
ar
X

iv
:1

60
5.

02
68

7v
3

 [
cs

.D
S]

 2
2

N
ov

 2
01

6

A Framework for Similarity Search with Space-Time Tradeoffs using

Locality-Sensitive Filtering

Tobias Christiani∗

tobc@itu.dk

IT University of Copenhagen

Abstract

We present a framework for similarity search based on

Locality-Sensitive Filtering (LSF), generalizing the Indyk-

Motwani (STOC 1998) Locality-Sensitive Hashing (LSH)

framework to support space-time tradeoffs. Given a fam-

ily of filters, defined as a distribution over pairs of subsets

of space that satisfies certain locality-sensitivity properties,

we can construct a dynamic data structure that solves the

approximate near neighbor problem in d-dimensional space

with query time dnρq+o(1), update time dnρu+o(1), and space

usage dn+n1+ρu+o(1) where n denotes the number of points

in the data structure. The space-time tradeoff is tied to

the tradeoff between query time and update time (inser-

tions/deletions), controlled by the exponents ρq, ρu that are

determined by the filter family.

Locality-sensitive filtering was introduced by Becker et al.

(SODA 2016) together with a framework yielding a single,

balanced, tradeoff between query time and space, further

relying on the assumption of an efficient oracle for the fil-

ter evaluation algorithm. We extend the LSF framework to

support space-time tradeoffs and through a combination of

existing techniques we remove the oracle assumption.

Laarhoven (arXiv 2015), building on Becker et al., intro-

duced a family of filters with space-time tradeoffs for the

high-dimensional unit sphere under inner product similar-

ity and analyzed it for the important special case of ran-

dom data. We show that a small modification to the fam-

ily of filters gives a simpler analysis that we use, together

with our framework, to provide guarantees for worst-case

data. Through an application of Bochner’s Theorem from

harmonic analysis by Rahimi & Recht (NIPS 2007), we are

able to extend our solution on the unit sphere to R
d under

the class of similarity measures corresponding to real-valued

characteristic functions. For the characteristic functions of

s-stable distributions we obtain a solution to the (r, cr)-near

neighbor problem in ℓds-spaces with query and update expo-

nents ρq = cs(1+λ)2

(cs+λ)2
and ρu = cs(1−λ)2

(cs+λ)2
where λ ∈ [−1, 1] is

∗The research leading to these results has received funding
from the European Research Council under the European Union’s
Seventh Framework Programme (FP7/2007-2013) / ERC grant
agreement no. [614331].

a tradeoff parameter. This result improves upon the space-

time tradeoff of Kapralov (PODS 2015) and is shown to be

optimal in the case of a balanced tradeoff, matching the LSH

lower bound by O’Donnell et al. (ITCS 2011) and a similar

LSF lower bound proposed in this paper. Finally, we show

a lower bound for the space-time tradeoff on the unit sphere

that matches Laarhoven’s and our own upper bound in the

case of random data.

1 Introduction

Let (X,D) denote a space over a set X equipped with
a symmetric measure of dissimilarity D (a distance
function in the case of metric spaces). We consider
the (r, cr)-near neighbor problem first introduced by
Minsky and Papert [38, p. 222] in the 1960’s. A
solution to the (r, cr)-near neighbor problem for a set
P of n points in (X,D) takes the form of a data
structure that supports the following operation: given
a query point x ∈ X , if there exists a data point
y ∈ P such that D(x,y) ≤ r then report a data point
y′ ∈ P such that D(x,y′) ≤ cr. In some spaces it
turns out to be convenient to work with a measure
of similarity rather than dissimilarity. We use S to
denote a symmetric measure of similarity and define
the (α, β)-similarity problem to be the (−α,−β)-near
neighbor problem in (X,−S).

A solution to the (r, cr)-near neighbor problem
can be viewed as a fundamental building block that
yields solutions to many other similarity search prob-
lems such as the c-approximate nearest neighbor prob-
lem [27, 24]. In particular, the (r, cr)-near neigh-
bor problem is well-studied in ℓds-spaces where the
data points lie in Rd and distances are measured
by D(x,y) = ‖x− y‖s = (

∑d
i=1 |xi − yi|s)1/s. Notable

spaces include the Euclidean space (Rd, ‖·‖2), Ham-
ming space ({0, 1}d, ‖·‖1), and the d-dimensional unit
sphere S

d = {x ∈ R
d | ‖x‖2 = 1} under inner product

similarity S(x,y) = 〈x,y〉 = ∑d
i=1 xiyi.

Curse of dimensionality All known solutions
to the (r, cr)-near neighbor problem for c = 1 (the
exact near neighbor problem) either suffer from a space

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/156888936?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1605.02687v3

usage that is exponential in d or a query time that
is linear in n [24]. This phenomenon is known as
the “curse of dimensionality” and has been observed
both in theory and practice. For example, Alman and
Williams [2] recently showed that the existence of an
algorithm for determining whether a set of n points
in d-dimensional Hamming space contains a pair of
points that are exact near neighbors with a running
time strongly subquadratic in n would refute the Strong
Exponential Time Hypothesis (SETH) [57]. This result
holds even when d is rather small, d = O(log n). From
a practical point of view, Weber et al. [56] showed that
the performance of many of the tree-based approaches
to similarity search from the field of computational
geometry [21] degrades rapidly to a linear scan as the
dimensionality increases.

Approximation to the rescue If we allow an ap-
proximation factor of c > 1 then there exist solutions to
the (r, cr)-near neighbor problem with query time that
is strongly sublinear in n and space polynomial in n
where both the space and time complexity of the so-
lution depends only polynomially on d. Techniques for
overcoming the curse of dimensionality through approx-
imation were discovered independently by Kushilevitz et
al. [31] and Indyk and Motwani [26]. The latter, clas-
sical work by Indyk and Motwani [26, 24] introduced a
general framework for solving the (r, cr)-near neighbor
problem known as Locality-Sensitive Hashing (LSH).
The introduction of the LSH framework has inspired
an extensive literature (see e.g. [5, 55] for surveys) that
represents the state of the art in terms of solutions to
the (r, cr)-near neighbor problem in high-dimensional
spaces [26, 18, 20, 44, 4, 5, 3, 6, 30, 11, 14, 32].

Hashing and filtering frameworks The LSH
framework and the more recent LSF framework intro-
duced by Becker et al. [14] produce data structures that
solve the (r, cr)-near neighbor problem with query and
update time dnρ+o(1) and space usage dn + n1+ρ+o(1).
The LSH (LSF) framework takes as input a distribu-
tion over partitions (subsets) of space with the locality-
sensitivity property that close points are more likely to
be contained in the same part (subset) of a randomly
sampled element from the distribution. The frameworks
proceed by constructing a data structure that associates
each point in space with a number of memory locations
or “buckets” where data points are stored. During a
query operation the buckets associated with the query
point are searched by computing the distance to ev-
ery data point in the bucket, returning the first suitable
candidate. The set of memory locations associated with
a particular point is independent of whether an update
operation or a query operation is being performed. This
symmetry between the query and update algorithm re-

sults in solutions to the near neighbor problem with a
balanced space-time tradeoff. The exponent ρ is deter-
mined by the locality-sensitivity properties of the fam-
ily of partitions/hash functions (LSH) or subsets/filters
(LSF) and is typically upper bounded by an expression
that depends only on the aproximation factor c. For ex-
ample, Indyk and Motwani [26] gave a simple locality-
sensitive family of hash functions for Hamming space
with an exponent of ρ ≤ 1/c. This exponent was later
shown to be optimal by O’Donnell et al. [43] who gave
a lower bound of ρ ≥ 1/c− od(1) in the setting where r
and cr are small compared to d. The advantage of hav-
ing a general framework for similarity search lies in the
reduction of the (r, cr)-near neighbor problem to the,
often simpler and easier to analyze, problem of finding
a locality-sensitive family of hash functions or filters for
the space of interest.

Space-time tradeoffs Space-time tradeoffs for so-
lutions to the (r, cr)-near neighbor problem is an active
line of research that can be motivated by practical ap-
plications where it is desirable to choose the tradeoff be-
tween query time and update time (space usage) that is
best suited for the application and memory hierarchy at
hand [44, 36, 3, 30, 32]. Existing solutions typically have
query time dnρq+o(1), update time (insertions/deletions)
dnρu+o(1), and use space dn + n1+ρu+o(1) where the
query and update exponents ρq, ρu that control the
space-time tradeoff depend on the approximation factor
c and on a tradeoff parameter λ ∈ [−1, 1]. This paper
combines a number of existing techniques [14, 32, 22]
to provide a general framework for similarity search
with space-time tradeoffs. The framework is used to
show improved upper bounds on the space-time trade-
off in the well-studied setting of ℓs-spaces and the unit
sphere under inner product similarity. Finally, we show
a new lower bound on the space-time tradeoff for the
unit sphere that matches an upper bound for random
data on the unit sphere by Laarhoven [32]. We proceed
by stating our contribution and briefly surveying the rel-
evant literature in terms of frameworks, upper bounds,
and lower bounds as well as some recent developments.
See table Table 1 for an overview.

1.1 Contribution Before stating our results we give
a definition of locality-sensitive filtering that supports
asymmetry in the framework query and update algo-
rithm, yielding space-time tradeoffs.

Definition 1. Let (X,D) be a space and let F be a
probability distribution over {(Q,U) | Q ⊆ X,U ⊆ X}.
We say that F is (r, cr, p1, p2, pq, pu)-sensitive if for all
points x,y ∈ X and (Q,U) sampled randomly from F
the following holds:

2

Table 1: Overview of data-independent locality-sensitive hashing (LSH) and filtering (LSF) results

Reference Setting ρq ρu

LSH [26, 24], LSF [14]
(X,D) or (X, S)

log(1/p)

log(1/q)

Theorem 1.1
log(pq/p1)

log(pq/p2)

log(pu/p1)

log(pq/p2)

Cross-polytope LSH [6] (α, β)-sim. in (Sd, 〈·, ·〉)
1− α

1 + α

/

1− β

1 + β

Spherical cap LSF [32] (α, od(1))-sim. in (Sd, 〈·, ·〉)
(1 − α1+λ)2

1− α2

(αλ − α)2

1− α2

Theorem 1.2 (α, β)-sim. in (Sd, 〈·, ·〉)
(1− α1+λ)2

1− α2

/

(1 − αλβ)2

1− β2

(αλ − α)2

1− α2

/

(1− αλβ)2

1− β2

Ball-carving LSH [4]

(r, cr)-nn. in ℓd2

1/c2

Ball-search LSH* [30]
c2(1 + λ)2

(c2 + λ)2 − c2(1 + λ2)/2 − λ2

c2(1 − λ)2

(c2 + λ)2 − c2(1 + λ2)/2 − λ2

Theorem 1.3
c2(1 + λ)2

(c2 + λ)2
c2(1− λ)2

(c2 + λ)2

Lower bound [43] LSH in ℓd2 ≥ 1/c2

Theorem 1.4 LSF in ℓd2 ≥ 1/c2

Lower bound [39, 12] LSH in (Sd, 〈·, ·〉) ≥
1− α

1 + α

Theorem 1.5, [9] LSF in (Sd, 〈·, ·〉) ≥
(1− α1+λ)2

1− α2
≥

(αλ − α)2

1− α2

Table notes: Space-time tradeoffs for dynamic randomized solutions to similarity search problems in the LSH and LSF

frameworks with query time dnρq+o(1), update time dnρu+o(1) + dno(1) and space usage dn+ n1+ρu+o(1). Lower bounds are
for the exponents ρq , ρu within their respective frameworks. Here ε > 0 denotes an arbitrary constant and λ ∈ [−1, 1] controls
the space-time tradeoff. We have hidden on(1) terms in the upper bounds and od(1) terms in the lower bounds.
*Assumes c2 ≥ (1 + λ)2/2 + λ + ε.

– If D(x,y) ≤ r then Pr[x ∈ Q,y ∈ U] ≥ p1.

– If D(x,y) > cr then Pr[x ∈ Q,y ∈ U] ≤ p2.

– Pr[x ∈ Q] ≤ pq and Pr[x ∈ U] ≤ pu.

We refer to (Q,U) as a filter and to Q as the query filter
and U as the update filter.

Our main contribution is a general framework for
similarity search with space-time tradeoffs that takes as
input a locality-sensitive family of filters.

Theorem 1.1. Suppose we have access to a family of
filters that is (r, cr, p1, p2, pq, pu)-sensitive. Then we can
construct a fully dynamic data structure that solves the
(r, cr)-near neighbor problem with query time dnρq+o(1),
update time dnρu+o(1), and space usage dn+n1+ρu+o(1)

where ρq =
log(pq/p1)
log(pq/p2)

and ρu = log(pu/p1)
log(pq/p2)

.

We give a worst-case analysis of a slightly modified
version of Laarhoven’s [32] filter family for the unit
sphere and plug it into our framework to obtain the
following theorem.

Theorem 1.2. For every choice of 0 ≤ β < α < 1 and
λ ∈ [−1, 1] there exists a solution to the (α, β)-similarity
problem in (Sd, 〈·, ·〉) that satisfies the guarantees from

Theorem 1.1 with exponents ρq = (1−α1+λ)2

1−α2

/

(1−αλβ)2

1−β2

and ρu = (αλ−α)2

1−α2

/

(1−αλβ)2

1−β2 .

We show how an elegant and powerful application
of Bochner’s Theorem [49] by Rahimi and Recht [48]
allows us to extend the solution on the unit sphere to a
large class of similarity measures, yielding as a special
case solutions for ℓs-space.

Theorem 1.3. For every choice of c ≥ 1, s ∈ (0, 2],
and λ ∈ [−1, 1] there exists a solution to the (r, cr)-
near neighbor problem in ℓds that satisfies the guarantees

from Theorem 1.1 with exponents ρq = cs(1+λ)2

(cs+λ)2 and

ρu = cs(1−λ)2

(cs+λ)2 .

This result improves upon the state of the art for
every choice of asymmetric query/update exponents
ρq 6= ρu [44, 4, 3, 30]. We conjecture that this

3

tradeoff is optimal among the class of algorithms that
independently of the data determine which locations in
memory to probe during queries and updates. In the
case of a balanced space-time tradeoff where we set
ρq = ρu our approach matches existing, optimal [43],
data-independent solutions in ℓs-spaces [26, 20, 4, 40].

The LSF framework is very similar to the LSH
framework, especially in the case where the filter family
is symmetric (Q = U for every filter in F). In this
setting we show that the LSH lower bound by O’Donnell
applies to the LSF framework as well [43], confirming
that the results of Theorem 1.3 are optimal when we
set ρq = ρu.

Theorem 1.4. (informal) Every filter family that is
symmetric and (r, cr, p1, p2, pq, pu)-sensitive in ℓds must

have ρ = log(pu/p1)
log(pq/p2)

≥ 1/cs − od(1) when r = ωd(1) is

chosen to be sufficiently small.

Finally we show a lower bound on the space-time
tradeoff that can be obtained in the LSF framework.
Our lower bound suffers from two important restric-
tions. First the filter family must be regular, meaning
that all query filters and all update filters are of the
same size. Secondly, the size of the query and update
filter cannot differ by too much.

Theorem 1.5. (informal) Every regular filter family
that is ((1 − α)d/2, (1 − β)d/2, p1, p2, pq, pu)-sensitive
in d-dimensional Hamming space with asymmetry con-
trolled by λ ∈ [−1, 1] cannot simultanously have that

ρq <
(1−α1+λ)2

1−α2 − od(1) and ρu <
(αλ−α)2

1−α2 − od(1).

Together our upper and lower bounds imply that the
filter family of concentric balls in Hamming space is
asymptotically optimal for random data.

Techniques The LSF framework in Theorem 1.1
relies on a careful combination of “powering” and “ten-
soring” techniques. For positive integers m and τ with
m ≫ τ the tensoring technique, a variant of which was
introduced by Dubiner [22], allows us to simulate a col-
lection of

(

m
τ

)

filters from a collection of m filters by
considering the intersection of all τ -subsets of filters.
Furthermore, given a point x ∈ X we can efficiently list
the simulated filters that contain x. This latter prop-
erty is crucial as we typically need poly(n) filters to split
our data into sufficiently small buckets for the search to
be efficient. The powering technique lets us amplify the
locality-sensitivity properties of a filter family in the
same way that powering is used in the LSH framework
[26, 5, 43].

To obtain results for worst-case data on the unit
sphere we analyze a filter family based on standard nor-
mal projections using the same techniques as Andoni et

al. [6] together with existing tail bounds on bivariate
Gaussians. The approximate kernel embedding tech-
nique by Rahimi and Recht [48] is used to extend the
solution on the unit sphere to a large class of similarity
measures, yielding Theorem 1.3 as a special case.

The lower bound in Theorem 1.4 relies on an argu-
ment of contradiction against the LSH lower bounds by
O’Donnell [43] and uses a theoretical, inefficient, con-
struction of a locality-sensitive family of hash functions
from a locality-sensitive family of filters that is similar
to the spherical LSH by Andoni et al. [7].

Finally, the space-time tradeoff lower bound from
Theorem 1.5 is obtained through an application of an
isoperimetric inequality by O’Donnell [41, Ch. 10] and
is similar in spirit to the LSH lower bound by Motwani
et al. [39].

1.2 Related work The LSH framework takes a dis-
tribution H over hash functions that partition space
with the property that the probability of two points
landing in the same partition is an increasing function
of their similarity.

Definition 2. Let (X,D) be a space and let H be
a probability distribution over functions h : X → R.
We say that H is (r, cr, p, q)-sensitive if for all points
x,y ∈ X and h sampled randomly from H the following
holds:

– If D(x,y) ≤ r then Pr[h(x) = h(y)] ≥ p.

– If D(x,y) > cr then Pr[h(x) = h(y)] ≤ q.

The properties of H determines a parameter ρ < 1 that
governs the space and time complexity of the solution
to the (r, cr)-near neighbor problem.

Theorem 1.6. (LSH framework [26, 24]) Suppose
we have access to a (r, cr, p, q)-sensitive hash family.
Then we can construct a fully dynamic data structure
that solves the (r, cr)-near neighbor problem with query
time dnρ+o(1), update time dnρ+o(1), and with a space

usage of dn+ n1+ρ+o(1) where ρ = log(1/p)
log(1/q) .

The LSF framework by Becker et al. [14] takes a
symmetric (r, cr, p1, p2, pq, pu)-sensitive filter family F
and produces a data structure that solves the (r, cr)-
near neighbor problem with the same properties as the
one produced by the LSH framework where instead we

have ρ =
log(pq/p1)
log(pq/p2)

. In addition, the framework assumes

access to an oracle that is able to efficiently list the
relevant filters containing a point x ∈ X out of a large
collection of filters. The LSF framework in this paper
removes this assumption, showing how to construct an
efficient oracle as part of the framework.

4

In terms of frameworks that support space-time
tradeoffs, Panigrahy [44] developed a framework based
on LSH that supports the two extremes of the space-
time tradeoff. In the language of Theorem 1.1, Pani-
grahy’s framework supports either setting ρu = 0 for
a solution that uses near-linear space at the cost of a
slower query time, or setting ρq = 0 for a solution with
query time no(1) at the cost of a higher space usage. To
obtain near-linear space the framework stores every data
point in no(1) partitions induced by randomly sampled
hash functions from a (r, cr, p, q)-sensitive LSH family
H. In comparison, the standard LSH framework from
Theorem 1.6 uses nρ such partitions where ρ is deter-
mined by H. For each partition induced by h ∈ H the
query algorithm in Panigrahy’s framework generates a
number of random points z in a ball around the query
point x and searches the parts of the partition h(z) that
they hash to. The query time is bounded by nρ̂+o(1)

where ρ̂ = I(h(z)|x,h)
log(1/q) and I(h(z)|x, h) denotes condi-

tional entropy, i.e. the query time is determined by how
hard it is to guess where z hashes to given that we know
x and h. Panigrahy’s technique was used in a number
of follow-up works that improve on solutions for spe-
cific spaces, but to our knowledge none of them state a
general framework with space-time tradeoffs [36, 3, 30].

Upper bounds As is standard in the literature
we state results in ℓs-spaces in terms of the properties
of a solution to the (r, cr)-near neighbor problem.
For results on the unit sphere under inner product
similarity (Sd, 〈·, ·〉) we instead use the (α, β)-similarity
terminology, defined in the introduction, as we find it
to be cleaner and more intuitive while aligning better
with the analysis. The ℓs-spaces, particularly ℓ1 and
ℓ2, as well as (Sd, 〈·, ·〉) are some of most well-studied
spaces for similarity search and are also widely used
in practice [55]. Furthermore, fractional norms (ℓs for
s 6= 1, 2) have been shown to perform better than the
standard norms in certain use cases [1] which motivates
finding efficient solutions to the near neighbor problem
in general ℓs-space.

In the case of a balanced space-time tradeoff the
best data-independent upper bound for the (r, cr)-near
neighbor problem in ℓds are solutions with an LSH
exponent of ρ = 1/cs for 0 < s ≤ 2. This result
is obtained through a combination of techniques. For
0 < s ≤ 1 the LSH based on s-stable distributions by
Datar et al. [20] can be used to obtain an exponent
of (1 + ε)/cs for an arbitrarily small constant ε > 0.
For 1 < s ≤ 2 the ball-carving LSH by Andoni and
Indyk [4] for Euclidean space can be extended to ℓs
using the technique described by Nguyen [40, Section
5.5]. Theorem 1.3 matches (and potentially improves in
the case of 0 < s < 1) these results with a single unified

technique and analysis that we find to be simpler.
For space-time tradeoffs in Euclidean space (again

extending to ℓs for 1 < s < 2) Kapralov [30], im-
proving on Panigrahy’s results [44] in Euclidean space
and using similar techniques, obtains a solution with

query exponent ρq = c2(1+λ)2

(c2+λ)2−c2(1+λ2)/2−λ2 and update

exponent ρu = c2(1−λ)2

(c2+λ)2−c2(1+λ2)/2−λ2 under the condi-

tion that c2 ≥ (1+λ)2/2+λ+ ε where ε > 0 is an arbi-
trary positive constant. Comparing to our Theorem 1.3
it is easy to see that we improve upon Kapralov’s space-
time tradeoff for all choices of c and λ. In addition,
Theorem 1.3 represents the first solution to the (r, cr)-
near neighbor problem in Euclidean space that for every
choice of constant c > 1 obtains sublinear query time
(ρq < 1) using only near-linear space (ρu = 0). Due to
the restrictions on Kapralov’s result he is only able to
obtain sublinear query time for c >

√
3 when the space

usage is restricted to be near-linear. It appears that
our improvements can primarily be attributed to our
techniques allowing a more direct analysis. Kapralov
uses a variation of Panigrahy’s LSH-based technique
of, depending on the desired space-time tradeoff, ei-
ther querying or updating additional memory locations
around a point x ∈ X in the partition induced by h ∈ H.
For a query point x and a near neighbor y his argument
for correctness is based on guaranteeing that both the
query algorithm and update algorithm visit the part
h(z) where z is a point lying between x and y, possi-
bly leading to a loss of efficiency in the analysis. More
details on the comparison of Theorem 1.3 to Kapralov’s
result can be found in Appendix E.

In terms of space-time tradeoffs on the unit sphere,
Laarhoven [32] modifies a filter family introduced by
Becker et al. [14] to support space-time tradeoffs,
obtaining a solution for random data on the unit sphere
(the (α, β)-similarity problem with β = od(1)) with

query exponent ρq =
(1−α1+λ)2

1−α2 and update exponent

ρu = (αλ−α)2

1−α2 . Theorem 1.2 extends this result to
provide a solution to the (α, β)-similarity problem on
the unit sphere for every choice of 0 ≤ β < α < 1. This
extension to worst case data is crucial for obtaining our
results for ℓs-spaces in Theorem 1.3. We note that there
exist other data-independent techniques (e.g. Valiant
[54, Alg. 25]) for extending solutions on the unit sphere
to ℓ2, but they also require a solution for worst-case
data on the unit sphere to work.

Lower bounds The performance of an LSH-based
solution to the near neighbor problem in a given space
that uses a (r, cr, p, q)-sensitive family of hash functions
H is summarized by the value of the exponent ρ =
log(1/p)
log(1/q) . It is therefore of interest to lower bound ρ

5

in terms of the approximation factor c. Motwani et
al. [39] proved the first lower bound for LSH families
in d-dimensional Hamming space. They show that for
every choice of c ≥ 1 then for some choice of r it must
hold that ρ ≥ 0.462/c as d goes to infinity under the
assumption that q is not too small (q ≥ 2−o(d)).

As part of an effort to show lower bounds for
data-dependent locality-sensitive hashing, Andoni and
Razenshteyn [13] strengthened the lower bound by Mot-
wani et al. to ρ ≥ 1/(2c− 1) in Hamming space. These
lower bounds are initially shown in Hamming space and
can then be extended to ℓs-space and the unit sphere by
the fact that a solution in these spaces can be used to
yield a solution in Hamming space, contradicting the
lower bound if ρ is too small. Translated to (α, β)-
similarity on the unit sphere, which is the primary set-
ting for the lower bounds on LSF space-time tradeoffs
in this paper, the lower bound by Andoni and Razen-
shteyn shows that an LSH on the unit sphere must have
ρ ≥ 1−α

1+α which is tight in the case of random data [6].
The lower bound uses properties of random walks

over a partition of Hamming space: A random walk
starting from a random point x ∈ {0, 1}d is likely to
“walk out” of the the part identified by h(x) in the
partition induced by h. The space-time tradeoff lower
bound in Theorem 1.5 relies on a similar argument
that lower bounds the probability that a random walk
starting from a subset Q ends up in another subset U ,
corresponding nicely to query and update filters in the
LSF framework.

Using related techniques O’Donnell [43] showed
tight LSH lower bounds for ℓs-space of ρ ≥ 1/cs. The
work by Andoni et al. [8] and Panigrahy et al. [45,
46] gives cell probe lower bounds for the (r, cr)-near
neighbor problem, showing that in Euclidean space a
solution with a query complexity of t probes require
space at least n1+Ω(1/tc2). For more details on these
lower bounds and how they relate to the upper bounds
on the unit sphere see [9, 32].

Data-dependent solutions The solutions to the
(r, cr)-near neighbor problems considered in this paper
are all data-independent. For the LSH and LSF frame-
works this means that the choice of hash functions or
filters used by the data structure, determining the map-
ping between points in space and the memory locations
that are searched during the query and update algo-
rithm, is made without knowledge of the data. Data-
independent solutions to the (r, cr)-near neighbor prob-
lem for worst-case data have been the state of the art
until recent breakthroughs by Andoni et al. [7] and An-
doni and Razenshteyn [11] showing improved solutions
to the (r, cr)-near neighbor problem in Euclidean space
using data-dependent techniques. In this setting the so-

lution obtained by Andoni and Razenshteyn has an ex-
ponent of ρ = 1/(2c2−1) compared to the optimal data-
independent exponent of ρ = 1/c2. Furthermore, they
show that this exponent is optimal for data-dependent
solutions in a restricted model [13].

Recent developments Recent work by Andoni
et al. [10], done independently of and concurrently
with this paper, shows that Laarhoven’s upper bound
for random data on the unit sphere can be combined
with data-dependent techniques [11] to yield a space-
time tradeoff in Euclidean space with ρu, ρq satisfying
c2
√
ρq + (c − 1)

√
ρu =

√
2c2 − 1. This improves the

result of Theorem 1.3 and matches the lower bound in
Theorem 1.5. In the same paper they also show a lower
bound matching our lower bound in Theorem 1.5. Their
lower bound is set in a more general model that captures
both the LSH and LSF framework and they are able to
remove some of the technical restrictions such as the
filter family being regular that weaken the lower bound
in this paper. In spite of these results we still believe
that this paper presents an important contribution by
providing a general and simple framework with space-
time tradeoffs as well as improved data-independent
solutions to nearest neighbor problems in ℓs-space and
on the unit sphere. We would also like to point
out the simplicity and power of using Rahimi and
Recht’s [48] result to extend solutions on the unit sphere
to spaces with similarity measures corresponding to
real-valued characteristic functions, further described in
Appendix C.

2 A framework with space-time tradeoffs

We use a combination of powering and tensoring tech-
niques to amplify the locality-sensitive properties of our
initial filter family, and to simulate a large collection of
filters that we can evaluate efficiently. We proceed by
stating the relevant properties of these techniques which
we then combine to yield our Theorem 1.1.

Lemma 2.1. (powering) Given a (r, cr, p1, p2, pq, pu)-
sensitive filter family F for (X,D) and a positive in-
teger κ define the family Fκ as follows: we sam-
ple a filter F = (Q,U) from Fκ by sampling
(Q1, U1), . . . , (Qκ, Uκ) independently from F and set-
ting (Q,U) = (

⋂κ
i=1Qi,

⋂κ
i=1 Ui). The family Fκ is

(r, cr, pκ1 , p
κ
2 , p

κ
q , p

κ
u)-sensitive for (X,D).

Let F denote a collection (indexed family) of m
filters and let Q and U denote the corresponding
collections of query and update filters, that is, for
i ∈ {1, . . . ,m} we have that Fi = (Qi,Ui). Given a
positive integer τ ≤ m (typically τ ≪ m) we define F⊗τ

to be the collection of filters formed by taking all the
intersections of τ -combinations of filters from F, that is,

6

for every I ⊆ {1, . . . ,m} with |I| = τ we have that

(2.1) F⊗τ
I =

(
⋂

i∈IQi,
⋂

i∈IUi

)

The following properties of the tensoring technique will
be used to provide correctness, running time, and space
usage guarantees for the LSF data structure that will
be introduced in the next subsection. We refer to the
evaluation time of a collection of filters F as the time
it takes, given a point x ∈ X to prepare a list of query
filters Q(x) ⊆ Q containing x and a list of update filters
U(x) ⊆ U containing x such that the next element of
either list can be reported in constant time. We say
that a pair of points (x,y) is contained in a filter (Q,U)
if x ∈ Q and y ∈ U .

Lemma 2.2. (tensoring) Let F be a filter family that
is (r, cr, p1, p2, pq, pu)-sensitive in (X,D). Let τ be
a positive integer and let F denote a collection of
m = ⌈τ/p1⌉ independently sampled filters from F . Then
the collection F⊗τ of

(

m
τ

)

filters has the following prop-
erties:

– If (x,y) have distance at most r then with proba-
bility at least 1/2 there exists a filter in F⊗τ con-
taining (x,y).

– If (x,y) have distance greater than cr then the
expected number of filters in F⊗τ containing (x,y)
is at most pτ2

(

m
τ

)

.

– In expectation, a point x is contained in at most
pτq
(

m
τ

)

query filters and at most pτu
(

m
τ

)

update filters
in F⊗τ.

– The evaluation time and space complexity of F⊗τ

is dominated by the time it takes to evaluate and
store m filters from F .

Proof. To prove the first property we note that there
exists a filter in F⊗τ containing (x,y) if at least τ filters
in F contain (x,y). The binomial distribution has the
property that the median is at least as great as the mean
rounded down [28]. By the choice ofm we have that the
expected number of filters in F containing (x,y) is at
least τ and the result follows. The second and third
properties follow from the linearity of expectation and
the fourth is trivial.

2.1 The LSF data structure We will introduce
a dynamic data structure that solves the (r, cr)-near
neighbor problem on a set of points P ⊆ X . The data
structure has access to a (r, cr, p1, p2, pq, pu)-sensitive
filter family F in the sense that it knows the parameters
of the family and is able to sample, store, and evaluate
filters from F in time dno(1).

The data structure supports an initialization oper-
ation that initializes a collection of filters F where for
every filter we maintain a (possibly empty) set of points
from X . After initialization the data structure sup-
ports three operations: insert, delete, and query.
The insert (delete) operation takes as input a point
x ∈ X and adds (removes) the point from the set of
points associated with each update filter in F that con-
tains x. The query operation takes as input a point
x ∈ X . For each query filter in F that contains x we
proceed by computing the dissimilarity D(x,y) to every
point y associated with the filter. If a point y satisfying
D(x,y) ≤ cr is encountered, then y is returned and the
query algorithm terminates. If no such point is found,
the query algorithm returns a special symbol “∅” and
terminates.

The data structure will combine the powering and
tensoring techniques in order to simulate the collection
of filters F from two smaller collections: F1 consisting
of m1 filters from Fκ1 and F2 consisting of m2 filters
from Fκ2 . The collection of simulated filters F is formed
by taking all filters (Q1 ∩ Q2, U1 ∩ U2) where (Q1, U1)
is a member of F⊗τ

1 and (Q2, U2) is a member of F2.
It is due to the integer constraints on the parameter τ
in the tensoring technique and the parameter κ in the
powering technique that we simulate our filters from two
underlying collections instead of just one. This gives us
more freedom to hit a target level of amplification of
the simulated filters which in turn makes it possible for
the framework to support efficient solutions for a wider
range of parameters of LSF families.

The initialization operation takes F and parameters
m1, κ1, τ,m2, κ2 and samples and storesF1 and F2. The
filter evaluation algorithm used by the insert, delete,
and query operation takes a point x ∈ X and computes
for F1 and F2, depending on the operation, the list of
update or query filters containing x. From these lists we
are able to generate the list of filters in F containing x.

Setting the parameters of the data structure to
guarantee correctness while balancing the contribution
to the query time from the filter evaluation algorithm,
the number of filters containing the query point, and
the number of distant points examined, we obtain a
partially dynamic data structure that solves the (r, cr)-
near neighbor problem with failure probability δ ≤
1/2+1/e. Using a standard dynamization technique by
Overmars and Leeuwen [42, Thm. 1] we obtain a fully
dynamic data structure resulting in Theorem 1.1. The
details of the proof have been deferred to Appendix A.

3 Gaussian filters on the unit sphere

In this section we show properties of a family of filters
for the unit sphere Sd under inner product similarity.

7

Later we will show how to make use of this family
to solve the near neighbor problem in other spaces,
including ℓs for 0 < s ≤ 2.

Lemma 3.1. For every choice of 0 ≤ β < α < 1,
λ ∈ [−1, 1], and t > 0 let G denote the family of filters
defined as follows: we sample a filter (Q,U) from G by
sampling z ∼ N d(0, 1) and setting

Q = {x ∈ R
d | 〈x, z〉 > αλt},(3.2)

U = {x ∈ R
d | 〈x, z〉 > t}.(3.3)

Then G is locality-sensitive on the unit sphere under
inner product similarity with exponents

ρq ≤
(

(1− α1+λ)2

1− α2
+

ln(2π(1 + t/α)2)

t2/2

)/

(1− αλβ)2

1− β2
,

ρu ≤
(

(αλ − α)2

1− α2
+

ln(2π(1 + t/α)2)

t2/2

)/

(1− αλβ)2

1− β2
.

Laarhoven’s filter family [32] is identical to G except
that he normalizes the projection vectors z to have unit
length. The properties of G can easily be verified with
a simple back-of-the-envelope analysis using two facts:
First, for a standard normal random variable Z we have
that Pr[Z > t] ≈ e−t2/2. Secondly, the invariance of
Gaussian projections 〈x, z〉 to rotations, allowing us to
analyze the projection of arbitrary points x,y ∈ Sd with
inner product 〈x,y〉 = α in a two-dimensional setting
x = (1, 0) and y = (α,

√
1− α2) without any loss of

generality. The proof of Lemma 3.1 as well as the proof
of Theorem 1.2 has been deferred to Appendix B.

4 Space-time tradeoffs under kernel similarity

In this section we will show how to combine the Gaus-
sian filters for the unit sphere with kernel approximation
techniques in order to solve the (α, β)-similarity prob-
lem over (Rd, S) for the class of similarity measures of
the form S(x,y) = k(x − y) where k : Rd × Rd → R

is a real-valued characteristic function [53]. For this
class of functions there exists a feature map ψ into a
(possibly infinite-dimensional) dot product space such
that k(x,y) = 〈ψ(x), ψ(y)〉. Through an elegant com-
bination of Bochner’s Theorem and Euler’s Theorem,
detailed in Appendix C, Rahimi and Recht [48] show
how to construct approximate feature maps, i.e., for ev-
ery k we can construct a function v with the property
that 〈v(x), v(y)〉 ≈ 〈ψ(x), ψ(y)〉 = k(x − y). We state
a variant of their result for a mapping onto the unit
sphere.

Lemma 4.1. For every real-valued characteristic func-
tion k and every positive integer l there exists a family
of functions V ⊆ {v | v : Rd → Sl} such that for every

x,y ∈ R
d and ε > 0 we have that

(4.4) Pr
v∼V

[|〈v(x), v(y)〉 − k(x,y)| ≥ ε] ≤ e−Ω(lε2).

Theorem C.3 in Appendix C shows that Theorem 1.2
holds with the space (Sd, 〈·, ·〉) replaced by (Rd, k).

4.1 Tradeoffs in ℓds-space Consider the (r, cr)-near
neighbor problem in ℓds for 0 < s ≤ 2. We solve
this problem by first applying the approximate feature
map from Lemma 4.1 for the characteristic function
of a standard s-stable distribution [58], mapping the
data onto the unit sphere, and then applying our
solution from Theorem 1.2 to solve the appropriate
(α, β)-similarity problem on the unit sphere. The
characteristic functions of s-stable distributions take the
following form:

Lemma 4.2. (Lévy [33]) For every positive integer d
and 0 < s ≤ 2 there exists a characteristic function
k : Rd × Rd → [0, 1] of the form

(4.5) k(x,y) = k(x− y) = e−‖x−y‖ss .

A result by Chambers et al. [17] shows how to sample
efficiently from an s-stable distributions.

To sketch the proof of Theorem 1.3 we proceed by
upper bounding the exponents ρq, ρu from Theorem 1.2
when applying Lemma 4.1 to get α ≥ e−rs − ε and
β ≤ e−csrs − ε. We make use of the following standard
fact (see e.g. [50]) that can be derived from the Taylor
expansion of the exponential function: for x ≥ 0 it holds
that 1−x ≤ e−x ≤ 1−x+x2/2. Scaling the data points
such that rs = o(1) and inserting the above values of
α ≈ 1 − rs and β ≈ 1 − csrs into the expressions for
ρq, ρu in Lemma 3.1 we can set parameters t and l such
that Theorem 1.3 holds.

5 Lower bounds

We begin by stating the lower bound on the LSH ex-
ponent ρ = log(1/p)/ log(1/q) by O’Donnell et al. [43].

Theorem 5.1. (O’Donnell et al. [43]) Fix d ∈ N,
1 < c < ∞, 0 < s < ∞ and 0 < q < 1. Then for a
certain choice of r = ωd(1) and under the assumption
that q ≥ 2−o(d) we have that every (r, cr, p, q)-sensitive
family of hash functions for ℓds must satisfy

(5.6) ρ =
log(1/p)

log(1/q)
≥ 1

cs
− od(1).

The following lemma shows how to use a filter family F
to construct a hash family H.

8

Lemma 5.1. Given a symmetric family of filters that
is (r, cr, p1, p2, pq, pu)-sensitive in (X,D) we can con-
struct a (r, cr, p1/(2pq), p2/pq)-sensitive family of hash
functions in (X,D).

Proof. Given the filter family F we sample a random
function h from the hash family H taking an infinite se-
quence of independently sampled filters (Fi)

∞
i=0 from F

and setting h(x) = min {i | x ∈ Fi}. The probability of
collision is given by

(5.7) Pr
h∼H

[h(x) = h(y)] =
PrF∼F [x ∈ F ∧ y ∈ F]

PrF∼F [x ∈ F ∨ y ∈ F]

and the result follows from the properties of F .

If the LSH family in Lemma 5.1 had p = p1/pq and q =
p2/pq then the lower bound would follow immediately.
We apply the powering technique from Lemma 2.1 to
the underlying filter family in order make the factor 2
in p1/(2pq) disappear in the statement of ρ as d tends
to infinity.

Theorem 1.4. Every symmetric (r, cr, p1, p2, pq, pu)-
sensitive filter family F for ℓds must satisfy the lower
bound of Theorem 5.1 with p = p1/pq and q = p2/pq.

Proof. Given a family F that satisfies the requirements
from Theorem 5.1 there exists an integer κ = ωd(1)
such the hash family H that results from applying
Lemma 5.1 to the powered family Fκ also satisfies
the requirements from Theorem 5.1. The constructed
family H is (r, cr, p, q)-sensitive for p = (1/2) · (p1/pq)κ
and q = (p2/pq)

κ. By our choice of κ we have that
log(1/p)/ log(1/q) = log(pq/p1)/ log(pq/p2) + od(1) and
the lower bound on log(1/p)/ log(1/q) from Theorem 5.1
applies.

5.1 Asymmetric lower bound The lower bound is
based on an isoperimetric-type inequality that holds for
randomly correlated points in Hamming space. We say
that the pair of points (x,y) is α-correlated if x is a
random point in {0, 1}d and y is formed by taking x

and independently flipping each bit with probability
(1 − α)/2. We are now ready to state O’Donnell’s
generalized small-set expansion theorem. Notince the
similarity to the value of p1 for the Gaussian filter family
described in Section 3 and Appendix B.

Lemma 5.2. ([41, p. 285]) For every 0 ≤ α < 1,
−1 ≤ λ ≤ 1, and Q,U ⊆ {0, 1}d satisfying that

|Q|/2d = (|U |/2d)α2λ

we have

(5.8) Pr
(x,y)

α-correlated

[x ∈ Q,y ∈ U] ≤ (|U |/2d)
1+α2λ

−2α1+λ

1−α2 .

The argument for the lower bound assumes a reg-
ular (r, cr, p1, p2, pq, pu)-sensitive filter family F for
Hamming space where we set r = (1 − α)d/2 and
cr = (1− β)d/2 for some choice of 0 < β < α < 1.
We then proceed by deriving constraints on p1, p2, pq,
pu, and minimize ρq and ρu subject to those constrains.
The proof of Theorem 1.5 is provided in Appendix D.

Theorem 1.5. Fix 0 < β < α < 1. Then for every
regular ((1 − α)d/2, (1 − β)d/2, p1, p2, pq, pu)-sensitive
filter family in d-dimensional Hamming space with and

|Q|/2d = (|U |/2d)α2λ

where λ satisfies α+2
√

ln(d)/d ≤
αλ ≤ 1/(α− 2

√

ln(d)/d) it must hold that

ρq =
log(pq/p1)

log(pq/p2)
≥ (1− α1+λ)2

1− α2
− od(1),

ρu =
log(pu/p1)

log(pq/p2)
≥ (αλ − α)2

1− α2
− od(1)

when pq is set to minimize ρq and we assume that
|U |/2d ≥ 2−od(1).

6 Open problems

An important open problem is to find simple and
practical data-dependent solutions to the (r, cr)-near
neighbor problem. Current solutions, the Gaussian
filters in this paper included, suffer from o(1) terms in
the exponents that decrease very slowly in n. A lower
bound for the unit sphere by Andoni et al. [6] indicates
that this might be unavoidable.

Another interesting open problem is finding the
shape of provably exactly optimal filters in different
spaces. In the random data setting in Hamming space,
this problem boils down to maximizing the number of
pairs of points below a certain distance threshold that
is contained in a subset of the space of a certain size.
This is a fundamental problem in combinatorics that
has been studied by among others [29], but a complete
answer remains elusive. The LSH and LSF lower
bounds [39, 43, 13], along with classical isoperimetric
inequalities such as Harper’s Theorem and more recent
work summarized in the book by O’Donnell [41] hints
that the answer is somewhere between a subcube and a
generalized sphere.

A recent result by Chierichetti and Kumar [19]
characterizes the set of transformations of LSH-able
similarity measures as the set of probability-generating
functions. This seems to have deep connections to
result of this paper that uses characteristic functions
that allow well-known kernel transformations. It seems
possible that this paper can be viewed as a semi-explicit
construction of their result, or that their result can
described as an application of Bochner’s Theorem.

9

Acknowledgment

I would like to thank Rasmus Pagh for suggesting the
application of Rahimi & Recht’s result [48] and the
MinHash-like [16] connection between LSF and LSH
used in Theorem 1.4. I would also like to thank Gregory
Valiant and Udi Wieder for useful discussions about
locality-sensitive filtering and the analysis of boolean
functions during my stay at Stanford. Finally, I would
like to thank the Scalable Similarity Search group at
the IT University of Copenhagen for feedback during
the writing process, and in particular Martin Aumüller
for pointing out the importance of a general framework
for locality-sensitive filtering with space-time tradeoffs.

A Framework

We state a version of Theorem 1.1 where the parameters
of the filter family are allowed to depend on n.

Theorem 1.1. Suppose we have access to a filter fam-
ily that is (r, cr, p1, p2, pq, pu)-sensitive. Then we can
construct a fully dynamic data structure that solves
the (r, cr)-near neighbor problem. Assume that 1/p1,
1/ log(pq/p2), and exp(log(1/p1)/ log(min(pq, pu)/p1))
are no(1), then the data structure has

– query time dnρq+o(1),

– update time nρu+o(1) + dno(1),

– space usage n1+ρu+o(1) + dn+ dno(1)

where

(A.1) ρq =
log pq/p1
log pq/p2

, ρu =
log pu/p1
log pq/p2

.

To prove Theorem 1.1, we begin by setting the
parameters mentioned in the description of the LSF
data structure in Section 2.1.

κ1 =

⌈

min(ρq, ρu) logn

log(1/p1)

⌉

(A.2)

τ =

⌊

logn

κ1 log(pq/p2)

⌋

≤ log(1/p1)

log(min(pq, pu)/p1)
(A.3)

m1 = ⌈τ/pκ1
1 ⌉(A.4)

κ2 = max(0, ⌈log(n)/ log(pq/p2)⌉ − τκ1)(A.5)

m2 = ⌈1/pκ2
1 ⌉(A.6)

We will now briefly explain the reasoning behind the
parameter settings. Begin by observing that the pow-
ering and tensoring techniques both amplify the filters
from F . Let m =

(

m1

τ

)

·m2 denote the number of simu-
lated filters in our collection F and let a = τκ1 + κ2 be
an integer denoting the number of times each filter has
been amplified. Ignoring the time it takes to evaluate

the filters, the query time is determined by the sum of
the number of filters that contain a query point and the
number of distant points associated with those filters
that the query algorithm inspects. The expected num-
ber of activated filters is given by mpaq while the worst
case expected number of distant points to be inspected
by the query algorithm is given by nmpa2 . Balancing the
contribution to the query time from these two effects
(ignoring the O(d) factor from distance computations)
results in a target value of a = ⌈log(n)/ log(pq/p2)⌉.
Compared to having an oracle that is able to list the
filters from a collection that contains a point, there is
a small loss in efficiency from using the tensoring tech-
nique due to the increase in the number of filters re-
quired to guarantee correctness. The parameters of the
LSF data structure are therefore set to minimize the
use of tensoring such that the time spent evaluating our
collection of filters roughly matches the minimum of the
query and update time.

Consider the initialization operation of the LSF
data structure with the parameters setting from above.
We have that κ2 ≤ κ1 implying that m2 = O(m1).
The initialization time and the space usage of the data
structure prior to any insertions is dominated by the
time and space used to sample and store the filters in F1.
By the assumption that a filter from F can be sampled
in O(d) operations and stored using O(d) words, we get
a space and time bound on the initialization operation
of

(A.7) O(dκ1m1) = O

(

dnmin(ρq ,ρu)
p1 log(n)

log(pq/p2)

)

.

Importantly, this bound also holds for the running time
of the filter evaluation algorithm, that is, the prepro-
cessing time required for constant time generation of
the next element in the list of filters in F containing a
point. In the following analysis of the update and query
time we will temporarily ignore the running time of the
filter evaluation algorithm.

The expected time to insert or delete a point is
dominated by the number of update filters in F that
contains it. The probability that a particular update
filter in F contains a point is given by pau. Using a
standard upper bound on the binomial coefficient we
get that m = O(eτ/pa1) resulting in an expected update
time of

(A.8) O(mpau + d) = O(nρu(pu/p1)e
τ + d).

In the worst case where every data point is at distance
greater than cr from the query point and has collision
probablity p2 the expected query time can be upper
bounded by

(A.9) O(mpaq + dnmpa2) = O(nρqeτ (pq/p1 + d)).

10

With respect to the correctness of the query algorithm,
if a near neighbor y to the query point x exists in
P , then it is found by the query algorithm if (x,y) is
contained in a filter in F⊗τ

1 as well as in a filter in F2.
By Lemma 2.2 the first event happens with probability
at least 1/2 and by the choice of m2, the second event

happens with probability at least 1− (1−pκ2
1)p

κ2
1 ≥ 1−

1/e. From the independence between F1 and F2 we can
upper bound the failure probability δ ≤ (1/2)(1 + 1/e).
This completes the proof of Theorem 1.1.

B Gaussian filters

In this section we upper and lower bound the proba-
bility mass in the tail of the bivariate standard normal
distribution when the correlation between the two stan-
dard normals is at most β (upper bound) or at least α
(lower bound). We make use of the following upper and
lower bounds on the univariate standard normal as well
as an upper bound for the multivariate case.

Lemma B.1. (Follows Szarek & Werner [52])
Let Z be a standard normal random variable. Then,
for every t ≥ 0 we have that

1√
2π

1

t+ 1
e−t2/2 ≤ Pr[Z ≥ t] ≤

1√
π

1

t+ 1
e−t2/2.

Lemma B.2. (Lu & Li [34]) Let z be a d-dimensional
vector of i.i.d. standard normal random variables and
let D ⊂ Rd be a closed convex domain that does not
contain the origin. Let ∆ denote the Euclidean distance
to the unique closest point in D, then we have that

(B.10) Pr[z ∈ D] ≤ e−∆2/2.

Lemma B.3. (Tail upper bound) For α, λ, t, β sat-
isfying 0 < α < 1, −1 ≤ λ ≤ 1, t > 0, and −1 < β < α
every pair of standard normal random variables (X,Y)
with correlation β′ ≤ β satisfies

(B.11) Pr[X ≥ t ∧ Y ≥ αλt] ≤ e−∆2/2

where ∆2 = (1 + (αλ−β)2

1−β2)t2.

Proof. For β′ = −1 the result is trivial. For values of β′

in the range −1 < β′ ≤ β we use the 2-stability of the
normal distribution to analyze a tail bound for (X,Y)
in terms of a Gaussian projection vector z = (Z1, Z2)
applied to unit vectors x,y ∈ R2. That is, we can
define X = 〈z,x〉 and Y = 〈z,x〉 for some appropriate
choice of x and y. Without loss of generality we set
x = (1, 0) and note that for E[XY] = β′ we must have

that y = (β′,
√

1− β′2). If we consider the region of
R2 where z satisfies X ≥ t ∧ Y ≥ αλt we get a closed
domain D defined by z = (Z1, Z2) such that Z1 ≥ t and

Z2 ≥ (αλt− β′Z1)/(
√

1− β′2). The squared Euclidean
distance from the origin to the closest point in D at
least ∆2 as can be seen by the fact that ∆2 decreasing
in β. Combining this observation with Lemma B.2 we
get the desired result.

Lemma B.4. (Tail lower bound) For α, λ, t satis-
fying 0 < α < 1, −1 ≤ λ ≤ 1, and t > 0 every pair
of standard normal random variables (X,Y) with corre-
lation α′ ≥ α satisfies

(B.12) Pr[X ≥ t ∧ Y ≥ αλt] ≥ e−∆2/2

2π(1 + t/α)2

where ∆2 = (1 + (αλ−α)2

1−α2)t2.

Proof. For α′ = 1 the result follows directly from
Lemma B.1. For α′ < 1 we use the trick from the proof
of Lemma B.3 and define X = 〈z,x〉 and Y = 〈z,x〉
where x = (1, 0) and y = (α,

√
1− α2) and z = (Z1, Z2)

is a vector of two i.i.d. standard normal random
variables. This allows us to rewrite the probability as
follows:

Pr[Z1 ≥ t ∧ αZ1 +
√

1− α2Z2 ≥ αλt]

= Pr[Z1 ≥ t] Pr[αZ1 +
√

1− α2Z2 ≥ αλt | Z1 ≥ t]

≥ Pr[Z1 ≥ t] Pr[αt+
√

1− α2Z2 ≥ αλt]

By the restrictions on α and λ we have that
(αλ − α)t/

√
1− α2 ≤ t/α. The result follows from ap-

plying the lower bound from Lemma B.1 and noting
that the bound is increasing in α.

B.1 Space-time tradeoffs on the unit sphere

Summarizing the bound from the previous section, the
family G from Lemma 3.1 satisfies that

p1 ≥ e
−(1+ (αλ

−α)2

1−α2)t2/2

2π(1 + t/α)2
(B.13)

p2 ≤ e
−(1+ (αλ

−β)2

1−β2)t2/2
(B.14)

pq ≤ e−α2λt2/2(B.15)

pu ≤ e−t2/2.(B.16)

We combine the Gaussian filters with Theorem 1.1
to show that we can solve the (α, β)-similarity problem
efficiently for the full range of space/time tradeoffs, even
when α, β are allowed to depend on n, as long as the
gap α− β is not too small.

Theorem 1.2. For every choice of 0 ≤ β < α < 1
and λ ∈ [−1, 1] we can construct a fully dynamic data
structure that solves the (α, β)-similarity problem in

11

(Sd, 〈·, ·〉). Suppose that α − β ≥ (lnn)−ζ for some
constant ζ < 1/2, that satisfies the guarantees from

Theorem 1.1 with exponents ρq = (1−α1+λ)2

1−α2

/

(1−αλβ)2

1−β2

and ρu = (αλ−α)2

1−α2

/

(1−αλβ)2

1−β2 .

Proof. Assuming that α − β ≥ (lnn)−ζ there exists
a constant ε > 0 where by setting the parameter t

of G such that t2/2 = 1−β2

(1−αλβ)2
(lnn)ε the family of

filters satisfies the assumptions in Theorem 1.1 while
guaranteeing that the second term in ρq and ρu from
Lemma 3.1 are o(1).

Remark 1. Theorem 1.2 aims for simplicity and gen-
erality while allowing α and β to depend on n. For spe-
cific values of α, β, λ it is easy to find better bounds on
the probabilties (e.g. the bounds by Savage [50]) and
to adjust t in Lemma 3.1 to avoid powering (setting
κ1 = 1, κ2 = 0) in the LSF framework.

C Approximate feature maps, characteristic

functions, and Bochner’s Theorem

We begin by defining what a characteristic function
is and listing some properties that are useful for our
application. More information about characteristic
functions can be found in the books by Lukacs [35] and
Ushakov [53].

Lemma C.1. ([35, 53]) Let Z denote a random vari-
able with distribution function µ. Then the characteris-
tic function k(∆) of Z is defined as

(C.17) k(∆) =

∫ ∞

−∞

µ(t)ei∆tdt

and it has the following properties:

- A distribution function is symmetric if and only if
its characteristic function is real and even.

- Every characteristic function k(∆) is uniformly
continuous, has k(0) = 1, and |k(∆)| ≤ 1 for all
real ∆.

- Suppose that k(∆) denotes the characteristic func-
tion of an absolutely continuous distribution then
lim∆→∞ |k(∆)| = 0.

- Let X and Y be independent random variables
with characteristic functions kX and kY . Then the
characteristic function of Z = (X,Y) is given by
k(x, y) = kX(x)kY (y).

Bochner’s Theorem reveals the relation between
characteristic functions and the class of real-valued
functions k(x,y) that admit a feature space representa-
tion k(x,y) = 〈φ(x), φ(y)〉

Theorem C.1. (Bochner’s Theorem [49]) A func-
tion k : Rd × Rd → [0, 1] is positive definite if and only
if it can be written on the form

(C.18) k(x,y) =

∫

Rd

µ(z)ei〈z,x−y〉dz

where µ is the probability density function of a symmet-
ric distribution.

Rahimi & Recht’s [48] family of approximate feature
maps V is constructed from Bochner’s Theorem by
making use of Euler’s Theorem as follows:

k(x,y) =

∫

Rd

µ(z)ei〈z,x−y〉dz

=

∫

Rd

µ(z)(cos(〈z,x − y〉) + i sin(〈z,x − y〉))dz

= E
z

[cos(〈z,x − y〉)]

= E
z,b
[cos(〈z,x − y〉) + cos(〈z,x〉 + 〈z,y〉 + 2b)]

= 2 E
z,b
[cos(〈z,x〉 + b) · cos(〈z,y〉 + b)].

Where the third equality makes use of the fact that
k(x,y) is real-valued to remove the complex part of the
integral and the fifth equality uses that 2 cos(x) cos(y) =
cos(x+ y) + cos(x− y).

Now that we have an approximate feature map
onto the sphere for the class of shift-invariant kernels,
we will take a closer look at what functions this class
contains, and what their applications are for similarity
search. Given an arbitrary similarity function, we would
like to be able to determine whether it is indeed a
characteristic function. Unfortunately, there are no
known simple techniques for answering this question
in general. However, the machine learning literature
contains many applications of different shift-invariant
kernels [51] and many common distributions have real
characteristic functions (see Appendix B in [53] for a
long list of examples). Characteristic functions are
also well studied from a mathematical perspective [35,
53], and a number of different necessary and sufficient
conditions are known. A classical result by Pólya [47]
gives simple sufficient conditions for a function to be
a characteristic function. Through the vectorization
property from Lemma C.1, Pólya’s conditions directly
imply the existence of a large class of similarity measures
on R

d that can fit into the above framework.

Theorem C.2. (Pólya [47]) Every even continuous
function k : R → R satisfying the properties

- k(0) = 1

- lim∆→∞ k(∆) = 0

12

- k(∆) is convex for ∆ > 0

is a characteristic function.

Based on the results of Section 4.1 one could hope
for the existence of characteristic functions of the form
k(∆) = e−|∆|s for s > 2 but it is known that such
functions cannot exist [15, Theorem D.8]. Furthermore,
Marcinkiewicz [37] shows that a function of the form
k(∆) = exp(− poly(∆)) cannot be a characteristic
function if the degree of the polynomial is greater than
two.

We state a more complete, constructive version of
Lemma 4.1 as well as the proof here.

Lemma C.2. Let k be a real-valued characteristic func-
tion with associated distribution function µ and let l
be a positive integer. Consider the family of functions
V ⊆ {v | v : Rd → Sl} where a randomly sampled func-
tion v is defined by, independently for j = 1, . . . , l, sam-
pling z from µ and b uniformly on [0, 2π], letting v̂(x)j =
√

(2/l) cos(〈z,x〉 + b) and normalizing v(x)j = v̂(x)
‖v̂(x)‖ .

The family V has the property that for every x,y ∈ Rd

and ε > 0 we have that

(C.19) Pr
v∼V

[|〈v(x), v(y)〉 − k(x,y)| ≥ ε] ≤ 6e−lε2/128.

Proof. Since l · v̂(x)j v̂(y)j is bounded between 2 and
−2, and we have independence for different values of j,
Hoeffding’s inequality [25] can be applied to show that
for every fixed pair of points x,y and ε̂ > 0 it holds that

(C.20) Pr[|〈v̂(x), v̂(y)〉 − k(x,y)| ≥ ε̂] ≤ 2e−lε̂2/8.

From the properties of characteristic functions we have
that k(x,x) = 1 and k(x,y) ≤ 1. The bound on the
deviation of

(C.21) 〈v(x), v(y)〉 = 〈v̂(x), v̂(y)〉
√

〈v̂(x), v̂(x)〉〈v̂(y), v̂(y)〉

from k(x,y) follows from setting ε̂ = ε/4 and using a
union bound over the probabilities that the deviation of
one of the inner products is too large.

Combining the approximate feature map onto the unit
sphere with Theorem 1.2 we obtain the following:

Theorem C.3. Let k : Rd → R be a characteristic
function and define the similarity measure S(x,y) =
k(x− y). Assume that we have access to samples from
the distribution associated with k, then Theorem 1.2
holds with (Sd, 〈·, ·〉) replaced by (Rd, S).

Proof. According to Lemma C.2, we can set l = no(1)

to obtain a map v : Rd → Sl such that the the inner

product on S
l preserves the pairwise similarity between

nO(1) points with additive error ε = o(1). This map has
a space and time complexity of O(dl) = dno(1). After
applying v to the data we can solve the (α, β)-similarity
problem on (Rd, k(x−y)) by solving the (α− ε, β+ ε)-
similarity problem on (Sd, 〈·, ·〉). We can use Theorem
1.2 to construct a fully dynamic data structure for
solving this problem, adjusting the parameter λ so that
it continues to lie in the admissible range. The space
and time complexities follow.

D Proof of Theorem 1.5

Consider ρq =
log(pq/p1)
log(pq/p2)

. Subject to the (implicit) LSF

constraint that pq, pu > p1 > p2 > 0 we see that ρq
is minimized by setting pq, p2 as small as possible and
p1 as large as possible. We will therefore derive lower
bounds on pq, p2 and an upper bound on p1. For every
value of p1 and p2 we minimize ρq, ρu by choosing pq as
small as possible.

For a random point x ∈ {0, 1}d it must hold that
PrF [x ∈ Q] = |Q|/2d. This implies the existence
of a fixed point y ∈ {0, 1}d with the property that
PrF [y ∈ Q] ≥ |Q|/2d. A regular filter family must
therefore satisfy that pq ≥ |Q|/2d and pu ≥ |U |/2d. Let
λ be defined as in Lemma 5.2 then by a similar argument

we have that p2 ≥ (U/2d)1+α2λ

.
In order to upper bound p1 we make use of Lemma

5.2 together with the following lemma that follows di-
rectly from an application of Hoeffding’s inequality [25].

Lemma D.1. For every 0 < ε < (1−α)/2 we have that

Pr
(x,y)

α+ε-correlated

[

1

d

d
∑

i=1

(−1)xi(−1)yi ≤ α

]

≤ e−ε2d/2.

In the following derivation, assume that α, ε satisfies
0 < ε < (1 − α)/2, let x,y denote randomly (α + ε)-
correlated vectors in {0, 1}d, and assume that α + ε ≤
αλ ≤ 1/(α+ ε), then

(|U |/2d)
1+α2λ

−2αλ(α+ε)

1−(α+ε)2 ≥ Pr[x ∈ Q,y ∈ U]

≥ Pr[x ∈ Q,y ∈ U | 〈x,y〉 ≥ α] Pr[〈x,y〉 ≥ α]

≥ p1(1− e−ε2d/2)

Summarizing the bounds:

p1 ≤ (|U |/2d)
1+α2λ

−2αλ(α+ε)

1−α2

1− e−ε2d/2

p2 ≥ (|U |/2d)1+α2λ

pq ≥ |Q|/2d

pu ≥ |U |/2d.

13

When minimizing ρq we have that

log(pq/p2) = − log(|U |/2d). Setting ε = 2
√

ln(d)/d

results in log(1/p1) ≥ − 1+α2λ−2αλ(α+ε)
1−α2 log(|U |/2d) −

O(1/d2). Putting things together:

log(pq/p1)

log(pq/p2)
≥ −α

2λ log(|U |/2d)
log(|U |/2d)

+

1+α2λ−2αλ(α+ε)
1−α2 log(|U |/2d) +O(1/d2)

log(|U |/2d)

=
(1 − α1+λ)2 − 2αλε

1− α2
+

O(1/d2)

log(|U |/2d)

=
(1 − α1+λ)2

1− α2
−O(

√

log(d)/d).

The derivation of the lower bound for ρu is almost the
same and the resulting expression is

(D.22)
log(pu/p1)

log(pq/p2)
≥ (αλ − α)2

1− α2
−O(

√

log(d)/d).

E Comparison to Kapralov

Kapralov uses α to denote a parameter controlling
the space-time tradeoff for his solution to the (r, cr)-
near neighbor problem in Euclidean space. For every
choice of tradeoff parameter α ∈ [0, 1], assuming that
c2 ≥ 3(1− α)2 − α2 + ε for arbitrarily small constant
ε > 0, Kapralov [30] obtains query and update expo-
nents

ρq =
4(1− α)2

c2 + (1− α)2 − 3α2
,(E.23)

ρu =
4α2

c2 + (1− α)2 − 3α2
.(E.24)

We convert Kapralov’s notation to our own by setting
λ = 1 − 2α. To compare, Kapralov sets α = 0 for
near-linear space and we set λ = 1. We want to write
Kapralov’s exponents on the form

(E.25) ρq =
c2(1 + λ)2

(c2 + λ)2 + x
, ρu =

c2(1 − λ)2

(c2 + λ)2 + x

for some x that we will proceed to derive. We have
that (1 − α)2 = (1 + λ)2/4 and α2 = (1 − λ)2/4. Mul-
tiplying the numerator and denominator in Kapralov’s
exponents by c2 we can write Kapralov’s exponents as

ρq =
c2(1 + λ)2

c4 + c2(1 + λ)2/4− 3c2(1− λ)2/4
,(E.26)

ρu =
c2(1− λ)2

c4 + c2(1 + λ)2/4− 3c2(1− λ)2/4
.(E.27)

We have that

x = c4 + c2(1 + λ)2/4− 3c2(1− λ)2/4− (c2 + λ)2

= −c2(1 + λ2)/2− λ2.

For every choice of λ ∈ [−1, 1], and under the assump-
tion that c2 ≥ (1+λ)2/2+λ+ ε for an arbitrarily small
constant ε > 0, this allows us to write Kapralov’s expo-
nents as

ρq =
c2(1 + λ)2

(c2 + λ)2 − c2(1 + λ2)/2− λ2
,(E.28)

ρu =
c2(1− λ)2

(c2 + λ)2 − c2(1 + λ2)/2− λ2
.(E.29)

To compare Kapralov’s result against our own for search
in ℓs-spaces we consider the exponents from Theorem
1.3, ignoring additive o(1) terms:

(E.30) ρq =
cs(1 + λ)2

(cs + λ)2
, ρu =

cs(1− λ)2

(cs + λ)2
.

Setting λ = 1 we obtain a data structure that uses near-
linear space and we get a query exponent ρq = 16/25
while Kapralov obtains an exponent of ρq = 16/20,
ignoring o(1) terms. At the other end of the tradeoff,
setting λ = −1, we get a data structure with query time
no(1) and update exponent ρu = 16/9 while Kapralov
gets an update exponent of ρu = 4, again ignoring
additive o(1) terms.

The assumption made by Kapralov that c2 ≥ (1 +
λ)2/2 + λ + ε means that in the case of a near-linear
space data structure (λ = 1) sublinear query time can
only be obtained for c >

√
3. In contrast, Theorem 1.3

gives sublinear query time for every constant c > 1.

F Details about dynamization and the model

of computation

In order to obtain fully dynamic data structures we
apply a powerful dynamization result of Overmars and
Leeuwen [42] for decomposable searching problems.
Their result allows us to turn a partially dynamic
data structure into a fully dynamic data structure,
supporting arbitrary sequences of queries and updates,
at the cost of a constant factor in the space and running
time guarantees. Suppose we have a partially dynamic
data structure that solves the (r, cr)-near neighbor
problem on a set of n points. By partially dynamic we
mean that, after initialization on a set P of n points, the
data structure supports Θ(n) updates without changing
the query time by more than a constant factor. Let
Tq(n), Tu(n), and Tc(n) denote the query time, update
time, and construction time of such a data structure
containing n points. Then, by Theorem 1 of Overmars

14

and Leeuwen [42], there exists a fully dynamic version of
the data structure with query time O(Tq(n)) and update
time O(Tu(n)+Tc(n)/n) that uses only a constant factor
additional space. The data structures presented in this
paper, as well as most related constructions from the
literature, have the property that Tc(n)/n = O(Tu(n)),
allowing us to go from a partially dynamic to a fully
dynamic data structure “for free” in big O notation.

In terms of guaranteeing that the query operation
solves the (r, cr)-near neighbor problem on the set of
points P currently inserted into the data structure, we
allow a constant failure probability δ < 1, typically
around 1/2, and omit it from our statements. We make
the standard assumption that the adversary does not
have knowledge of the randomness used by the data
structure. Say we have a data structure with constant
failure probability and a bound on the expected space
usage. Then, for every positive integer T we can
create a collection of O(log T) independent repetitions
of the data structure such that for every sequence of T
operations it holds with high probability in T that the
space usage will never exceed the expectation by more
than a constant factor and no query will fail.

F.1 Model of computation We use the standard
word RAM model as defined by Hagerup [23] with a
word size of Θ(logn) bits. Unless otherwise stated, we
make the assumption that a point in (X,D) can be
stored in d words and that the dissimilarity between two
arbitrary points can be computed in d operations where
d is a positive integer that corresponds to the dimension
in the various well-studied settings mentioned in the
main text. Furthermore, when describing framework-
based solutions to the (r, cr)-near neighbor problem, we
make the assumption that we can sample, evaluate, and
represent elements from F and H with neglible error
using space and time dno(1).

Many of the LSH and LSF families rely on random
samples from the standard normal distribution. We will
ignore potential problems resulting from rounding due
to the fact that our model only supports finite precision
arithmetic. This approach is standard in the literature
and can be justified by noting that the error introduced
by rounding is neglible. Furthermore, there exists
small pseudorandom standard normal distributions that
support sampling using only few uniformly distributed
bits as noted by Charikar [18]. In much of the related
literature the model of computation is left unspecified
and statements about the complexity of solutions to
the (r, cr)-near neighbor problem are usually made
with respect to particular operations such as the hash
function computations, distance computations, etc.,
leaving out other details [26, 24].

References

[1] C. Aggarwal, D. A. Keim, and A. Hinneburg. On
the surprising behaviour of distance metrics in high
dimensional space. In Proc. ICDT ’01, pages 420–434,
2001.

[2] J. Alman and R. Williams. Probabilistic polynomials
and hamming nearest neighbors. In Proc. FOCS ’15,
pages 136–150, 2015.

[3] A. Andoni. Nearest neighbor search: the old, the new,
and the impossible. PhD thesis, MIT, 2009.

[4] A. Andoni and P. Indyk. Near-optimal hashing algo-
rithms for approximate nearest neighbor in high dimen-
sions. In Proc. FOCS ’06, pages 459–468, 2006.

[5] A. Andoni and P. Indyk. Near-optimal hashing algo-
rithms for approximate nearest neighbor in high dimen-
sions. Commun. ACM, 51(1):117–122, 2008.

[6] A. Andoni, P. Indyk, T. Laarhoven, I. Razenshteyn,
and L. Schmidt. Practical and optimal lsh for angular
distance. In Proc. NIPS ’15, pages 1225–1233, 2015.

[7] A. Andoni, P. Indyk, H. L. Nguyen, and I. P. Razen-
shteyn. Beyond locality-sensitive hashing. In Proc.
SODA ’14, pages 1018–1028, 2014.

[8] A. Andoni, P. Indyk, and M. Patrascu. On the
optimality of the dimensionality reduction method. In
Proc. FOCS ’06, pages 449–458, 2006.

[9] A. Andoni, T. Laarhoven, I. P. Razenshteyn, and
E. Waingarten. Lower bounds on time-space
trade-offs for approximate near neighbors. CoRR,
abs/1605.02701, 2016.

[10] A. Andoni, T. Laarhoven, I. P. Razenshteyn, and
E. Waingarten. Optimal hashing-based time-space
trade-offs for approximate near neighbors. CoRR,
abs/1608.03580, 2016.

[11] A. Andoni and I. Razenshteyn. Optimal data-
dependent hashing for approximate near neighbors. In
Proc. STOC ’15, pages 793–801, 2015.

[12] A. Andoni and I. P. Razenshteyn. Tight lower bounds
for data-dependent locality-sensitive hashing. CoRR,
abs/1507.04299, 2015.

[13] A. Andoni and I. Razensteyn. Tight lower bounds
for data-dependent locality-sensitive hashing. In Proc.
SoCG ’16, pages 9:1–9:11, 2016.

[14] A. Becker, L. Ducas, N. Gama, and T. Laarhoven.
New directions in nearest neighbor searching with
applications to lattice sieving. In Proc. SODA ’16,
pages 10–24, 2016.

[15] Y. Benyamini and J. Lindenstrauss. Geometric non-
linear functional analysis, volume 48. American Math-
ematical Soc., Providence, Rhode Island, 1998.

[16] A. Z. Broder, M. Charikar, A. M. Frieze, and
M. Mitzenmacher. Min-wise independent permuta-
tions. In Proc. STOC ’98, pages 327–336, 1998.

[17] J. M. Chambers, C. L. Mallows, and B. W. Stuck. A
method for simulating stable random variables. Jour.
Am. Stat. Assoc., 71(354):340–344, 1976.

[18] M. Charikar. Similarity estimation techniques from

15

rounding algorithms. In Proc. STOC ’02, pages 380–
388, 2002.

[19] F. Chierichetti and R. Kumar. Lsh-preserving func-
tions and their applications. J. ACM, 62(5):33, 2015.

[20] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni.
Locality-sensitive hashing scheme based on p-stable
distributions. In Proc. SOCG ’04, pages 253–262, 2004.

[21] M. de Berg, M. van Kreveld, M. Overmars, and O. C.
Schwarzkopf. Computational geometry. Springer,
Berlin, third edition, 2008.

[22] M. Dubiner. Bucketing coding and information theory
for the statistical high-dimensional nearest-neighbor
problem. IEEE Trans. Inf. Theory, 56(8):4166–4179,
2010.

[23] T. Hagerup. Sorting and searching on the word RAM.
In Proc. STACS ’98, pages 366–398, 1998.

[24] S. Har-Peled, P. Indyk, and R. Motwani. Approximate
nearest neighbor: Towards removing the curse of di-
mensionality. Theory comp., 8(1):321–350, 2012.

[25] W. Hoeffding. Probability inequalities for sums of
bounded random variables. Jour. Am. Stat. Assoc.,
58(301):13–30, 1963.

[26] P. Indyk and R. Motwani. Approximate nearest neigh-
bors: towards removing the curse of dimensionality. In
Proc. STOC ’98, pages 604–613, 1998.

[27] Piotr Indyk. Nearest neighbors in high-dimensional
spaces. In Handbook of Discrete and Computational
Geometry, Second Edition., pages 877–892. Chapman
and Hall/CRC, 2004.

[28] R. Kaas and J. M. Buhrman. Mean, median and
mode in binomial distributions. Statistica Neerlandica,
34(1):13–18, 1980.

[29] J. Kahn, G. Kalai, and N. Linial. The influence of
variables on boolean functions (extended abstract). In
Proc. FOCS ’88, pages 68–80, 1988.

[30] M. Kapralov. Smooth tradeoffs between insert and
query complexity in nearest neighbor search. In Proc.
PODS ’15, pages 329–342, 2015.

[31] E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient
search for approximate nearest neighbor in high dimen-
sional spaces. SIAM J. Comput., 30(2):457–474, 2000.

[32] T. Laarhoven. Tradeoffs for nearest neighbors on the
sphere. CoRR, abs/1511.07527, 2015.

[33] P. Lévy. Calcul des probabilités, volume 9. Gauthier-
Villars, Paris, 1925.

[34] D. Lu and W. V. Li. A note on multivariate gaus-
sian estimates. Journal of Mathematical Analysis and
Applications, 354(2):704–707, 2009.

[35] E. Lukacs. Characteristic Functions. Griffin, London,
second edition, 1970.

[36] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and
K. Li. Multi-probe LSH: efficient indexing for high-
dimensional similarity search. In Proc. VLDB ’07,
pages 950–961, 2007.

[37] J. Marcinkiewicz. Sur une propriete de la loi de gauss.
Mathematische Zeitschrift, 44(1):612–618, 1939.

[38] M. Minsky and S. Papert. Perceptrons. MIT Press,
Cambridge, MA, 1969.

[39] R. Motwani, A. Naor, and R. Panigrahy. Lower bounds
on locality sensitive hashing. SIAM J. Discrete Math.,
21(4):930–935, 2007.

[40] H. L. Nguyen. Algorithms for High Dimensional Data.
PhD thesis, Princeton, 2014.

[41] R. O’Donnell. Analysis of Boolean Functions. Cam-
bridge University Press, 2014.

[42] M. H. Overmars and J. van Leeuwen. Worst-case opti-
mal insertion and deletion methods for decomposable
searching problems. Information Processing Letters,
12(4):168–173, 1981.

[43] R. O’Donnell, Y. Wu, and Y. Zhou. Optimal lower
bounds for locality-sensitive hashing (except when q
is tiny). ACM Transactions on Computation Theory
(TOCT), 6(1):5, 2014.

[44] R. Panigrahy. Entropy based nearest neighbor search
in high dimensions. In Proc. SODA ’06, pages 1186–
1195, 2006.

[45] R. Panigrahy, K. Talwar, and U. Wieder. A geomet-
ric approach to lower bounds for approximate near-
neighbor search and partial match. In Proc. FOCS
’08.

[46] R. Panigrahy, K. Talwar, and U. Wieder. Lower
bounds on near neighbor search via metric expansion.
In Proc. FOCS ’10, pages 805–814, 2010.

[47] G. Pólya. Remarks on characteristic functions. In
Proc. Berkeley Symposium on Mathematical Statistics
and Probability 1945-1946, pages 115–123, 1949.

[48] A. Rahimi and B. Recht. Random features for large-
scale kernel machines. In Proc. NIPS ’07, pages 1177–
1184, 2007.

[49] W. Rudin. Fourier Analysis on Groups. Wiley, New
York, 1990.

[50] I. R. Savage. Mill’s ratio for multivariate normal
distributions. Jour. Res. NBS Math. Sci., 66(3):93–96,
1962.

[51] B. Schölkopf and A. J. Smola. Learning with Kernels.
The MIT Press, Cambridge, Massachusetts, 2002.

[52] S. J. Szarek and E. Werner. A nonsymmetric correla-
tion inequality for gaussian measure. Journal of mul-
tivariate analysis, 68(2):193–211, 1999.

[53] N. G. Ushakov. Selected Topics in Characteristic
Functions. VSP, Utrecht, The Netherlands, 1999.

[54] Gregory Valiant. Finding correlations in subquadratic
time, with applications to learning parities and the
closest pair problem. J. ACM, 62(2):13, 2015.

[55] J. Wang, H. T. Shen, J. Song, and J. Ji. Hashing
for similarity search: A survey. CoRR, abs/1408.2927,
2014.

[56] R. Weber, H. Schek, and B. Stephen. A quantitative
analysis and performance study for similarity-search
methods in high-dimensional spaces. In Proc. VLDB
’98, pages 194–205, 1998.

[57] Ryan Williams. A new algorithm for optimal con-
straint satisfaction and its implications. In Proc.
ICALP ’04, pages 1227–1237, 2004.

[58] V. M. Zolotarev. One-dimensional stable distributions,
volume 65. American Mathematical Soc., 1986.

16

	1 Introduction
	1.1 Contribution
	1.2 Related work

	2 A framework with space-time tradeoffs
	2.1 The LSF data structure

	3 Gaussian filters on the unit sphere
	4 Space-time tradeoffs under kernel similarity
	4.1 Tradeoffs in sd-space

	5 Lower bounds
	5.1 Asymmetric lower bound

	6 Open problems
	A Framework
	B Gaussian filters
	B.1 Space-time tradeoffs on the unit sphere

	C Approximate feature maps, characteristic functions, and Bochner's Theorem
	D Proof of Theorem 1.5
	E Comparison to Kapralov
	F Details about dynamization and the model of computation
	F.1 Model of computation

