
Declarative Process Mining for DCR Graphs∗

Søren Debois
IT University of Copenhagen

Copenhagen, Denmark
debois@itu.dk

Thomas T. Hildebrandt
IT University of Copenhagen

Copenhagen, Denmark
hilde@itu.dk

Paw Høvsgaard Laursen
IT University of Copenhagen

Copenhagen, Denmark
pawh@itu.dk

Kenneth Ry Ulrik
IT University of Copenhagen

Copenhagen, Denmark
kulr@itu.dk

ABSTRACT
We investigate process mining for the declarative Dynamic
Condition Response (DCR) graphs process modelling lan-
guage. We contribute (a) a process mining algorithm for
DCR graphs, (b) a proposal for a set of metrics quantifying
output model quality, and (c) a preliminary example-based
comparison with the Declare Maps Miner. The algorithm
takes a contradiction-based approach, that is, we initially
assume that all possible constraints hold, subsequently re-
moving constraints as they are observed to be violated by
traces in the input log.

CCS Concepts
•Information systems → Data mining; •Theory of
computation→ Logic; •Computing methodologies→
Knowledge representation and reasoning;

Keywords
Declarative process mining; DCR graphs

1. INTRODUCTION
Business process management (BPM) technologies [32]

support the management and digitalisation of workflows and
business processes by employing explicit process models, fol-
lowing a cycle of process (re)design, validation, execution
and monitoring.

Process mining algorithms [31] have been proposed for the
identification of process models from process logs, support-
ing both process design and compliance monitoring.

Most industrial BPM tools and process miners describe
processes as imperative flow diagrams such as BPMN. How-
ever, flow diagrams tend to get either too rigid or too com-
plex, in particular for knowledge work processes having a

∗Authors listed alphabetically. This work supported in part
by Velux Foundation grant #33295 and Exformatics A/S.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SAC 2017 April 03-07, 2017, Marrakech, Morocco
c© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4486-9/17/04.

DOI: http://dx.doi.org/10.1145/3019612.3019622

high degree of variation [27]. Moreover, flow diagrams only
describe how to perform a process, leaving a gap to the legal
regulations and guidelines, that are often more declarative
in nature, describing why the process must be performed in
certain ways, not how exactly it must be performed. For
instance, a clinical guideline may state, that a patient must
consent to a blood transfusion [13]. It does not state ex-
actly when such consent should be obtained, only “prior to
the transfusion”.

For this reason, it is recommended to use flow diagrams
only for routine processes, or for describing common stan-
dard practices and allow deviations [27]. It has been advo-
cated that declarative notations should be used as output of
process mining (e.g. [17]) and for run-time process support
(e.g. [24, 23, 28]). For the former, one hopes to extract
from a process log the rules obeyed in practice (the “why”)
as opposed to a flow-diagram describing the usual executions
(the “how”). For the latter, one hopes to guide knowledge
workers to activities in conformance with rules and regula-
tions.

Implementation techniques for most declarative models
such as Declare [26] and DecSerFlow [30], rely on translating
the declarative constraints to an imperative model (e.g., an
automaton [20]) to enable execution. Such translation usu-
ally entail a state-space explosion, and run-time adaptation
of constraints becomes more difficult, because the automa-
ton must be recomputed when constraints change.

A notable exception is the Dynamic Condition Response
(DCR) graphs process language [11, 29]. DCR graphs can be
executed without intermediate transformation to an imper-
ative model creating the entire transition graph, and more
directly support run-time adaptive case management [23,
5]. DCR graphs are supported by industrial design and case
management tools (see e.g. dcrgraphs.net and [5]).

In the present paper, we present the first process mining
algorithm for DCR graphs.

2. DCR GRAPHS
In this Section, we briefly recall DCR graphs. For a formal

introduction and applications, refer to [11, 22, 29, 3, 5, 6].
Dynamic Condition Response graphs is a declarative mod-

elling notation describing at the same time a process and
its run-time state. The core notation comprises activities,
activity states, and four relations between activities. An ac-
tivity state comprises three booleans, indicating respectively
whether the activity has been executed, is included, and

759

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/156888949?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1145/3019612.3019622
dcrgraphs.net

is pending. Intuitively, activities that are not included are
treated as temporarily absent from the workflow; activities
that are pending must eventually be executed or excluded
before the workflow may complete.

Relations between activities govern whether an activity
can currently be executed and how executing one activity
modifies the state of another. A condition A •←− B means
that the activity A cannot execute unless B was previously
executed, i.e., the the executed-state of B is true. Executing
an activity clears its pending-state and sets its execution-
state. The response A •−→ B means that whenever A exe-
cutes, the pending-state of B is set. An inclusion A→+ B
means that whenever A executes, the inclusion-state of B
is set, and conversely, an exclusion A →% B means that
whenever A is executed, the inclusion-state of B is cleared.

Note that excluding an activity voids it as both a condition
and a response: If A •←− B and B is not executed but also
not included, A is free to execute. Conversely, an activity
which is pending but also not included does not prevent the
workflow from being completed.

While the condition and response relations has the same
meaning as the corresponding relations in DECLARE [25]
or DecSerFlow [30], the inclusion and exclusion relations
provide the ability to dynamically include and remove condi-
tions and response obligations. They have no direct counter-
part in other declarative notations.

3. MODEL METRICS
In this Section, we present quality measures quantifying

the appropriateness of a DCR graph G for a given log l.
We take as starting point the already established metrics of
fitness, precision, generality, and simplicity introduced in [1]
in the context of (internally binary) process trees.

3.1 Fitness
Replay fitness is defined in [1] as the normalised ratio of

how an alignment between the input process tree and the
event log differs over the maximum possible alignment for
the model given an arbitrary event log. A variant of this ap-
proach was successfully applied to declarative models in [2].

However, within Adaptive Case Management, the core ap-
plication area of DCR graphs [3, 5, 6], we use declarative
models specifically to encompass all admissible behaviours.
In this context, we take the view that the appropriate notion
of “replay fitness” is simply the ability of the model to replay
the traces of the input log exactly. As such, we define fitness
to be simply the ratio of input traces in the log l replayable
by the DCR model G:

fitness(G, l) =
#ReplayableTraces(G, l)

#Traces(l)

3.2 Precision
Precision is defined in [1] essentially as a tally of the

amount of behavioural options unused by the log. This idea
is straightforward to apply to DCR graphs: replay the log
and record, for each reached state in the graph, the activi-
ties that are executable in that state as well as how many of
these executable activities were actually executed at some
point.

We transfer this idea directly to DCR graphs, measur-
ing for each visited state the number of enabled activities

actually executed in that state:

precision(G, l) =∑
s∈VisitedStates(l) #ActivitiesExecuted(G, s, l)∑

s∈VisitedStates(l) #ExecutableActivities(G, s, l)

As a technical note, ”#ActivitiesExecuted” is only counted
up the first time an activity is seen executed in a certain
state. If it is observed to be executed from the same state
multiple times, we only count the one execution.

However, we question the usefulness of this measure in the
context of Adaptive Case Management. One advantage of
declarative models in this context is that they afford flexi-
bility for case workers to handle infrequent outlier cases. By
definition, these happen only seldom; we cannot expect all
such cases to be represented in the input log. Encompass-
ing them, then, entails supporting a very large amount of
potential such outlier cases. So it would be the expectation
and not the exception that a log uses only a tiny fragment
of the options available in the model.

This thinking was confirmed in [6], where a commercial
system based on DCR graphs supported at least five orders
of magnitude more states than observed in actual logs.

3.3 Simplicity
Simplicity for process trees is defined in [1] (roughly) as

the ratio of the size of the internal binary process tree to
the amount of activities in the input log. This notion of
simplicity was partly motivated by previous findings that
size is the main driver of errors in process models [21].

However, these findings have to the best our knowledge
not been replicated in the context of declarative process
models [9, 10, 33], where key impediments to understand-
ability appear to be the number of constraints as opposed
to the number of activities. Moreover, measuring the num-
ber of activities in DCR graphs is not a proxy for semantic
complexity the way measuring duplicate activity representa-
tion is in a process tree is—large graphs are not necessarily
complex.

Accordingly, we measure the simplicity of a DCR graph
by (1) the number of pairs of related activities (Relation
Pairs: RP); (2) the total amount of relations. Note that (2)
is greater than (1) when some activities are related by more
than one relation. Under this measure, a simplest possible
graph is any graph with no relations.

simplicity(G) =
(1− #Relations

#PossibleRelations
)

2
+

(1− #RPs
#PossibleRPs

)

2

Note that because the number of activities in a declarative
model is not necessarily correlated with its complexity, in
contrast to [1], we can define simplicity without reference to
the events in the particular log l.

We have ignored in this measure (and in this paper) com-
plexity of DCR graphs stemming from nesting [12]. While
nesting generally enhance perceived understandability (see,
e.g., [34, 35]), it may also implicitly introduce more rela-
tions. We leave open the question of exactly what a good
measure of simplicity in the presence of nesting might be.

3.4 Generality
The notion of generality is defined in [1] for process trees

as the frequency with which each node of the process tree

760

must be visited in order to produce the given log. Infre-
quently visited nodes of the process tree decreases general-
ity.

This notion is specific to the notion of process trees and,
to a lesser extent, imperative models. DCR graphs have no
notion resembling the “inner nodes” of a process tree that
can be considered “visited” during executions.

Moreover, generalisation is intended to assess “the extent
to which the resulting model will be able to reproduce future
behaviour” [1, p. 2]. This is an extremely important qual-
ity for both declarative models in general and ACM models
in particular. However, we contend that it cannot reason-
ably be measured without appeal to domain-knowledge: We
cannot from the logs alone determine which are useful gen-
eralisations (e.g., swapping the order of obtaining authori-
sation signatures in a loan application) and which are not
(e.g., swapping the order of granting the loan and obtaining
authorisation).

Altogether, we leave the definition of a notion of general-
isation for DCR graphs as future work.

4. DCR MINING
In this Section we present a mining algorithm for DCR

graphs: Given a log l, produce a DCR graph G. We take
a “contradiction-based” approach to mining for constraint-
based modelling languages: Begin with the set of activities
and all possible constraints, and remove a constraint when-
ever the input log has a trace violating it. This approach has
proven successful for DECLARE [8, 16, 2, 18], although re-
quiring non-trivial enhancements to curb combinatorial ex-
plosion because of the large number of possible DECLARE
constraints; to avoid contradictory models [7]; and to avoid
unhelpful vacuously satisfied constraints [19]. DCR graphs
have only 4 relations; checking those for each pair of activi-
ties across all input traces is a viable option.

Because include relations by definition trump exclude re-
lations, we do not take as starting point a graph with ev-
ery possible constraint. Rather, in the interest of beginning
with the most restrictive possible graph, we retain exclu-
sions and omit inclusions. Altogether, our initial, restricted
over-approximation will have conditions, exclusions, and re-
sponses between any pair of events.

In DCR, we have to account not only for constraints, but
also initial state. Following the principle behind contradiction-
based mining, we opt for the most restrictive possible start-
ing state: each activity is initially not executed, not in-
cluded, and pending.

4.1 Algorithm
The core mining algorithm is given in Algorithm 1. We

comment on specifics below. In the algorithm, for a given
trace t, we write t0, t1, . . . for the sequence of activities in t.

Include- and exclude-relations. When we observe an
activity at the start of a trace, we set the initial included-
state of that activity to true. When an activity is observed
after the start of a trace, we replace the exclude-relation
from the preceding event with an include, again to allow the
two activities to be executed in succession.

Response relations. At the completion of a trace, we
check that for each activity execution in that trace whether
all the activities that had response relations installed have
been executed later in the trace. If not, we remove the

Algorithm 1 Core DCR mining algorithm

1: function Mine(log)
2: G := activities(log)
3: for all x where x activity of G do
4: set x excluded, pending, not executed in G
5: end for
6: for all (x, y) where x, y activities of G do
7: G := G ∪ {x •←− y, x •−→ y, x→% y}
8: end for
9: for all t ∈ traces(log) do

10: set t0 included in G
11: remove all conditions to t0 from G
12: end for
13: for all t ∈ traces(log) do
14: p := t0
15: for i from 1 to |t| − 1 do
16: remove p→% ti from G
17: add p→+ ti to G
18: for all x where ti •←− x ∈ G do
19: if x 6∈ {tj | j < i} then
20: remove ti •←− x from G
21: end if
22: end for
23: for all x where ti •−→ x do
24: if x 6∈ {tj | j > i} then
25: remove ti •−→ x from G
26: end if
27: end for
28: p := ti
29: end for
30: for all a 6∈ t do
31: set a not pending in G
32: end for
33: end for
34: return G
35: end function

offending response relations. Moreover, we clear the initial
pending-state for all activities not seen in that trace.

The latter of these rules is an over-approximation; pend-
ing activities may be discharged either by execution or by
being excluded. We make the present choice partly to make
an initially-pending state signal that the activity has to be
executed in any and all traces, not just excluded, partly to
facilitate dynamic mining, see Section 4.2.

Condition relations. When we observe an activity ex-
ecution in a trace, we remove conditions from non-executed
activities in the trace in question.

4.2 Correctness
Removal of a DCR constraint in general does not preserve

admissibility of workflows. Here are two counterexamples:

1. The graph A →+ B where B is initially excluded ad-
mits the traces A? +A(A | B)+. Removing the inclu-
sion relation reduces the set of admitted traces to A∗.

2. The graph B •←− A | C →% A admits the trace CB;
removing C →% A makes that trace inadmissible.

This non-monotonicity is a central difference between DCR
and DECLARE; it was studied in [4]. It follows that in
a naive DCR-miner, whenever we remove a constraint, we

761

must re-check all previously processed traces to ensure that
they are still admissible. Such a naive approach would lead
to practically unacceptable running-times.

Our mining algorithm rests on the observation that these
two examples exemplify the only two ways removing a con-
straint from a DCR graph may reduce its set of accepted
traces; Algorithm 1 does not remove such constraints when
it is dangerous to do so.

We use this insight to prove Algorithm 1 correct. Write
G |= t if a DCR graph G accepts a trace t; write L(G) for
the set {t | G |= t}.

Proposition 4.1. Let G be a label-deterministic DCR graph,
and let G′ be the DCR graph obtained by removing a single
constraint γ from G. Suppose t is a trace s.t. G |= t. Then
G′ 6|= t implies either

1. γ = A→+ B for some A,B, or

2. γ = A →% B and C •←− B for some A,B,C, and
there exists i s.t. ti = C but for no j < i do we have
tj = B.

Proof. Suppose G 6|= l. We proceed by cases on γ. If γ
is a condition or a response, clearly L(G) ⊆ L(G′); contra-
diction. If γ is an inclusion we are done. So suppose finally
γ = A→% B. If for no C we have C •←− B it follows easily
that L(G) ⊆ L(G′), so we must have C •←− B for some C.
Suppose for a contradiction that for all such C, we have for
all ti either ti 6= C or ti = C and for some j < i we have
ti = B. In either case, it is straightforward to prove by
induction on t that G′ |= l; contradiction.

Lemma 4.2. Let G be the value of G at line 16 and G′

the value of G at line 28 in Algorithm 1 within the same
iteration of the loop. Then ∀t ∈ log. G |= t =⇒ G′ |= t.

Proof. For the removed relations, by Proposition 4.1 it
is sufficient to verify that we remove no constraint satisfying
Items 1 and 2 of that theorem. By inspection, Algorithm 1
does not remove inclusions, and so cannot violate Item 1.
By inspection, we see that when the algorithm removes an
exclusion (line 16) it also removes conditions that would
violate Item 2 (lines 18-22).

For the added inclusion at line 17, it is sufficient to note
that adding inclusion may only lead to inadmissible traces if
it includes a left-hand side of a condition; however, by line
18–22 only conditions that were executed are retained.

Theorem 4.3 (Correctness). Let G be the output of
Algorithm 1 on a log l. Then forall t ∈ l we have G |= t.

Proof. Using Lemma 4.2, it is straightforward to verify
by induction on each t ∈ l that ti was enabled after ti−1 in
G at line 28, and that G is accepting for t|t|−1 at line 32.

4.3 Weighing of constraints
Algorithm 1 does not take into account noise in the log,

since we remove every violated constraint. Moreover, in
some applications, we may desire not a completely fitting
model, but rather one that characterises the “common exe-
cution”: We may want to trade off fitness for precision.

Following common approaches to process mining, we only
remove a relation when our confidence in removing that con-
straint is above a certain threshold. Each constraint is there-
fore assigned two values: an invocation counter and a viola-
tion counter. The invocation counter tallies the number of

traces in which the constraint was invoked, e.g., the number
of traces where the source activity of an exclude-relation was
executed. The violation counter simply tallies the number
of traces in which the constraint was violated.

Exact criteria for invocations and violations are given in
Table 1. The ratio of violations to invocations define our
confidence in the removal of a constraint. A threshold below
0% will remove all constraints, resulting in a flower model. A
threshold of exactly 0% retains only constraints satisfied in
every trace. A threshold of 100% will remove no constraints;
the output model will allow no runs.

Experimentally, the desired trade-off between precision
and fitness occurs in the 0-15 % range. A threshold larger
than 20 % would result in a large amount of the log being
unsupported by the resulting graph.

4.4 Post-processing
To improve simplicity of the core algorithm’s output, we

remove redundant constraints, i.e., relations that never have
an effect on what the output DCR-graph allows. Redundant
relations are closely related to vacuous constraints in Declare
mining [8, 16, 2, 18, 19], but turn out to be much easier to
detect in DCR graphs.

This implementation does ad-hoc removal of redundant
relations by replaying logs against the output of the core
mining algorithm, removing those inclusion, exclusion and
response relations that never modify the state of their target
activities; as well as removing those conditions that never
inhibit execution of their target activities.

To further improve Simplicity, one might consider intro-
ducing nested graphs [29, 12] when they reduce relations.

5. EXPERIMENTAL RESULTS
An implementation of Algorithm 1 with rudimentary re-

dundancy removal is available at [14]. For an experimental
comparison with the Declare Maps Miner, consider the log
in Table 2. For the sake of clarity, the log consists of only ten
traces and is based on a relatively simple regular expression.
For a larger log, see the on-line results at [15].

The test log represents a basic process flow; parallels may
be drawn to a real-world process where A is registration for
an exam, B, C and D are answers to a multiple-choice ques-
tion, and the student either passes (E) or fails (F). Failed
students may retry if they wish, but if they pass, they can
no longer re-take the exam.

Given the sample log, our algorithm, with a constraint-
violation threshold of 15 %, returns the DCR-graph depicted
in Figure 1. Because the log contains only a single occur-
rence of A followed by D, the exclusion constraint between
them remains intact: the one in ten traces do not yield a suf-
ficient statistical percentage of violation (10 < 15). Thus,
as no other activity includes D, it is removed entirely from
the result-graph as a result of redundancy removal.

The removal of activity D means that the trace A–D–F is
no longer allowed, leaving the Fitness measure down at 90
%. This is, however, an acceptable trade-off for an increase
of precision from 72.73 % if the threshold were set below 10
% to the final 78.57 %, as the two measures are now closer to
each other. The main cause for this effect on the precision
measure is the observed state-space that the execution of
D involved. This, along with the fact that paths involving
executions of B and C are quite well-traversed, results in a
slightly higher, final precision measure.

762

Table 1: Threshold-dependant constraint removal

Constraint Invocation Violation Result
Excluded-state Each trace A is first in a Trace A is Included
Exclude-relation A is executed in a trace B executed immediately after A A → B exclude is changed to include
Condition-relation B is executed in a trace A is not executed before B A → B condition is removed
Response-relation A is executed in a trace B is not executed after A A → B response is removed
Pending-state Each trace A is not executed A is not Pending

Table 2: Example log. Follows the regular expression
(A(B+|C|D)F)*(A(B+|C|D)E)?

1 ABE
2 ACFABBF
3 ACE
4 ADF
5 ABFABE

6 ACF
7 ABFACFACE
8 ABBBF
9 ABBE
10 ACFACE

5.1 Result comparison: Declare Maps Miner
For comparison, we show the the result graph of running

the Declare Maps Miner [18] on the same log (Table 2) in
Figure 2. The result is computed using a Declare Maps
Miner support of 85 %, i.e., any constraint must be sup-
ported by at least 85 % of traces. This corresponds to the
constraint-violation threshold of 15 % used by our algorithm
above, as the contradiction-based method uses the thresh-
old to tell when to remove a constraint, while Declare uses
support for when to include a constraint.

• In the Declare model a trace must begin with A, fol-
lowed by either B or C and then possibly ending in E,
after which it is not permitted to go back to A.

• If C is chosen after A, it is also possible to continue to
F, instead of E, and then possible to return to A and
start over.

• If B is chosen instead of C, it is then not possible to
choose F, despite four instances of this succession in
the log.

• The exclusive choice constraint between A and D, com-
bined with A being the initial activity, means that it
is not possible to ever execute D. This is similar to the
DCR miner never including D.

• Additionally, the Declare model does not have a ter-
minal state. If E is executed, A and F cannot subse-
quently occur, but the same does not seem to apply for
B and C. Thus, these three can be executed arbitrarily
after E, even though all traces in the log end in E.

This last point marks the primary difference between the
two resulting models. Overall, the results seem to suggest
that our miner is slightly better in terms of closely reflecting
the underlying process of the test log (its regular expression).

We emphasise that these results are only for this single,
simple example, and may not necessarily generalise.

6. CONCLUSIONS
We have presented the first process mining algorithm for

DCR graphs and a set of metrics quantifying output model
quality. The algorithm has been implemented and a pre-
liminary example-based comparison with the Declare Maps

Figure 1: DCR model. Obtained by running Algorithm 1
(extended with weighted constraints, threshold 15 %) on the
log of Table 2 and removing redundancy. Fitness: 90.00 %,
Precision: 78.58 %, Simplicity: 40.39 %

Figure 2: Declare model. Obtained by running the Declare
Maps Miner on the log of Table 2.

Miner has been carried out. We plan as future work to ex-
tend the evaluation and use of the algorithm to real-time
distributed process mining.

7. REFERENCES
[1] J. Buijs, B. van Dongen, and W. van der Aalst. On

the role of fitness, precision, generalization and
simplicity in process discovery. In OTM ’12, volume
7565 of LNCS, pages 305–322. Springer, 2012.

[2] M. de Leoni, F. M. Maggi, and W. M. P. van der
Aalst. An alignment-based framework to check the
conformance of declarative process models and to
preprocess event-log data. Information Systems,
47:258–277, Jan. 2015.

[3] S. Debois, T. T. Hildebrandt, M. Marquard, and
T. Slaats. Hybrid process technologies in the financial
sector. In BPM ’15, pages 107–119, 2015.

[4] S. Debois, T. T. Hildebrandt, and T. Slaats. Safety,
liveness and run-time refinement for modular
process-aware information systems with dynamic sub
processes. In FM ’15, pages 143–160, 2015.

[5] S. Debois, T. T. Hildebrandt, T. Slaats, and
M. Marquard. A case for declarative process
modelling: Agile development of a grant application

763

system. In EDOC Workshops ’14, pages 126–133.
IEEE Computer Society, 2014.

[6] S. Debois and T. Slaats. The analysis of a real life
declarative process. In Symposium Series on
Computational Intelligence, pages 1374 – 1382, Cape
Town, Dec 2015. IEEE.

[7] C. Di Ciccio, F. M. Maggi, M. Montali, and
J. Mendling. Ensuring model consistency in
declarative process discovery. In BPM ’15, pages
144–159, 2015.

[8] C. Di Ciccio and M. Mecella. Mining constraints for
artful processes. In W. Abramowicz, D. Kriksciuniene,
and V. Sakalauskas, editors, BIS, volume 117 of
Lecture Notes in Business Information Processing.
Springer, 2012.

[9] D. Fahland, D. Lübke, J. Mendling, H. Reijers,
B. Weber, M. Weidlich, and S. Zugal. Declarative
versus imperative process modeling languages: The
issue of understandability. In Enterprise,
Business-Process and Information Systems Modeling,
volume 29 of Lecture Notes in Business Information
Processing, pages 353–366. Springer, 2009.

[10] C. Haisjackl, I. Barba, S. Zugal, P. Soffer, I. Hadar,
M. Reichert, J. Pinggera, and B. Weber.
Understanding declare models: strategies, pitfalls,
empirical results. Software & Systems Modeling, pages
1–28, 2014.

[11] T. Hildebrandt and R. R. Mukkamala. Declarative
event-based workflow as distributed dynamic
condition response graphs. In Post-proceedings of
PLACES 2010, 2010.

[12] T. Hildebrandt, R. R. Mukkamala, and T. Slaats.
Nested dynamic condition response graphs. In FSEN
’11, April 2011.

[13] Consent for blood transfusion. Joint United Kingdom
(UK) Blood Transfusion and Tissue Transplantation
Services Professional Advisory Committee (JPAC),
http://www.transfusionguidelines.org/
transfusion-practice/consent-for-blood-transfusion-1,
accessed Sept. 28th, 2016.

[14] P. H. Laursen and K. R. Ulrik. DCR miner.
https://github.com/Kirluu/UlrikHovsgaardAlgorithm.

[15] P. H. Laursen and K. R. Ulrik. Hospital log study.
https:
//github.com/Kirluu/UlrikHovsgaardAlgorithm/tree/
master/Hospital%20log%20result.

[16] F. Maggi, R. Bose, and W. van der Aalst. Efficient
discovery of understandable declarative models from
event Logs. In CAiSE, pages 270–285, 2012.

[17] F. Maggi, A. Mooij, and W. van der Aalst.
User-guided discovery of declarative process models.
In CIDM, pages 192–199, 2011.

[18] F. M. Maggi. Declarative process mining with the
Declare component of ProM. In M. Fauvet and B. F.
van Dongen, editors, BPM DEMO ’13, volume 1021 of
CEUR Workshop Proceedings. CEUR-WS.org, 2013.

[19] F. M. Maggi, M. Montali, C. Di Ciccio, and
J. Mendling. Semantical vacuity detection in
declarative process mining. In M. L. Rosa, P. Loos,
and O. Pastor, editors, BPM ’16, volume 9850 of
LNCS, pages 158–175. Springer, 2016.

[20] F. Maria Maggi, M. Montali, M. Westergaard, and

W. M. P. van der Aalst. Monitoring business
constraints with linear temporal logic: An approach
based on colored automata. In BPM ’11, volume 6896
of LNCS, pages 32–147, 2011.

[21] J. Mendling, H. M. W. Verbeek, B. F. van Dongen,
W. M. P. van der Aalst, and G. Neumann. Detection
and prediction of errors in EPCs of the SAP reference
model. Data & Knowledge Engineering, 64(1):312–329,
Jan. 2008.

[22] R. R. Mukkamala. A Formal Model For Declarative
Workflows - Dynamic Condition Response Graphs.
PhD thesis, IT University of Copenhagen, March 2012.

[23] R. R. Mukkamala, T. Hildebrandt, and T. Slaats.
Towards trustworthy adaptive case management with
dynamic condition response graphs. In EDOC ’13,
2013.

[24] M. Pesic, H. Schonenberg, and W. van der Aalst.
DECLARE: Full Support for Loosely-Structured
Processes. In EDOC ’07, pages 287–. IEEE, 2007.

[25] M. Pesic, M. H. Schonenberg, N. Sidorova, and
W. M. P. Van Der Aalst. Constraint-based workflow
models: change made easy. In On the Move 2007,
OTM’07, pages 77–94, Berlin, 2007. Springer.

[26] M. Pesic and W. M. P. van der Aalst. A declarative
approach for flexible business processes management.
In Proc. of the 2006 international conference on
Business Process Management Workshops, BPM’06,
pages 169–180. Springer, 2006.

[27] M. Reichert and B. Weber. Enabling Flexibility in
Process-Aware Information Systems: Challenges,
Methods, Technologies. Springer, 2012.

[28] I. Rychkova. Towards automated support for case
management processes with declarative configurable
specifications. In Business Process Management
Workshops, volume 132 of Lecture Notes in Business
Information Processing, pages 65–76. Springer, 2013.

[29] T. Slaats. Flexible Process Notations for
Cross-organizational Case Management Systems. PhD
thesis, IT University of Copenhagen, January 2015.

[30] W. M. van der Aalst and M. Pesic. DecSerFlow:
Towards a truly declarative service flow language. In
WS-FM ’06, volume 4184 of LNCS, pages 1–23.
Springer, 2006.

[31] W. M. P. van der Aalst. Process Mining: Discovery,
Conformance and Enhancement of Business Processes.
Springer, 2011.

[32] M. Weske. Business Process Management: Concepts,
Languages, Architectures. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 2007.

[33] S. Zugal, J. Pinggera, and B. Weber. Assessing
Process Models with Cognitive Psychology. In EMISA,
pages 177–182, 2011.

[34] S. Zugal, J. Pinggera, B. Weber, J. Mendling, and
H. A. Reijers. Assessing the Impact of Hierarchy on
Model - A Cognitive Perspective. In EESSMod, 2011.

[35] S. Zugal, P. Soffer, C. Haisjackl, J. Pinggera,
M. Reichert, and B. Weber. Investigating
expressiveness and understandability of hierarchy in
declarative business process models. Software &
Systems Modeling, June 2014.

764

http://www.transfusionguidelines.org/transfusion-practice/consent-for-blood-transfusion-1
http://www.transfusionguidelines.org/transfusion-practice/consent-for-blood-transfusion-1
https://github.com/Kirluu/UlrikHovsgaardAlgorithm
https://github.com/Kirluu/UlrikHovsgaardAlgorithm/tree/master/Hospital%20log%20result
https://github.com/Kirluu/UlrikHovsgaardAlgorithm/tree/master/Hospital%20log%20result
https://github.com/Kirluu/UlrikHovsgaardAlgorithm/tree/master/Hospital%20log%20result

