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Abstract. Selene is a novel voting protocol that supports individual
verifiability, Vote-Privacy and Receipt-Freeness. The scheme provides
tracker numbers that allow voters to retrieve their votes from a public
bulletin board and a commitment scheme that allows them to hide their
vote from a potential coercer. So far, however, Selene was never stud-
ied formally. The Selene protocol was neither completely formalized, nor
were the correctness proofs for Vote-Privacy and Receipt-Freeness.
In this paper, we give a formal model for a simplified version of Selene in
the symbolic model, along with a machine-checked proof of Vote-Privacy
and Receipt-Freeness. All proofs are checked with the Tamarin theorem
prover.

1 Introduction

The original motivation of the Selene voting protocol [17] was to design a vot-
ing protocol that is verifiable, usable, and guarantees Vote-Privacy (VP) and
Receipt-Freeness (RF). Selene’s hallmark characteristics is that it does not re-
quire voters to check their votes on a bulletin board using long hashes of en-
crypted ballots, but instead works with readable and memorisable tracker num-
bers.

Selene is a voting protocol that could, at least in theory, be used in binding
elections. One way to increase the confidence in its correctness is to use formal
methods. The more complex a protocol the more likely are design mistakes,
and the earlier such mistakes can be found and fixed, the better it is for all
stakeholders involved. Selene uses an ElGamal crypto system, two independent
phases of mixing, Pedersen style trap-door commitments and zero-knowledge
proofs of knowledge.

In this paper we apply Tamarin to mechanize the proofs of correctness for
VP and RF for Selene. First, we model Selene in the Tamarin language. The first
model corresponds to the original Selene protocol described in Section 2. Using
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Tamarin, we prove VP and RF, but only under the assumptions that coercer
and voters do not collude. Tamarin constructs a counter example otherwise. We
then strengthen the model according to a fix that was already described in the
original Selene paper and then show VP and RF. Tamarin can no longer find a
counter example.

For the purpose of mechanization, we also develop a precise message sequence
chart for full Selene, which we then simplify further to become suitably repre-
sentable in Tamarin. Tamarin is described in Section 3. While working with
Tamarin, we also discovered a few completeness issues with the implementation
of Tamarin that are currently being worked on by the Tamarin team.

Contributions We describe a formalisation of Selene. A description of the full
formalization can be found in [9]. We propose a simplified model of Selene,
where explicit mixing is replaced by random multi-set reductions. We formalise
our simplified model of Selene in Tamarin, and express the properties of VP
and RF in our model. We describe the counter example and the modified model
for which show VP and RF. All Tamarin proof scripts can be found at https:

//github.com/EvaSleva/selene-proofs.

Related work The extended version of the original Selene paper [17] includes in
the appendix a partial argument of correctness of the main construction, however
it does not provide a formal proof of the scheme. Other voting protocols have
undergone formal analysis, such as the FOO [11], Okamoto [15] and Lee et
al. [13], which have been analysed in [7]. An analysis of Helios [2] is presented
in [5] and of the Norwegian e-voting protocol [12] in [6]. The arguments are partly
formalized, for example in the applied π-calculus [1] and the theorem prover
ProVerif [4]. Recently the Dreier et al. [8] extended the equational reasoning of
multiset rewrite rules in Tamarin, which have been pivotal for our development,
and applied this technique to the analyses of the FOO and Okamoto protocols.

Organization This paper is organized as follows. In Section 2 we describe the
full Selene voting protocol as described in [17] as message sequence charts. In
Section 3 we give a brief introduction into the Tamarin tool and explain syntactic
categories and the Tamarin rewrite engine. In Section 4, we describe then the
two Tamarin models, and present the result of mechanizing the proofs of VP
and RF. Finally, we conclude and assess results in Section 7.

2 The Selene voting protocol

The purpose of Selene is to construct a receipt-free scheme ensuring individual
verifiability, i.e. voters can check that their vote is tallied in the final result.
Selene achieves this by giving each user a tracker number that will point to their
vote on a public bulletin board, containing all cast votes. The scheme maintains
vote-privacy, since none of the involved parties—besides the voters themselves—
learns who cast each vote; individual verifiability, since the protocol gives a proof



to the voters that their vote has been tallied; and receipt-freeness, since voters
have no way of proving how they voted to a potential coercer, because they can
fake the proof that should convince the coercer how they voted.

The involved parties in the protocol are the Voters (Vi); an Election Authority
(EA) responsible for checking their identities and issuing the tracking numbers; a
Web Bulletin Board (WBB) that publishes the intermediate stages of the voting
process, as well as the anonymized, decrypted votes; a Mixnet (M) performing
distributed re-encryption of the tracking numbers and the votes; and a number
of Tellers (T ), performing distributed threshold decryption of the votes.

Tracker numbers must remain unlinkable to the voter from the perspective
of the various parties involved; at the same time, one must be assured that
each voter is given a distinct tracker number. This problem is solved by the
distributed Mixnet carrying along proofs of re-encryption. The Tellers produce
a Pedersen-style commitment for each voter to their tracker number, also in
a distributed fashion; they also decrypt the votes and tracker numbers, which
are finally posted publicly on the Bulletin Board. To ensure that the computa-
tions are performed correctly, non-interactive zero knowledge proofs are carried
throughout the protocol.

2.1 Re-encryption Mixnets and Pedersen-style Commitments

At the heart of the Selene protocol are two useful properties of the ElGamal cryp-
tosystem, which we now briefly review: it can perform randomized re-encryptions
and can act as a commitment scheme.

The ElGamal encryption scheme operates under a cyclic group G of order q
and generator g. For any given private key sk ∈ Zq; the corresponding public
key is pk = gsk ; the encryption of a message m ∈ G intended for the owner of
sk is the ElGamal tuple (α, β) = (gr,m · pkr) given a uniformly random choice
of r ∈ Zq; finally, decryption is performed by computing m = β

αsk .

Re-encryption Given an encryption pair (α, β) = (gr,m · pkr) with m ∈ G and
uniformly random r ∈ Zq, one can compute a randomized re-encryption of m

without knowing the secret key sk . Computing the pair (α · gr′ , β · pkr
′
) with

uniformly random r′ ∈ Zq, is equal to (g(r+r
′),m · pk (r+r′)) and hence decrypts

to the same value of m while being indistinguishable from the former encryption
without having the secret key sk . Shuffling mixnets chain this sort of encryption
on a set of encrypted values, such that if at least one link in the mixnet is
kept secret, the final cipher texts will be unlinkable to the original input, albeit
encrypting the same values.

Pedersen-style commitments ElGamal cryptosystems also allow to commit to a
message without revealing it right away. Given a message m ∈ M, with M ⊆
G and small |M| (e.g. the number of random tracker numbers chosen for the
election), one computes the commitment of m as β = gm ·pkr for some randomly
uniform r ∈ Zq. To reveal the message m, simply output α = gr and compute

γ = β
αsk = gm, then check against all m′ ∈M to find the matching gm

′
= γ.



The Pedersen-style commitment scheme constitutes the core of the individual
verifiability and receipt-freeness in Selene. First, the voters can be convinced that
the protocol behaved correctly by committing in advance to the tracking number
that will be linked to their vote, which they can publicly check. It is in fact
believed to be hard to compute a reveal message α′ that decrypts to a different
m′ knowing only m, pk and r, as it reduces to solving the discrete logarithm
problem. Most importantly, the voters (knowing sk and α) can construct the fake

α′ by computing α′ = g
m−m′

sk ·α. This makes it practically impossible for anyone
but the voter to construct a fake receipt, thus the voters can trust that the
protocol behaved correctly, whereas a potential coercer cannot trust any receipt
from the voter. For a more detailed explanation of Pedersen-style commitment
schemes we refer to the original paper [16].

2.2 Protocol steps

We will now explain the main steps of Selene. Before voting begins, each voter
Vi must be given a tuple on the WBB containing their public key, the en-
crypted tracker number and the trap door commitment to the tracker number:
(pk i, {gni}pkT , β). This process is as follows:

Set up All voters are assumed to have their public/secret key pairs: (pk i =
gski , sk i). The election authority publicly creates unique tracker numbers ni for
each voter, computes gni and the ElGamal encryption under the teller’s public
key: {gni}pkT . These terms are posted on the WBB:

(ni, g
ni , {gni}pkT )

These are put through a sequence of verifiable re-encryption mixes and the shuf-
fled numbers are assigned to the voters and posted on the WBB:

(pk i, {gnπ(i)}pkT )

Since the numbers have gone through multiple mixes, no single teller knows
this assignment. The shuffling is verifiable however, so it preserves the original
tracker numbers.

Creation of trap-door commitments The trapdoor commitments are created in
a distributed fashion among the tellers. For each voter i, each teller j creates
a fresh random ri,j , computes {gri,j}pkT and {pk

ri,j
i }pkT . For each voter, the

product of the second elements are formed:

{pkrii }pkT =

t∏
j=1

{pk
ri,j
i }pkT

where by exploiting the multiplicative homomorphic property of ElGamal:

ri :=

t∑
j=1

ri,j



Then the product of {pkrii }pkT and {gnπ(i)}pkT is formed to obtain the encrypted
trapdoor commitment: {pkrii · gnπ(i)}pkT . The commitments are decrypted and
posted on the WBB along with the voter’s identity and the encrypted tracker
number:

(pk i, {gnπ(i)}pkT , (pkrii · g
nπ(i)), )

All these steps with proofs and audits are also posted. The last entry is left blank
for the vote. The tellers keep their gri,j terms secret for now.

Voting Each voter encrypts and signs their vote SignVi({V otei}pkT ) and sends
it along with a proof of knowledge of the plaintext. The signature and proof are
needed to ensure “ballot independence” [19] and to prevent an attacker copying
the vote as their own. The server checks for duplication, checks proofs and pairs
off the vote with the key corresponding to the private key which it was signed.
The entry on the WBB now looks like this:

(pk i, {gnπ(i)}pkT , (pkrii · g
nπ(i)), SignVi({V otei}pkT ))

Decryption and tabulation For each row on the WBB, the second and fourth
terms (which are the tracker and vote) are taken out and put through verifiable,
parallel, re-encryption mixes, and threshold decrypted. We then have a list of
pairs: (gnπ(i) , V otei) from which the tracker can be derived:

(nπ(i), V otei)

Revealing the trackers After the trackers and votes have been available for a
suitable amount of time, the voter receives the gri,j terms from all the tellers
through a private channel and combines them to form gri , which is the α term
of the ElGamal encryption under the voters’ PKs. The gnπ(i) ·pkrii posted earlier
is the β component, and the voter can now form the ElGamal cryptogram:
(gri , gnπ(i) · pkrii ), which they can decrypt with their secret key to reveal gnπ(i)

and hence nπ(i).

In case of coercion, it is easy for the voter to compute an alternative (gr
′
i),

which will open the encryption to any tracker number they would like. However,
this is hard to do without the secret key, so it would not be feasible for an
attacker to reveal the wrong tracker to the voter. Due to space limitations, we
refer to [9] for the full formalization of Selene.

3 Tamarin

Tamarin is a specialised theorem prover for security protocols based on labelled
multiset rewriting. It can prove both trace properties and equivalence properties
on labelled transition systems. Tamarin supports convergent equational theories
and the AC theories for Diffie-Hellman and multisets [8, 18]. In Tamarin models,
multiset rewriting rules encode both the protocol specification and the Dolev-
Yao attacker. Because of its multiset semantics, the tool supports precise analysis
of protocols with state and unbounded numer of sessions, however at the cost of
non-termination, since the problem is undecidable in general.



Definition 1 (Rules, facts, terms, equational theories and semantics).
A term is either a variable x or a function f(t1, . . . , tn) of fixed arity n, with
t1, . . . , tn terms. Equality of terms =E is defined as the smallest reflexive, sym-
metric and transitive closure of a user-defined equational theory E.Variables
are annotated with a sort system, with a top generic sort msg and two incom-
patible sub-sorts: ˜ for nonces and $ for public messages. Facts are of the form
F(t1, . . . , tn), with fixed arity n and t1, . . . , tn terms. There are six reserved fact
symbols: Fr for fresh nonces; In and Out for protocol input and output; KU, KD
and K for attacker knowledge. All other facts are user-defined. Persistent facts
are prefixed with the ! (bang) modality, and can be consumed arbitrarily often.

A labelled multiset rewrite rule is a rule of the form l−[a]→r, where the
multisets of facts l, a and r represent the rule premise, label and conclusion. We
omit the brackets when a = ∅. A state S is a multiset of facts. We define the

semantics of a rule l−[a]→r as the relation S
σ(a)−−−→ S′ with substitution σ where

σ(l) ⊆E S and S′ = S \E σ(l) ] σ(r).

Functions and equations model cryptography symbolically: for example asym-
metric encryption and decryption with the equation adec(aenc(m, pk(sk)), sk) =E

m, saying that the encryption of m using pk(sk) only succeeds with the corre-
sponding secret key sk. In Section 4.2 we present a more advanced equational
theory that covers the commitment and re-encryption schemes used in Selene.

Observational Equivalences Tamarin supports both trace-based properties and
observational equivalence in the models. Trace-based peoperties suffice to model
secrecy and authentication. However in this work we focus on observational
equivalences, i.e. show that an adversary cannot distinguish between two sys-
tems, specified by the left and the right projections of special terms diff (t1, t2)
occurring in the model. To define observational equivalence we split the rules
into system rules (Sys), environment rules (Env) and interface rules (IF ). In
the following, F# and G# are finite multisets of facts and ground facts, while ρ
is the set of all rule recipes. For a detailed definition of these concepts see [3].

Definition 2 (Observational Equivalence). Two sets of multiset rewrite
rules SA and SB are observational equivalent with respect to an environment
Env, written SA ≈Env SB, if, given the labelled transition system defined by the
rules SA ∪ IF ∪ Env and SB ∪ IF ∪ Env, there is a relation R containing the
initial states, such that for all states (SA, SB) ∈ R we have:

– If SA
r−→
a
S′
A and r is the recipe of a rule in Env ∪IF , then there exists action

a′ ∈ F#, and S′
B ∈ G#, such that SB

r−→
a′

S′
B, and (S′

A, S
′
B) ∈ R.

– If SA
r−→
a
S′
A and r is the recipe of a rule in SA, then there exist recipes

r1, . . . , rn ∈ ρ of rules in SB, actions a1, . . . , an ∈ F#, n ≥ 0, and S′
B ∈ G#,

such that SB
r1−→
a1

. . .
rn−−→
an

S′
B, and (S′

A, S
′
B) ∈ R.

– We have the same in the other direction.



Tamarin does not directly prove observational equivalences: it rather proves
a stronger notion of equivalence, called mirroring of dependency graphs. A de-
pendency graph is defined as a graph where the nodes are ground rule instances,
and there is a directed arc from a rule r1 to r2 iff r1 produces a fact that is
consumed by r2. Furthermore, it is required that all input facts have incoming
edges, that non-persistent facts are consumed at most once, and that exactly
one rule has no outgoing edges (the goal rule). Mirroring is defined as an iso-
morphism between two graphs modulo the equational theory. Let mirrors(dg)
denote the mirrors of a dependency graph dg .

To prove mirroring, Tamarin constructs all possible instantiations of depen-
dency graphs for the left- and right-hand side systems, and shows that for each
dependency graph on one side, there exists one on the other that mirrors it. If
such construction is possible, then we say that the two systems are dependency
graph equivalent. We will not dive into the details however, but rather present
the essential result of the proof technique that this paper uses.

Theorem 1 (Dependency graph equivalence implies observational equiv-
alence).

Let S be a bi-system. If L(S) ∼DG,Env R(S) then L(S) ≈Env R(S)

Our proofs of vote-privacy and receipt-freeness in Selene rely on constructing
two systems using diff -terms and then checking whether mirroring holds. For a
full explanation of Tamarin and the techniques we just briefly covered, we refer
to the official documentation [20] and research papers [18, 14, 3, 8].

4 Selene Tamarin model

Assumptions To make the protocol amenable to formal verification we have
made the following assumptions in the model: firstly, we assume that all the
participants in the protocol behave honestly, except the attacker and the voter
being coerced. Selene claims to be secure even under partially compromised
Tellers and Mixnets, by using threshold and distributed encryption schemes. The
original Selene paper does not commit to specific schemes in this regard, and
these are complex verification problems out of reach for current symbolic theorem
provers like Tamarin. Instead of explicitly modeling them, we only model their
defining features and assume a proper implementation. Furthermore, our voting
system is restricted to two voters and two candidates. For modeling vote-privacy
and receipt-freeness properties in voting systems two voters are enough [7], hence
this restriction does not pose further limitations in the analysis.

Simplifications to the protocol Given said assumptions we have made the
following simplifications to our model. Since the protocol is honest, we do not
need to model zero knowledge proofs, e.g. reencryption proofs in Selene: by
the model each entity executes the protocol, hence no proof of computation
is needed. Only one teller is modelled, as multiple tellers in Selene are used



to perform cryptographic operations (e.g. reencryption of the tracker numbers)
without having access to the decrypted data so that one dishonest teller cannot
link a decrypted tracker number to the voter. Since we assume that the tellers
are honest, we do not need more than one. Similarly we do not model the mixnet
explicitly, and we take advantage of the non-determinism of Tamarin rules, and
of the associative-commutative multiset operators, to ensure that the link is lost
between the identities of the voters and their tracker numbers, at least from the
perspective of the attacker. In our model, every occurrence of mixing is replaced
with a synchronisation point and a multiset operation. Finally, whenever an
authentic and confidential channel is required in the protocol, we model that
with a linear fact that is not accessible to the attacker, whereas if the channel
is only authentic, but public, the attacker receives the value separately.

4.1 The protocol

We model our protocol after the scheme presented in Figure 1. As discussed
earlier, the Mixnet does not appear in our simplified scheme, whose behaviour
we model with the non-deterministic semantic of rewrite rules. We assume that
each voter Vi has a public key pk i, and the teller public key is pkT . Initially the
EA generates a unique tracker number for each voter Vi, and publishes them
through the WBB. With respect to the full version, we omit the zero-knowledge
proofs, the re-encryption mixing and the distributed decryption, as we assume
to trust the Tellers, Mixnet and the Election Authority.

The teller then creates a commitment to the tracker number for each voter
with their public key, and posts them on the WBB. Voters can now cast their
vote by sending to their teller the encrypted and signed choice. After voting has
ended, the encrypted votes are posted on the WBB along with the voter iden-
tity and commitment. Again the model omits the second pass of re-encryption
randomisation by the mixnet, and posts directly the decrypted vote and tracker
number on the WBB.

After a suitable period, the randomness of the commitments is sent to the
voters. The voters can then combine this with their commitment to find their
tracker number, and check the corresponding vote on the WBB.

4.2 Modelling Approach

Channels Selene assumes the existence of secure and authentic communication
channels. We model these by the use of linear facts that ensure a correspon-
dence between inputs and outputs, and add a corresponding Out fact when the
communication is also public, e.g.:

Fr(˜x)→ SendValue(˜x),Out(˜x) (AuthCh)

We use this approach as an alternative to explicitly modelling encryption in
public channels: this has the advantage of greatly reducing the search space.
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Fig. 1. Simplified Selene protocol



Equations Trap-door commitments are the central cryptographic primitive of
the Selene protocol. We model them with the functions commit/3, open/3 and
fake/4. The term commit(m, r, pk) models a commitment to value m using the
randomness r and the public key pk = pk(sk). To open the commitment one
applies open(commit(m, r, pk(sk)), r, sk). Those in possession of the secret key
sk can construct a receipt fake(m, r, sk ,m2) for another message m2, and it
should hold that open(commit(m, r, pk(sk)), fake(m, r, sk ,m2), sk) = m2. Thus
we have:

open(commit(n1, r, pk(sk)), r, sk)→ n1

commit(n2, fake(n1, r, sk , n2), pk(sk))→ commit(n1, r, pk(sk))

These equations do not produce a confluent rewriting system, and it is therefore
not convergent, and this can cause Tamarin to produce false results. We use the
Maude Church-Rosser checker to produce their Knuth-Bendix completion and
get:

open(commit(n1, r, pk(sk)), fake(n1, r, sk , n2), sk)→ n2

However adding this equation still does not make it confluent, since the checker
keeps finding new and larger critical pairs whenever the resulting equation is
added. In order to fix this we add the equation:

fake(n2, fake(n1, r, sk , n2), sk , n3)→ fake(n1, r, sk , n3)

Using the Maude Church-Rosser checker this is now confirmed to yield a conflu-
ent rewriting system. [10]

Shuffling When the full Selene protocol of Section 2 requires shuffling the votes
through a re-encryption mixnet, we use multisets to model the reordering, for
example:

SendTracker(n1),SendTracker(n2)→
!PublishTrackers(n1 + n2),Out(n1 + n2) (Shuffle)

!PublishTrackers(n′1 + n′2)→ (Receive)

In Tamarin, the AC symbol + denotes multiset union. It is therefore possi-
ble to match the two rules (Shuffle) and (Receive) both with the substitution
{n1/n′1, n2/n′2} and {n1/n′2, n2/n′1}, making irrelevant the order of inputs and
outputs. Furthermore, this rule acts as a synchronization point.

4.3 Basic Model

In this section, we describe the common rules between the models used for the
vote-privacy and receipt-freeness proofs of Sections 5 and 6. Our models have a
fixed set of agents, that is two voters V1 and V2 and a teller T . Rule (Setup)



generates the keys for both agents, and outputs the corresponding public keys.
The state of each agent is initialised with a predicate StX0 where X denotes
the agent type and the arguments denote their knowledge, including—for the
voters—their choice of candidates specified using diff terms. Two teller instances
are created to interact with each of the voters. The fact EA starts the generation
of the random tracker numbers by the Election Authority, as described by the
next rule.

Fr(˜skV1
),Fr(˜skV2

),Fr(˜skT )−[OnlyOnce]→
Out(pk(˜skV1

)),Out(pk(˜skV2
)),Out(pk(˜skT )),

StV0(V1, diff (A,B), ˜skV1
, pk(˜skV1

)),
StV0(V2, diff (B,A), ˜skV2 , pk(˜skV2)),
StT0(T, ˜skT, pk(˜skV1)),
StT0(T, ˜skT, pk(˜skV2

)),
EA(pk(˜skV1

), pk(˜skV2
))

(Setup)

In rule (EA) the Election Authority generates the tracker numbers ni and out-
puts them publicly. The trackers are shuffled using the + operator, and the pkV s
are used to ensure that both voters don’t get assigned the same tracker.

EA(pkV1
, pkV2

),Fr(˜n1),Fr(˜n2)→
!ShuffleTrackers(〈˜n1, pkV1

〉+ 〈˜n2, pkV2
〉),

Out(˜n1, ˜n2) (EA)

Rule (T1) represents the teller receiving one shuffled tracker ni from the multiset
produced by EA. The teller assigns ni to a voter Vi by creating a commitment
to its value with the voter’s public key and a newly generated random value α,
then stored in the state fact. The commitment is published on the WBB using
both PostCommitment and an Out fact:

let βi = commit(ni, αi, pkVi) in

!ShuffleTrackers(〈ni, pkVi〉+ y),Fr(αi),StT0(T, ˜skT , pkVi)→
Out(〈pkVi , βi〉), !PostCommitment(pkVi , βi),

StT1(T, ˜skT , pkVi , αi, ni, βi) (T1)

Rule (V1) enacts the voting stage. To simplify the model and since we assume
a trusted teller, voting is represented by a predicate SendVote that includes the
choice and the teller’s public key:

StV0(Vi, vi, ˜skVi , pkVi)→ SendVote(vi, pkVi),StV1(Vi, vi, ˜skVi , pkVi) (V1)

Rules (T2) and (T2-Sync) represent the teller receiving the two votes cast, reveal-
ing to each voter the randomness to recover their tracker numbers, synchronising



and outputting both pairs of vote and tracker number publicly.

SendVote(vi, pkVi),StT1(T, ˜skT , pkVi , αi, ni, βi)→
SendSecretToVoter(αi),PassVote(vi, ni) (T2)

PassVote(v1, n1),PassVote(v2, n2)→
!PublishVote(〈n1, v1〉+ 〈n2, v2〉),Out(〈n1, v1〉+ 〈n2, v2〉) (T2-Sync)

Finally, rule (V2) models the checking phase, where the voter retrieves their com-
mitment and their secret randomness to compute their tracker number. The rule
also checks that the vote is posted correctly on the bulletin board by requiring
the presence of the corresponding tuple in PublishVote.

let ni = open(βi, αi, ˜skVi) in

SendSecretToVoter(αi), !PostCommitment(pkVi , βi),

!PublishVote(〈ni, vi〉+ y),StV1(Vi, vi, ˜skVi , pkVi)→ (V2)

5 Vote-privacy

Vote-privacy is the basic requirement to any electronic voting system, where
running the protocol should not reveal the intention of each voter. Obviously
one cannot simply model vote-privacy as an observational equivalence property
where one voter votes in two possible ways and the rest remains unchanged,
since the result would show up in the final tally. Instead, Delaune et al. [7] define
vote-privacy as an equivalence between two systems where two voters V1 and V2
swap their choices of candidates A and B. The public outcome of the election
remains unchanged, hence an attacker must observe the difference between the
two systems from other information that is exchanged throughout the election.

The model introduced in Section 4.3 is sufficient to prove vote-privacy of
Selene: it produces two systems where the two candidates V1 and V2 swap their
votes A and B, using the diff terms. Tamarin can prove mirroring automatically,
hence by Theorem 1 we conclude that they are observationally equivalent.

6 Receipt-freeness

Receipt-freeness is a stronger property than vote-privacy. To be receipt-free, a
protocol must not reveal the choice of a voter even when the voter reveals all
their private information to an attacker [7].

Selene claims to be receipt-free as long as the underlying vote-casting scheme
is receipt-free. The extra information the voter has in Selene is a commitment to
the tracking number linked to their vote, and a receipt that opens the commit-
ment. However each voter can fake their own receipt hence the attacker cannot
infer from the voter’s private information whether the receipt is fake or real [17].



6.1 Modelling

Like in vote-privacy, the model shows two systems in which two voters swap
votes. However, V1 always outputs a receipt for A regardless of how they voted.
The coercer should not be able to determine that V1 is producing fake receipts.
We modify the model of Section 4.3 by splitting the rule (V2) into the rules (V2-
1) and (V2-2). Rule (V2-2) is identical to (V2) for voter V2 and only checks that
their vote appears on the WBB, while (V2-1) outputs the secret information of
V1 (the coerced voter), including their secret key, the desired tracker number,
and either a fake or a real receipt:

let n1 = open(β, α, ˜skV ) in

SendSecretToVoter(α), !PostCommitment(pkV , β),

!PublishVote(〈n1, v〉+ 〈n2, diff (B,A)〉),
StV1(V1, v, ˜skV , pkV )→

Out(˜skV ),Out(β),

Out(diff (n1, n2)),

Out(diff (fake(n1, α, ˜skV , n1), fake(n1, α, ˜skV , n2)),

Out(diff (v,A)) (V2-1)

Here, V1 checks for their vote, as well V2’s vote, and saves this tracker number as
n2. In the first system V1 actually voted for A as the coercer wanted, and outputs
the real receipts. In the second system V1 voted for B , but outputs fake receipts,
as if they voted for A. In the rule’s conclusion V1 outputs all the available values,
which are: the private key ˜skV , the commitment β, the tracker number n1 , or
n2 , the secret randomness, and finally either the actual vote or the fake vote.

The randomness is a fake function that either opens the commitment to the
voter’s real tracker number n1 , or to the other tracker number n2 . As a modeling
expedient we use the term fake(n1, α, ˜skV , n1) to denote the real receipt for V1,
instead of simply α. This is required because Tamarin converts the directed
equational theories into rewrite rules, and hence the rules produced for the fake
constructors would not apply to the basic αs. Using the model just presented
Tamarin automatically proves receipt-freeness for the protocol.

Attack The scheme poses a problem if the voter accidentally picks the coercer’s
own tracker number, or a tracker number of another voter under coercion. This
does not reveal the voter’s actual vote, but the coercer will know the voter is
lying. This is a known flaw in the protocol and is also explained in the paper
presenting Selene. We can reproduce this attack in our model by changing the
rule (V2-2) to also output V2’s tracker number:

let n1 = open(β, α, ˜skV ) in

SendSecretToVoter(α), !PostCommitment(pkV , β),

!PublishVote(〈n1, v〉+ y),StV1(V2, v, ˜skV , pkV )→ Out(n1) (V2-2)



In fact, if the adversary knows both tracker numbers, then they can compare the
trackers and see that they match when V1 chooses to fake their receipt, while
they differ when V1 behaves honestly, violating the observational equivalence.

Fix The authors of Selene [17] proposed a construction that removes the pos-
sibility of voters picking the coercer’s tracker number. Each voter v gets |C|
additional tracker numbers that point to fake votes cast for each candidate of
the possible choices C. The bulletin board contains |C| · v+ v tracker-vote pairs,
and computing the final tally amounts to removing |C| · v votes to each candi-
date. If a voter is being coerced and wants to reveal a fake receipt, they only
need to pick one of their fake trackers that points to the desired candidate.

We model this fix in a simplified version of our original model, where we
remove the non-determinism in the shuffling that contributes to space explosion.
Tamarin could not terminate within 16 hours on the full version using a server
with 16 Intel Xeon cores and 120GB of RAM. The partial model has no EA and
does not output the trackers or the pairs on a public WBB. It works as follows:
the teller generates three tracker numbers for each voter, but only creates a
commitment to the first one, which will act as the voter’s real tracker number.

let β = commit(n0, αi, pkVi) in

Fr(n0),Fr(n1),Fr(n2),Fr(αi),

StT0(T, ˜skT , pkVi , v
′
i)→

Out(〈pkVi , βi〉), !PostCommitment(pkVi , βi),

StT1(T, ˜skT , pkVi , v
′
i, αi, n0, n1, n2) (T1’)

After receiving the vote, the teller assigns each tracker to a vote. The real vote
is therefore assigned to the voter’s real tracker number and to one other tracker
number. All |C|+ 1 trackers are published along with their corresponding vote.
For each voter |C| trackers are published along with the voter’s identity, so the
voter can use these in case of coercion. The extra tracker, that also points to the
voter’s actual cast vote, is removed from set, and therefore not published with
the voter’s identity.

SendVote(vi, pkVi),StT1(T, ˜skT , pkVi , v
′
i, αi, n0, n1, n2)→

SendSecretToVoter(αi),

!PublishTracker(pkVi , n0), !PublishTracker(pkVi , n2),

!PublishVote(n0, vi), !PublishVote(n1, vi), !PublishVote(n2, v
′
i) (T2’)

The difference in the checking phase is that V1 needs to check the WBB for their
personal tracker number corresponding to the coercer’s desired candidate. Both
votes can then be checked using the voter’s two tracker numbers. The process is



unchanged for voter V2.

let n0 = open(β, α, ˜skV ) in

SendSecretToVoter(α), !PostCommitment(pkV , β),

!PublishTracker(pkV , nF ), !PublishVote(n0, v), !PublishVote(nF , diff (B,A)),

StV1(V1, v, ˜skV , pkV )→
Out(˜skV ),Out(β),

Out(diff (n0, nF )),

Out(diff (fake(n0, α, ˜skV , n0), fake(n0, α, ˜skV , nF )),

Out(diff (v,A)) (V2-1’)

As with the previous RF model, we can prove that the two systems produced
by this model satisfy mirroring, therefore issuing a fake certificate for each candi-
date allows us to prove receipt-freeness even when the attacker knows the other
voter’s vote. This alternative protocol ensures a stronger type of receipt-freeness
in which other voters’ receipts can also be revealed.

7 Conclusions

In this work we built mechanised proofs receipt-freeness and vote-privacy for
Selene, which claims to also offer individual and universal verifiability. Selene
uses re-encryption mixnets and Pedersen-style commitment schemes, which lead
to complex equational theories that were out of reach for many cryptographic
theorem provers, including ProVerif [4]. We overcame the limitation on mixing
by using the AC multiset operator of Tamarin, and built a confluent equational
theory for the commitment scheme used in Selene.

Our models show that the Selene scheme preserves vote-privacy and that it
is receipt-free as long as the fake receipts do not match the choice of another
colluding voter. We also model the proposed fix, whereby each voter receives a
fake tracker numbers for each candidate. These proofs confirm the claims of the
original paper [17], albeit under the stricter condition that the Tellers, Mixnet
and Election Authority are honest and not compromised. These restrictions were
necessary since distributed re-encryptions and decryptions produce state explo-
sions that makes it infeasible to find a proof, even when running on a virtual
server with 16 Intel Xeon cores and 120 GB of RAM.

We believe that this study contributes to a better understanding of Selene,
and to discover necessary conditions for its security, such as the synchronisation
points required after the setup and the voting phases. As future work, it will
be interesting to explore how to relax the assumption that all principals behave
honestly and introduce zero-knowledge proofs to ensure their correct behaviour.
Also, this study has not considered universal verifiability: while the protocol
maintains individual verifiability—and that can be checked as a correspondence
property in our current model—checking universal verifiability requires combin-
ing Selene with other receipt-free, universally verifiable schemes.
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