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Abstract—This paper presents Blackthorn, an efficient in-
teractive multimodal learning approach facilitating analysis of
multimedia collections of up to 100 million items on a single high-
end workstation. Blackthorn features efficient data compression,
feature selection, and optimizations to the interactive learning
process. The Ratio-64 data representation introduced in this
work only costs tens of bytes per item yet preserves most of
the visual and textual semantic information with good accuracy.
The optimized interactive learning model scores the Ratio-64-
compressed data directly, greatly reducing the computational
requirements. The experiments compare Blackthorn with two
baselines: conventional relevance feedback, and relevance feed-
back using product quantization to compress the features. The
results show that Blackthorn is up to 77.5x faster than the
conventional relevance feedback alternative, while outperforming
the baseline with respect to the relevance of results: it vastly
outperforms the baseline on recall over time and reaches up
to 108% of its precision. Compared to the product quantization
variant, Blackthorn is just as fast, while producing more relevant
results. On the full YFCC100M dataset, Blackthorn performs one
complete interaction round in roughly one second whilst main-
taining adequate relevance of results, thus opening multimedia
collections comprising up to 100 million items to fully interactive
learning-based analysis.

Index Terms—Interactive multimodal learning; multimedia
analysis; data compression; feature selection; YFCC100M

I. INTRODUCTION

Multimedia collections have become sources of knowledge
in a large and ever-growing number of scientific and applied
domains. A large research effort is being devoted to making
the knowledge in large-scale collections more available. The
dominant approach revolves around search. Indeed, the search
engine is currently the mainstream interface of interaction with
multimedia collections. Search-centered retrieval approaches
utilize state-of-the-art models, often based on machine learn-
ing, to construct a semantic index of the data and offer interac-
tivity by query-response pairs. This is suitable for cases when
the user has a clear information need and is able to formulate
it as a precise query. However, what if the analyst wants to
explore the collection, looking for the question to ask? What
if she wants to structure or categorize the data herself, and not
according to the structure given by the search engine’s index?
Such cases require a long process of meaningful interaction
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Fig. 1. Interactive learning with Blackthorn. The components of interactive
learning innovated by Blackthorn are marked orange.

with the collection in order to iteratively build the knowledge
according to custom analyst-driven data categorization.

To offer broad analytic capabilities, multimedia systems
should support interactive, open-ended tasks where the objec-
tive is the analyst’s knowledge gain. In her interactive session,
the analyst usually alternates between exploration and search,
structuring the data in the process. The analyst’s knowledge
gain is thus captured in a categorization of the collection.
Notably, for the categorization to capture insight, it must be
defined by the analyst herself, and not beforehand by the
system [47]. To truly be able to support various interactive
solutions for tasks enhancing the analyst’s knowledge gain,
we set a number of requirements. The first group relates to
performance and comprises three main requirements:

� Interactivity. The user must receive suggested results
within seconds at most.

� Scalability. The user should be able to interact with even
very large-scale (Web-scale) collections.

� Availability. The computational resources handling inter-
actions of one user must be modest.

The interactivity requirement enables iterative knowledge
gain: by interacting with a responsive interface, the user
can build up her knowledge step by step based on the flow
of relevant data from the system. Non-responsive interfaces,
on the other hand, often result in the user abandoning the
analysis altogether. The scalability requirement is especially
important in light of the fact that as collections grow to
Web scale, obtaining collection-wide human annotations re-
quired by supervised approaches becomes infeasible. Semi-
supervised, user-driven approaches that scale well do not suffer
from the lack of annotations and thus have a potential for
large-scale collection analysis. The interactivity and scalability
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requirements combined have an implication for computational
efficiency: for interactivity to scale properly, the computations
must complete in O(N) time in the worst case (where N

is the size of the collection). Indeed, given that large-scale
collections comprise millions to billions of items, it is difficult
to conceive an approach scaling superlinearly with N that
completes in interactive time. The availability requirement is
set to make interactive knowledge gain approaches accessible
on the one hand, and scalable with the number of users on
the other. Indeed, it is expensive and wasteful to dedicate
the resources of entire computational clusters or distributed
systems fully to completing an interactive session of one user.
In this work, we consider the availability requirement satisfied
when the method operates on a single contemporary high-end
workstation (16 cores, 64 GB RAM).

The second group of requirements relates to the information
relevance for the user and again consists of three requirements:

� Relevance. The data items suggested by the machine must
be relevant to the user’s request.

� Comprehensibility. The machine features must have a
semantic meaning that the user can understand.

� Adaptivity. The user must not be required to follow a data
structure or hierarchy defined by the system.

The relevance requirement is, unsurprisingly, a necessity for
the knowledge gain: if the user does not receive relevant data,
she cannot build up any knowledge, deems the method useless,
and abandons the analysis. The comprehensibility requirement
relates to the fact that the objective of user knowledge gain
cannot be accomplished without the user understanding the
data she interacts with. Understanding the features the machine
uses for the analysis enables the user to understand the
interaction process as a whole, in turn enabling the user to
input the invaluable context and her expertise into the process.
The adaptivity requirement addresses the need for the user
to be able to structure the collection herself. Structuring the
collection is an integral part of user knowledge gain [28],
[47]. Requiring the user to follow a precomputed structure
pigeonholes her into a certain way of thinking, which is
undesirable.

Interactive multimodal learning is a good fit for supporting
tasks ranging from open-ended exploration to precise search
through analytic categorization, which has a machine learn-
ing counterpart in classification [47]. Therefore, interactive
classification adapting to the analyst’s categorization takes
the spotlight. Interactive learning sessions, using techniques
such as relevance feedback or active learning, elicit training
data labels from the user directly and train the model based
on them [15]. The user is able to steer the analysis directly
through selecting relevant and non-relevant items based on
her expertise. The iterative nature aligns with the iterative
nature of knowledge build-up. While the interactive learning
paradigm is valid, the classic relevance feedback and active
learning approach [15], designed for much smaller collections
than those we face nowadays, must be revised to fit current
needs and meet the six requirements.

Concerning scale, currently the major challenge in the
multimedia community is the Yahoo Flickr Creative Commons
100M (YFCC100M) collection, comprising over 12 TB of

multimedia data [38]. Its sheer size places a heavy load on
computational resources and impedes interactivity. In addition,
as collection sizes grow, the discriminativeness of feature
vectors decays: more items will have (nearly) identical feature
vectors, making them indistinguishable from each other [2],
[14], [30]. The body of work on the analysis of the dataset
is steadily increasing [18], [20]. YFCC100M has become the
central dataset in a number of benchmarks, e.g., the MediaEval
Placing Task [22], [9], and the topic of workshops such as
MMCommons [5]. Most of the works to date, however, employ
entire computational clusters for the analysis, violating the
availability requirement.

To the best of our knowledge, no existing approach cur-
rently meets all six requirements. How to support interactive
solutions for the wide variety of tasks related to knowledge
gain in multimedia collections satisfying the six requirements
is the research question addressed in this work. Therefore, we
develop Blackthorn, an efficient interactive multimodal learn-
ing approach for large-scale collections originally introduced
in our previous work [45]. Blackthorn, conceptually depicted
in Figure 1, brings the following contributions enabling it to
fulfill all six requirements outlined above:

1) A compression method reducing the size of semantic
representations by up to order of hundreds while pre-
serving most of the semantic information and reducing
the number of parameters to minimum.

2) Incorporation of feature selection methods improving the
information preservation capabilities of the compressed
representation.

3) Revision of the interactive learning process for the large-
scale case: building up on the compressed representation
and incorporationg good practices, the computational
complexity is reduced such that large-scale analysis
(�100 million multimedia items) completes in seconds.

The rest of this work is organized as follows. Section II
summarizes related work. Section III presents the data com-
pression method. Section IV describes the adaptation and
optimizations to the interactive learning process. Section V
outlines the protocol of the experimental evaluation of our
method, while Section VI discusses the experimental results.
Section VII concludes the paper.

II. RELATED WORK

In response to the rapid growth of digital collections, a
number of approaches facilitating increasingly efficient search
and exploration have been proposed. Informedia is an early
example of a system enabling retrieval, summarization and or-
ganisation of video collections [41]. In the years that followed,
interactive learning (e.g., relevance feedback, learning new
concepts on the fly) has been proven invaluable for improving
multimedia information retrieval [15]. The research efforts of
the community on interactive search and browsing were con-
centrated around benchmark initiatives such as VideOlympics
[34] or the Video Browser Showdown [33]. However, the
collections considered in these benchmarks are much smaller
than the one considered in this work.

Most of the state-of-the-art approaches employ entire com-
putational clusters to facilitate interactive or near-interactive
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analysis of the data. This is true not only for indexing-based
approaches such as the content-based indexing of YFCC100M
[18], but also for analytics approaches such as active buck-
ets [11]. The algorithmic efficiency component of these ap-
proaches boils down to reducing the number of items for which
the similarity is computed, reducing the dimensionality of data
representation, or simplifying the similarity computation.

Recently, a large body of work has focused on the scala-
bility of image retrieval. Early work demonstrated that exact
k-nn search techniques severely suffer from the curse of
dimensionality and that their performance degrades rapidly
as soon as the dimensionality of the vectors becomes high
enough [6]. Around the turn of the millennium, the emphasis
therefore turned to approximate methods for trading off speed
against accuracy. For example, several recent works from
the multimedia and computer vision communities rely on
embedding visual feature vectors in binary space to compress
the data and reduce the distance computation time [8], [13],
[17], [24], [27], [42], [48]. Depending on whether the distances
between a query and items in the collection are computed
directly in binary space or a real-valued intermediate space,
these approaches can be categorised as symmetric or asym-
metric. Each category has its own merits: performing distance
computation directly in binary space is generally faster, but it
sacrifices search accuracy.

LSH is a well-known scalar-based indexing technique [4]; it
has been successfully applied to many contexts (e.g., see [29],
[36]). The NV-tree is another scalar-based method, which has
been shown to significantly outperform LSH [23]; the NV-tree
only requires one eighth of of the processing time of LSH,
while only storing about 6 bytes per vector.

Product quantization is a family of vector-based quantiza-
tion schemes, which decompose the high-dimensional space
into low-dimensional subspaces that are indexed indepen-
dently, thus producing very compact code-words [16], [19],
[44]. Another approach applies Map-Reduce to index up
to 30 billion high-dimensional descriptors in a distributed
setting [26]. This is a simple, yet scalable vector-based quan-
tization method which neither requires a conversion to binary
space nor a dissection of the high-dimensional descriptors.

While these approaches for scaling up image retrieval were
proven effective in k-nearest neighbour search, their applica-
bility in analytic tasks remains limited for at least two reasons.
First, state-of-the-art k-NN search approaches such as binary
hashes or product quantization are not suited for classification,
which is an essential component of most analytic platforms.
Moreover, in many analytic tasks search and exploration are
alternately performed, which requires updating, summarizing
and re-partitioning of the collection based on user interactions
[47]. Such operations require preservation of the original
vectors or significant portion of information contained in them.
The existing approaches do not focus on analytics, but rather
establishing an efficient search structure over the dataset.
Novel approaches are needed for building such representations
and deploying them efficiently in analytic tasks.

III. DATA REPRESENTATION

The first step in any analysis of a multimedia collection is
constructing the data representation. In the interactive setting
in general and multimedia analytics in particular, it is highly
desirable that the user can understand the representation.
Therefore, this work focuses on semantic representations that
assign semantic labels to the data in the visual and text
modality, for example visual concepts [32] or LDA topics
for text [7]. Additional information channels, such as geo
coordinates, time, or metadata are semantic per se and can
be represented without compression.

The main problem we face with a multimedia collection
with 100 million items is the sheer size of the representation.
Assuming 1000 visual concepts, 100 text topics, and 8 B as
the size of one floating-point number, representing a dataset of
100 million items requires roughly 880 GB of RAM, which
is prohibitive. This size must be drastically reduced for the
method to fulfill the scalability and availability requirements.
Moreover, the comprehensibility and adaptivity requirements
must be borne in mind. In this section, we describe a data
compression method that greatly reduces the representation
size and satisfies the requirements with only modest informa-
tion loss.

Fortunately, state-of-the-art semantic label representations
of multimedia data are generally effectively sparse, i.e., most
of the concept and topic scores are zero or negligible. This
allows the utilization of sparse representation practices [43].
Let x denote a feature vector of length nf that represents
one multimedia item in a particular modality. When using
a sparse representation, instead of recording all nf features,
we represent each item X by a tuple (S; I) comprising
S = f8xi 2 x j xi > 0g, the set of non-zero feature
scores, and I = f8i 2 [1; nf ] j xi > 0g, the feature indices
corresponding to the scores in S. In this section, we describe
how to further reduce the size of X by feature selection
(Section III-A) and how to compress the selected features into
a compact, efficient representation (sections III-B and III-C).

We note that sparse representations using semantic labels are
not the only ones used by the state of the art in multimedia
analysis and related disciplines. This is especially prominent
in computer vision: dense representations that represent each
item by the output of an intermediate layer in a convolutional
neural network are widely used. While we design Blackthorn
for sparse representations, in this work we also conduct
experiments on Blackthorn using dense visual features for the
sake of the completeness of the analysis.

A. Feature Selection

In the general large-scale collection case, the data volume
reduction through sparse encoding alone (i.e., encoding x

as (S; I)) is insufficient. Therefore, to provide a truly scal-
able compressed data representation, we must select only
a small number of features per modality to represent each
item. Formally, this comprises selecting tf features according
to some feature ordering (denoted O = fo1; o2; : : : ; onf g).
The process produces a reduced set of feature scores S0 =
fxo1 ; xo2 ; : : : ; xotf g and the corresponding feature IDs I 0 =



4

fo1; o2; : : : ; otf g for each item in each modality. The adaptiv-
ity requirement results in the need for an unsupervised feature
selection approach. Given the size of target collections, the
approach has to come at minimal computational cost. In this
section, we describe the three feature selection approaches of
Blackthorn.

The first one is the top-feature selection: for each item in
each modality, the top tf features sorted by value are taken
to represent the item. This is a very straightforward method
aligned with the established practices [43].

The following two feature selection approaches aim to
address the value imbalance across different features: some
features may tend to score consistently higher than others, but
at the same time they might not be the descriptive ones. In the
visual domain, this has been identified as an issue associated
with semantic concepts [3], [31]. In this work, we combat this
value imbalance by considering feature values not only within
one item, but also relative to the other values of that feature in
the dataset. The thresholded selection for each feature f first
determines the significance threshold for each feature defined
as �f = �f + �f , where �f and �f are the feature mean and
standard deviation across all items, respectively. Then, for each
item X , we consider only those features xf that have high
values relative to the other items, i.e., those which surpass
their respective significance threshold (xf � �f ). The item
is represented by the top tf features that pass the threshold,
sorted by feature value.

The third method is the TF-IDF selection, inspired by the
eponymous time-tested information retrieval method, which
has also been successfully deployed in concept-based video
representation [31]. For each feature xf of item X , the TF-
IDF score t�df(xf ) is described in Equation 1 (x is the feature
vector, J�K is the Iverson bracket, and N is the number of items
in the collection C):

t�df (xf ) = xf � log

�
1 +

NP
x2CJxf > �f + �f K

�
(1)

The TF portion is equal to xf , the value of the feature itself.
The IDF portion determines the feature’s rarity, representing
the ratio of the items in the collection where the feature is
strongly present (using the same significance threshold as
in the thresholded selection): the lower the ratio, the more
discriminative the feature is. The features in each item are
sorted by t�df(xf ) in descending order, and as before, the
top tf features sorted by value are selected to represent the
item. The TF-IDF selection takes into account both the feature
value itself and the distribution of the feature values for each
feature.

B. Compression and Decompression

After the feature selection is completed and the top tf fea-
tures per item are selected, the data must be compressed. This
section describes the compression method used by Blackthorn,
as well as the decompression allowing the reconstruction of the
features as dictated by the second requirement for interactive
learning representations.

F
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Fig. 2. The ratio representation, encoding the top-valued feature (F ), feature
IDs (I), and ratios between subsequent features (R).

The memory required for representing the top tf features in
each modality depends on three parameters: the value of tf , the
number of bits required to encode the feature ID (denoted bi),
and the number of bits required to represent the feature value
(bv). The value of bi in turn depends on nf , the total number
of features in the original feature set: bi = dlog2 nfe. The
value of bv depends on the decimal precision p required for
the recorded value: bv = dp � log2 10e. Note that this assumes
feature values between 0 and 1, which can be easily achieved
by normalization.

The straightforward way to sparsely encode features is to
directly encode the feature value in one bit field and the
feature ID in another. Indeed, this is the paradigm used in the
first version of Blackthorn [45]. Whilst this poses no problem
for encoding the feature IDs, the selection of p is difficult,
which raises an important issue with respect to accuracy and
compactness. When p is too low, many features fall below the
decimal precision of p and are encoded as zeros, increasing the
loss of information and wasting storage space. When p is too
high, the information drop is alleviated, but the compactness
of the representation suffers. Dynamic p for different items
impairs random access to the encoded features for each item.
Therefore, a different solution is needed.

To alleviate the decimal precision problem, we introduce
the ratio representation, schematically depicted in Figure 2.
The ratio representation uses three bit fields. The first field,
F , encodes the feature identifier and value of the strongest
feature directly, as the value of the strongest feature is the
starting point of the ratio representation. The decimal precision
of the strongest feature’s encoding and the corresponding bit
cost are henceforth denoted p1 and bv;1, respectively. For each
successive feature, the I bitfield encodes the feature identifiers,
and the R bitfield encodes the ratio between the i-th feature
score (2 � i � nf ) and the preceding (i � 1)-th feature
score. Thus, the p parameter does not determine the maximal
decimal precision of the encoded features anymore, but rather
the lowest possible ratio, or the maximal allowed value “drop”
between any two features. Note that this makes the p parameter
much less constraining, as we are now able to encode feature
scores with arbitrary decimal precision, given that the value
drop between the features is less than p orders.

The compression operates as follows. Let bv;1 denote the
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number of bits required to encode the top feature score in
the F bitfield and p1 the decimal precision pertaining to the
encoding of the top feature. Further, let [�] denote the rounding
operation, _ the binary OR operation, and � the left bit shift
operation. The construction of the F ; I, and R bit fields is
described by Equations 2, 3, and 4, respectively.

F = [10p1 � s1] _ (i1 � bv;1) (2)

I =

tf_
k=2

(ik � (k � 2) � bi) (3)

R =

tf_
k=2

��
10p �

sk

sk�1

�
� (k � 2) � bv

�
(4)

Most of the original feature vector can be reconstructed
by decompressing F ; I, and R, with the features outside the
top tf set to 0. Let ^ denote the binary AND operation
and � the right aritmetic bit shift operation. The feature ID
decompression for the k-th feature is defined in Equation 5
(k = 1) and Equation 6 (2 � k � tf ). The feature score
decompression for the k-th feature is defined in Equation 7
(k = 1) and Equation 8 (2 � k � tf ).

� (i1) = F � bv;1 (5)
� (ik) = (I � ((k � 2) � bi)) ^

�
2bi � 1

�
(6)

� (s1) = F ^ 2bv;1 (7)

� (sk) = �(s1)

k�2Y
j=0

(R � j � bv) ^
�
2bv � 1

�
10p

(8)

Note that � (sk) does not allow for equal-time random
access to the k-th feature score. This constitutes the com-
putational price for the ratio representation. However, since
the compressed representation is designed to be decompressed
sequentially to obtain the entire feature vector, this is not an
issue: we can simply keep the “running feature score” in one
extra variable whilst decompressing. This very minor memory
demand is more than outweighed by the advantage of arbitrary
decimal precision brought by the ratio representation.

C. The Ratio-64 Representation

Currently, most machines are 64-bit, making it desirable to
match the actual size of the F ; I and R bitfields as defined by
Equations 2, 3 and 4, respectively. Aligning the bitfields with
the 64-bit architecture boils down to choosing tf , p1, and p

accordingly. The selection must be made bearing in mind nf ,
the total number of features, and the corresponding bi.

Encoding F in one 64-bit integer is more than sufficient,
because bv;1 = 64� bi leaves more than enough bits for high
p1: for example, in the case of feature sets with nf � 16384,
bi = 14, which makes bv;1 = 50, allowing the encoding of the
top feature score with the decimal precision of 15. Encoding
I is straightforward: each feature ID requires exactly bi bits,
making the total cost of encoding the feature IDs in I equal
to tf � bi. Encoding R requires checking the decimal precision
required to encode the minimal ratio between any two features

TABLE I
COMPARISON OF THE MEMORY COST OF RATIO-64 AND THE

UNCOMPRESSED REPRESENTATION: THE MEMORY COST OF 1 ITEM, THE
MEMORY COST OF 100 MILLION ITEMS, AND HOW MANY ITEMS FIT INTO

60 GB.

1 item 100M 60 GB
Uncompressed 8.81 kB 880.8 GB 6.8M items
Ratio-64, � = 1 48 B 4.8 GB 1250M items
Ratio-64, � = 5 176 B 17.6 GB 340.9M items
Ratio-64, � = 10 336 B 33.6 GB 178.5M items
Ratio-64, � = 15 496 B 49.6 GB 120.9M items

in the dataset and setting bv accordingly. Encoding R in � 64-
bit integers boils down to encoding � = b 64

bv
c feature score

ratios per integer. I is encoded analogously.
The memory-efficient Ratio-64 representation, depicted in

Figure 3, only requires 2� + 1 64-bit integers per item and
modality. Table I compares the uncompressed representation
with the Ratio-64 representation. With � = 1, the representa-
tion is 183.5x smaller than the uncompressed representation
and allows fitting 1.25 billion items into 60 GB of memory.
The number of preserved features depends on the values of bi,
and bv , which is intrinsically tied to the data itself. Assuming
the space-generous case of bi = bv = 14 (allowing for p = 4
and nf up to 16,384), � is then equal to 4, enabling the
preservation of tens of features per item. The ratio paradigm
ensures that arbitrarily low values can be preserved. Note that
the features are selected per item, not for the entire dataset.
Thus, no features get discarded en bloc based on dataset-
wide statistics. The value of � is subject to experimentation in
this work. With its design, the Ratio-64 representation aligns
with the requirements for large-scale interactive multimodal
learning set in the introduction.

IV. INTERACTIVE LEARNING

The compressed representation is a necessary condition for
interactive analytics on large scale multimedia collections, but
not a sufficient one. To facilitate large-scale interactive mul-
timedia analytics, the interactive learning process itself must
be optimized. In this section, we describe the performance
optimizations considered in this work.

An interactive multimodal learning session consists of a
number of interaction rounds, each with 3 steps:

1) An interactive classifier CI (per modality) is trained on
a set of examples provided by the user.

2) Using CI , the unlabelled items in the collection are
scored.

3) The top r results are returned to the user. Using late
modality fusion, this requires to fuse the rankings across
modalities to obtain the final top r.

The process requires an interactive classifier, i.e., one that
can be trained during each interaction round without violat-
ing the requirements outlined in the introduction, especially
interactivity, relevance, and scalability. As a result, not all
classifiers are suitable. For instance, deep nets, which are
very much embedded in the state of the art in multimedia
analysis, computer vision, and information retrieval, are out



6

�

FV

64 bits

iV1 sV1

FT

64 bits

iT1 sT1

IV

iV2
. . . iV�+1

...

iV����+2
. . . iV��+1

64 bits

RV

sV2
sV
1

. . . sV�+1

sV
�

...

sV����+2

sV
����+1

. . . sV��+1

sV
��

64 bits

IT

iT2
. . . iT�+1

...

iT����+2
. . . iT��+1

64 bits

RT

sT2
sT
1

. . . sT�+1

sT
�

...

sT����+2

sT
����+1

. . . sT���+1

sT
��

64 bits

Fig. 3. The Ratio-64 representation encoding the visual (V ) and text (T ) features. For each modality, F encodes the first feature value and ID. I and R are
each a collection of � 64-bit integers. In the i-th slot, I encodes the i-th feature ID, while R encodes the ratio between the i-th and the i�1-th feature value.

of the question: they generaly take too long to train on large
datasets and require more than a few judgments provided by
the user.

A user typically produces tens of examples per interaction
round at most. As a consequence, the set of training examples
does not scale with the size of the collection (N ). We
consider two variants of training. The first one is training on
the original data, loading the uncompressed features for the
training samples on demand. This approach utilizes the full
information contained in the features, but random access to
the file containing the uncompressed features (as they cannot
be kept in RAM) may scale sub-optimally with collection size.
The second variant is training on the decompressed Ratio-64
features. This provides faster access, but the training algorithm
has access to incomplete feature information due to the infor-
mation loss incurred by the Ratio-64 representation. The effect
of using the decompressed data or original, uncompressed data
is subject to experimentation in this work.

The time cost of steps 2 and 3 increases dramatically as the
collection grows larger. Compression and efficient implemen-
tation do not alleviate this problem on their own. To tackle this
problem, Blackthorn considers two optimizations of the inter-
active learning process: an adaptation of the classifier scoring
method exploiting the structure of the compressed dataset,
and modality fusion with reduced computational overhead.
Both follow the established good practices in the multimedia
community.

Adapting the scoring method to suit the compressed Ratio-
64 representation means scoring the items directly in the
compressed space without expanding each of the vectors
into the original vector space. This is straightforward for
classifiers that employ a dot product of a weight vector and
the feature vector to score an item, such as SVM, perceptron,
or linear discriminant analysis. For such classifiers, the dot
product computation can be sped up by iterating only over
those feature coordinates actually recorded in the Ratio-64
representation of the item, instead of all coordinates of the

original feature space. Expanding the compressed vector into
the original feature space yields no benefit, since all non-
recorded features are 0 and iterating over them has no effect
on the value of the dot product.

To demonstrate the speed-up, consider for instance the linear
SVM and its scoring function (Equation 9, w is the SVM
weight vector and b the bias):

�(I) = w
T
x+ b (9)

Assuming equal computational cost of addition and mul-
tiplication for the sake of simplicity, this costs 2nf + 1
arithmetic operations per item and modality. Given a semantic
representation with 1000 visual concepts and 100 text topics,
this amounts to 2001 operations for the visual modality and
201 operations for the text modality. Using the Ratio-64
representation, only the � � � encoded features carry any value.
Iterating over those features only yields the scoring function
in Ratio-64-compressed space (�c) defined in Equation 10:

�c (I) =

tfX
k=1

�
w�(ik) � � (sk)

�
+ b (10)

The feature ID decompressions cost 2 mathematical opera-
tions each (cf. Equation 6), except the first one, which costs 1
operation (cf. Equation 5). The feature score decompressions
cost 4 operations each (cf. Equation 8), except the first one,
which costs 1 operation (cf. Equation 7). On top of the de-
compression, the score computation comprises tf+1 additions
and tf multiplications. This amounts to 8tf � 3 mathematical
operations per item and modality. Since tf � nf , �c is faster
than � by up to orders of magnitude. For example, in the
case of � = 1; � = 6, a visual concept dictionary of 1000
concepts, and text topic dictionary of 100 topics: �c performs
37.7x fewer operations in the visual modality and 3.7x fewer
operations in the text modality, while producing exactly the
same result.
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The second aspect requiring attention is late modality
fusion, which has been long established to perform better
than early fusion [35]. With a straightforward approach, this
requires O(N logN) time, which is higher than the O(N)
complexity of scoring. To reduce the total complexity to
O(N), we follow the protocol of the top-r list rank aggregation
[12] in order to obtain the top r relevant results. For each
modality, the top-scoring � (with r � � � n) results in
that modality are nominated to the final ranking by iterating
over the data once and checking whether each respective item
qualifies for the top-� (O(N) time). The multimodal ranking
is obtained by performing rank aggregations on the nominated
items (O(� log �) time). Because � � N , modality fusion is
essentially computed in sublinear time. Optimized modality
fusion in combination with efficient scoring ensures that all
stages of interactive learning complete in O(N) time.

V. EXPERIMENTAL SETUP

In the experimental evaluation of Blackthorn, we aim to
answer the following questions:

1) What is the overall speed-up of Blackthorn compared
to state-of-the-art methods in the interactive learning
setting?

2) How does Blackthorn compare to the state of the art
regarding the ability to produce relevant results?

3) Which combination of Blackthorn’s parameters yields
the best performance?

4) Does Blackthorn work with dense feature representation
as well?

5) How does Blackthorn scale compared to state-of-the-art
methods in the interactive learning setting?

In order to evaluate the individual optimizations/parameters
proposed in this work and their effect on Blackthorn’s per-
formance, the experiments are conducted on a number of
variants of Blackthorn. The Blackthorn variants based on
the optimization used are named bt_#FEATSEL_#TRAIN.
#FEATSEL is a label for the feature selection used (cf.
Section III-A), which can have three values: topft for the
top-feature selection, thres for the thresholded selection, and
tfidf for the TF-IDF selection. #TRAIN is a label for the
feature variant used for the training of the interactive learning
classifier (cf. Section IV), which can have two values: ucmp
whenever the original, uncompressed features were used for
the training and comp whenever the compressed features were
used.

In the experiments, we compare Blackthorn with two ap-
proaches reflecting the state of the art. The first one is
the standard relevance feedback approach [15] (henceforth
denoted rf_standard), which is still being used in the
interactive learning scenario to this day. Given that Blackthorn
is essentially optimized relevance feedback, sacrificing the
accuracy of the feature representation for speed, this allows us
to evaluate how favourable Blackthorn’s accuracy-speed trade-
off is.

The second approach uses product quantization [16], [19],
[44] to compress the features. Product quantization is the
most applicable state-of-the-art technique in the context of

interactive learning, despite the fact that interactive learning
cannot make use of its efficient search structure. Following
[16], we split the feature vectors in m subvectors, replacing
each with the respective cluster ID resulting from a subquan-
tizer partitioning the feature space into k clusters. We opted
for m = 12 and k = 1024. This choice is motivated by
the good practices outlined in [16] (large k and small m

is better than the other way round). In particular, m = 12
ensures rf_pq is on par with the efficient configurations on
Blackthorn compression-wise, and k = 1024 is reasonable
regarding both compression quality (cf. [16], Fig. 1) and
computational speed.

As the quantization algorithm we use a randomized quan-
tizer that establishes k random samples from the collection as
centroids and assigns each item to the closest centroid. In other
words, we perform 1-step random-initialized k-means, estab-
lishing a Voronoi partition of the feature space. The choice
of this simple algorithm is dictated by the dimensionality
of quantizing a large-scale dataset, which is both time- and
memory-consuming. The resulting representation is then used
in a standard relevance feedback setting.

This approach is further denoted rf_pq. Comparing Black-
thorn with rf_pq pits Blackthorn’s Ratio-64 representation
against a compressed representation widely used in state-of-
the-art k-NN search. Note that the features obtained by product
quantization violate the comprehensibility requirement. Also
note that the experiments are meant to gauge the efficiency
of product quantization in the context of interactive learning
only, not to evaluate product quantization as a whole.

As the instantiation of the interactive classifier CI , we use
linear SVM [10] for all three approaches. The main reason
is that linear SVM still remains the most widely adopted
interactive classifier, appearing in a number of recent state-
of-the-art works, e.g., [21], [25]. As discussed in Section IV,
deep nets, which are currently the mainstream classifier in
multimedia analysis and especially computer vision, take too
long to train and are thus unsuitable in the interactive setting.
All approaches are implemented in C and use the VLFeat
implementation of the SVM [39].

Interactive learning in the multimedia analytics context is
notoriously difficult to evaluate, due to the difficult bench-
marking of insight-driven analysis. Indeed, every user proceeds
to different insights through different means, which is difficult
to capture in objective benchmarks. Since this work focuses
on the learning process in general, and not on a particular
interactive system, a user study is not an option, as it is very
difficult to isolate the effect of using an improved learning
method from the effect of the interface on the user. Therefore,
the evaluation of Blackthorn’s efficiency is inspired by the
Analytic Quality paradigm [46], employing a large number
of automated computer agents (or actors) simulating user
behaviour. These actors simulate the actions of a human user in
the classic relevance feedback scenario: each round manually
selecting relevant and non-relevant items and submitting the
selection to the relevance feedback algorithm, which returns
the items deemed most relevant for the next round of the user’s
consideration.

Since there are no annotated datasets suitable for multimedia
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Positives Negatives

Suggestions

Fig. 4. Example items involved in the first interaction round performed on the YFCC100M dataset by the actor interested in items from Prague. In [45],
none of the suggestions were regarded as relevant for the evaluation, despite the semantically similar content.

analytics evaluation, let alone ones on the order of hundreds
of millions of items, we resort to a custom evaluation task
performed on YFCC100M. The evaluation task is to retrieve
items pertaining to a large city in an interactive session based
solely on visual and text content. This task is inspired by the
MediaEval Placing Task [22], [9], one of the main multime-
dia benchmark challenges revolving around the YFCC100M
dataset. However, note that the task is quite difficult. Its
only purpose is to compare the general interactive learning
approaches with each other. In this work, we do not strive
to outperform the state-of-the-art localization approaches built
for the purpose of the Placing task.

We define the actors that shall interact with the evaluated
algorithms as follows. First, we sort world cities in descending
order by the number of associated items in the 2016 test dataset
of the Placing task. Each actor then corresponds to one city in
the top 50, and its set of relevant items is defined as all items
within 1000 kilometers of the city centre, corresponding to the
largest radius considered in the Placing task. This large radius
has been chosen to counter the problem encountered in the
initial iteration of our work [45] and illustrated in Figure 4,
where the methods were penalized for returning reasonable, se-
mantically similar suggestions that did not come from exactly
the same city, but from a culturally and architecturally close
city. For each actor, 50 sessions are conducted. The initial
relevance indication in each comprises 100 uniform random
samples from the actor’s relevant items as positives and 200
uniform random samples from the collection as negatives. In
each interaction round, the evaluated algorithm retrains the
model and suggests 25 items to the actor, i. e., r = 25 for
all experiments. Those suggestions that are contained in the
actor’s relevant item set are added to the set of positives for the
next interaction round. The set of negatives for the next round
contains 100 uniform random samples from the collection.

Two datasets were used for the evaluation: the Placing
2016 test set and YFCC100M. With 1.5 million items, the
Placing test set is rich enough to provide a challenge for the
algorithms and reasonably sized to allow for comparison of
rf_standard with the Blackthorn variants. We experiment
on the Placing test set to answer the first four experimental

questions. The second dataset, YFCC100M, is used to gauge
the scalability of Blackthorn to truly large datasets. Note that
YFCC100M is too big to be handled by rf_standard. A
persistent approach with the data stored on disk is not an
option, since the amount of I/O operations would cripple any
attempt at interactivity.

To provide a broader, general overview of the algorithms’
performance, two different semantic representations were used
in each of the two modalities for both datasets. In the
visual modality, we extracted the 1000 ILSVRC ImageNet
concepts [32] and the 365 Places2 concepts [49], both using
a GoogLeNet convolutional neural network [37]. In addition,
we also experiment on the dense 1024-dimensional features
obtained as the output from the average pooling layer of each
respective GoogLeNet. This allows us to showcase Blackthorn
on dense features which are commonly used in the computer
vision community. However, we consider the dense features
auxiliary and focus on the sparse concept features in greater
detail. The reason for this is that the average-pooling features
violate the comprehensibility requirement posited in the in-
troduction: they are meaningless to the interacting user. In
the text modality, we extracted 100 LDA topics directly from
the YFCC100M corpus, as well as 100 topics obtained by
applying the LDA model constructed on the Wikipedia corpus
[1]. The LDA extraction was conducted using the Gensim
framework [40].

In the experiments, we vary the � (cf. Section III-C)
and � (cf. Section IV) parameters: � = f1; 5; 10; 15g; � =
f100; 500; 1000g. Bearing in mind the selected feature
representations, we instantiate the Ratio-64 parameters
(bi; bv; bv;1; tf ; �, cf. Section III) as follows. We set these pa-
rameters equally for both modalities for the sake of simplicity.
The highest number of features (nf ) is 1024, corresponding
to bi = 10. We set bv = 10 as well, as this is sufficient for
encoding all ratios in all the datasets. The bv;1 parameter is set
to 54, which allows for a very generous encoding precision and
uses all 64 bits of the top-valued feature (F) bitfield. Given
the bv , � = 6 and thus, for each modality, tf = 6�+ 1.

Further, The � parameter has been set to � = 6 based on
the nature of the data in accordance with the practice outlined
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in Section III-C, i. e., checking the decimal precision required
to encode R.

To gauge the performance of the evaluated algorithms, we
report four evaluation measures reflecting the requirements of
an analyst:

� Time per interaction round
� Precision at interaction round
� Recall after 10 interaction rounds
� Recall over time
Time per interaction round is the alpha and omega of

interactivity, not merely a measure of computational efficiency
or convenience for the user. Indeed, for an algorithm to be
interactive, the time per interaction round cannot exceed a
couple of seconds, as dictated by the interactivity requirement.
The time per interaction round encompasses all three steps
defined in Section IV. Precision at interaction round reflects
the need for the algorithm to produce relevant items in the
individual interaction rounds to engage the analyst. Indeed,
if the algorithm goes through long dry spells with respect to
relevance, the analyst quickly loses confidence in its analytic
capability, again increasing the likelihood of the user ending
the session prematurely. Recall after 10 interaction rounds
reflects the cumulative information gain after the early stage
of the analysis. However, this does not reflect the time needed
to arrive at that particular information gain. Recall over time
captures both timely analysis and user insight gain. Indeed, the
more relevant items the analyst sees and the earlier she sees
them, the better. We report the algorithmic recall over time, not
taking into account the time required by the user to process the
results. This is due to the user processing time being highly
volatile and influenced by factors beyond the scope of this
work, such as the interface of the system implementing the
algorithm.

VI. RESULTS AND DISCUSSION

Table II summarizes the precision, recall after 10 interaction
rounds, and time per interaction round using sparse visual
features, i.e., the visual concept scores. For the sake of brevity,
we report up to five results per combination of features:
rf_standard, the rf_pq configuration with the highest
precision/recall, the Blackthorn configuration with highest
precision, the Blackthorn configuration with highest recall (if
it is different from the previous one), and finally the fastest
Blackthorn configuration. The results clearly reveal that speed
and efficiency are Blackthorn’s forte. The fastest configu-
rations of Blackthorn consistently complete one interaction
round in under a tenth of a second, which is on par with the
slightly faster rf_pq, and yields a massive speedup of 61.4–
77.5 compared to rf_standard’s barely interactive 3–4.5
seconds. Blackthorn’s speed-up answers the first experimental
question quite convincingly.

Regarding the second experimental question, Table II shows
that relevance-wise, Blackthorn is on par or sometimes better
than rf_standard and much better than rf_pq in all cases.
This means that the information loss incurred by the Ratio-64
representation is very modest in the worst case and even turned
into an information gain in the best case, making the infor-
mation loss-speed trade-off quite favourable. Out of all four

TABLE II
PRECISION, RECALL AT 10 INTERACTION ROUNDS, AND TIME PER
INTERACTION ROUND ON THE PLACING TEST DATASET, USING THE

SPARSE CONCEPT SCORES AS VISUAL FEATURES.

IMAGENET (CONCEPTS), YFCC100M precision recall time

rf_standard 0:176 6:62 � 10�4 4:72 s
rf_pq (� = 100) 0:106 1:61 � 10�4 0:03 s
bt_tfidf_ucmp (� = 1; � = 1000) 0:191 6:17 � 10�4 0:09 s
bt_tfidf_comp (� = 5; � = 1000) 0:180 6:19 � 10�4 0:14 s
bt_thres_comp (� = 1; � = 100) 0:154 4:67 � 10�4 0:07 s

IMAGENET (CONCEPTS), WIKIPEDIA precision recall time

rf_standard 0:214 7:98 � 10�4 4:65 s
rf_pq (� = 100) 0:105 1:61 � 10�4 0:03 s
bt_tfidf_comp (� = 1; � = 1000) 0:200 7:44 � 10�4 0:09 s
bt_tfidf_ucmp (� = 1; � = 100) 0:186 7:09 � 10�4 0:06 s

PLACES365 (CONCEPTS), YFCC100M precision recall time

rf_standard 0:184 7:48 � 10�4 3:07 s
rf_pq (� = 1000) 0:104 1:68 � 10�4 0:05 s
bt_tfidf_ucmp (� = 10; � = 1000) 0:193 6:62 � 10�4 0:17 s
bt_thres_ucmp (� = 5; � = 1000) 0:192 6:67 � 10�4 0:10 s
bt_thres_comp (� = 1; � = 100) 0:154 4:69 � 10�4 0:05 s

PLACES365 (CONCEPTS), WIKIPEDIA precision recall time

rf_standard 0:211 8:07 � 10�4 3:07 s
rf_pq (� = 1000) 0:104 1:69 � 10�4 0:05 s
bt_tfidf_ucmp (� = 1; � = 500) 0:202 7:75 � 10�4 0:05 s
bt_thres_ucmp (� = 5; � = 1000) 0:195 7:90 � 10�4 0:10 s
bt_thres_ucmp (� = 1; � = 100) 0:194 7:67 � 10�4 0:04 s

feature set combinations, Blackthorn preserves at least 93%
of the precision achieved by rf_standard and increases
the precision to 108% of rf_standard’s in the best case.
Regarding recall at 10 interaction rounds, Blackthorn achieves
89–98% of that achieved by rf_standard. However, when
recall over time is taken into account, Figure 5 clearly show-
cases that Blackthorn dominates both rf_standard and
rf_pq already from the early interaction rounds. Note that
all highest-scoring Blackthorn configurations with respect to
precision and recall use either TF-IDF or thresholded feature
selection, validating the feature selection approaches presented
in Section III-A. Thus, the answer to the second experimental
question is that Blackthorn is able to provide relevant results
comparable or better than the best baseline, incurring minimal
information loss further alleviated by feature selection.

Figure 6 plots the effect of the choice of parameters on
Blackthorn’s performance. Each bar corresponds to the av-
erage of all results achieved by configurations on the given
feature combinations with the given parameter (varying the
others). Remarkably, the � parameter has very little impact on
precision and recall, and higher � does not appear to translate to
better semantic descriptiveness. This is in line with the human
perception of visual and text information: only a few concepts
describe an image; only a few topics describe the associated
text. Given that higher � directly translates into increased
time per interaction round, it is overall advisable to choose
low values of �. Since the Ratio-64 representation allows
easy selection of � minimizing encoding errors, the encoding
problems related to the previously free decimal precision
parameter [45] are not an issue. Regarding �, higher � tends
to lead to higher recall and mostly also to higher precision
(certainly when going from 100 to 500). Similarly to the case
of �, higher � leads to higher time per interaction round.
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Fig. 5. Recall over time, Placing test dataset, ImageNet visual features,
YFCC100M LDA topics.

Thus, � can be viewed as a trade-off parameter. Regarding
feature selection, thresholded selection slightly outperforms
top-feature selection on precision and recall, while being itself
outperformed by TF-IDF selection. Thresholded selection is
noticeably faster than the others. This is due to it introducing
additional zeros in the features and as a result encoding less
information in total. Generally, it is advisable to pick TF-
IDF selection for maximizing precision/recall, and thresholded
selection for maximal speed. Regarding the feature variant
used for SVM training, using the uncompressed features tends
to have an edge over the compressed features with respect
to precision and time per interaction round. Overall, while
some parameters have higher impact than others, the parameter
choices allow customization of Blackthorn and design choices
for the speed-accuracy trade-off axis.

Table III summarizes the results of experiments with the
dense visual features, i.e., the outputs of the average-pooling
layer of each respective deep net. Blackthorn results are on
par with rf_standard, despite the Ratio-64 representation
design heavily favouring sparse features: Blackthorn achieves
87–96% of rf_standard’s precision and 85–94% of the
recall, whilst maintaining the massive speed-up. Similarly to
the case of sparse visual features, rf_pq is shown to be fast,
but inferior with regard to relevance in comparison with both
Blackthorn and rf_standard. Interestingly enough, the best
Blackthorn results on each combination of features in the
dense case are achieved by the same parameter configuration
that suits the dense features well. Indeed, � = 5 accounts
for the necessity of recording more features in the dense
case compared to the sparse case favouring � = 1. The
thresholded feature selection is the one emphasizing features
with exceptional values the most, which is valuable when we
need to discard a large number of feature values per item.
Overall, whilst Blackthorn does not bring information gain
when using dense visual features, we believe the answer to the
fourth experimental question is that even though Blackthorn
was not designed for dense features, it performs adequately on

TABLE III
PRECISION, RECALL AT 10 INTERACTION ROUNDS, AND TIME PER

INTERACTION ROUND ON THE PLACING TEST DATASET, USING THE DENSE
AVERAGE-POOLING (AP) VISUAL FEATURES.

IMAGENET (AP), YFCC100M precision recall time

rf_standard 0:191 7:29 � 10�4 4:34 s
rf_pq (� = 1000) 0:106 1:69 � 10�4 0:05 s
bt_thres_comp (� = 5; � = 1000) 0:175 6:87 � 10�4 0:13 s

IMAGENET (AP), WIKIPEDIA precision recall time

rf_standard 0:208 9:37 � 10�4 4:15 s
rf_pq (� = 1000) 0:106 1:72 � 10�4 0:05 s
bt_thres_comp (� = 5; � = 1000) 0:199 8:56 � 10�4 0:13 s

PLACES365 (AP), YFCC100M precision recall time

rf_standard 0:172 5:90 � 10�4 4:44 s
rf_pq (� = 1000) 0:103 1:64 � 10�4 0:05 s
bt_thres_comp (� = 5; � = 1000) 0:150 5:12 � 10�4 0:13 s

PLACES365 (AP), WIKIPEDIA precision recall time

rf_standard 0:195 8:24 � 10�4 4:35 s
rf_pq (� = 1000) 0:103 1:64 � 10�4 0:05 s
bt_thres_comp (� = 5; � = 1000) 0:174 7:02 � 10�4 0:13 s

them with respect to relevance while maintaining the speed-up
brought by the efficient Ratio-64 representation.

Regarding scalability, Blackthorn succeeds with respect to
interactivity: on the entire YFCC100M dataset, the � = 1 con-
figurations take between 0.8 and 1.1 seconds per interaction
round. The performance with respect to relevance is adequate.
The precision at interaction round ranges from 0.09 to 0.39.
Notably, the higher values in this range surpass those on the
smaller Placing test dataset. We have two explanations for this.
Firstly, the Placing test dataset is specifically designed to offer
a challenge in determining places around the world, unlike the
general YFCC100M dataset. Secondly, the precision numbers
report the performance within the 25 suggestions each round,
i.e., the absolute top of the ranking corresponding to very
early precision. In this case, using the entire YFCC100M
dataset offers a larger pool of relevant candidates, which in the
top-25 case appears to outweigh the proportionally increased
size of the set of negatives. Indeed, one actor in the 100M
setting corresponds to roughly 4.5 million relevant items on
average, which is three times the size of the entire Placing
test dataset — and we still need only the top 25, because the
user’s capacity to process items interactively does not scale
with the dataset. The recall after 10 interaction rounds ranges
from 7�10�6 to 4�10�5. Note that the apparent small values are
caused by the sheer size of the actors. The parameter influence
on the results on the YFCC100M dataset mirrors the one on the
smaller dataset shown in Figure 6, with one notable exception:
training on the original uncompressed features (the ucmp
configuration) suffers from crippling feature file random access
times, which increase the length of one interaction round to
tens of seconds. Thus, in the large-scale case, the model should
be trained on compressed features at all times. Blackthorn
is much stronger than rf_pq on the large dataset: whilst
rf_pq is slightly faster than Blackthorn at 0.7 seconds per
interaction round, the precision and recall values of Blackthorn
are much higher: rf_pq reaches precision of 0.04–0.05 and
recall of 2�10�6–3�10�6. These scalability results complement
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Fig. 6. The effect of parameter choice on Blackthorn results (Placing test dataset).

those reported in our previous work [45]. In this work, we
have increased the tolerance for the distance from city center,
focusing on generally semantically similar results, whereas the
previous results without the increased tolerance correspond to
a more specialized, “needle-in-the-haystack” approach. Over-
all, Blackthorn is shown to be scalable, as it is able to produce
relevant results in truly interactive time on large-scale data.

VII. CONCLUSION

In this paper, we have presented Blackthorn, an efficient
interactive multimodal learning framework which supports full
interactive-learning-based analysis of large-scale collections
with up to 100M multimedia items. The Ratio-64 compression
method of Blackthorn is shown to massively reduce the size
of multimodal features. In addition, it not only preserves
most of the information contained in the original features,
but combined with feature selection at times yields better
interactive learning performance than the original features.

Blackthorn yields a massive speed-up in comparison to the
competing relevance feedback algorithms. The experiments
further show that Blackthorn is suitable for the analysis of
Web-scale datasets. It is able to learn on the fly from the
user-provided training samples, and one interaction round on
a collection with 100 million items takes roughly a second.
Its high efficiency and low resource cost would also support
multi-category exploration with proactive suggestions by the
system. The analysis can be performed on a single standard
high-end workstation with 64 GB RAM and 16 CPU cores.
In order to foster further research, the Blackthorn software
package has been made available as an open-source tool.
In conclusion, Blackthorn is a step forward towards fully
harnessing the wealth of information contained in large-scale
multimedia collections.
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[25] I. Mironică, B. Ionescu, J. Uijlings, and N. Sebe. Fisher kernel temporal
variation-based relevance feedback for video retrieval. CVIU, 143:38 –
51, 2016.

[26] D. Moise, D. Shestakov, G. Gudmundsson, and L. Amsaleg. Indexing
and searching 100m images with map-reduce. In ICMR, pages 17–24,
2013.

[27] M. Norouzi, A. Punjani, and D. Fleet. Fast search in hamming space
with multi-index hashing. In CVPR, pages 3108–3115, 2012.

[28] C. North. Towards measuring visualization insight. IEEE TCGA,
26(3):6–9, 2006.

[29] V. Rao, P. Jain, and C. Jawahar. Diverse yet efficient retrieval using
locality sensitive hashing. In ICMR, pages 189–196, 2016.

[30] B. Richard. Adaptive control processes: A guided tour, 1961.
[31] S. Rudinac, M. Larson, and A. Hanjalic. Leveraging visual concepts and

query performance prediction for semantic-theme-based video retrieval.
Int J MIR, 1(4):263–280, 2012.

[32] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei. Imagenet large scale visual recognition challenge. IJCV,
115(3):211–252, 2015.

[33] K. Schoeffmann. A user-centric media retrieval competition: The video
browser showdown 2012-2014. IEEE MM, 21(4):8–13, 2014.

[34] C. G. M. Snoek, M. Worring, O. d. Rooij, K. E. A. van de Sande,
R. Yan, and A. G. Hauptmann. VideOlympics: Real-time evaluation of
multimedia retrieval systems. IEEE MultiMedia, 15(1):86–91, 2008.

[35] C. G. M. Snoek, M. Worring, and A. W. M. Smeulders. Early versus
late fusion in semantic video analysis. In ACM MM, pages 399–402,
2005.

[36] N. Sundaram, A. Turmukhametova, N. Satish, T. Mostak, P. Indyk,
S. Madden, and P. Dubey. Streaming similarity search over one billion
tweets using parallel locality-sensitive hashing. VLDB, 6(14):1930–
1941, 2013.

[37] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions.
CVPR, 2015.

[38] B. Thomee, B. Elizalde, D. A. Shamma, K. Ni, G. Friedland, D. Poland,
D. Borth, and L.-J. Li. YFCC100M: The new data in multimedia
research. Commun. ACM, 59(2):64–73, 2016.

[39] A. Vedaldi and B. Fulkerson. VLFeat: An open and portable library of
computer vision algorithms. http://www.vlfeat.org/, 2008.
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