
Eos
A Universal Verifiable and Coercion Resistant

Voting Protocol

anonymous

No Institute Given

Abstract. We present the voting protocol Eos that is based on a con-
ditional linkable ring signatures scheme. Voters are organized in rings
allowing them to sign votes anonymously. Voters may assume multiple
pseudo identities, one of which is legitimate. We use the others to signal
coercion to the Election Authority. Eos uses two mixing phases with the
goal to break the connection between the voter and vote, not to preserve
vote privacy (which is given already) but to guarantee coercion resis-
tance by making it (nearly) impossible for a coercer to follow their vote
through the bulletin board. Eos is universally verifiable and guarantees
coercion resistance.

1 Introduction

All of the well-known voting protocols use a form of mixing to break the con-
nection between vote and voter. Prêt-á-Voter [?], Helios [?], JCJ [?], Civitas [?],
encrypt the votes at the time of casting, and then mix them before decrypting
them for tabulation. Under the assumptions that at least one mixer is honest,
so the argument, it is impossible to link a decrypted vote back to the identity of
its voter. Selene [?] follows a slightly different approach. It uses tracker numbers
and assigns them to voters, who eventually will be able to identify their votes on
a bulletin board. This itself would not be novel, however, the trick is that a voter
only gains access to their respective tracker after the election authority shares
cryptographic information with the voter. This is supposed to happen only after
voting has closed, and after the results have been published. In Selene, voters
can fool a coercer into believing that any and not just one vote on the bulletin
board was theirs. Both JCJ and Selene are receipt-free and coercion-resistant.

To our knowledge, not much work has been done, however, to leverage the
power of ring signatures [?] to the design of voting protocols, besides perhaps
the mention in [?,?,?]. Here, a ring refers to a group of participants who have the
ability to sign messages anonymously by hiding their respective identities within
the group. Assuming that the message was sent over an anonymous channel, the
receiver of the message will not be able to trace the signature back to the signer.
The idea of using ring signatures for voting brings some advantages. For example,
an election authority will be able to publish all ballots and their signatures on a
public bulletin board for public scrutiny without revealing the voters’ identities.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/156888958?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

Also, every voter can check their vote by accessing the bulletin board. But there
are also challenges: First, the administration of the voter’s identities, i.e. private
keys, and second the protection of such identities from misuse, for example, for
the purpose of vote-selling or voter coercion.

For the first challenge, we do not provide a solution in this paper, we merely
assume that an effective, trusted identity infrastructure is in place that allows
a voter to access a private key on a secure platform, for example, by means of
a trusted Hardware Security Module (HSM). This may seem like a controver-
sial assumption, but it really is not: Our experiments have shown that suitable
HSMs exist. They may not be totally secure, but they are reasonable well de-
signed to protect private keys against malicious agents and against malicious
firmware. Hacking such an HSM is possible and requires fiddling with firmware
and hardware, but we argue that this is difficult to do on a large scale in practice.

In this paper, we tackle a second challenge. We devise a ring signature scheme
that allows voters to assume different pseudo identities, and that provides mech-
anisms for linking such identities from the point of view of the signature verifier.
This scheme is a generalization of the so called linkable spontaneous anony-
mous group (LSAG) signatures [?], where all signatures from the same signer
are linked. Correspondingly, we refer to this scheme as a conditional-linking ring
(CLR) signature scheme. Using CLR signatures it is up to the voter to allowing
linking or not. Linking does not break anonymity.

Based on CLR signatures, we develop then a universally verifiable, receipt-
free, coercion-resistant, vote secrecy and integrity preserving voting protocol,
named Eos, which is also described in this paper. This protocol assumes that
each voter is in the possession of a private key, and that the voter must be au-
thenticated to cast a valid vote. The authentication method yields additional
entropy, such as, for example, a PIN number, a picture, or a fingerprint. When
casting a vote, before submission, it is either put into a ”green envelope” mark-
ing it as valid, or a ”red envelope” marking it as invalid or possibly coerced,
depending if the authentication succeeded or failed.

The entropy collected during the authentication procedure determines which
pseudo-identity is used. Furthermore, we encrypt the color of the envelope, the
electoral identity of the voter (which is unique), and the vote itself in order to
guarantee coercion resistance and fairness, respectively. All envelopes together
with their corresponding CLR signatures are recorded and shared on a public
bulletin board. Pseudo identities are malleable, which means that from the point
of view of the voter or the coercer, it will be ”discrete logarithm hard” to link
any two ballots from the bulletin board. Voters and coercers will be able to check
whether the ballot was recorded as cast but neither the voter nor the coercer
will be able to link their ballots.

The protocol proceeds and executes two verifiable decryption mix-nets in or-
der. The first mix-net shuffles the ballots and decrypts color and the electoral
identity, but leaves the votes encrypted. All this information is posted on a public
bulletin board accompanied by zero-knowledge proofs of correct shuffle and cor-
rect decryption. As the color of the envelopes has become visible, red envelopes



3

are discarded, and green envelopes are opened and the encrypted votes contained
within (and only those) are passed to the second and last mixing stage. Note
that a coercer cannot follow the coerced vote through mixing unless all mixing
servers collude and are under the coercer’s control. If two green envelopes are
cast from two different pseudo-identities that correspond to the same electoral
identity, this indicates a malicious attempt for a double vote. In this case we
recommend to discard the votes of this electoral identity.

In the second and final mixing stage, we use another verifiable decryption
mix-net to shuffle and decrypt votes. Also here, the resulting bulletin board in-
cluding the zero-knowledge proofs of correct shuffle and decryption are published
and are made available for scrutiny.

In order to afford decrypting the ballots without losing privacy or anonymity,
the entire bulletin board has to be shuffled. For this phase, any mix-net that can
generate a valid proof of correct shuffle can be used, for example, Sako Kilian
[?], Fukuraua [?] or Neff [?,?]. In this paper we introduce a new mixer that
we believe is more readable and easier to understand as it follows the classic
Discrete Logarithm Equality Zero Knowledge proof, and it comes with efficient
algorithms both in generating and verifying proofs of correct shuffle.

Contributions The contributions of this paper are (1) a Conditional Linkable
Ring (CLR) signature scheme, (2) a mixer that produces a proof of correct shuf-
fle, (3) the Eos voting protocol, and (4) proofs that the Eos is vote secrecy and
integrity preserving, universally verifiable, receipt-free, and coercion resistant.

This paper is organized as follows. In Section ??, we introduce basic notation
that we will use throughout the paper. Next, we introduce the Conditional Link-
able Ring (CLR) signature schemes in Section ??. In Section ??, we describe and
analyze the mix-net that we propose to use in Eos including the proof of correct
shuffle. Specifically, we present a version for the simple case, namely just atoms,
and for the complex case, i.e. sequences of atoms. In Section ?? we the describe
the Eos voting protocol in detail. In particular, we discuss the different phases,
including setup, voting, two mixing and decryption phases. Each algorithm that
we use is verifiable, and each input and out for each phase are published on a
public bulletin board. In Section ??, we establish that Eos has all desired proper-
ties. Finally, in Section ?? we present conclusions and give an outlook on future
work.



4

2 Basic Notations

We define the following notations that we will use throughout our paper. We
work with an ElGamal crypto systems that is defined over a cyclic group G of
prime p order q generated by g. Please note that all mathematical operations
presented in this paper are done modulo p.

We use standard notation and write
{
m
}r
y

= (gr, yrm) for the ElGamal tuple

that one obtains by encrypting message m with randomness r and a public key y.
We use r to denote randomness, and write r ∈R Zq to say that we choose r from
Z modulo q at random using a uniform distribution. We will also use sequences
of n elements over Zq, written as 〈x1, ..., xn〉 ∈ Znq . We define [n] to denote the
index set of natural number up to n as {1, ..., n}. Furthermore, we use Greek
letters σ for signatures and π to denote permutations and write Pn as the set
of all permutation of n elements. Concatenation of two elements a, b ∈ {0, 1}∗ is
written as a‖b.

3 Conditional-Linkable Ring Signatures

We begin the technical exposition of this paper by defining the concept of
Conditional Linkable Ring (CLR) signatures. In a linkable ring (LR) signature
scheme [?] a verifier can learn which signatures originate from the same signer.
Note that this does not mean that the verifier learns something about the iden-
tity of the signer — ring signatures always guarantee the anonymity of the signer.
For our application, however linkability is overly restrictive – if we were to use
LR signatures naively, we could not achieve coercion-resistance. Therefore, we
relax the notion of linkability, and introduce conditional linkability given the
signer the ability to link (revealing that the signatures originate from the same
signer) or not to link (making it look like as if two signatures were produced by
two different signers). We present the CLR signature scheme as a generalization
of the LR signature scheme presented in [?] following the same phases:
Preparation phase: Every prospective member of the ring creates a secret key
xi ∈ Zq, and shares the public key yi = gxi with a designated election authority.
Set-up phase: The election authority produces the set of ring members L =
〈y1, ..., yn〉, which represents eligible voters.
Identity selection phase: Assume that the signer is the member of the ring at
position α. The signer selects a pseudo-identity by choosing φ ∈R G and by
forming the pair (φ, θ) where θ = φxα . The pair (φ, θ) is called a pseudo identity.
If the signer wishes his signature to be linkable, he will always choose the same
value of φ, otherwise, he will choose a different value for φ for every signature.

CLR signatures give us quite a lot of freedom to choose φ. To see that LR
signatures proposed in [?] are simply an instance of CLR signatures, choose φ to
be the cryptographic hash value of L (written as h = H2(L) in their paper) and
compute θ = hxα . Liu et al. denote this value as ỹ. The security of linkability
reduces therefore to a secure choice of φ, for which it is sufficient to require that
finding logg φ is a hard problem.



5

The idea to consider other ways to compute φ is already present in [?], what
is new in our work is to allow φ to be drawn at random from G. We shall see
in Section ?? how to choose φ while still guaranteeing that CLR signatures as
used in Eos guarantee receipt-freeness and coercion resistance. The properties
and proofs of the LR signatures scheme presented in [?] carry over to the CLR
signature scheme with the exception of linkability that no longer holds. CLR
signatures instead are conditionally linkable.

One other aspect of LR signature that our scheme preserves is claimability.
This means that, once generated, the signer only can come forth and claim
responsibility of a signature generated by him by providing in zero knowledge
a discrete logarithm equality proof between logφ θ = logg yα. Note that, to do
this, the signer has to break the anonymity aspect of LR signature scheme by
showing his public key yα, consequently disclosing his position α in the ring.

3.1 Signing Algorithm

We begin now with the presentation of the signing algorithm. Our algorithm fol-
lows closely the original LR signing algorithm described in [?], the most notable
difference being that we use φ and θ instead of h and ỹ, respectively. Given the
message to be signed m ∈ {0, 1}∗, for each element in the ring L, a cipher text
is computed, starting from the position of the signer in the ring, α, to the end
of the list and from the beginning of the list back to α.

The first computed cipher text is therefore

cα+1 = H (m‖gu‖φu)

where, H is a cryptographic hash function that returns a number from Zq (re-
ferred to as H1 in [?]) and u ∈R Zq. Next, for each element in L from i = α+ 1
to n and from i = 1 to α− 1, the signer computes:

ci+1 = H (m‖gsi · ycii ‖φ
si · θci)

where each si ∈R Zq is a random number assigned for each entity in L. Note
that at step i = n, we generate c1 = ci+1. The signer computes:

sα = u− xα · cα mod q

Finally, the output of the CLR signing algorithm is the signature σ on mes-
sage m with the pseudo-identity (φ, θ) that has the following structure:

σ (m) = (c1, 〈s1, ..., sn〉)

3.2 Verification Algorithm

After having received a message m and the corresponding signature, σ (m) =
(c1, 〈s1, .., sn〉) from the pseudo-identity (φ, θ), anybody can now verify the sig-
nature by executing the following steps of the verification algorithm, which is



6

computationally linear in terms of size of L, that should output either the sig-
nature is valid or not, i.e. it was generated by a ring member or not. For each
element in L starting from i = 1 to n compute:

ci+1 = H (m‖gsi · ycii ‖φ
si · θci)

The algorithm validates the signature if and only if the last cn+1 = c1, where
c1 is contained as the first argument in the signature.

4 Mix-net

Next, we describe the mix-net the we will be using. The goal of the mix-net is to
shuffle ballots in an indistinguishable way, which means that it is impossible to
correlate inputs and outputs of the mix-net. In essence, any reencrypting mix-net
that also provides a proof of correct shuffle would fit the bill. While analyzing the
different mix-net protocols, in particular [?,?,?,?], we observed simplifications
to Neff’s protocol that we describe next, but at the cost of losing universal
soundness. We believe that our protocol is mathematically more elegant, more
intuitive, and easier to understand than Neff’s protocol as it follows closely
the classic discrete logarithm equality zero knowledge proof. In addition, the
algorithms to generate and verify proofs of correct shuffle are efficient.

4.1 Proof of Correct Shuffle

Our mix-net consists of several mixing servers, each of which receives as input
a bulletin board of n ElGamal tuples (ai, bi) and produces an output bulletin
board, where all tuples are reencrypted and shuffled:

(ci, di) =
(
aπ(i) · gsπ(i) , bπ(i) · ysπ(i)

)
for i ∈ [n]

where y is the encryption key, 〈s1, ..., sn〉 ∈R Znq the randomness used for reen-
cryption, and π ∈R Pn the permutation underlying the shuffle.

The challenge when defining a mix-net is how each mixing server can prove
the correctness of the shuffle to a public verifier, without revealing information
about the permutation π or the randomness 〈s1, ...sn〉 used for reencryption.

The following proof of correct shuffle is inspired by the protocol developed
by Sako and Kilian [?], where they say that the proof should show that the
output of the mixer could be generated in some manner from the input. Finally,
the aggregation of the entire set of ElGamal pairs, is inspired by Ramchen’s
paper [?]. Our proof follows the natural flow of a classic discrete logarithm
equality zero knowledge proof depicted in Figure ??, i.e. the mix server publishes
a commitment of the input, a verifier challenges the output of the mixer and
then mixer generates a response, which convinces the verifier that the shuffle
was correct.

Let (ai, bi) be the n ElGamal tuples that form the input for the mix server.
Let (ci, di) be n ElGamal tuples, computed as above, be the output of the mix
server. To prove the correctness of the shuffle, the mix server P and a public
verifier V have to follow the protocol that is described in Figure ??.



7

P secretly generates: k ∈R Zq and 〈m1, ...,mn〉 ∈R Znq and publishes commitment:

A = gk ·
∏
i∈[n]

ai
mi B = yk ·

∏
i∈[n]

bi
mi

V sends challenge: 〈e1, ..., en〉 ∈R Znq
P publishes response:

ri = mi + eπ−1(i) mod q for i ∈ [n]

t = k +
∑
i∈[n]

(
ei · sπ(i)

)
mod q

V accepts the proof if the following verification calculations match:

gt ·
∏
i∈[n]

ai
ri = A ·

∏
i∈[n]

ci
ei yt ·

∏
i∈[n]

bi
ri = B ·

∏
i∈[n]

di
ei

Fig. 1. Protocol: Proof of Correct Shuffle

Theorem 1. The protocol described in Figure ?? is complete.

Proof. To show that out protocol is correct, we have to prove that the equations
that V verifies hold, when the response (〈r1, ..., rn〉, t) is computed correctly.

gt ·
∏
i∈[n]

ai
ri = A ·

∏
i∈[n]

ci
ei

gk+
∑
i∈[n] ei·sπ(i) ·

∏
i∈[n]

ai
mi+eπ−1(i) = gk ·

∏
i∈[n]

ai
mi ·

∏
i∈[n]

(aπ(i) · gsπ(i))ei

gk · g
∑
i∈[n] ei·sπ(i) ·

∏
i∈[n]

ai
mi ·

∏
i∈[n]

ai
eπ−1(i) = gk ·

∏
i∈[n]

ai
mi ·

∏
i∈[n]

(aπ(i)
ei · gsπ(i)·ei)

∏
i∈[n]

gei·sπ(i) ·
∏
i∈[n]

ai
eπ−1(i) =

∏
i∈[n]

aπ(i)
ei ·

∏
i∈[n]

gsπ(i)·ei

∏
i∈[n]

ai
eπ−1(i) =

∏
i∈[n]

aπ(i)
ei

The last equation in the proof is true because the product aggregation hap-
pens through the entire set of n elements. This means we can compute the prod-

uct aggregation of a
eπ−1(i)

i in a permuted way, namely aπ(i)
eπ(π−1(i)) = aπ(i)

ei .
In the same way, the second equations that V has to verify can be proven to

hold, if the response (〈r1, ..., rn〉, t) is computed correctly. �

Theorem 2. The protocol described in Figure ?? satisfies special soundness.

Proof. Each transcript of our protocol has the following form:

View [P ↔ V] = (A,B, 〈e1, ...en〉, 〈r1, ..., rn〉, t)



8

where A and B represent the initial commitment, sequence 〈e1, ...en〉 is the
random challenge picked by the verifier and the sequence 〈r1, ..., rn〉 together
with the value t represent the response to the challenge.

For any cheating prover P∗ (that does not know the permutation π(i) and the
re-encryption coefficients 〈s1, ..., sn〉), given two valid conversations between P
and the verifier V, (A,B, 〈e1, ...en〉, 〈r1, ..., rn〉, t) and (A,B, 〈e′1, ...e′n〉, 〈r′1, ..., r′n〉, t′),
that have the same commitment but different challenge ei 6= e′i, the permutation
π(i) used for shuffling the board can be computed in polynomial time in the
following way:

∀i ∈ [n] there ∃p , such as π(i) = p, where rp − r′p = ei − e′i

Please, note that, the permutation π(i) is the actual secret that the mixing
server has to hide. The re-encryption mechanism is used exactly with this pur-
pose of hiding, but extracting the re-encryption coefficients 〈s1, ..., sn〉 is out of
our scope.

�

Theorem 3. The protocol described in Figure ?? is honest verifier zero knowl-
edge.

Proof. We prove that for any cheating verifier V∗, there exists a simulator S
that can produce a computationally indistinguishable transcript of the protocol
that would take place between P and V∗ if it knew the challenge in advance.

Our simulator S gets as input: the initial set of n ElGamal tuples (ai, bi),
the mixed set of ElGamal tuples (ci, di) and a challenge in form of a random
sequence 〈e1, ..., en〉. S proceeds by picking a random response of the transcript:

〈r1, ..., rn〉 ∈R Znq

t ∈R Zq
S computes the initial commitment:

A = gt ·
∏
i∈[n]

(
ai
ri · ci−ei

)
B = yt ·

∏
i∈[n]

(
bi
ri · di−ei

)
S outputs the transcript: (A,B, 〈e1, ..., en〉, 〈r1, ..., rn〉, t).
It is obvious that the transcript S outputs will always pass the equations

that V has to verify. Note that this transcript was generated independently of
the permutation π(i) and the re-encryption coefficients 〈s1, ...sn〉 used for mixing,
thus is zero knowledge.

�

4.2 Proof of Correct Parallel Shuffle

The proof of shuffle for mixing individual ciphertexts can be extended to a proof
of correct parallel shuffle for sequences of ElGamal tuples. Such a parallel mixer



9

expects as input a matrix over ElGamal tuples with n rows and ` columns:
(ai,j , bi,j), where i ∈ [n] and j ∈ [`], the Mixer then outputs a mixed and re-
encrypted matrix where only the rows are shuffled. This matrix is defined as

(ci,j , di,j) =
(
aπ(i),j · gsπ(i),j , bπ(i),j · ysπ(i),j

)
where y is the encryption key, 〈s1,1, ..., sn,`〉 ∈R Zn×`q are the re-encryption
coefficients and π ∈R Pn is a permutation.

The proof of correct parallel shuffle depicted in Figure ?? is designed to
convince a public verifier that the same permutation π(i) was applied to each
column. The proof, inspired by [?], deviates slightly from the construction that
we have presented for the simple case in the previous section. By applying the
same challenge ei to all columns in the matrix, the verifier will be assured that
the same permutation π(i) was applied consistently across all columns.

P secretly generates: 〈k1, ..., k`〉 ∈R Z`q and 〈m1, ...,mn〉 ∈R Znq and publishes commit-
ment:

Aj = gkj ·
∏
i∈[n]

ai,j
mi for j ∈ [`] Bj = ykj ·

∏
i∈[n]

bi,j
mi for j ∈ [`]

V sends challenge: 〈e1, ..., en〉 ∈R Znq
P publishes response:

ri = mi + eπ−1(i) mod q for i ∈ [n]

tj = kj +
∑
i∈[n]

(
ei · sπ(i),j

)
mod q for j ∈ [`]

V verifies for each j ∈ [`] and accepts the proof if all calculations match:

gtj ·
∏
i∈[n]

ai,j
ri = Aj ·

∏
i∈[n]

ci,j
ei ytj ·

∏
i∈[n]

bi,j
ri = Bj ·

∏
i∈[n]

di,j
ei

Fig. 2. Protocol: Proof of Correct Parallel Shuffle

Our proof has the same security properties as the simple proof presented in
the previous section. Completeness holds as it follows a slightly more generalized
version of the calculation done in the proof of Theorem ??, as now we need
to take into account index j for each ElGamal tuple in a sequence. Special
soundness follows exactly the same arguments as in the proof of Theorem ??.
The proof of honest verifier zero knowledge is an elegant generalization of the
proof of Theorem ??: The simulator S is modified in such a way that it outputs
a sequence of initial commitments for each j ∈ [`]:



10

Aj = gtj ·
∏
i∈[n]

(
ai,j

ri · ci,j−ei
)

Bj = ytj ·
∏
i∈[n]

(
bi,j

ri · di,j−ei
)

where 〈r1, ..., rn〉 ∈R Znq and 〈t1, ..., t`〉 ∈R Z`q represent the response of the
challenge 〈e1, ..., en〉.

This proof might be seen as an `-run of the simple protocol, to which we feed
the same challenge sequence 〈e1, ..., en〉. Note that our proof of correct parallel
shuffle does not break the honest verifier zero knowledge property because in each
run, the prover picks a different value kj . Moreover, each run of the protocol is
applied on a different partial board (ai,j , bi,j), for i ∈ [n]. We summarize these
findings in form of a theorem.

Theorem 4. The proof of correct shuffle satisfies completeness, special sound-
ness, and honest verifier zero knowledge.

As for complexity, the computation cost for the proof of correct parallel shuf-
fle is summarized as follows. To generate a proof of correct shuffle of the entire
matrix, a prover will require 2n` + 2` exponentiations and 3n` multiplications.
In contrast, the verifier will be more expensive, because it requires 4n` + 2`
exponentiations and 4n` multiplications.

5 Eos Protocol

CLR signatures and mix-nets are the building blocks of the Eos Voting protocol
that we define next. The hallmark characteristics of the protocol is that voters
are organized in rings and they can sign their ballots anonymously. Mix-nets
are used to make it impossible for coercers to trace the coerced ballot. Each
voter has the possibility to assume one out of many pseudo identities. If coerced,
the voter simply picks a different identity and signals to the election authority
that the ballot was submitted as coerced. As an analogy, we may imagine that
voter has access to green and red envelopes. A green envelope means that the
vote contained within reflects the voter’s intention while a red envelope signals
coercion. The color of the envelope will be encrypted. Note, that for this to work,
Eos must make the assumption that there is a device that can be used to sign
ballots.

There are different entities that participate in the overall process of the elec-
tion, each having different roles and duties. The following stakeholders are part
in the Eos protocol.

A voter is a person that can participate legitimately in the election process.
All voters together generate a set of CLR signed ballots as input. Every ballot
cast must be signed by an eligible voter, but not every eligible voter is required to
cast a ballot. A voter may be under the influence of a coercer. The coercer may be
colluding with the authorities, however, to achieve coercion-resistance, we must
assume at least one of the mixing server is not under the coercer’s control. The
election authority administrates the election. Its role is to initialize the election,
form the ring for CLR signing and collect the signed ballots cast by the voters.



11

Fig. 3. Protocol Overview

Each ballot is recorded on a public bulletin board allowing the voter to check
that it was recorded as cast. The election authority is responsible for starting and
supervising the mixing phase. Eos assumes that all bulletin boards are append-
only, but other variants are possible (although not discussed here). Votes are
cast for one candidate only. The result of Eos is a public bulletin board with all
votes recorded in clear text. Eos supports distributed and threshold decryption
schemes, which entails that shares of the decryption key are distributed among
different tellers.

5.1 Election Set-up

The election authority prepares L = 〈y1, ..., yn〉, the list of all eligible voter public
keys that will form the ring. In addition, the election authority prepares the set
of candidates as vote choices V ⊂ Z∗p. We assume that there are several mixing
servers maintained by different non-colluding stakeholders, each with access to
a good source of entropy. We call a mixing server honest, if it is correct and not
controlled neither by the adversary nor the coercer. An honest mixing server
does not reveal the permutation used for mixing.

As it is common practice, we use a (t, e)-threshold cryptosystem, as described
in [?], to encrypt and decrypt ballots. All ballots will be encrypted with a public
key Y , while the corresponding private key is split and shared among e tellers.
Recall that in threshold encryption, it takes the shares of at least t tellers in order
to decrypt successfully. Decryption will fail, if less than t shares are available.



12

5.2 Voting Phase

The voter commits to the color of the envelope, using the respective private key
xi ∈ Zq associated with a public key yi = gxi ∈ L and some entropy generated
during the authentication process. We use both, private key and entropy to
derive (deterministically) the randomness used in the ElGamal encryption using
a secure hashing function. Once the ballot generated and signed, it is sent to the
election authority that publishes it on the (append only) public bulletin board.

Ballot Generation A ballot consists of three ElGamal tuples, each representing
the following: an encryption of the color of the envelope, an encryption of the
electoral identity of the signer and an encryption of the vote. Encryption of the
color: Recall from Section ?? the definition of h and ỹ. A green envelope is
formed as an encryption of h, whereas the red envelope is an encryption of 1.
Encryption of the electoral identity: In the case of a green envelope, there will
be an encryption of ỹ, while in the case of a red envelope, there will be again
an encryption of 1. Encryption of the vote: The vote, to be encrypted, will be
represented as value v ∈ V.

The entire ballot generation algorithm is depicted in Figure ??. Formally,
the ballot generation algorithm for voter α depends on the following inputs, the
authentication entropy E (such as PIN, a picture, a fingerprint), the private key
xα, and an election specific generator h. The first two ElGamal tuples (F, φ) and
(T, θ) of the generated ballot play an important role in forming the pseudo iden-
tity. Let φ be the second projection (trap door commitment) of the encryption
of the color of the envelope, and θ is the second projection of the encryption of
the electoral identity. Together, (φ, θ) form the pseudo identity of the signer.

The algorithm of Ballot Generation starts by the device computing:

f = H (E‖xα‖h)

t = f · xα mod q

d ∈R Zq

(D, δ) =
{
v
}d
Y

=
(
gd, Y d · v

)
If authentication was successful:

(F, φ) =
{
h
}f
Y

=
(
gf , Y f · h

)
(T, θ) =

{
ỹ
}t
Y

=
(
gt, Y t · ỹ

)
If authentication was unsuccessful:

(F, φ) =
{

1
}f
Y

=
(
gf , Y f

)
(T, θ) =

{
1
}t
Y

=
(
gt, Y t

)
The generated ballot is:

(
(F, φ) , (T, θ) , (D, δ)

)
.

Fig. 4. Algorithm: Ballot Generation



13

Note, that due to the deterministic computation of the randomness used here
for ElGamal encryption, a voter is able to generate the same pseudo identity
deterministically multiple times. If an implementation of Eos uses, for example,
a PIN code as entropy for authentication, the pseudo identity of the voter is
uniquely defined by the choice of PIN. The valid pseudo identity is selected
locally on the voting device by correct authentication, i.e. by using the correct
PIN. If the same coercer forces the same voter to vote multiple times, Eos will
do so, as it computes the same coerced pseudo identity.

In addition, to guarantee the internal consistency of an encrypted ballot the
signer proves in zero knowledge, that the encryptions of the color of the envelope
and of the electoral identity are correct by providing a proof of the discrete
logarithm equality between logFT = logφθ. This means that there will be only
one pseudo identity per device, for each value of f . Note that logφ θ = xα (i.e.
private key of an eligible voter) is enforced by the CLR signature verification
algorithm. Together with the encrypted vote, one must include also a proof of
knowledge of the discrete logarithm of loggD. This will protect against vote
copying.

A malicious user might also try to cast multiple countable votes by encrypting
his electoral identity with different values of f . Obviously, this could happen
mathematically, but practically this attack would require the malicious voter to
tamper with software or hardware to trick the protocol. This however, would be
noticed as we discuss later in the description of the Ballot Verification Phase ??
where the value of ỹ will be decrypted and duplicates will be visible. We suggest,
in this case, to discard the multiple votes from the same electoral identity.

Note that only during the Tallying Phase (Section ??), the vote v will be
visible in plain text. There the public can scrutinize and validate each plain text
and if it represents a valid candidate v, such that v ∈ V. Otherwise, the vote
should be disregarded.

Signing a ballot The CLR signature of a ballot is computed as described in
Section ??. Concretely, the pseudo-identity (φ, θ) is embedded in the ballot and
the message to be signed is publicly computable.

m = H (D‖δ)

The CLR signature will then be computed as:

σ (m) = (c1, 〈s1, ..., sn〉) .

Beside the ballot and the signature, a voter has to send also the two zero
knowledge proofs described above: one for proving the correct encryptions and
the second for proving the knowledge of the vote.

Public Bulletin Board The public bulletin board is a public large file, to which
only the election authority is allowed to append. Each entry on the board con-
tains a ballot, its corresponding CLR signature and two zero knowledge proofs.
Note that no ballots will ever be removed from the public bulletin board, only



14

added. Each voter and coercer is able to check that their respective vote have
been appended on the bulletin board after submission, hence individually ver-
ifiable. Ballots from the same pseudo identity can be related on the board as
they have pseudo identity (φ, θ). Assuming that voter and coercer use different
pseudo identities, their votes can only be related with a negligible probability.

5.3 Ballot Verification Phase

Once the Voting Phase finished and all votes have been collected, the election
authority no longer accepts signed ballots and seals the public bulletin board.
The election authority performs a cleansing operation on the public bulletin
board and only copies those ballots (without signatures and zero knowledge
proofs) to a new board, for which both zero knowledge proofs are checked and the
CLR signature is validated. In the case multiple ballots were cast from the same
pseudo identity, only the most recent ballot is copied. The cleansing operation
is publically verifiable. This procedure is visible in Figure ??, as some of the
ballots get crossed out and disregarded.

Parallel Mixing Before the election authority commences with decrypting the
ballots, it first uses the parallel shuffle described in Section ?? to shuffle the
entire bulletin board by reencrypting all three ElGamal tuples of each entry. We
assume that there are multiple mixing servers, at least one of which is honest.
Each mixing server performs a mixing operation on the output of the previous
mix server and constructs a mixed board together with a Proof of Correct Parallel
Shuffle, which is subsequently validated by the election authority. In case a proof
fails, an error has occured, and the output of this particular server is disregarded
and another mixing server is used. After the shuffle is complete neither voters
nor coercers will be able to identify their ballots on the the mixed board, unless
all mixing servers collude.

Pseudo Identity Decryption To decrypt the pseudo identities for each entry,
t tellers out of e must come together and decrypt the contents of the mixed
board using the threshold decryption scheme. At this stage, only the first two
ElGamal tuples will be decrypted, i.e. the color of the envelope and the electoral
identity of each entry. The vote itself will not be decrypted and this is guaranteed
assuming that strictly more than e − t tellers are honest. The closer t and e,
the fewer honest tellers are needed. All ballots whose color of envelope do not
decrypt to the value of h or 1 will be disregarded as they are not well-formed.
All ballots whose color decrypts to 1 will be discarded because they are coerced.
The remaining ballots should all have unique values for the electoral identity.
In case there are multiple ballots whose electoral identity decrypts to the same
value ỹ, these ballots should be disregarded as they represent an attempt to cast
multiple votes. This scenario might happen in case of a malicious voter misusing
the Eos protocol. These examples can be seen in Figure ?? as some ballots are
crossed out in the Ballot Verification Phase.



15

5.4 Tallying Phase

Only the remaining ballots encrypt votes that should be counted. To extract
the votes from these ballots, we drop the encryptions of the color and electoral
identity and create a new bulletin board to undergo another round of mixing
before decryption. This bulletin board now only contains encryption of the votes,
i.e. (D, δ). This way, we assure that the link between an electoral identity and
the vote is broken.

Mixing Recall that CLR signatures are claimable as the voter can prove in zero
knowledge the discrete logarithm equality between loggyi = loghỹ. By mixing
the list of encrypted votes once more, a voter might only prove to a potential
coercer, that he voted but not who he voted for. For this phase, the simple
mixing protocol described in Section ?? is used.

Vote Decryption Finally, the tellers get together once more and perform a thresh-
old decryption protocol of the new board of encrypted votes, producing a proof
of correct decryption. After decryption, each value of v should be counted as a
valid vote for the respective candidate if v ∈ V.

6 Analysis

In this secion we analyze Eos for its properties. Eos is individually verifiable,
because a voter can check if his ballot was correctly recorded by checking the
public bulletin board. Moreover, all zero knowledge proofs generated by the
mixing servers and the tellers are public and thus universally verifiable. Eos is
designed to assure that every ballot published on the public bulletin board will
be handled and counted correctly.

In order to argue for the integrity of the Eos protocol, we have to prove
the correctness of the final bulletin board of decrypted ballots. First, the the
mixing operations applied on the entire bulletin board can be challenged by any
public verifier. Secondly, the decyryption operations can also be challenged by
any public verifier. Finally, the disposal of coerced votes is a transparent process
as the red and green envelopes will be visible in the Ballot Verification Phase
without compromising any other properties of our voting protocol.

The secrecy of the vote is guaranteed by the ElGamal crypto system and the
use of a cryptographically secure hashing function. The anonymity of the voter
is guaranteed by the CLR signature scheme, which protects the voter’s true
identity. At the same time, we have to assume that there will be at least one
honest mixing server that will not disclose its choice of permutation. This assures
that a coercer is not able to trace his ballot all the way to the decrypted board
and learn if the coerced vote was cast in a green or red envelope. Last but not
least, we assume that there will be at least e− t+ 1 honest tellers to participate
in the threshold decryption. This means that we assume that t dishonest talliers
will never collude to decrypt the ballots from the bulletin board before the the



16

final step of the protocol as this will represent an attack to the fairness of the
election.

On terms of receipt-freeness, Eos guarantees that neither a voter nor a coercer
can identify his ballot on the decrypted board. This is achieved through two
mixing phases which break the connection between the ballot on the public
bulletin board and the one on the decrypted board. In addition, a coercer may
force a voter to cast a particular vote. In this case, the voter will use one of
the alternate pseudo identities to sign the ballot, which will subsequently be
discarded during the Ballot Verification Phase. Note that the pseudo identity
used for a coerced vote is indistinguishable from the real pseudo identity of the
voter.

One bit of power that the coercer has over the voter is that of an abstention
attack, to force a vote for a particular candidate for which he knows will receive
only this one vote, something like an invalid write-in vote. All the coercer has
to do is to check that this vote appears on the final decrypted board of votes.
If it does, this would mean that the coercer forced the voter to cast an invalid
vote, spoiling the ballot. This situation can be mitigated by the voter proving
that his vote is part of the valid set of votes without revealing what the vote is,
for example using a disjunctive zero knowledge proof protocol as described in
[?]. These votes could be cleansed earlier, and would therefore never appear on
the final board.

7 Conclusion and Future Work

We have described in this paper a verifiable, privacy preserving coercion-resistant
voting protocol that was inspired by Conditional-Linkable Ring (CLR) signa-
tures. Furthermore, we argued for why this protocol protects the integrity of
the election, how it guarantees the secrecy of the vote, receipt freeness and is
coercion resistant as long as one of the mixing servers is honest. In future work,
we plan to reduce the size of CLR signatures from linear to constant size, for
example using ”accumulators” such as described in [?]. These constant sized
signatures can also be made linkable [?].

Our protocol is different from other coercion mitigating protocols, such as
Selene [?] or JCJ [?]. In Selene tracker numbers are generated prior to the elec-
tion, and once a vote is cast, only the trap-door commitment is shared with the
voter. After the election is over, the randomness necessary to decrypt the tracker
number is shared, allowing each voter to gain confidence in that his or her vote
was recorded correctly. Moreover, this protocol allows every voter to trick a po-
tential coercer into believing that he or she voted for the coercer’s choice. In
JCJ, every voter has access to different kinds of credentials. One credential is
there to be used to cast a valid vote, whereas as the other credentials are there
to cast a vote that from the outset looks like a valid vote, but really is not. The
election authority will be able to weed out coerced votes. A detailed to Selene
and JCJ is left to future work.


