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Abstract. In this paper we demonstrate how multiobjective optimal control

problems can be solved by means of model predictive control. For our analysis
we restrict ourselves to finite-dimensional control systems in discrete time. We

show that convergence of the MPC closed-loop trajectory as well as upper

bounds on the closed-loop performance for all objectives can be established if
the ‘right’ Pareto-optimal control sequence is chosen in the iterations. It turns

out that approximating the whole Pareto front is not necessary for that choice.

Moreover, we provide statements on the relation of the MPC performance to
the values of Pareto-optimal solutions on the infinite horizon, i.e. we investigate

on the inifinite-horizon optimality of our MPC controller.

1. Introduction. In optimal control, it is a natural idea that not only one but3

multiple objectives have to be optimized, see e.g. [16]. This inevitably leads to4

the formulation of a multiobjective (MO) optimal control problem (OCP). For op-5

timal control problems on infinite or indefinitely long horizons, model predictive6

control (MPC) has by now emerged as one of the most successful algorithmic ap-7

proaches [7, 19]. In MPC, the optimal control problem is solved successively on8

smaller, moving time horizons. It is not surprising that the connection between9

multiobjective optimal control and MPC has attracted the attention of many re-10

searchers.11

The first question to consider is how to deal with the occuring MO optimization12

problem in each step of the MPC scheme. A first, easy to apply method is to13

define a weighted sum of all objectives such that the MO optimization problem14

in the MPC iterations is transformed into a usual optimization problem, see e.g.15

[15,19,21] or [6] (in a distributed MPC framework). This strategy is very appealing16

because the existing theory on MPC can directly be applied. An extension, which17
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2 L. GRÜNE AND M. STIELER

yields comparable results, is the usage of time-varying weights in [1]. As in those1

approaches, also the paper [13] handles the MO optimization problems by defining a2

prioritization of objectives. This enables the authors to define a Lyapunov function3

and thus obtain asymptotic stability. The utopia-tracking approach in [23] is a4

no-preference method, and thus conceptually different from the previous references,5

yet the proofs also rely on defining a Lapunov function.6

The references just mentioned typically focus on asymptotic stability and efficient7

computation. However a refined performance analysis is not carried out and also not8

always possible, see [10]. Moreover, the presented approaches all rely on a specific9

method to solve the occuring MO optimization problems.10

In the works [5, 14] the whole Pareto front (the set of all solutions to the MO11

optimization problem) is approximated in each step of the MPC iteration and a12

solution is chosen subject to expert decisions (e.g. by a decision maker). To solve13

the MO optimization problems, neural networks and genetic algorithms are used.14

The idea of the approaches is to first gain precise insights into the problem and15

then make a decision. Convergence or performance of the MPC controller cannot16

be guaranteed.17

In [11] the occuring MO optimization problem is interpreted as a game and solved18

by means of the Nash-bargaining framework.19

The aim in this paper is to present MPC schemes and conditions on the MO op-20

timal control problem under which the MPC algorithm yields a closed-loop solution21

that approximates an infinite horizon Pareto-optimal solution. We will perform our22

analysis in the framework of stabilizing MPC problems, in which the cost functions23

penalize the distance to a desired equilibrium. The assumptions we impose will be24

relatively straightforward extensions of assumptions which are well established in25

single objective MPC. Both MPC schemes with and without terminal conditions26

are covered. The results build upon and extend preliminary result from [9].27

In our analysis we do not rely on a specific technique to solve MO optimization28

problems. Moreover, and in contrast to the references mentioned above, we will29

provide individual performance estimates for all objectives. In particular, we prove30

that including an additional constraint to the MO optimization problem in each31

MPC iteration yields performance guarantees for all objectives and convergence of32

the MPC closed-loop trajectory. Consequently, approximating the whole Pareto33

front in the iterations is not necessary, which makes our approach well applicable34

for real-time problems.35

The paper is organized as follows: In Section 1 we introduce the problems we36

are considering along with basic definitions and properties from multiobjective opti-37

mization as well as a general MPC procedure. In Section 3 we show how multiobjec-38

tive optimal control problems can be solved by means of MPC including terminal39

conditions, in Section 4 we move on to MPC without such terminal conditions.40

In both sections our theoretical findings are illustrated by a numerical example.41

Section 5 concludes this paper. Finally, some technical proofs for statements in42

Section 4 are given in Appendix A.43

2. Setting and Basic Definitions. In this paper we consider nonlinear control
systems in discrete time given by

x+ = f(x, u), f : Rn × Rm → Rn, (1)

which is a short notation for x(k + 1) = f(x(k), u(k)), with admissible state and44

control spaces X ⊆ Rn and U ⊆ Rm. A solution of system (1) for a control sequence45
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u = (u(0), . . . , u(K − 1)) ∈ UK and initial value x ∈ X is denoted by xu(·, x) or1

x(·, x) if the respective control sequence is clear from the context. The initial value2

will also often be skipped.3

For given stage costs `i : X × U → R≥0, i ∈ {1, . . . , s}, and horizon N ∈ N we
define the cost functionals

JNi (x,u) :=

N−1∑
k=0

`i (xu(k, x), u(k)) , (2)

which we aim to minimize wrt u and along a solution of (1). Thus, we obtain the
following multiobjective optimal control problem

min
u

(
JN1 (x,u), . . . , JNs (x,u)

)︸ ︷︷ ︸
=:JN (x,u)

s.t. x(k + 1) = f(x(k), u(k)), k = 0, . . . , N − 1,

x(k) ∈ X, k = 1, . . . , N,

u ∈ UN .

(3)

Due to the fact that (3) contains more than one cost functional, in general it is not4

possible to find an admissible control sequence u that minimizes all cost functionals5

simultaneously. The precise meaning of the “min” will be defined in Definition 2.1,6

below.7

Control sequences u that satisfy the constraints in (3) are collected in the set
UN (x) = {u ∈ UN |x(k + 1) = f(x(k), u(k)), k = 0, . . . , N − 1, x(k) ∈ X, k =
0, . . . , N}. Our setting can reflect different situations. Either (1) is one system with
multiple objectives to be minimized, or (1) is a collection of individual systems

x+ =

x
+
1
...
x+p

 =

f1(x, u)
...

fp(x, u)

 =: f(x, u),

with fi : Rn × Rm → Rni and n =
∑p
i=1 ni, xi ∈ Rni , where each system has at8

least one cost criterion `i (i.e. s ≥ p).9

By means of the MO OCP (3) we can now generate a feedback law µN : X→ U10

using model predictive control (MPC), which consists of the following procedure:11

Algorithm 1 (Basic MO MPC Algorithm). 1. At time n ∈ N measure the state12

of the system x(n).13

2. Solve (1) with initial value x = x(n) and obtain u?,N ∈ UN (x(n)).14

3. Define µN (x(n)) := u?,N (0) and apply the feedback µN to the system, i.e., set15

x(n+ 1) := f(x(n), µN (x(n))). Set n := n+ 1 and go to 1.16

Now we introduce the optimality notion used throughout this paper.17

Definition 2.1 (Pareto Optimality, Nondominated Point). A control sequence u? ∈
UN (x) is a Pareto optimal (control) sequence (POS) to (3) of length N for initial
value x ∈ X if there is no u ∈ UN (x) such that

∀i ∈ {1, . . . , s} : JNi (x,u) ≤ JNi (x,u?) and

∃i ∈ {1, . . . , s} : JNi (x,u) < JNi (x,u?).
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The objective value JN (x,u?) := (JN1 (x,u?), . . . , JNs (x,u?)) is called nondomi-1

nated. The set of all POSs of length N for initial value x ∈ X will be denoted by2

UNP (x).3

Usually, there is not only one Pareto optimal solution to (3). It is rather typical4

that there exists a continuum of such solutions and thus nondominated values as5

shown in Figure 1 for the case of two objectives. The gray, dashed surface represents6

the set of admissible values JN (x) := {JN (x,u) = (JN1 (x,u), . . . , JNs (x,u))|u ∈

J1

J2

Figure 1. Schematic illustration of a Pareto front for two objectives.

7

UN (x)}, the black curve the set JNP (x) := {(JN1 (x,u), JN2 (x,u))|u ∈ UNP (x)} of8

nondominated values. This set is often referred to as the efficient or nondominated9

set or Pareto front. Even though all points on the black curve are equally optimal in10

terms of the optimization problem (3), they are obviously not from each objective’s11

point of view.12

Convention: In the course of this paper, the min-operator is defined as

min
u∈UN (x)

JN (x,u) = JNP (x)

and, accordingly
argmin
u∈UN (x)

JN (x,u) = UNP (x).

Since only one POS can be applied to the system in step 3 of Algorithm 1, this nat-13

urally gives rise to the question how to choose among the Pareto-optimal solutions14

in step 2 of Algorithm 1. Our approaches to solving this problem will be presented15

in Sections 3 and 4.16

We now provide basic definitions and relations from the theory of multiobjective17

optimization, adapted from [4,20] to our setting.18

Definition 2.2 (External stability). The set JNP (x) is called externally stable, if for19

all j ∈ JN (x)\JNP (x) there is jP ∈ JNP (x) such that j ≥ jP holds componentwise.20

Definition 2.3 (Cone-Compactness). The set JN (x) is called Rs≥0-compact if ∀j ∈21

JN (x) the set (j − Rs≥0) ∩ JN (x) is compact.22

Theorem 2.4. Given a horizon N ∈ N≥1 and an initial value x ∈ XN . If JN (x) 6=23

∅ and JN (x) is Rs≥0-compact, then the set JNP (x) is externally stable.24

A proof of this theorem can be found in [4, 20]. The next lemma provides easily25

checkable conditions for external stability and which are satisfied by our example26

in Sections 3 and 4.27
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Lemma 2.5. If U is compact, X is closed and f and `i are continuous for all1

i ∈ {1, . . . , s}, then the conditions of Theorem 2.4 are fulfilled for all x ∈ X and all2

N ∈ N satisfying UN (x) 6= ∅.3

Proof. Let an initial value x ∈ X and a horizon N ∈ N≥1 such that UN (x) 6= ∅ be4

given. This implies JN (x) 6= ∅.5

It was proven in [3] that (under the given assumptions) the set ∆, that contains6

all feasible trajectories with respective control sequences (xu(·),u), is a compact7

subset of Z := Rn × · · · × Rn︸ ︷︷ ︸
N times

×Rm × · · · × Rm︸ ︷︷ ︸
N−1 times

. If we interpret JN as a function8

that maps from Z to Rs, compactness of JN (x) can be concluded from compactness9

of ∆ and continuity of the `i. The cone-compactness required in Theorem 2.4 is an10

immediate consequence from the stronger property of compactness.11

The following classes of functions are used in our paper.12

Definition 2.6 (Comparison functions).

L := {δ : R+
0 → R+

0 | δ continuous and decreasing with lim
k→∞

δ(k) = 0},

K := {α : R+
0 → R+

0 |α continuous, strictly increasing with α(0) = 0},
K∞ := {α ∈ K |α unbounded},
KL := {β : R+

0 × R+
0 → R+

0 |β continuous, β(·, t) ∈ K, β(r, ·) ∈ L}.

Furthermore, the following notions will be used: For x ∈ X and ε ∈ R>0 we
define

Bε(x) := {y ∈ X : ‖y − x‖ < ε} and

Bε(x) := {y ∈ X : ‖y − x‖ ≤ ε}.
(4)

In this paper we will be concerned with a setting that can be seen as a straight-13

forward generalization of ’classical’ or ’stabilizing’ MPC schemes, given by cost14

functions satisfying the following assumption.15

Assumption 2.7 (’Stabilizing’ stage costs). 1. There is an equilibrium pair or16

steady state (x∗, u∗) ∈ X× U, i.e., f(x∗, u∗) = x∗.17

2. There are α`,i ∈ K such that all stage costs `i, i ∈ {1, . . . , s}, satisfy

min
u∈U

`i(x, u) ≥ α`,i(‖x− x∗‖) ∀x ∈ X.

Assumption 2.7 requires that it is favourable for all objectives to steer the system18

to the same equilibrium. This includes the situation, in which objectives penalize19

the distance of components of the state to the equilibrium differently, i.e. conflict20

does not only come from possible constraints, but also from cost functions.21

3. Multiobjective Stabilizing MPC with Terminal Conditions. A standard
way to ensure proper functioning of MPC schemes is to add appropriate terminal
conditions, see [17] and the references therein, [7, Section 5] or [19]. In this section
we analyze MPC schemes with such conditions, which are given by a terminal
constraint set X0 and add a terminal cost Fi : X0 → R≥0. Thus, the problem we
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have to solve in the MPC iterations now reads

min
u

(
JN1 (x,u), . . . , JNs (x,u)

)︸ ︷︷ ︸
=:JN (x,u)

s.t. x(k + 1) = f(x(k), u(k)), k = 0, . . . , N − 1,

x(k) ∈ X, k = 1, . . . , N − 1, (5)

x(N) ∈ X0 ⊆ X,

u ∈ UN

for

JNi (x,u) =

N−1∑
k=0

`i(x(k, x), u(k)) + Fi(x(N)).

Since the terminal constraint x(N) ∈ X0 can generally not be satisfied from all1

initial values x ∈ X, we define the feasible set XN := {x ∈ X|∃u ∈ UN : x(k) ∈2

X, k = 1, . . . , N−1, x(N) ∈ X0}, cf. [17] and the references therein, or [7, Definition3

3.9] and [19, Section 2.3]. For x ∈ XN we define the set of admissible controls for the4

MO optimization problem (5) by UN (x) := {u ∈ UN | x(k+ 1) = f(x(k), u(k)), k =5

0, . . . , N − 1, x(k) ∈ X, k = 1, . . . , N − 1, x(N) ∈ X0}.6

Assumption 3.1 (Terminal cost). We assume that x∗ from Assumption 2.7 is7

contained in X0, Fi(x) ≥ 0 for all i and all x ∈ X0, and the existence of a local8

feedback κ : X0 → U satisfying f(x, κ(x)) ∈ X0 and ∀x ∈ X0, i ∈ {1, . . . , s} :9

Fi(f(x, κ(x))) + `i(x, κ(x)) ≤ Fi(x).10

Imposing Assumption 3.1 ensures that it is always possible to remain within the11

terminal constraint set X0 and that the cost of this control action is bounded from12

above by the original terminal cost. The algorithm that we propose for this setting13

is as follows:14

Algorithm 2 (MO MPC with terminal conditions).15

(0) At time n = 0 : Set x(n) := x0 and choose a POS u?,Nx0
∈ UNP (x0). Go to (2).16

(1) Measure x(n). Choose a POS u?,Nx(n) such that

JNi

(
x(n),u?,Nx(n)

)
≤ JNi

(
x(n),uNx(n)

)
holds for all i ∈ {1, . . . , s}.17

(2) For x := x
u?,N
x(n)(N, x(n)) set

uNx(n+1) :=
(
u?,Nx(n)(1), . . . , u?,Nx(n)(N − 1), κ(x)

)
.

(3) Apply the feedback µN (x(n)) := u?,Nx(n)(0), set n = n+ 1 and go to (1).18

Figure 2 visualizes the choice of the POS in step (1) of Algorithm 2. The bound19

resulting from uNx(n) is visualized by the black circle and determines the set of20

nondominated points on the red line that may be chosen, namely all points which21

are below and left of the black point. The basic idea (formalized in Lemma 3.2) is22

that the control sequence uNx(n) in step (2) is a POS of length N − 1 prolonged by23

the local feedback from Assumption 3.1 and that the prolongation reduces the value24

of the objective functions. Our considerations in Section 1 moreover show that –25

under appropriate assumptions – there is a POS with smaller objective value than26

the prolonged sequence (for each i). This is formalized in the next lemma.27
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J2

J1

JN
(
x(n),uN

x(n)

)

Figure 2. Step (1) in Algorithm 2.

Lemma 3.2. If Assumption 3.1 holds and if there is uN−1 ∈ UN−1(x), x ∈ XN ,
then there exists a sequence uN ∈ UN (x) satisfying

JNi (x,uN ) ≤ JN−1i (x,uN−1) ∀i ∈ {1, . . . , s}.

Proof. We define uN via uN (k) := uN−1(k) for k = 0, . . . , N − 2 and uN (N − 1) :=

κ(x̄) from Assumption 3.1, where x̄ := xu
N

(N − 1, x). Then uN is feasible because
uN−1 ∈ UN−1(x), and therefore, x̄ ∈ X0. Assumption 3.1 ensures feasibility of κ(x̄)
and f(x̄, κ(x̄)).
With the definition of uN we obtain the estimates

JNi (x,uN ) =

N−1∑
k=0

`i(x
uN (k, x),uN (k)) + Fi(x

uN (N, x))

=

N−2∑
k=0

`i(x
uN (k, x),uN (k)) + `i(x̄, κ(x̄)) + Fi(f(x̄, κ(x̄)))

≤
N−2∑
k=0

`i(x
uN−1

(k, x),uN−1(k)) + Fi(x̄)

= JN−1i (x,uN−1).

1

We are now ready to give our main result on the performance of the MPC feed-2

back on an infinite horizon.3

Theorem 3.3 (MO MPC Performance Theorem). Consider a multiobjective opti-
mal control problem with system dynamics (1), stage costs `i, i ∈ {1, . . . , s}, and
let N ∈ N≥2 and x0 ∈ XN . Let Assumptions 2.7 and 3.1 hold and let the set
JNP (x) be externally stable for each x ∈ XN . Then, the MPC feedback µN : X→ U
defined in Algorithm 2 renders the set X forward invariant1 and has the following
infinite-horizon closed-loop performance:

J∞i
(
x0, µ

N
)

:= lim
K→∞

K−1∑
k=0

`i
(
x(k), µN (x(k))

)
≤ JNi

(
x0,u

?,N
x0

)
(6)

for all objectives i ∈ {1, . . . , s}, in which u?,Nx0
denotes the POS of step (0) in4

Algorithm 2.5

1The set X is forward invariant for the closed-loop system x+ = f(x, µN (x)) if f(x, µN (x)) ∈ X
holds for all x ∈ X.
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Proof. Feasibility: The existence of the POS in step (0) and (1) is concluded
from external stability of JNP (x). Feasibility of uNx(n+1) in (2) follows from As-

sumption 3.1.
Performance: It follows from the definition of the cost functionals that

JNi

(
x(k),u?,Nx(k)

)
= `i

(
x(k), u?,Nx(k)(0)

)
+ JN−1i

(
f(x(k), u?,Nx(k)(0)),u?,Nx(k)(·+ 1)

)
with u?,Nx(k)(·+ 1) = (u?,Nx(k)(1), . . . , u?,Nx(k)(N − 1)), and hence, for arbitrary K ∈ N≥1

K−1∑
k=0

`i(x(k), µN (x(k))) =

K−1∑
k=0

`i(x(k), u?,Nx(k)(0))

=

K−1∑
k=0

[
JNi

(
x(k),u?,Nx(k)

)
− JN−1i

(
f(x(k), u?,Nx(k)(0)),u?,Nx(k)(·+ 1)

)]
≤
K−1∑
k=0

[
JNi

(
x(k),u?,Nx(k)

)
− JNi

(
f(x(k), u?,Nx(k)(0)),uNx(k+1)

)]
,

in which the inequality follows from Lemma 3.2 in combination with the the fact,

that u?,Nx(k)(· + 1) ∈ UN−1
(
f(x(k), u?,Nx(k)(0))

)
, and u?,Nx(k) is the POS chosen in the

algorithm at time k. In step (1), u?,Nx(k+1) is constructed such that the inequalities

JNi

(
x(k + 1),u?,Nx(k+1)

)
≤ JNi

(
x(k + 1),uNx(k+1)

)
hold. Thus, we finally obtain

K−1∑
k=0

`i
(
x(k), µN (x(k))

)
≤ JNi

(
x0,u

?,N
x0

)
− JNi

(
x(K),uNx(K)

)
≤ JNi

(
x0,u

?,N
x0

)
,

because of the positivity of JNi . The expression on the left hand side of the inequality1

is monotonically increasing in K and due to its boundedness, the limit for K →∞2

exists and we conclude the assertion.3

Remark 1. (i) As proven in Theorem 3.3 the upper bound on the performance of4

our MPC controller defined in Algorithm 2 remains the same no matter which5

u?,Nx(n) we choose in the iterations for k ≥ 1 as long as the additional constraints6

are met. This has the important consequence that it is not necessary to7

approximate the whole Pareto front in the iterations of Algorithm 2 because it8

is sufficient to calculate only one solution. This can e.g. be done by optimizing9

a weighted sum of objectives with arbitrary weights.10

(ii) A closer look at Algorithm 2 reveals that only in step (1) – i.e. for k ≥ 1 – the11

choice of u?,Nx(k) is subject to additional constraints. The first POS u?,Nx0
, which12

determines the bound on the performance of the algorithm, can be chosen13

freely in step (0), Algorithm 2. Thus, the performance can be calculated a14

priori from a multiobjective optimization of horizon N .15

Corollary 1. Under the assumptions of Theorem 3.3 it holds that the trajectory16

x(·) driven by the feedback µN from Algorithm 2 converges to the equilibrium x∗.17

Proof. It follows from Theorem 3.3 that the sum
∑∞
k=0 `i

(
x(k), µN (x(k))

)
con-

verges for each i ∈ {1, . . . , s}. Hence, the sequences
(
`i
(
x(k), µN (x(k))

))
k∈N0

,
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i ∈ {1, . . . , s}, tend to zero. Together with Assumption 2.7 for arbitrary i we obtain

∀ε > 0 ∃K ∈ N0 : ∀k ≥ K : ε > |`i
(
x(k), µN (x(k))

)
| = `i

(
x(k), µN (x(k))

)
≥ min
u∈U(x(k))

`i(x(k), u) ≥ α`,i(‖x(k)− x∗‖).

Since α`,i is a K function, we conclude

α`,i

(
lim
k→∞

‖x(k)− x∗‖
)

= lim
k→∞

α`,i (‖x(k)− x∗‖) = 0

⇔ lim
k→∞

‖x(k)− x∗‖ = 0.

1

We have proved in Theorem 3.3 that the inequalities

J∞i
(
x0, µ

N
)
≤ JNi

(
x0,u

?,N
x0

)
hold for the MPC feedback µN from Algorithm 2 and for all i ∈ {1, . . . , s}. Usually,
one would like to compare the infinite-horizon MPC cost to J∞i (x0,u

?,∞
x0

), where

u?,∞x0
is a POS2 to the infinite-horizon problem

min
u

(J∞1 (x0,u), . . . , J∞s (x0,u)) ,

with J∞i (x0,u) :=

∞∑
k=0

`i(x(k), u(k))

s.t. x(k + 1) = f(x(k), u(k)), k ∈ N0, (7)

x(k) ∈ X, k ∈ N
u ∈ U∞.

We now show how one can relate J∞i
(
x0, µ

N
)

to J∞i (x0,u
?,∞
x0

). Again, we summa-2

rize all constraints in (7) by writing u ∈ U∞(x0).3

Lemma 3.4. Let N ∈ N≥2, x ∈ XN be given. Let the assumptions of The-4

orem 3.3 hold and assume furthermore external stability of the set J∞P (x) :=5

{(J∞1 (x,u), . . . , J∞s (x,u))|u ∈ U∞P (x)}. Then, for each u?,N ∈ UNP (x) there is6

u?,∞ ∈ U∞P (x) such that the inequalities JNi
(
x,u?,N

)
≥ J∞i (x,u?,∞) hold for all7

i = 1, . . . , s.8

Proof. For N ∈ N≥2 and x ∈ XN fix an arbitrary u?,N ∈ UNP (x). Define the MPC

feedback µN according to Algorithm 2 and define u ∈ U∞(x) via u(k) = µN (xµ
N

(k))
for k ∈ N≥0. Then, we have

JNi
(
x,u?,N

) Thm. 3.3
≥ J∞i

(
x, µN

)
= J∞i (x,u) ∀ i.

Since we assume external stability of the set J∞P (x), there exists u?,∞ ∈ U∞P (x)9

satisfying J∞i (x,u) ≥ J∞i (x,u?,∞) ∀ i. This yields the assertion.10

Lemma 3.4 implies that Theorem 3.3 cannot be used to establish the inequality11

J∞i
(
x0, µ

N
)
≤ J∞i (x0,u

?,∞). However, we will be able to show an approximate12

estimate of this form in Theorem 3.6, below. As a preparation, we first show that13

the trajectory corresponding to any infinite-horizon control sequence with bounded14

2Necessary and sufficient conditions for the existence of a POS on the infinite horizon can e.g.
be found in [12].
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objectives gets arbitrarily close to the equilibrium x∗ in a finite number of time1

steps.2

Lemma 3.5. Let δ > 0, x ∈ X and u∞ ∈ U∞(x) be given. Under Assumption 2.73

and if there is K ∈ R≥0 satisfying J∞i (x,u∞) ≤ K ∀i ∈ {1, . . . , s}, then the index4

k̂ := min{k ∈ N0|xu
∞

(k) ∈ Bδ(x∗)} fulfills k̂ ≤ K
mini α`,i(δ)

. Here, Bδ(x∗) := {x ∈5

X : ‖x− x∗‖ ≤ δ}.6

Proof. Assume k̂ > K
mini α`,i(δ)

, then it holds

J∞i (x,u∞) =

k̂−1∑
k=0

`i(x(k), u∞(k)) +

∞∑
k=k̂

`i(x(k), u∞(k))

≥
k̂−1∑
k=0

α`,i(‖x(k)− x∗‖) >
k̂−1∑
k=0

α`,i(δ) = k̂ · α`,i(δ) > K,

contradicting the assumption.7

Theorem 3.6. Consider the MO optimal control problem (5) with cost criteria `i,
i ∈ {1, . . . , s}, and the corresponding optimal control problem on the infinite horizon
(7) with the same constraints and stage costs. Let the Assumptions 2.7 and 3.1 hold
and assume furthermore the existence of σi ∈ K such that Fi(x) ≤ σi(‖x−x∗‖) holds
for all x ∈ X0 and all i ∈ {1, . . . , s}. Consider an arbitrary initial value x ∈ XN
and a sequence u?,∞ ∈ U∞P (x) with J∞i (x,u?,∞) ≤ C ∀i, C ∈ R≥0. Assume there
is N̄ ∈ N such that the sets JNP (x) are externally stable for all N ≥ N̄ . Then, for
each ε > 0 there exists N0 ∈ N (depending on ε and N̄) such that for all N ≥ N0

there is u?,N ∈ UNP (x) satisfying

JNi
(
x,u?,N

)
≤ J∞i (x,u?,∞) + ε ∀i. (8)

In particular, u?,∞ can be approximated arbitrarily well by µN in terms of the
infinite-horizon performance, that is,

J∞i
(
x, µN

)
≤ J∞i (x,u?,∞) + ε. (9)

Proof. Let ε > 0 and choose δ > 0 such that σi(δ) ≤ ε ∀i and Bδ(x∗) ⊆ X0. For
the sequence u?,∞ ∈ U∞P (x) it holds J∞i (x,u?,∞) ≤ C ∀i. From Lemma 3.5 we

know that the index k̂ := min{k ∈ N0|xu
?,∞

(k) ∈ Bδ(x∗)} satisfies k̂ ≤ C
mini α`,i(δ)

.

Now let us choose N0 ∈ N such that N0 ≥ max{k̂ + 1, N̄}. For N ≥ N0 define the
sequence u ∈ UN (x) via

u(k) =

{
u?,∞(k), k = 0, . . . , k̂ − 1,

κ(x(k)), k = k̂, . . . , N − 1,
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with κ from Assumption 3.1. Since xu
?,∞

(k̂) ∈ Bδ(x∗) ⊆ X0, κ can be applied and
it holds xu(N) ∈ X0. From the definition of u we obtain

JNi (x,u) =

N−1∑
k=0

`i(x(k), u(k)) + Fi(x(N))

=

k̂−1∑
k=0

`i(x(k), u?,∞(k)) +

N−1∑
k=k̂

`i(x(k), κ(x(k))) + Fi(x(N))

≤ J∞i (x,u?,∞) +

N−1∑
k=k̂

[Fi(x(k))− Fi(f(x(k), κ(x(k))))] + Fi(x(N))

= J∞i (x,u?,∞) + Fi(x(k̂))

≤ J∞i (x,u?,∞) + σi(‖x(k̂)− x∗‖︸ ︷︷ ︸
≤δ

) ≤ J∞i (x,u?,∞) + ε.

Due to external stability of JNP (x) we conclude the existence of u?,N ∈ UNP (x) such
that

JNi
(
x,u?,N

)
≤ JNi (x,u) ≤ J∞i (x,u?,∞) + ε,

i.e. (8) holds. Choosing u?,Nx(n) = u?,N in step (0) of Algorithm 2 and combining the1

estimates (6) and (8) yields (9).2

3.1. Numerical Example. By means of the following example, presented in [18],
we illustrate the results of this section. We consider six two-dimensional sys-
tems xi ∈ R2, i ∈ {1, . . . , 6} that are dynamically decoupled but coupled through
constraints and cost criteria. Each system is steered by a two-dimensional input
ui ∈ R2. The system dynamics and stage cost of system i ∈ {1, . . . , 6} are given by

x+i =

(
0.9 0.1
−0.2 0.8

)
xi +

(
1 0
0 1

)
ui + 0.1

(
x2i,2
x2i,1

)
,

`i(x, u) = xTi Qixi + uTi Riui +
∑
j∈Ni

(Cixi − Cjxj)TQij(Cixi − Cjxj),

in which Ni = {i− 1, i+ 1} for i = 2, . . . , 5 and N1 = {2}, N6 = {5} and

Qi =

(
1 0
0 1

)
, Ri = 5Qi, Ci = Qi, for all i,

Q34 = Q43 = 02×2, Qij = 3Qi otherwise.

The states and controls are constrained by ‖xi‖∞ ≤ 5 and ‖ui‖∞ ≤ 2. Moreover,3

systems three and four are coupled by the constraint ‖x3 − x4‖ ≤ 4. In Figure 34

we observe that the accumulated performance of the MPC feedback defined in5

Algorithm 2 for N = 6 is indeed bounded from above by JNi (x0,u
?,N
x0

) as stated in6

Theorem 3.3. In Corollary 1 convergence of the closed-loop trajectories was proven.7

This behavior is illustrated in Figure 4.8

In order to illustrate the necessity of the constraints in step (1), we have also9

run Algorithm 2 for our example without these constraints, i.e., we have chosen an10
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Figure 3. Accumulated performance of the six objectives (blue)
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from step (0), Algorithm 2 (red).
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arbitrary Pareto-optimal solution in each iteration. Figure 5 illustrates that the1

desired performance bound is indeed violated3.
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Figure 5. Performance without the constraints in step (1), Algorithm 2.

2

4. Multiobjective Stabilizing MPC without Terminal Conditions. In this3

section we aim to develop performance estimates for multiobjective MPC schemes4

without terminal conditions, i.e. we no longer impose Assumption 3.1. A discussion5

why proceeding this way may be advantageous to MPC schemes with terminal6

conditions can be found in e.g. [7, Sec. 6.1]7

Instead of imposing such terminal conditions, we follow the procedure developed8

in [8] (see also [22]) for scalar-valued MPC and require the following structural9

property on POSs.10

Assumption 4.1 (Bounds on POSs). Let an optimization horizon N ∈ N be given.
For all i ∈ {1, . . . , s} there exist γi ∈ R>1 such that the inequalities

∀x ∈ X,∀u?,1x ∈ U1
P(x) ∃u?,2x ∈ U2

P(x) : J2
i (x,u?,2x ) ≤ γi · J1

i (x,u?,1x ),

∀k = 2, . . . , N,∀x ∈ X,∀u?,kx ∈ UkP(x) : Jki (x,u?,kx ) ≤ γi · `i(x, u?,kx (0))

hold for all objectives i ∈ {1, . . . , s}.11

3We observed that the violation is only visible for sufficiently large horizons N , because for
small N the terminal constraint becomes so restrictive that it dominates the effect of the constraint

in step (1) of Algorithm 2.
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We note that the condition UN (x) 6= ∅ for all x ∈ X and all N ∈ N is guar-1

anteed by Assumption 4.1. As in the previous section we impose Assumption 2.7.2

Assumption 4.1 requires that all POSs are in a sense structured. The second set of3

inequalities therein states that the values of all POSs can be expressed in terms of4

the stage cost of the first piece of the POS for all horizon lengths. The first set of5

inequalities is mainly needed as a base case for the induction in Lemma 4.4 in order6

to prove a relation between POS of horizon length k and k − 1. One possibility to7

obtain these inequalities is to require exponential controllability wrt all `i of the MO8

OCP, see [7, Sec. 6.2]. Together with external stability this ensures the existence of9

POSs and γi satisfying the inequality.10

The first MPC scheme we propose in this section is the following.11

Algorithm 3 (Multiobjective MPC without terminal conditions).12

(0) At time n = 0 : Set x(n) := x0 and choose a POS u?,Nx0
∈ UNP (x0) to (3). Go13

to (2).14

(1) At time n ∈ N: Choose a POS u?,Nx(n) to (3) so that the inequalities

JNi

(
x(n),u?,Nx(n)

)
≤ γN−2i + (γi − 1)N−1

γN−2i

JN−1i

(
x(n),uN−1x(n)

)
are satisfied for all i ∈ {1, . . . , s}.15

(2) Set

uN−1x(n+1) := u?,Nx(n)(·+ 1).

(3) Apply the feedback µN (x(n)) := u?,Nx(n)(0), set n = n+ 1 and go to (1).16

After giving two auxiliary results as well as a result, which resembles an aspect17

of the Dynamic Programming Principle (see e.g. [2]), we will prove that the MPC-18

feedback defined in Algorithm 3 guarantees forward invariance and has a bounded19

infinite-horizon performance for each objective.20

Lemma 4.2. Given x ∈ X and u?,kx ∈ UkP(x) for arbitrary k ∈ {2, . . . , N}. Under
Assumptions 2.7 and 4.1 the inequalities

Jk−1i

(
f(x, u?,kx (0)),u?,kx (·+ 1)

)
≤ (γi − 1)`i

(
x, u?,kx (0)

)
hold for all i ∈ {1, . . . , s} and all k ∈ {2, . . . , N}.21

Proof. Consider an arbitrary x ∈ X, k ∈ {2, . . . , N} and a POS u?,kx ∈ UkP(x).
Then, for all i ∈ {1, . . . , s} it holds

Jk−1i

(
f(x, u?,kx (0)),u?,kx (·+ 1)

)
= Jki

(
x,u?,kx

)
− `i

(
x, u?,kx (0)

)
≤ γi · `i

(
x, u?,kx (0)

)
− `i

(
x, u?,kx (0)

)
,

which shows the assertion.22

Lemma 4.3 (Tails of POSs are POSs). If u? ∈ UNP (x), then u?,K := u?(·+K) ∈23

UN−KP (xu
?

(K,x)) for all K ∈ N<N , in which the tail is defined as u?(· + K) :=24

(u?(K), u?(K + 1), . . . , u?(N − 1)).25

Proof. We first note, that u? ∈ UNP (x) ⊂ UN (x) implies u?,K ∈ UN−K(x), see
e.g. [7, Lemma 3.12]. Let us assume that u?,K is not a POS of length N − K
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for initial value xu
?

(K,x). This implies the existence of u ∈ UN−K(xu
?

(K,x))
satisfying

∀ i ∈ {1, . . . , s} : JN−Ki (xu
?

(K,x),u) ≤ JN−Ki (xu
?

(K,x),u?,K) and

∃ j ∈ {1, . . . , s} : JN−Kj (xu
?

(K,x),u) < JN−Kj (xu
?

(K,x),u?,K).

Since by definition

JNi (x,u?) =

K−1∑
k=0

`i(x
u?(k, x), u?(k)) + JN−Ki (xu

?

(K,x),u?(·+K)︸ ︷︷ ︸
u?,K

)

holds for all K ∈ N≤N , we obtain

∀ i ∈ {1, . . . , s} : JNi (x,u?) ≥
K−1∑
k=0

`i(x
u?(k, x), u?(k)) + JN−Ki (xu

?

(K,x),u),

∃ j ∈ {1, . . . , s} : JNj (x,u?) =

K−1∑
k=0

`j(x
u?(k, x), u?(k)) + JN−Kj (xu

?

(K,x),u?,K)

>

K−1∑
k=0

`j(x
u?(k, x), u?(k)) + JN−Kj (xu

?

(K,x),u).

Using again [7, Lemma 3.12], it holds that the concatenated control sequence ū =
(u?(0), . . . , u?(K − 1),u) is contained in the set UN (x), i.e. we get

∀ i ∈ {1, . . . , s} : JNi (x,u?) ≥ JNi (x, ū) and

∃ j ∈ {1, . . . , s} : JNj (x,u?) > JNi (x, ū).

This contradicts the fact that u? ∈ UNP (x).1

Lemma 4.4. Given x ∈ X and N ∈ N≥2. Let Assumptions 2.7 and 4.1 hold,
assume external stability of the sets J kP(x) for all k ∈ {2, . . . , N}. Then, for each

k ∈ {2, . . . , N} and each u?,k−1x ∈ Uk−1P (x) there is u?,kx ∈ UkP(x) such that

ηk,i · Jki
(
x,u?,kx

)
≤ Jk−1i

(
x,u?,k−1x

)
holds for all i ∈ {1, . . . , s}, in which ηk,i is defined as

ηk,i =
γk−2i

γk−2i + (γi − 1)k−1
.

The proof of this lemma is given in Appendix A.2

Theorem 4.5 (Performance Theorem). Consider a multiobjective OCP with system
dynamics (1), cost criteria `i, i ∈ {1, . . . , s} and let N ∈ N≥2, and x0 ∈ X be given.
Let Assumptions 2.7 and 4.1 hold and let the sets J kP(x0) be externally stable for all

k ∈ {2, . . . , N}. Let moreover (γi − 1)N < γN−2i hold for all i ∈ {1, . . . , s}. Then,
the MPC-feedback µN : X→ U defined in Algorithm 3 renders X forward invariant
and has the infinite-horizon closed-loop performance

J∞i
(
x0, µ

N
)
≤ γN−2i

γN−2i − (γi − 1)N
· JNi

(
x0,u

?,N
x0

)
for all objectives i ∈ {1, . . . , s} and the POS u?,Nx0

from step (0) in Algorithm 3.3
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Proof. Existence of the POSs in Algorithm 3 is obtained by Lemma 4.4 and we
can thus conclude forward invariance of the closed-loop system. We will now prove
that the MPC-feedback exhibits the stated performance. For K ∈ N≥1 and all
i ∈ {1, . . . , s} it holds(

1− (γi − 1)N

γN−2i

)
︸ ︷︷ ︸

>0

JKi (x0, µ
N ) =

(
1− (γi − 1)N

γN−2i

)K−1∑
k=0

`i(x(k), µN (x(k)))

=

(
1− (γi − 1)N

γN−2i

)K−1∑
k=0

`i

(
x(k), u?,Nx(k)(0)

)
=

K−1∑
k=0

[
`i

(
x(k), u?,Nx(k)(0)

)
− (γi − 1)N

γN−2i

`i

(
x(k), u?,Nx(k)(0)

)]

≤
K−1∑
k=0

[
JNi

(
x(k),u?,Nx(k)

)
− JN−1i

(
f(x(k), u?,Nx(k)(0)),u?,Nx(k)(·+ 1)

)
− (γi − 1)N−1

γN−2i

JN−1i

(
f(x(k), u?,Nx(k)(0)),u?,Nx(k)(·+ 1)

)]

=

K−1∑
k=0

[
JNi

(
x(k),u?,Nx(k)

)
− JN−1i

(
f(x(k), u?,Nx(k)(0)),u?,Nx(k)(·+ 1)

)(
1 +

(γi − 1)N−1

γN−2i

)
︸ ︷︷ ︸

=
γ
N−2
i

+(γi−1)N−1

γ
N−2
i

]
,

in which the inequality is obtained by Lemma 4.2. In step (1) the POS u?,Nx(k) is

chosen such that we obtain the estimates(
1− (γi − 1)N

γN−2i

)
JKi (x0, µ

N ) ≤ JNi (x0,u
?,N
x0

)− JNi (x(K),u?,Nx(K)) ≤ J
N
i (x0,u

?,N
x0

)

for all i ∈ {1, . . . , s}. This concludes the assertion.1

Corollary 2 (Infinite-horizon near optimality). Let the assumptions of Theorem 4.5
hold for N ∈ N≥2 and x0 ∈ X and assume that there is a POS u?,∞ ∈ U∞P (x0) to
the MO inifinite-horizon OCP (7). Then, the estimates

J∞i (x0, µ
N ) ≤ γN−2i

γN−2i − (γi − 1)N
· J∞i (x0,u

?,∞) ∀i ∈ {1, . . . , s}

are obtained by applying Algorithm 3 with a proper initialization in step (0).2

Proof. Positivity of the stage costs `i yields J∞i (x0,u
?,∞) ≥ JNi (x0,u

?,∞) for3

all i ∈ {1, . . . , s} and external stability of the set JNP (x0) guarantees the exis-4

tence of u?,Nx0
∈ UNP (x0) such that JNi (x0,u

?,∞) ≥ JNi (x0,u
?,N
x0

) holds for all i ∈5

{1, . . . , s}. By applying u?,Nx0
in step (0) of Algorithm 3 we conclude J∞i (x0, µ

N ) ≤6

γN−2
i

γN−2
i −(γi−1)N

· J∞i (x0,u
?,∞) for all objectives i ∈ {1, . . . , s}.7
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Remark 2. 1. The factor
γN−2
i

γN−2
i −(γi−1)N

quantifies the maximum gap between1

the performance of the MPC controller and a nondominated value on the2

infinite horizon. It is, therefore, often called the degree of suboptimality. It3

can easily be seen that
γN−2
i

γN−2
i −(γi−1)N

↘ 1 as N →∞. Thus, the MPC solution4

approaches the optimal solution for N →∞.5

2. In all statements so far we have required Assumption 2.7 to hold. In fact, it6

is sufficient if `i(x, u) ≥ 0 holds for all i ∈ {1, . . . , s} to obtain the previous7

results. But since positive semidefinite stage costs are not sufficient for Corol-8

lary 3, below, we decided to impose Assumption 2.7 throughout the course of9

this section.10

Corollary 3 (Trajectory convergence). Let the assumptions of Theorem 4.5 hold11

for x0 ∈ X and N ∈ N. Then, any closed-loop trajectory xµ
N

(·, x0) resulting from12

Algorithm 3 converges to x∗.13

Proof. As the proof of Corollary 1.14

A drawback of Algorithm 3 is that finding a POS in step (1) is subject to15

constraints which depend on the γi from Assumption 4.1. Checking the respective16

assumption is already a difficult task in the single-objective setting and is often17

done numerically or by verifying an asymptotic controllability assumption, cf. the18

comment below Assumption 4.1. It is even more involved in our multiobjective19

setting because we need to find one γi for all nondominated values of all horizon20

lengths. This may lead to large values for γi if the Pareto fronts have a large21

diameter/are widespread. Conversely, the restriction to parts of the Pareto font in22

step (0) of Algorithm 3 will in general lead to smaller γi’s, which is beneficial for23

the performance of the algorithm. In any case, however, the values γi are hard to24

estimate, which makes the computation of the parameters in Algorithm 3 difficult.25

The difficulty of estimating the γi’s is our motivation to replace the constraint26

in step (1), Algorithm 3 by a constraint that does not explicitly depend on the27

knowledge of γi but yields the same performance result as Theorem 4.5. Thus,28

we are able to perform multiobjective MPC without terminal constraints under29

existence theorems for the γi’s but without having to estimate them. For this30

purpose we propose Algorithm 4.31

Algorithm 4 (MO MPC without terminal conditions – version 2).32

(0) At time n = 0 : Set x(n) := x0 and choose a POS u?,Nx0
∈ UNP (x0) to (3). Go33

to (2).34

(1) At time n ∈ N: Choose a POS u?,Nx(n) to (3) such that the inequalities

JNi

(
x(n),u?,Nx(n)

)
≤ JNi

(
x(n), ũx(n)

)
are satisfied for all i ∈ {1, . . . , s}.35

(2) For x := x
u?,N
x(n) (N − 1, x(n)) choose u? ∈ U2

P (x) such that ∀ i ∈ {1, . . . , s} it
holds

`i (x, u?(0)) ≤ `i
(
x, u?,Nx(n)(N − 1)

)
. (10)
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Define ũx(n+1) ∈ UN
(
x
u?,N
x(n)(1, x(n))

)
via

ũx(n+1)(k) :=

{
u?,Nx(n)(k + 1), k = 0, . . . , N − 3

u?(k − (N − 2)), k = N − 2, N − 1
.

(3) Apply µN (x(n)) := u?,Nx(n)(0), set n = n+ 1 and go to (1).1

We first state an auxiliary result, which is used in our performance analysis in2

Tehorem 4.7, below.3

Lemma 4.6. Let Assumptions 2.7 and 4.1 hold and let an initial value x ∈ X
and a POS u? ∈ UNP (x) to the multiobjective OCP (3) be given. Then, for all
i ∈ {1, . . . , s} it holds that

`i(x
u?(N − 1, x), u?(N − 1)) ≤

(
γi − 1

γi

)N−2
JN−1i

(
xu

?

(1, x),u?(·+ 1)
)
.

The proof of Lemma 4.6 is given in Appendix A.4

Theorem 4.7 (Performance Theorem for Algorithm 4). Consider a multiobjective
OCP (3) with system dynamics (1), cost criteria `i, i ∈ {1, . . . , s}, and let N ∈ N≥2.
Let Assumptions 2.7 and 4.1 hold and let the sets JNP (x) and J 2

P(x) be externally

stable for each x ∈ X. Let moreover N be large enough such that (γi − 1)N < γN−2i

holds for all i ∈ {1, . . . , s}. Then, the MPC-feedback µN : X → U defined in
Algorithm 4 yields forward invariance of X and has the infinite-horizon closed-loop
performance

J∞i
(
x0, µ

N
)
≤ γN−2i

γN−2i − (γi − 1)N
· JNi

(
x0,u

?,N
x0

)
for all objectives i ∈ {1, . . . , s} and POS u?,Nx0

from step (0) in Algorithm 4.5

In particular, any u?,∞ ∈ U∞P (x0) that solves (7) can be approximated arbitrarily
well by µN from Algorithm 4 in terms of the infinite-horizon performance, that is,

J∞i
(
x0, µ

N
)
≤ γN−2i

γN−2i − (γi − 1)N
· J∞i (x0,u

?,∞) .

Proof. Feasibility: Step (1) in Algorithm 4 is feasible, because we assume external6

stability of the sets JNP (x) for all x ∈ X. Now let us turn to step (2): The tail7

u?,Nx(n)(N − 1) can be prolonged by some û ∈ U such that ū :=
(
u?,Nx(n)(N − 1), û

)
∈8

U2 (x), in which x := x
u?,N
x(n)(N − 1, x(n)), otherwise U1

(
f
(
x, u?,Nx(n)(N − 1)

))
= ∅,9

contradicting Assumption 4.1. Clearly, the control sequence ū satisfies the con-10

straint (10). Thus, existence of a POS satisfying the constraint follows from external11

stability of J 2
P(x).12

Performance: For n ∈ N and ũx(n+1), u?,Nx(n), u? as defined in Algorithm 4 it

holds that

JNi
(
x(n+ 1), ũx(n+1)

)
= JN−2i

(
x(n+ 1),u?,Nx(n)(·+ 1)

)
+ J2

i

(
x
u?,N
x(n)(N − 1, x(n)),u?

)
.

Since u? ∈ U2
P

(
x
u?,N
x(n) (N − 1, x(n))

)
, Assumption 4.1 yields

J2
i

(
x
u?,N
x(n)(N − 1, x(n)),u?

)
≤ γi`i

(
x
u?,N
x(n)(N − 1, x(n)), u?(0)

)
.
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Thus, we get

JNi
(
x(n+ 1), ũx(n+1)

)
≤JN−1i

(
x(n+ 1),u?,Nx(n)(·+ 1)

)
− `i

(
x
u?,N
x(n)(N − 1, x(n)), u?(0)

)
+ γi`i

(
x
u?,N
x(n)(N − 1, x(n)), u?(0)

)
≤JN−1i

(
x(n+ 1),u?,Nx(n)(·+ 1)

)
+ (γi − 1)`i

(
x
u?,N
x(n) (N − 1, x(n)) , u?,Nx(n)(N − 1)

)
,

in which the last inequality follows from the construction in step (2) in Algorithm 4.
If we now apply Lemma 4.6, we obtain

JNi
(
x(n+ 1), ũx(n+1)

)
≤JN−1i

(
x(n+ 1),u?,Nx(n)(·+ 1)

)(
1 + (γi − 1)

(
γi − 1

γi

)N−2)

=
γN−2i − (γi − 1)N−1

γN−2i

JN−1i

(
x(n+ 1),u?,Nx(n)(·+ 1)

)
.

Hence, the POS in step (1) of Algorithm 4 satisfies the constraint in step (1) of1

Algorithm 3. This leads to the fact that the MPC-feedback defined in Algorithm 42

has the same performance as the feedback defined in Algorithm 3. The second3

estimate follows from Corollary 2.4

4.1. Numerical Example. Let us reconsider the example from Section 3, but this
time without imposing terminal conditions. To this end, we have checked Assump-
tion 4.1 numerically and used the values (γi)i∈{1,...,s} = (2.1, 1.6, 1.6, 1.5, 1.5, 1.6)
and N = 4. In Figure 6 we have depicted the trajectories (left) and performance
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Figure 6. Trajectories and accumulated performance without ter-
minal constraints using Algorithm 3.

(right) of the MPC feedback defined in Algorithm 3. The blue lines represent the
accumulated cost, the red lines the theoretical upper bound derived in Theorem 4.5,
i.e.

γN−2i

γN−2i − (γi − 1)N
· JNi

(
x0,u

?,N
x0

)
.
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Let us now apply Algorithm 4 with N = 4 to the example. Our theoretical
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Figure 7. Trajectories and accumulated performance without ter-
minal constraints using Algorithm 4.

1

considerations in Theorem 4.7 guarantee that the MPC performance is bounded2

from above by the same bound as before. In Figure 7 we compare the accu-3

mulated MPC cost (blue) to the theoretical upper bound (red) using the values4

(γi)i∈{1,...,s} = (2.1, 1.6, 1.6, 1.5, 1.5, 1.6) (as before). A comparison of Figures 6 and5

7 reveals that the trajectories behave very similarly though not identically. This6

indicates that at least in one of the Algorithms 3 and 4 there is some degree of7

freedom when choosing the POSs in the iterations.8

5. Conclusions and Future Research. In this paper we presented a framework9

for solving multiobjective optimal control problems by means of MPC. Our approach10

neither depends on the coupling structure of the systems nor on the method for11

solving multiobjective optimization problems. The method relies on appropriate12

additional, recursive constraints in the MPC iterations.13

Our analysis was conducted under the assumption that all stage costs are positive14

definite wrt the same equilibrium. In future research we will also tackle problems15

with economic stage costs that are strictly dissipative wrt different equilibria.16

Appendix A. Technical Proofs.
Proof of Lemma 4.4: By induction:
k = 2: The statement follows immediately from Assumption 4.1.
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k → k + 1: Let u?,kx ∈ UkP(x). It holds that

Jki
(
x,u?,kx

)
= Jk−1i

(
f(x, u?,kx (0)),u?,kx (·+ 1)

)
+ `i(x, u

?,k
x (0))

= Jk−1i

(
f(x, u?,kx (0)),u?,kx (·+ 1)

)
+ (γi − 1)

1− ηk,i
(γi − 1) + ηk,i

`i(x, u
?,k
x (0))

+

(
1− (γi − 1)

1− ηk,i
(γi − 1) + ηk,i

)
`i(x, u

?,k
x (0))

≥ Jk−1i

(
f(x, u?,kx (0)),u?,kx (·+ 1)

)
+

1− ηk,i
(γi − 1) + ηk,i

· Jk−1i

(
f(x, u?,kx (0)),u?,kx (·+ 1)

)
+

(
1− (γi − 1)

1− ηk,i
(γi − 1) + ηk,i

)
`i(x, u

?,k
x (0))

=

(
1 +

1− ηk,i
γi − 1 + ηk,i

)
Jk−1i

(
f(x, u?,kx (0)),u?,kx (·+ 1)

)
+

(
1− (γi − 1)

1− ηk,i
(γi − 1) + ηk,i

)
`i(x, u

?,k
x (0))

≥ ηk,i
(

1 +
1− ηk,i

γi − 1 + ηk,i

)
Jki

(
f(x, u?,kx (0)),u?,k

f(x,u?,kx (0)

)
+

(
1− (γi − 1)

1− ηk,i
(γi − 1) + ηk,i

)
`i(x, u

?,k
x (0))

=
ηk,iγi

γi − 1 + ηk,i

[
Jki

(
f(x, u?,kx (0)),u?,k

f(x,u?,kx (0)

)
+ `i(x, u

?,k
x (0))

]
=

ηk,iγi
γi − 1 + ηk,i

Jk+1
i (x,uk+1

x ), uk+1
x :=

(
u?,kx (0),u?,k

f(x,u?,kx (0))

)
≥ ηk,iγi
γi − 1 + ηk,i

Jk+1
i (x,u?,k+1

x ).

The first inequality holds due to Lemma 4.2 and in the second inequality we used
the induction assumption in combination with Lemma 4.3. The last inequality holds
due to external stability of the set J k+1

P (x). Moreover, for all i ∈ {1, . . . , s} we have

ηk,iγi
γi − 1 + ηk,i

=
γk−1i /(γk−2i + (γi − 1)k−1)

γi − 1 + γk−2i /(γk−2i + (γi − 1)k−1)
=

γk−1i

γk−1i + (γi − 1)k
= ηk+1,i.

1

Proof of Lemma 4.6: Similar to the proof of [7, Proposition 6.19]: For each
p ∈ {0, . . . , N − 2} and for all i ∈ {1, . . . , s} it holds that

N−1∑
k=p+1

`i(x
u?(k, x), u?(k)) = JN−pi (xu

?

(p, x),u?(·+ p))− `i(xu
?

(p, x), u?(p)).
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Since u?(·+ p) is a POS of length N − p for initial value xu
?

(p, x) (see Lemma 4.3),
Assumption 4.1 provides the estimate

N−1∑
k=p+1

`i(x
u?(k, x), u?(k)) ≤ γi`i(xu

?

(p, x), u?(p))− `i(xu
?

(p, x), u?(p))

= (γi − 1)`i(x
u?(p, x), u?(p))

⇒
N−1∑
k=p

`i(x
u?(k, x), u?(k)) = `i(x

u?(p, x), u?(p)) +

N−1∑
k=p+1

`i(x
u?(k, x), u?(k))

≥
(

1

γi − 1
+ 1

)
︸ ︷︷ ︸

=
γi
γi−1

N−1∑
k=p+1

`i(x
u?(k, x), u?(k))

for all p ∈ {1, . . . , N − 2}. Applying this inequality inductively we obtain

N−1∑
k=1

`i(x
u?(k, x), u?(k)) ≥

(
γi

γi − 1

)N−2
`i(x

u?(N − 1, x), u?(N − 1))

for all i ∈ {1, . . . , s}, which is the claimed estimate.1
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