) 

are repeated 200 times. This generates 80,000 different data sets for each of the 1D and 2D 

cases. For illustrative purposes, four of these are shown in Figs. 1 and 2.  

For both the 1D and 2D cases, the achieved confidence level is estimated using the data sets 

comprising four simulated random fields without drift. These are: Gaussian field with short 

range (Gaussian1), Gaussian field with long range (Gaussian2), Chi-square field with short 

range (Chi-square1), and Chi-square field with long range (Chi-square2); where the short and 

long ranges are, respectively, 10% and 30% of the side-length of the geometric field. The 

achieved power is evaluated using the data sets of the four cases with added drift. The added 

drifts are denoted by 1 for linear, 2 for quadratic and 3 for non-linear; A, B and C denote the 

three ratios  ߪ௅ ⁄ுߪ , of 0.5, 1.0 and 2.0, respectively. 

3.2 Results 

In this section, we present and discuss, in four subsections, the experimental results for the 

two methods. The semi-variogram model for each data set, which is required by the global D-

statistic test and the VR test, is estimated by maximum likelihood (Pardo-Igúzquiza, 1997) 

and, for all tests, the confidence intervals of the test statistics are established at ߙ ൌ 0.05. 

3.2.1 Achieved confidence level for the 1D case 

The achieved confidence levels of all the tests are calculated by Eq. (11) and shown in Fig. 3. 

Note that the VR test requires an alternative hypothesis even for the simulated random fields 

that do not include drift (although in practical applications, the presence or absence of drift 

would not be known). Here, the alternative hypothesis for the VR test is specified as the drift 

model ݉ሺݔሻ ൌ ଴ߚ ൅  In these Monte Carlo simulations, the nominal .(denoted Drift_x) ݔଵߚ
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significance level is set to 0.05 and the corresponding confidence level is 95%. The achieved 

confidence levels of both the global D-statistic (Fig. 3a) and the VR test (Fig. 3b) 

approximate, or exceed, the nominal value for all cases from which it may be concluded that 

there is no difference between the two methods with respect to the achieved confidence level. 

The results are good for the different data sizes that have been tried and for the two types of 

random function. On the other hand, although the achieved confidence level of the MK test 

with pre-whitening (Fig. 3d) achieves the nominal confidence level, Fig. 3c shows that its 

value is much lower without pre-whitening, making this procedure ineffective. This is 

because the positive serial correlation increases the probability that the MK test will detect 

trend when none is present (von Storch 1995). Thus, this study indicates that both the global 

D-statistic and the VR tests perform well and are superior to the MK test without pre-

whitening and slightly better than the MK test with pre-whitening. 

3.2.2 Achieved power for the 1D case 

In this case, we specify two alternative hypotheses for the VR test - the real drift model 

(denoted Drift_r; for example, the alternative hypothesis is linear drift when the real drift is 

linear), and a drift model that differs from the real drift (denoted Drift_dr; for example, the 

alternative hypothesis is quadratic when the real model is linear or vice versa). The achieved 

powers of the two test statistics are calculated using Eq. (12). Figs. 4, 5 and 6 show the 

achieved powers of the global D-statistic and the VR test with the two different alternative 

hypotheses. The results in these three figures show that the achieved power of both methods is 

1.0 for random fields with ratios ߪ௅ ⁄ுߪ  of 1.0 and 2.0; while for cases with a ratio  ߪ௅ ⁄ுߪ  of 

0.5, the achieved power is lower and much more variable. To provide a simpler and more 

compact comparison, we summarize the results in each of Figs. 4-6 by summing all the 

achieved powers for each of the four random fields to provide four overall values for each test. 

The four summed achieved power values for each test are given in Table 1 from which it is 
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evident that the global D-statistic and the VR test with two different alternative hypothesis 

have similar achieved powers for the corresponding cases except the Gaussian 2 field, for 

which the achieved power of the VR test with real drift model is higher. However, in real 

situations the real drift model is usually unknown; thus, the results demonstrate that both tests 

perform similarly. In addition, note that, in these three figures, for the Gaussian field with 

long range and linear drift with ߪ௅ ⁄ுߪ  ratio equal to 0.5, for the Gaussian field with long 

range and non-linear drift with ߪ௅ ⁄ுߪ  ratio equal to 0.5 and for the Chi-square field with long 

range and non-linear drift with ߪ௅ ⁄ுߪ  ratio equal to 0.5, the estimated achieved power 

(ranging from 0.1 to 0.4) is much lower than the values for the other cases. This is because the 

variability introduced by the drift is very small with respect to the variability of the noise. The 

variability introduced by the drift could equally be attributed to the variability introduced by 

the long range of the underlying random field. 

As a reference for the two compared methods, the MK test is also used in time series analysis 

to estimate the achieved power. Figs. 7a-d and 7e-h show the achieved power of the MK test 

without and with pre-whitening, respectively, for the four random fields. In Fig. 7, the MK 

test without pre-whitening has a high achieved power (around 1.0) for all cases; however, if 

pre-whitening is applied, the achieved power is much lower. The four summed achieved 

power values for the MK test with and without pre-whitening were also calculated and are 

shown in Table 1. By comparing the summed achieved power values of the global D-statistic 

and the VR test, we can conclude, in this case, that the global D-statistic and the VR tests 

generally outperform the MK test with or without pre-whitening. This is because, the MK test 

with pre-whitening has a very low power and the MK test without pre-whitening has a very 

low confidence level. Practically in all the cases the power increases as the number of data 

increases except for the Chi-square model with short range and non-linear drift with ߪ௅ ⁄ுߪ  

ratio equal to 0.5, for which the power decreases with the sample size. The latter is an 
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anomalous case because of the small variability introduced by the drift in that particular 

setting. 

3.2.3 Achieved confidence level for the 2D case 

Figs. 8a and 8b show the achieved confidence level of the VR test for which the alternative 

hypotheses are specified as drift models ݉ሺݕሻ ൌ ଴ߚ ൅ 	ݕଵߚ  (denoted by Drift_y) and 

݉ሺݔ, ሻݕ ൌ ଴ߚ ൅ ݔଵߚ ൅  Fig. 9 shows the achieved confidence level .(denoted by Drift_xy) ݕଵߚ

of the global D-statistic test. Again, in these Monte Carlo experiments, the nominal 

confidence level is set to 95%. It can be seen in Fig. 9 that the achieved confidence levels 

obtained from the VR test, for which the alternative hypotheses are different linear drift 

parameterisations, are similar. Considering all the results in Figs. 8 and 9, the achieved 

confidence levels of both tests approach, or exceed, the nominal value in all cases, which 

indicates that, in terms of achieved confidence level, there is no difference between the two 

methods.  

3.2.4 Achieved power for the 2D case 

The achieved powers of the VR test with three different alternative hypotheses are shown in 

Figs 10, 11 and 12. In this case, the three alternative hypotheses are specified as real drift 

model (see Sect. 3.1), Drift_y (see Sect. 3.2.3) and Drift_xy (see Sect. 3.2.3). The achieved 

powers of the global D-statistic test are shown in Fig. 13. Results in Figs 10, 11 and 12 show 

that the VR test with the real drift model has the highest achieved power, followed by 

Drift_xy, and the lowest with Drift_y. This may indicate that the VR test with perfect 

knowledge of the drift model (alternative hypothesis) gives better results. To provide a simple 

and more compact further comparison of the achieved powers in Figs. 10, 11, 12 with those in 

Fig. 13, as was done in the 1D cases, the results in these Figures have been summarized by 

summing the power values for each of the four random fields of each test. The  results are 

given in Table 2 from which it can be seen that the achieved powers of the global D-statistic 
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test are lower than the corresponding values of the VR test when the alternative hypothesis is 

the real drift model, but higher than the corresponding achieved powers of the VR test for the 

other two alternative drifts. However, since, in practical applications, the exact form of the 

drift is usually unknown, these results demonstrate conclusively that the global D-statistic 

outperforms the VR test in both its simplicity and higher performance. In addition, as with the 

1D case, the abnormally lower powers in Fig. 10b with 1-A, Fig. 13b with 1-A and 3-A, 

Fig.13d with 3-A drifts are caused by the fact that the variability of the drift is attributed to 

the variability of the residual. In all cases the achieved power increases with the sample size. 

 

4 Conclusions 

In this work, we present a flexible simulation framework to compare two test statistics for 

trend detection: the global D-statistic test and a variance-ratio test. For time series (1D case) 

we have used the Mann-Kendal (MK) test with and without pre-whitening as a benchmark for 

comparison purposes. In this framework, the influences of four factors have been considered: 

the amount of data, the type of random field, the amount of spatial or temporal correlation and 

different parametric drifts. The performance of the tests has been evaluated and compared 

with the achieved confidence level and achieved power. Experimental results from the 

simulation study have demonstrated that for the 1D case, the VR and the global D-statistic 

tests perform similarly and are preferable to the MK test. This is an important result because 

the MK test is one of the most used by many practitioners. For the 2D case, the global D-

statistic and the VR test with the real drift model provided similar results, which implies that 

the global D-statistic is better since it does not require a trend model as an alternative to the 

global constant mean and, in practice, the true trend would never be known. The results (the 

estimated confidence levels and powers) are good for the sample sizes used and which, 
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ranging from 30 to 60 data, can be considered as small data sets. Overall, on grounds of 

simplicity of use and better performance, the global D-statistic test is the preferred choice. 
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List of tables 

Table 1 The summary of achieved powers for each of four random fields (1D) with different 

tests. A perfect test with a power of one for all the 36 cases will have a score of 36. This 

appears to be achieved by the MK test without prewhitening. However this is an illusion as 

this test is practically useless because it provides a confidence level much lower than the 

nominal.   

Table 2 The summary of achieved powers for each of four random fields (2D) with different 

tests. A perfect test with a power of one for all 36 cases will have a score of 36.  
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Table 1 

Random 

Field 

Global D-

statistic 
VR Test MK Test 

  
Drift_r Drift_dr

without Pre-

whitening 

Pre-

whitening 

Gaussian1 34.06 33.83 33.63 35.35 20.05 

Gaussian2 28.43 32.03 28.42 35.86 20.58 

Chi-square1 33.28 33.06 34.22 35.99 27.17 

Chi-square2 29.99 30.66 31.28 35.98 21.49 
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Table 2 

Random Field Global D-statistic VR Test 

  Drift_r Drift_y Drift_xy 

Gaussian1 30.35 32.97 8.55 28.64 

Gaussian2 24.88 28.78 7.39 18.24 

Chi-square1 31.05 33.97 8.26 30.29 

Chi-square2 29.79 34.11 11.49 22.93 
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List of Figures 

Fig. 1 Two realizations of random functions (1D) used in the simulation study  

Fig. 2 Two realizations of random functions (2D) used in the simulation study 

Fig. 3 Achieved confidence level for four random fields without drift: Gaussian1, Gaussian 2, 

Chi-square1, Chi-square2. a: using global D-statistic. b: using the VR test for which the 

alternative hypothesis is Drift_x. c: using MK test without pre-whitening. d: using MK test 

with pre-whitening, at a 95% confidence interval (ߙ ൌ 0.05ሻ 

Fig. 4 Achieved power of hypothesis test using the global D-statistic for different drifts and 

random fields. a: Gaussian1, b: Gaussian2, c: Chi-square1, d: Chi-square2 

Legend: 1-A: linear drift, 	ߪ௅ ⁄ுߪ 	= 0.5; 1-B: linear drift, 	ߪ௅ ⁄ுߪ 	= 1.0; 1-C: linear drift, 

௅ߪ	 ⁄ுߪ 	= 2.0; 2-A: quadratic drift, 	ߪ௅ ⁄ுߪ 	= 0.5; 2-B: quadratic drift, 	ߪ௅ ⁄ுߪ 	= 1.0; 2-C: 

quadratic drift, 	ߪ௅ ⁄ுߪ 	= 2.0; 3-A: non-linear drift, 	ߪ௅ ⁄ுߪ 	= 0.5; 3-B: non-linear drift, 

௅ߪ	 ⁄ுߪ 	= 1.0; 3-C: non-linear drift, 	ߪ௅ ⁄ுߪ 	= 2.0; 

Fig. 5 Achieved power of hypothesis test using the VR test for which the alternative is the 

real drift model for different random fields. a: Gaussian1, b: Gaussian2, c: Chi-square1, d: 

Chi-square2 

Legend: 1-A: linear drift, 	ߪ௅ ⁄ுߪ 	= 0.5; 1-B: linear drift, 	ߪ௅ ⁄ுߪ 	= 1.0; 1-C: linear drift, 

௅ߪ	 ⁄ுߪ 	= 2.0; 2-A: quadratic drift, 	ߪ௅ ⁄ுߪ 	= 0.5; 2-B: quadratic drift, 	ߪ௅ ⁄ுߪ 	= 1.0; 2-C: 

quadratic drift, 	ߪ௅ ⁄ுߪ 	= 2.0; 3-A: non-linear drift, 	ߪ௅ ⁄ுߪ 	= 0.5; 3-B: non-linear drift, 

௅ߪ	 ⁄ுߪ 	= 1.0; 3-C: non-linear drift, 	ߪ௅ ⁄ுߪ 	= 2.0; 

Fig. 6 Achieved power of hypothesis test using the VR test for which the alternative drifts 

differ from the real ones for different random fields. a: Gaussian1, b: Gaussian2, c: Chi-

square1,  d: Chi-square2 

Legend: 1-A: linear drift, 	ߪ௅ ⁄ுߪ 	= 0.5; 1-B: linear drift, 	ߪ௅ ⁄ுߪ 	= 1.0; 1-C: linear drift, 

௅ߪ	 ⁄ுߪ 	= 2.0; 2-A: quadratic drift, 	ߪ௅ ⁄ுߪ 	= 0.5; 2-B: quadratic drift, 	ߪ௅ ⁄ுߪ 	= 1.0; 2-C: 
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quadratic drift, 	ߪ௅ ⁄ுߪ 	= 2.0; 3-A: non-linear drift, 	ߪ௅ ⁄ுߪ 	= 0.5; 3-B: non-linear drift, 

௅ߪ	 ⁄ுߪ 	= 1.0; 3-C: non-linear drift, 	ߪ௅ ⁄ுߪ 	= 2.0; 

Fig. 7 Achieved power of hypothesis test using the MK test without pre-whitening for four 

random fields. a: Gaussian1, b: Gaussian2, c: Chi-square1, d: Chi-square2 and with pre-

whitening for four random fields. e: Gaussian1, f: Gaussian2, g: Chi-square1, h: Chi-square2 

Legend: 1-A: linear drift, 	ߪ௅ ⁄ுߪ 	= 0.5; 1-B: linear drift, 	ߪ௅ ⁄ுߪ 	= 1.0; 1-C: linear drift, 

௅ߪ	 ⁄ுߪ 	= 2.0; 2-A: quadratic drift, 	ߪ௅ ⁄ுߪ 	= 0.5; 2-B: quadratic drift, 	ߪ௅ ⁄ுߪ 	= 1.0; 2-C: 

quadratic drift, 	ߪ௅ ⁄ுߪ 	= 2.0; 3-A: non-linear drift, 	ߪ௅ ⁄ுߪ 	= 0.5; 3-B: non-linear drift, 

௅ߪ	 ⁄ுߪ 	= 1.0; 3-C: non-linear drift, 	ߪ௅ ⁄ுߪ 	= 2.0; 

Fig. 8 Achieved confidence level for four random fields without drift: Gaussian1, Gaussian2, 

Chi-square1, Chi-square2 using the VR test at a 95% confidence interval (ߙ ൌ 0.05ሻ. a: 

Assuming a drift in the Y direction only (Drift_y). b: Assuming a drift in both the X and the 

Y directions (Drift_xy)   

Fig. 9 Achieved confidence level for four random fields without drift: Gaussian1, Gaussian2, 

Chi-square1, Chi-square2 using the global D-statistic at a 95% confidence interval (ߙ ൌ 0.05ሻ 

Fig. 10 Achieved power of the hypothesis test using the VR test with the alternative 

hypothesis specified as the real drift model for different random fields. a: Gaussian1, b: 

Gaussian2, c: Chi-square1, d: Chi-square2 

Legend: 1-A: linear drift, 	ߪ௅ ⁄ுߪ 	= 0.5; 1-B: linear drift, 	ߪ௅ ⁄ுߪ 	= 1.0; 1-C: linear drift, 

௅ߪ	 ⁄ுߪ 	= 2.0; 2-A: quadratic drift, 	ߪ௅ ⁄ுߪ 	= 0.5; 2-B: quadratic drift, 	ߪ௅ ⁄ுߪ 	= 1.0; 2-C: 

quadratic drift, 	ߪ௅ ⁄ுߪ 	= 2.0; 3-A: non-linear drift, 	ߪ௅ ⁄ுߪ 	= 0.5; 3-B: non-linear drift, 

௅ߪ	 ⁄ுߪ 	= 1.0; 3-C: non-linear drift, 	ߪ௅ ⁄ுߪ 	= 2.0; 

Fig. 11 Achieved power of hypothesis test using the VR test with the alternative hypothesis 

specified as Drift_y for four different random fields. a: Gaussian1, b: Gaussian2, c: Chi-

square1, d :Chi-square2 
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Legend: 1-A: linear drift, 	ߪ௅ ⁄ுߪ 	= 0.5; 1-B: linear drift, 	ߪ௅ ⁄ுߪ 	= 1.0; 1-C: linear drift, 

௅ߪ	 ⁄ுߪ 	= 2.0; 2-A: quadratic drift, 	ߪ௅ ⁄ுߪ 	= 0.5; 2-B: quadratic drift, 	ߪ௅ ⁄ுߪ 	= 1.0; 2-C: 

quadratic drift, 	ߪ௅ ⁄ுߪ 	= 2.0; 3-A: non-linear drift, 	ߪ௅ ⁄ுߪ 	= 0.5; 3-B: non-linear drift, 

௅ߪ	 ⁄ுߪ 	= 1.0; 3-C: non-linear drift, 	ߪ௅ ⁄ுߪ 	= 2.0; 

Fig. 12 Achieved power of hypothesis test using the VR test with the alternative hypothesis 

specified as Drift_xy for four different random fields. a: Gaussian1, b: Gaussian2, c: Chi-

square1, d: Chi-square2 

Legend: 1-A: linear drift, 	ߪ௅ ⁄ுߪ 	= 0.5; 1-B: linear drift, 	ߪ௅ ⁄ுߪ 	= 1.0; 1-C: linear drift, 

௅ߪ	 ⁄ுߪ 	= 2.0; 2-A: quadratic drift, 	ߪ௅ ⁄ுߪ 	= 0.5; 2-B: quadratic drift, 	ߪ௅ ⁄ுߪ 	= 1.0; 2-C: 

quadratic drift, 	ߪ௅ ⁄ுߪ 	= 2.0; 3-A: non-linear drift, 	ߪ௅ ⁄ுߪ 	= 0.5; 3-B: non-linear drift, 

௅ߪ	 ⁄ுߪ 	= 1.0; 3-C: non-linear drift, 	ߪ௅ ⁄ுߪ 	= 2.0; 

Fig. 13 Achieved power of hypothesis test using the global D-statistic for different drifts and 

random fields. a: Gaussian1, b: Gaussian2, c: Chi-square1, d: Chi-square2 

Legend: 1-A: linear drift, 	ߪ௅ ⁄ுߪ 	= 0.5; 1-B: linear drift, 	ߪ௅ ⁄ுߪ 	= 1.0; 1-C: linear drift, 

௅ߪ	 ⁄ுߪ 	= 2.0; 2-A: quadratic drift, 	ߪ௅ ⁄ுߪ 	= 0.5; 2-B: quadratic drift, 	ߪ௅ ⁄ுߪ 	= 1.0; 2-C: 

quadratic drift, 	ߪ௅ ⁄ுߪ 	= 2.0; 3-A: non-linear drift, 	ߪ௅ ⁄ுߪ 	= 0.5; 3-B: non-linear drift, 

௅ߪ	 ⁄ுߪ 	= 1.0; 3-C: non-linear drift, 	ߪ௅ ⁄ுߪ 	= 2.0; 
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