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Abstract 

An important trait associated with the salt tolerance of wheat is the exclusion of 

sodium ions (Na+) from the shoot. We have previously shown that the sodium 

transporters TmHKT1;5-A and TaHKT1;5-D, from Triticum monoccocum (Tm) and 

Triticum aestivum (Ta), are encoded by genes underlying the major shoot Na+-

exclusion loci Nax1 and Kna1, respectively. Here, using heterologous expression we 

show that the affinity (Km) for the Na+ transport of TmHKT1;5-A, at 2.66 mM, is 

higher than that of TaHKT1;5-D at 7.50 mM. Through 3D structural modelling we 

identify residues – D471/a gap and D474/G473 that contribute to this property. We 

identify four additional mutations in amino acid residues that inhibit the transport 

activity of TmHKT1;5-A, which are predicted to be the result of an occlusion of the 

pore. We propose that the underlying transport properties of TmHKT1;5-A and 

TaHKT1;5-D contribute to their unique ability to improve Na+ exclusion in wheat that 

leads to an improved salinity tolerance in the field. 

Keywords: gatekeeper cells; salt exclusion; ion transport; structure-function; einkorn; 

bread; salt tolerance; Xenopus; mutagenesis; yeast; High affinity K+ Transporter 47 
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Introduction 

The HKT (HIGH AFFINITY (K+) POTASSIUM TRANSPORTER) family was 

named when the first member of this family was identified [1]. The gene encoding 

this protein was cloned from a cDNA library constructed from K+-starved wheat 

roots, a condition known to induce high affinity K+-uptake in plants [1,2]. HKT1, now 

known as TaHKT2;1, encodes an integral membrane protein that spans the plasma 

membrane of the outer cell-types of Triticum aestivum (bread wheat) roots [1,3]. As 

its name suggests, and based on the protein’s transport activity when observed in 

heterologous expression systems, TaHKT2;1 was proposed to mediate high affinity 

K+ uptake in root cells [1,4]. In both Xenopus laevis oocytes and yeast, TaHKT2;1 

functions as a K+-Na+ symport protein facilitating K+ entry when external K+ is low, 

by using an electrochemical gradient for Na+ [4]. Na+ uniport into heterologous 

systems and root cells has also been attributed to the TaHKT2;1 activity, when 

external Na+ concentrations are in the millimolar range [1,5,6]. TaHKT2;1 expression 

is also downregulated by high external Na+ [7], through a mechanism that has been 

speculated to limit the entry of Na+ into plants, which can be toxic to cells if 

accumulated to high levels in the cytoplasm – particularly in photosynthetic tissues 

[8,9]. 

More than twenty years after their discovery, it is now clear that HKT proteins are 

found widely across the plant kingdom, and, are in fact members of the high affinity 

K+/Na+ transporting Ktr/TrK/HKT superfamily of proteins present in bacteria (Ktr 

and TrK), fungi (TrK) and plants (HKT) [10,11]. It has recently been suggested that 

in bacteria, Ktr transporters could be a part of a larger protein complex that directly 

interact with a pump-like subunit belonging to the superfamily of P-type ATPases 

[12]. Based on these observations, the authors proposed a new mechanism that 

repurposes protein channel architecture for active transport across biomembranes. 

Of the Ktr/TrK/HKT  superfamily, HKT proteins are exceptional as some HKTs can 

facilitate Na+ transport without co-transport of K+. All Ktr/TrK/HKT proteins are 

predicted to have eight transmembrane α-helices that fold into 4-fold pseudo-

tetramers around a central pore [13-15]. In plants, HKT proteins have been classified 

into two subfamilies; classes HKT1;x and HKT2;y [3,16], based on the transport 

characteristics of HKT proteins that were characterised at that stage, and using 81 
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sequences predicted to line the entry pore. The class 2 of HKT proteins has thus far 82 
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only been found in monocots [15,17], and in general these proteins can facilitate K+-

Na+ symport, or at high external concentrations Na+-uniport. As also occurs in Ktr 

and TrK proteins, the selectivity filter lining the entry pore of the class 2 HKT 

proteins is predicted to be composed of four glycine residues; in TaHKT2;1 these are 

present at the protein sequence positions 91, 246, 370 and 473. In the class 1 HKT 

proteins the first glycine within the predicted selectivity filter is substituted with a 

serine residue [13]. For instance, OsHKT1;5 has a glycine present at the positions 

264, 391 and 495, and one serine residue at the position 76 [14]. The majority of class 

1 HKT proteins have no reported K+ permeability and function as Na+ uniporters 

only, and this has been linked to the presence of the glycine to serine substitution 

[3,13-15,18]. 

As the HKT family shares a considerable homology and their genetic variation causes 

a differential transport activity in plants, it is clear that subtle changes in their protein 

sequences can have a profound influence on transport properties [14,19-23]. Site-

directed mutagenesis has been used previously to probe differences in HKT transport 

properties for TaHKT2;1 [24], DmHKT1 [25], SlHKT1;2 and SpHKT1;2 [26,27], 

TsHKT1;2 and AtHKT1 [28], making them ideal candidates for detailed structure-

function examinations. Three dimensional (3D) models of two OsHKT1;5 proteins 

were constructed using the crystal structure of a TrkH protein from Vibrio 

parahaemolyticus VpTrKH [14,29], and this model was used to predict functional 

differences between two rice alleles; however, no functional validation of residues 

responsible for the predicted functional differences was performed [19]. Of the HKT 

proteins so far characterised in X. laevis oocytes, they catalyse Na+ transport in a 

range of affinities (e.g. Km = ~1–76 mM for HKT1;x and 0.15 –6.7 mM for HKT2;y) 

[30-35]. The HKT2;y subfamily members appear to possess a higher Na+-uptake 

affinity than the HKT1;x subfamily; however, HKT1;x proteins are a demonstrated 

resource for improving salt tolerance in a range of plant species; e.g. AtHKT1;1 in A. 

thaliana, OsHKT1;5 from Oryza sativa cv. Nona Bokra, TaHKT1;5-D from T. 

aestivum and TmHKT1;5-A from T. monococcum [19,33,34,36-38]. However, what 

the structural elements are that result in the differences in transport affinity of these 

proteins has not yet been determined. 114 

115 
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We have previously shown that HKT genes underpin two major QTL for salt 116 
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tolerance in wheat; they both encode proteins that reside on the plasma membrane of 

cells that surround the vasculature and withdraw Na+ from the transpiration stream 

preventing it from reaching the shoot where it can do damage to photosynthetic 

apparatus [33,34,39,40]. Hexaploid bread wheat, T. aestivum has three genomes; it is 

the D genome carrying TaHKT1;5-D within the Kna1 locus that confers the Na+-

excluding ability so important to the greater salt tolerance of bread wheat [41]. An 

ancestral diploid wheat relative, Triticum monococcum (einkorn wheat), carries the 

homologue TaHKT1;5-A on the A genome. T. monococcum is not a progenitor to 

modern wheat and was the source of the Nax2 QTL [41]. This represents an additional 

source of Na+ exclusion that was shown to produce an increase in yield of 25% in 

saline soil when introgressed into the tetraploid durum wheat that lacks any 

homologues of this gene [33]. 

In the current work we construct new 3D models for for HKT proteins by using a 

more recently solved crystal structure of the KtrB K+ transporter from Bacillus 

subtilus [14,15,42]. We then use this model to determine the impact of particular 

amino acid residues on the function of TmHKT1;5-A and TaHKT1;5-D. The model 

indicates why several mutations abolish the function of TmHKT1;5-A and predicts 

the residues that result in different Na+-transport affinities between TmHKT1;5-A and 

TaHKT1;5-D. The impact of mutations and residue substitutions of interest were 

confirmed through site-directed mutagenesis and functional characterization of these 

HKT proteins in X. laevis oocytes. 

Results 

G490R and K118E/L339P/Y379M mutations abolished the transport properties 

of TmHKT1;5-A 

Munns et al. [33] functionally characterised the gene product of TmHKT1;5-A, which 

was previously proposed by Byrt et al. [41] as the candidate gene underlying the shoot 

Na+ exclusion QTL Nax2. At this time, two other TmHKT1;5-A variants were isolated 

but not reported. In one of the TmHKT1;5-A variants, four nucleotides differed from 

the TmHKT1;5-A sequence lodged with NCBI (DQ646332, [33]). These variations 

resulted in three amino acid residue changes in TmHKT1;5-AK118E/L339P/Y379M (Fig. 

S1). A single nucleotide variation was found in an additional variant, which yielded a 149 
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single amino acid residue difference in the protein sequence of TmHKT1;5-AG490R 150 
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(Fig. S1). These two variants were isolated from plasmid DNA in which the gene had 

been inserted after it had been cloned from T. turgidum Line 149 and had then 

undergone replication in E. coli. The TmHKT1;5-A sequence without mutations 

(DQ646339) was amplified directly from cDNA synthesised from RNA isolated from 

Line 149 by Polymerase Chain Reaction (PCR). The variants identified here are 

unlikely to be naturally occurring in wheat as they differ in sequence from the three 

HKT1;5 in T. turgidum, which are all present on the B genome only (DQ646333, 

DQ646334, DQ646335); B genome members of HKT1;5 also have very low 

expression [32]. Furthermore, the A genome version of HKT1;5 is derived from a 

cross with T. monococcum – with Line 149 fixed for this allele – so it cannot be the 

source of three different versions of the same gene. Instead, it is likely that the Single 

Nucleotide Polymorphism (SNP) changes identified in these variants originated from 

the spontaneous mutation of TmHKT1;5-A in E. coli. Although there is no evidence to 

suggest that either of two variants naturally occur in wheat, these variants provided an 

opportunity to investigate how variation in protein sequences may alter HKT transport 

properties. 

We were particularly interested in the properties of TmHKT1;5-AG490R. Gly is a 

neutral residue and the Gly490 residue is highly-conserved across most plant 

HKT1;5-like proteins that have been characterised or identified. The exception to this 

is EcHKT1;1 (also known as EcHKT1) from Eucalyptus camaldulensis that instead 

has the polar amino acid residue Ser (Fig. 1a and Fig. S2) [15,43,44]; the crystallised 

K+ transporter, VpTrkH has a hydrophobic Ala residue in this position [29] (Fig. S2). 

The residues associated with the other TmHKT1;5-A variant were not conserved: the 

K118 position was occupied by a variety of residues in 84% of the sequences 

analysed, including Glu, whilst the L339 position was substituted by hydrophobic 

Met, Leu, Val, Ala, Phe, Ile or hydrophilic Thr, but never by a Pro, and the Y379 

position was occupied in 92% of the analysed sequences by other polar residues or by 

hydrophobic Pro, Leu and Val, but never Met (Table S2). 

The growth of yeast transformed with either of the two TmHKT1;5-A variants 

(TmHKT1;5-AK118E/L339P/Y379M or TmHKT1;5-AG490R) was indistinguishable from the 

growth of the vector-control-containing yeast on SC-Ura plates with 10 or 200 mM 183 
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Na+ (Fig. 1b). Yeast containing AtHKT1;1, a positive HKT control, known to 184 
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transport Na+ and induce a growth reduction in yeast in high salt [18] grew on media 

containing 10 mM Na+ but not 200 mM Na+ (Fig. 1b). However, growth of yeast 

transformed with TmHKT1;5-A was suppressed when grown on 10 mM Na+ (Fig. 1b) 

[33]. In an arginine-phosphate (AP)-based medium with low Na+ (< 8 µM) and K+ (< 

5 µM) [45], the growth of yeast expressing TmHKT1;5-A was similar to that of vector 

control and two TmHKT1;5-A variants (Fig. 1c).  In the AP liquid medium with 10 

mM NaCl (equivalent to the amount of Na+ in the SC-Ura agar medium) the growth 

of yeast containing TmHKT1;5-A was suppressed compared with that of the empty-

vector control and the two variants. 

To understand the Na+ transport properties of TmHKT1;5-A and the two variants 

TmHKT1;5-AK118E/L339P/Y379M and TmHKT1;5-AG490R, we analysed the currents 

associated with expressing these proteins in X. laevis oocytes. First, we confirmed 

through confocal imaging that YFP-TmHKT1;5-A chimeric proteins were localised to 

the plasma membrane of oocytes  (Fig. 1d). Previously, we demonstrated that oocytes 

injected with TmHKT1;5-A-cRNA elicited significant inward currents in the presence 

of Na+ [33] and here we show they accumulated 140% higher Na+ and 40% lower K+ 

than control oocytes (Fig. 1e). Oocytes injected with either variant had similar ion 

contents to water-injected controls (Fig. 1e), also both variant-cRNA-injected oocytes 

produced currents that were insignificantly different to control oocytes (water-

injected), that mediated little Na+- or K+-dependent inward currents (Fig. 1f, g). In 

comparison, oocytes expressing TmHKT1;5-A produced a large Na+-dependent 

current which was not induced by K+ (Fig. 1f, g). Both the data from yeast and 

oocytes indicated that neither of the TmHKT1;5-A variants carried any significant 

Na+ currents and so were likely to be rendered non-functional by their mutations. 

3D structural modelling of TaHKT1;5-D and TmHKT1;5-A 

We constructed 3D models to investigate whether we could determine a structural 

basis for the functional observations made above (Fig. 2-3 and Fig. S3). These models 

were based on spatial restraints that reflect a structural similarity between the plant 

HKT class of proteins and the  KtrB K+ transporter from B. subtilus [42]. At least 100 

models were constructed from each alignment and assessed by the Discrete Optimized 

Protein Energy (DOPE) scoring function [3], PROCHECK [46] and ProSa2003 [47]. 217 
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The most favourable models were constructed on the basis of AA2 alignments [48], 218 
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using the MUSCLE algorithm [49]. However the first 26 amino acid residues of 

TaHKT1;5-D and TmHKT1;5-A were deleted from the protein sequences before 

running Modeller as this section had no structural counterpart in the KtrB template. A 

Ramachandran plot of the KtrB template (4J7C:I), TaHKT1;5-D, TmHKT1;5-A, and 

the G490R and K118E/L339P/Y379M variants with PROCHECK indicated that 

100% (429), 99.5% (429), 99.3% (431), 98.4% (428) and 99.5% (431) residues were 

in the most favoured, additionally allowed and generously allowed regions, when 

excluding Gly and Pro residues. The overall G-factors (estimates of stereo-chemical 

parameters by PROCHECK) were 0.08, -0.21, -0.19, -0.14 and -0.20, and the 

ProSa2003 z-scores were -8.5, -6.1, -6.1, -6.2 and -6.0 for 4J7C:I, TaHKT1;5-D, 

TmHKT1;5-A, G490R and K118E/L339P/Y379M, respectively. DOPE analyses [50] 

did not reveal any substantial deviations from the global energy profiles. To assess the 

level of conservation of individual amino acid residues, the TaHKT1;5-D model was 

analysed through the ConSurf server [51,52], using 234 sequences at 35%-95% 

sequence identity to TaHKT1;5-D (Table S2). 

The final 3D models of TaHKT1;5-D and TmHKT1;5-A (Fig. S3a and S3b) 

highlighted the overall architectures of both transporters with the well-defined Ser-

Gly-Gly-Gly motifs (S78, G233, G353, G457) [14,15] that form the body of the 

selectivity filter at its narrowest point (cf. black arrows in Fig. S3). These motifs are 

consistent with these proteins being highly selective for Na+ over K+, as opposed to 

the Gly-Gly-Gly-Gly motif seen in less-selective Na+/K+ HKT proteins [3], or in the 

bacterial superfamily K+ transporters TrkH [29] and KtrB [42]. 

Structural modifications in the TmHKT1;5-A variants 

We used the models to investigate whether there were any obvious structural changes 

that may explain the lack of function of the two TmHKT1;5-A variants (Fig. 2). 

Compared to the wild-type protein (Fig. 2a), the change in the Van der Waals volume 

of TmHKT1;5-AG490R (Fig. 2b) indicates that the Arg side chain formed by the 

G490R substitution is likely to project into the pore, resulting is less space for ions to 

move through the pore. For TmHKT1;5-AK118E/L339P/Y379M, the L339P substitution 

locates to a loop adjoining two α-helices (Fig. 2c), and may lead to the loss of 

structural flexibility in this particular part of the protein. The K118E substitution is 251 
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also positioned on a loop, but is located in the proximity of two short neighbouring α-252 
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helices that may be affected by the negative charge of original Glu. This non-

conservative substitution from basic Lys to acidic Glu could have a significant impact 

on the stability of this part of the structure. The third substitution Y379M takes place 

within the protein cavity that opens from the distal part of the selectivity filter, and is 

positioned on a short loop linking two α-helices that form the outer scaffold of the 

protein. While this substitution is not likely to directly affect the passage of ions 

through the pore, we still consider it to be significant for the integrity of the protein 

structure. The presence of the aromatic moiety of Tyr at the interface of two α-helices 

could be important for close packing and co-ordination of the dynamics of the 

neighbouring α-helices, and thus this Y379M substitution could destabilise this inter-

α-helical interactions. We did not probe these mutations further as they make the 

protein non-functioinal, instead we explored whether we could use the molecular 

model we constructed to examine whether we could improve the transport function of 

the HKT proteins. 

The structural basis of TaHKT1;5-D and TmHKT1;5-A Na+ transport affinity 

The TmHKT1;5-A and TaHKT1;5-D proteins share 95% positional sequence 

identity; they are 517 and 516 amino acid residues in length, respectively, with 27 

residue differences between them (Table S1; Fig. S4). However, TmHKT1;5-A has 

been 

reported to have a lower Km for Na+ transport than TaHKT1;5-D [33,34]. The 

comparisons of the structural models for TmHKT1;5-A and TaHKT1;5-D allowed us 

to predict the residues that most likely contribute to structural differences between the 

two proteins, and therefore are likely to underlie the differences in transport affinity 

(Fig. 3). Six amino acid residue substitutions, which are likely to have significant 

structural implications have been summarized in Table 1, and are also displayed in 

Figs. 3 and S4. When superimposed, the respective D471/a gap (or a deletion) and 

D474/G473 motifs, in TmHKT1;5-A or TaHKT1;5-D were deemed as candidates likely 

to have the most profound impact on HKT structures and thus affect transport rates. 

Interestingly, the D471 position in TmHKT1;5-A was altered only in 15% sequences 

to mostly polar residues, such as Ser, Asp, Glu and Lys, but also to hydrophobic Ala 

and Pro, while the D474 position was highly variable and in 87% sequences was 

occupied by other 19 residues (Table S2). 

284 
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D471/a gap and D474/G473 differentiate the Na+ transport affinity of TmHKT1;5-A 286 

and TaHKT1;5-D 287 
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We further examined D471/a gap and D474/G473 using site-directed mutagenesis to 

explore whether these mutations affected the Na+ transport activity of TmHKT1;5-A 

and TaHKT1;5-D. Initially to confirm the differential Na+ transport activity of 

TmHKT1;5-A and TaHKT1;5-D [31,32] we expressed each gene in X. laevis oocytes 

and found that the Na+ transport affinity of TmHKT1;5-A was significantly higher 

than of TaHKT1;5-D, by three-fold (Km = 2.66  ± 0.35 vs. 7.5 ± 1.24 mM; P=0.0028, 

Students t-test) (Fig. 4-5). Therefore, we performed a mutagensis by PCR to delete 

D471 (TmHKT1;5-AD471Δ), mutate D474 into G (TmHKT1;5-AD474G) or delete/mutate 

both residues (TmHKT1;5-AD471Δ/D474G). In addition, TaHKT1;5-D was mutated with 

an insertion of D471 (TaHKT1;5-DD471+), a mutation of G473 into D (TaHKT1;5-

DG473D) and a double mutation (TaHKT1;5-DD471+/G473D). When expressed in X. laveis 

oocytes and irrigated with a 5 mM Na+ solution, the oocytes containing the double 

mutation D471Δ/D474G in TaHKT1;5-A showed a significant reduction in the Na+ 

conductance from 46.19 ± 13.25 µS (of TmHKT1;5-A) to 18.22 ± 2.65 µS (of 

TmHKT1;5-AD471Δ/D474G) (Fig. 4a, b). These double mutations also led to a significant 

decrease in the Na+ transport affinity of this variant from Km = 2.66 ± 0.35 mM of 

wild-type TmHKT1;5-A to 4.10 ± 0.42 mM (Fig. 4a,c). The single mutation of either 

D471Δ or D474G increased Km values (respective values are 3.28 ± 0.53 mM and 

4.62 ± 1.29 mM), but these were statistically insignificant (Fig. 4c). 

The reciprocal mutations were peformed on TaHKT1;5-D. The single mutation 

G473D and double mutation D471+/G473D significantly increased the conductance of 

TaHKT1;5-D from 25.54 ± 5.78 µS to 66.2 ± 8.49 µS and 69.35 ± 9.58 µS in 5 mM 

Na+ solution respectively (Fig. 5a, b). Again, only the double mutation significantly 

changed its transport affinity (Km = 3.93 ± 0.57 mM), with the single mutations – 

D471+ and G473D leading to insignificant changes in the Na+ transport affinity of 

TaHKT1;5-D, to Km = 4.48 ± 1.2 mM and 5.01 ± 0.77 mM, respectively (Fig. 5c). 

Discussion 

Crystal structures of the potassium ion transporters TrkH protein from Vibrio 

paraheamolyticus and KtrB from B. subtilus have been solved [29,42]. These 318 
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ith plant HKT proteins are all part of the same 319 
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bacterial proteins together w

superfamily of K+ transporters [15]. However, the KtrB template has a better 

sequence similarity to the HKT1;5 class of proteins than that of the TrkH K+ 

transporter previously used to model rice HKT1;5 proteins [14] and HKT proteins in 

wheat [23]. Compared to the previous model the positioning of loops connecting the 

α-helices and the C-terminal ends of the proteins had an improved structural 

similarity, although this was still only at 23% sequence identity. However, the α-

helical bundle component of the TaHKT1;5-D and TmHKT1;5-A proteins aligned 

well with the KtrB template indicating a reliable modelling of their structure and 

therefore the model we propose here is an advance; a crystal structure of a HKT 

would obviously lend a better model, but until that occurs this is the best structural 

model for wheat HKT1;5 class proteins currently available. Therefore, we used this 

new HKT model to investigate the structural and functional differences between 

HKT1;5 proteins. 

Our functional studies indicated that two variants TmHKT1;5-AG490R and 

TmHKT1;5-AK118E/L339P/Y379M, were non-functional. Despite the protein being 

localised in the plasma membrane, no Na+ currents were detected when expressed in 

X. laevis oocytes and no Na+-induced growth inhibition of S. cerevisiae was apparent

unlike in yeast expressing TmHKT1;5-A (Fig. 1). In Fig. 1a and Fig. S2, it can be 

seen that the Gly490 residue is highly conserved in other HKT1;5-A-like proteins, 

suggesting that it is an important residue for transport function or for structural 

integrity. Our structural analysis indicated that the TmHKT1;5-AG490R substitution 

occurred in a side chain that carries a positive charge at physiological pH. This 

combined with its likely steric hindrance obstructing the pore, would present a barrier 

to cations moving through the extension of the selectivity filter (Fig. 2 and Fig. S3). 

Furthermore, this mutation may affect the pore rigidity and dispositions of 

neighbouring residues controlling the rates of Na+ transport. Therefore, in summary, 

the structural penalties caused by the G490R variation may work in concert and 

explain the loss of Na+ transport activity by this variant of the TmHKT1;5-A protein. 

For, TmHKT1;5-AK118E/L339P/Y379M, all the amino acid residue substitutions are non-

conservative (Table S2). Y379 was found to be the least conserved of the three, this 

position was usually occupied by an aromatic residue with Ser being a common 

exception. The K118E and Y379M substitutions were only observed in 1% of the 352 
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sequences, while the L339P substitution remained undetected. As described in the 353 
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results, we propose that these three substitutions largely destabilise the TmHKT1;5-A 

structure and result in a loss of function. 

Using our molecular models, we turned our attention to making predictions regarding 

the residue differences that are likely to contribute to the higher affinity of Na+ 

transport observed for TmHKT1;5-A compared to TaHKT1;5-D (Fig. 4 and 5). There 

are 27 amino acid residue differences between these two proteins, and through our 

analysis we predicted that six residue substitutions were likely to be significant (Table 

1 and Fig. 3). Of these six, there were two residues, D471 and D474 from 

TmHKT1;5-A that were particularly interesting because this combined pair of 

aspartic acids at these sites were not observed in any of 48 other HKT members 

analysed, except OsHKT2;4 which has an aspartic acid at the site 466 but an alanine 

at site 469 (Fig. S5). Indeed, the D471/a gap and D474/473G substitutions occur very 

close to each other and form a part of an α-helix which directly links to one of the 

loops forming the selectivity filter. Double mutations of these two residues –

D471Δ/D473G and D471+/G473D, respectively, – caused a reduction in the 

TmHKT1;5-A Na+ transport affinity while increasing it for TaHKT1;5-D. This 

resulted in the Na+ transport affinity of TmHKT1;5-AD471Δ/D474G (Km = ~3.9 mM) and 

TaHKT1;5-DD471+/G473D (Km = 4.1 mM) to be at a similar level. Nevertheless, 

TmHKT1;5-AD471Δ/D474G still had a higher Na+ transport affinity than wild-type 

TaHKT1;5-D (P = 0.0076), suggesting that other substitutions listed in Table S1 are 

likely to further contribute to the observed functional differences. The D471Δ/D473G 

substitutions decreased the transport conductance of TmHKT1;5-AD471Δ/D474G, close 

to that of TaHKT1;5-D (P = 0.6439); while TaHKT1;5-DD471+/G473D had a comparable 

conductance to TmHKT1;5-A (P = 0.5136) (Fig. 4a, b). So these two motifs (D471/a 

gap and G473/474D) have a key influence on the Na+-uptake capacity of TmHKT1;5-

A/TaHKT1;5-D. We did not find evidence that these mutations are naturally 

occurring within wheat, but these could be investigated in the future through the use 

of molecular markers on wheat diversity panels. An extension of the model to include 

other HKT proteins, a greater survey of structure-function relationships and 

experimental mutations of key residues both in vitro and in vivo to explore the wider 

functional significance of these differences will be the focus of a further study. 385 
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TmHKT1;5-A facilitates Na+ uptake with a higher affinity than TaHKT1;5-D (Fig. 4-387 
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5). We studied the Km of these proteins, as this is the parameter in which we could 

have most confidence. Whereas Vmax may be susceptible to misinterpretation due to 

potential differences in protein expression between X. laevis oocytes, Km values will 

not. Importantly, physiologically relevant concentrations in the stele (i.e. in the low 

mM range; Table III [8]), coincide with the Km of TmHKT1;5-A. This suggests that 

the higher mM values for the Km of TaHKT1;5-D would render it less effective in 

retrieving Na+ into stelar cells and therefore is a potential explanation of how it 

confers less Na+ exclusion. Consistent with this proposition, the introgression of the 

Nax2 locus carrying TmHKT1;5-A into bread wheat confers greater Na+-exclusion to 

bread wheat which already carries TaHKT1;5-D [53]. 

The expression of class 1 HKT genes can elicit downstream responses that lead to an 

increased exclusion of Na+ from the shoot [33,34,37,38]. We envisage that HKT1;5-

like proteins may stimulate retrieval of Na+ from the stelar apoplast, specifically from 

the xylem vessel elements, and effectively act as a node setting off a cascade of 

downstream processes that lead to greater plant salt tolerance. These processes 

involve the increased activity of proteins involved in compartmentation of Na+ within 

the root vacuoles of specific cell-types and the cortex [9,37,38] and potentially those 

that catalyse the efflux of Na+ from roots. Stelar cells, and in particular those cells that 

line the xylem, clearly play an important role in limiting the salt transport to the shoot 

and in conferring plant salt tolerance. As such, we consider it instructive to think of 

this action as constituting a ‘gatekeeper’ process. i.e. a discrete cell-type that provides 

a rate limiting step for the control the flux of solutes into or throughout the plant, be 

they nutrients, toxins or metabolites. We consider that it is imperative that the unique 

transport processes within populations of these gatekeeper cell-types are further 

studied to understand how the net flux of solutes through plant tissues occurs [54]. 

Coupling previous research [33,34] with the comparison of two Na+-selective 

channels in this study suggests that the candidate gene TmHKT1;5-A in the Nax2 

locus from ancestral wheat germplasm T. monococcum encodes a unique high affinity 

Na+-exclusion transporter. We propose that this locus serves as an optimal choice for 

wheat breeders for developing salinity tolerant wheat lines with more efficient Na+-

exclusion. 420 
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Materials and Methods 

Brief methods for cloning of TmHKT1;5-A and variants as well as its functional 

characterisation in heterologous expression systems of X. laevis oocyte and 

Saccharomyces cerevisiae were described Munns et al. [33] and Byrt et al. [34]. 

More detailed methods for protein modelling were included in Cotsaftis et al. [14]. 

Further details are included here. 

Gene cloning and site-directed mutagenesis 

TmHKT1;5-A was isolated from both cDNA of durum wheat (T. turgidum) Line 149 

roots and the T. monococcum (DV92) BAC library [33,34,41,55]. The following site-

directed-mediated mutagenesis PCR was performed on these entry clones as 

templates to create single or double mutations of TmHKT1;5-A and TaHKT1;5-D as 

indicated in a Figure legend, using the Phusion™ Hot Start High-Fidelity DNA 

polymerase (FINNZYMES) with primers as listed in Table S3. PCR products were 

purified from agarose gel sand phosphorylated by the T4 Polynucleotide Kinase 

(New England Biolabs) to add a phosphate group to the 5’ and 3’ ends of the products 

at 37 ºC for 30 min. These were subsequently self-ligated by the T4 DNA Ligase 

(New England Biolabs) at 4 ºC overnight. Ligase reactions were transformed into 

TOP10 Chemically Competent E. coli cells (Invitrogen). 

Plasmid contruction 

The vector containing a YFP tag for heterologous expression in X. laevis oocytes was 

constructed using a restriction digest and ligation of two expression vector fragments. 

The pGEMHE-DEST vector for X. laevis oocyte expression was cut by SmalI and 

XbaI to remove the Gateway cloning site and to provide a backbone; then the same 

enzyme set was used to cut the Gateway cloning cassette with YFP tagged on the N-

terminus from pBS-YFP-attR. Two fragments were fused together into a new 

expression vector named pYFP-GEMHE using the T4 ligase (New England Biolabs). 

TmHKT1;5-AK118E/L339P/Y379M and TmHKT1;5-AG490R were recombined from the entry 

vector into the new pYFP-GEMHE using Gateway LR Clonase II Enzyme mix 

(Invitrogen). 452 

453 
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A variant to investigate membrane 454 
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Fluorescence imaging of TmHKT1;5-

localisation in X. laevis oocytes 

The recombinant expression vector pYFP-GEMHE carrying TmHKT1;5-

AK118E/L339P/Y379M or TmHKT1;5-AG490R was linearised by SbfI (New England Biolabs). 

cRNA was synthesised from linearised plasmid using the mMESSAGE mMACHINE 

T7 Transcription Kit, following manufacturer’s instructions (Ambion). 46 nl/46 ng of 

cRNA was injected into oocytes with a Nanoinject II microinjector (Drummond 

Scientific). Oocytes were incubated for 48 h at 18 ºC before imaging using a confocal 

laser scanning microscope equipped with a Zeiss Axioskop 2, LSM5 PASCAL and 

an argon laser (Carl Zeiss). Sequential scanning and laser excitation was used to 

capture fluorescence from YFP (excitation = 514 nm, emission band pass = 570–590 

nm). 

Two-electrode voltage clamp recording in X. laevis oocytes 

Oocyte recording followed the methods as described in Munns et al. [33] and Byrt et 

al. [34]. Briefly, 46 nl/23 ng of cRNA or equal volumes of RNA-free water were 

injected into oocytes, followed by an incubation for 48 h before recording. Membrane 

currents were recorded in the HMg solution (6 mM MgCl2, 1.8 mM CaCl2, 10 mM 

MES and pH 6.5 adjusted with a TRIS base) ± Na+ glutamate and/or K+ glutamate as 

indicated. All solution osmolarities were adjusted using mannitol at 220-240 mOsmol 

kg-1. 

Construction of 3D models of TaHKT1;5-D, TmHKT1;5-A and the G490R and 

K118E/L339P/Y379M variants of TmHKT1;5-A 

The most suitable template for TaHKT1;5-D, TmHKT1;5-A and variants of 

TmHKT1;5-A, identified by Phyre2 [56] and I-TASSER [57], was the KtrB K+ 

transporter from B. subtilis (Protein Data Bank accession 4J7C, chain I referred to as 

4J7C:I) [42]. This template replaces the TrkH K+ transporter (Protein Data Bank 

accession 3PJZ, chain K referred to as 3PJZ:K) [29] that was previously used to 

model rice HKT proteins [14]. The KtrB K+ structure was crystallised in the presence 

of 150 mM KCl and contains a K+ ion in the central pore. This ion was substituted by 

Na+ ion during modelling of wheat HKT proteins because TaHKT1;5-D and 

TmHKT1;5-A proteins transport Na+ and not K+. As the respective sequence identity 

and similarity between TmHKT1;5-A and 4J7C:I (23% and 59%), and TaHKT1;5-D 

and 4J7C:I (23% and 61%) were low a variety of alignments obtained through 

487 
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LOMETS [58], PROMALS3D [59], MUSCLE [49] and AA2 [48] were applied to488 
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generate models in complex with Na+, using Modeller 9v8 [60] on a Linux station 

running the Fedora 12 operating system. 

Statistical analysis 

All analysis and graphing was performed in Graphpad Prism version 7. Statistical tests 

were performed as stated in the text or figure legends. 
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FIGURES AND FIGURE LEGENDS 

Fig. 1 Mutation of G490R and K118E/L339P/Y379M in TmHKT1;5-A inhibited 

its Na+ transport in heterologous expression systems. a. Protein sequence 

alignment of HKT1;5 homologues from wheat, rice, barley, sorghum, Medicago 

truncatula and Arabidopsis. The blue box indicates the 490 residue position of 

TmHKT1;5-A and its homologues. The protein accession number are TmHKT1;5-A, 

ABG33946.1; TaHKT1;5-B1, ABG33947.1; TaHKT1;5-B2, ABG33948.1; 

TaHKT1;5-D, ABG33949.1; TtHKT1;5-B1, ABG33940.1; TtHKT1;5-B2, 

ABG33941.1; HvHKT1;5, ABK58096.1;.OsHKT1;5-Ni, Q0JNB6.1; OsHKT1;5-Po, 

A2WNZ9.2; AtHKT1;1, Q84TI7.1; SbiHKT1;5, EES02856.1; MtHKT1;5, 

AES77170.1; Tm, Triticum monococcum; Ta, Triticum aestivum; Tt, Triticum 

turgidum subsp. durum; Hv, Hordeum vulgare; Os, Oryza sativa; At, Arabidopsis 

thaliana; Sbi, Sorghum bicolor; Mt, Medicago truncatula. b, c Growth of S. 

cerevisiae strain InvSc2 (MATa his-D1 leu2 trp1-289 ura3-52) expressing 

TmHKT1;5-A, its two variants and empty-vector control on either the SC-Ura agar 

medium (b) or the AP liquid medium (c). b A five serial dilutions of yeasts were 

spotted on the SC-Ura medium with 2% (w/v) Gal, 1.67% (w/v) agar and indicated 

Na level present and incubated at 30 ºC for three days. c Optical density at 600 nm of 

yeast growth in the liquid AP medium containing 0 mM or 10 mM NaCl. Data 

represented in mean ± S.E.M, n = 3. d-g Heterologous expression of TmHKT1;5-A 

and its two variants in X. laevis oocytes. d Confocal images of oocytes expressing 

two variants tagged with YFP at the N-terminus. e Relative change in the ion profile 

of oocytes expressing TmHKT1;5-A and its two variants to uninjected oocytes, data 

represented in mean ± S.E.M, n = 3. f and g Current-voltage (I/V) curve of X. laevis 

oocytes expressing TmHKT1;5-A, TmHKT1;5-AK118E/L339P/Y379M, TmHKT1;5-AG490R 

and the H2O-injected control. Ooytes expressing TmHKT1;5-A were recorded in 30 

mM Na (f) and 10 mM K (g) glutamate; data represented in mean ± S.E.M, n = 5-9. 

Fig. 2 Molecular models of TmHKT1;5-A and G490R and K118E/L339P/Y379M 

variants. Cartoon representations of wild-type TmHKT1;5-A (a; cyan) and the 

G490R (b; pink) and K118E/L339P/Y379M (c; orange) variants illustrate overall 

folds in two orthogonal orientations (left and right panels). The left and right views in 33 
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panels a-c are related by 90o rotation about the horizontal axis. The structures of 3D 

models are depicted in cartoon representations with cylindrical α-helices in wild-type 

(a, G490 with the Van der Waals surface) or mutant (b, G490R with Van der Waals 

surface; C, K118E, L339P, Y379M in atomic sticks) structures. Na+ ions are shown as 

purple spheres located within the boundary of selectivity filters, where α-backbones 

of pore-forming residues are coloured in red. Four substituted residues between wild-

type (a), and the G490R (b) and K118E/L339P/Y379M (c) variants are shown in 

sticks and atomic colours. d A stereo view of four substitutions (G490R and 

K118E/L339P/Y379M) shown on the opaque background of the cartoon structures 

with Van der Waals surfaces in colours that are identical to those shown in panels (a-

c). Entries into the funnel of superposed transporters are indicated by a black arrows. 

Fig. 3 A stereo view of superposed TmHKT1;5-A and TaHKT1;5-D. Six 

differences in residues that are likely to underlie functional differences between the 

proteins are depicted on the opaque background of cartoon structures with Van der 

Waals surfaces. These residues are labelled by TmHKT1;5-A (first residue) 

TaHKT1;5-D (last residue) numbering. The entries into the funnels of transporters are 

indicated by black arrows. 

Fig. 4 Transport characteristics of TmHKT1;5-A, TmHKT1;5-A-D471Δ, -D474G 

and - D471Δ/D474G in X. laevis oocytes. a, b The I/V curve (a) and transport 

conductance at -140 mV (b) of oocytes expressing TmHKT1;5-A, TmHKT1;5-AD471Δ, 

TmHKT1;5-AD474G and TmHKT1;5-AD471Δ/D474G in 5 mM Na+ solution. c Na+-transport 

affinity of TmHKT1;5-A, TmHKT1;5-A-D471Δ, -D474G  and - D471Δ/D474G in X. 

laevis oocytes. Michaelis-Menten kinetics of relative inward current at -140 mV, of 

oocytes expressing TmHKT1;5-A, TmHKT1;5-AD471Δ, TmHKT1;5-AD474G and 

TmHKT1;5-AD471Δ/D474G in a serial Na+ solution of 0.01, 0.02, 0.05, 0.1, 0.5, 1, 2, 5, 10 

and 30 mM. Data represent Mean ± S.E.M, n = 6-9. Statistical difference was 

determined by Student’s t-test, asterick indicates statistical difference, *P < 0.05. 

Fig. 5 Transport characteristics of TaHKT1;5-D, TaHKT1;5-D-D471+, -G473D 

and -D471+/G473D in X. laevis oocytes. a, b The I/V curve (a) and transport 

conductance at -140 mV (b) of oocytes expressing TaHKT1;5-D, TaHKT1;5-DD471+, 

TaHKT1;5-DG473D and TaHKT1;5-DD471+/G473D in 5 mM Na+ solution. c Na+-transport 67 
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affinity of TaHKT1;5-D, TaHKT1;5-D-D471+, -G473D and -D471+/G473D in X. 

laevis oocytes. Michaelis-Menten kinetics of relative inward current at -140 mV, of 

oocytes expressing TaHKT1;5-D, TaHKT1;5-DD471+, TaHKT1;5-DG473D and 

TaHKT1;5-DD471+/G473D in a serial Na+ solution of 0.01, 0.02, 0.05, 0.1, 0.5, 1, 2, 5, 10 

and 30 mM. Data represent Mean ± S.E.M, n = 5-6. Statistical difference was 

determined by Student’s t-test, astericks indicate statistical difference, *P < 0.05 and 

**P < 0.01. 

Table 1. A summary of differences in amino acid residues between TmHKT1;5-A 

and TaHKT1;5-D that are likely significantly affect transport rates. 77 
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Table 1. A summary differences in amino acid residues between TmHKT1;5-A and 

TaHKT1;5-D that may significantly affect transport rates. 

Residue 

number 

Substitution 

Predicted structural consequence of 

residue substitution or deletion TmHKT1;5-A TaHKT1;5-D 

145 K E 
A change from a basic to an acidic residue. 

Likely to affect the local structure. 

207 G R 
A substantial change in charge and volume of side 

chain. Expected to significantly alter the local structure. 

407 C W 

Large difference in volume of a side chain at the base of 

an α-helix. 

 Change in orientation of the α-helix. 

408 H R 

Presence/ absence of the imidazole group from His. 

Significant change in the orientation of an α-helix, when 

combined with the C407W substitution. 

471 D - 
Addition of an extra amino acid residue. 

Significant impact on a local structure. 

474/473 D G 

Large charge difference combined with change of the 

volume of the side chain. 

 Effect on packing of the structure, when combined with 

the nearby D471- substitution. 




