Identification of an Alternative Exon in a GABA Receptor Gene

Shannon Apgar, Connell Crabtree, Tenzin Yangchen, Cecilia Toro Biology Department, Linfield College, McMinnville, OR

Introduction

The Central Dogma and pre-mRNA Splicing

The central dogma of biology states that DNA is transcribed into mRNA, which is then translated into proteins. In order for translation to occur, pre-mRNAs first must be processed. In pre-mRNA processing, parts of the nucleotide sequence called introns are spliced out from the transcript, so the final mRNA is made up of entirely exons.

Alternative Splicing

In alternative splicing, an exon is spliced out of the pre-mRNA transcript much like an intron. An mRNA transcript produced as a result of alternative splicing could produce a different protein than the mRNA without alternative splicing. Alternative splicing of an mRNA transcript could also result in a premature termination codon (PTC) within the mRNA sequence. This premature termination codon causes translation to stop before the full transcript has been translated, resulting in a truncated protein.

Nonsense Mediated Decay

Nonsense Mediated Decay (NMD) functions by degrading mRNA transcripts containing a PTC. NMD occurs during translation by an intricate series of proteinprotein and protein-mRNA interactions that detect a PTC and result in the cleavage of PTC-containing mRNAs.

Our Genes of Interest: GABA A_{A} Receptor Genes

GABA is a neurotransmitter that binds to GABA receptor proteins. GABA_{A} receptors $\left(\mathrm{GABA}_{\mathrm{A}} \mathrm{Rs}\right)$ are pentameric ion channels made up of five subunits from 20 possible closely related isoforms.

Hypotheses

Here, we present data on the alternative splicing of an exon in $G A B A_{A} R$ genes. We first discovered that a 68-bp exon in the gabrr2b gene (exon 3), which codes for the $G A B A_{A} R$ rho2b isoform, is alternatively spliced. Based on its close homology to exons in the other $19 G A B A_{A} R$ genes, and the translation of gabrr2b[-e3], we tested two hypotheses:

1) Similar 68-bp exons in the other GABA $_{A} R$ genes are also alternatively spliced 2) mRNAs without the 68-bp exon are degraded via NMD

Figure 1. 68-bp exon 3 is alternatively spliced in rho2b gene. Agarose gel showing products from GABA receptor subunit rho2b gene amplifications. mRNAs were extracted from 6 dpf larvae using RNeasy Mini Kit (Qiangen). RT-PCR was performed on rho2b gene with primers flanking exon 3 (Superscript IV First-Strand Synthesis System (Invitrogen), GoTaq Hot Start PCR Master Mix). Two resultant bands were extracted, gel purified, and sequenced. Sequence alignment revealed a new isoform of rho2b missing exon 3.

Conclusions

1. We did not find any evidence of alternative splicing of the highly conserved exon within any of the other genes coding for $G A B A_{A} R$ subunits, and therefore we do not have evidence to support our first hypothesis.
2. Our data suggests that rho2b mRNAs excluding exon 3 are degraded by NMD, and therefore do not code for novel protein isoforms.

Figure 2. Highly conserved 68-bp exon is only alternatively spliced in rho2b gene. A) $20 \operatorname{GABA}_{A} R$ genes all contain a 68 bp exon. B) Clustal Omega alignment demonstrates conservation between translated 68 bp exons. C) 2% agarose gels showing products from GABA receptor subunit gene amplifications. mRNA transcripts were extracted from 6 dpf larvae using RNeasy Mini Kit (Qiagen). RT-PCR was performed on the various GABA subunit genes with specific primers designed to flank the 68-bp exon in each gene (Superscript IV First-Strand Synthesis System (Invitrogen), GoTaq Hot Start PCR Master Mix). The subunits tested are labeled above gels. No products were detected at the appropriate size for mRNAs missing exon 3 , except in the rho2b gene.

Abstract

KVTEIKTNIFVTSFGPVSDTEM SVTEVKTDIFVTSFGPVSDVNM PVTEVKTDIYVTSFGPVSDVEM SvTevaniyvisfevsiven RVTEVKTDIFVTSIGPVSDHDM RVTEVKTDIYVTSFGPVSDTDM RPIVIETAVYVNSIGPVDPINM KPTVIHTDMFVNSIGPVNAINM KPTVIDVDIYVNSIGPVSSINM SAIPVGIDVQVESIDGISEVNM PAIPVGIDVQVESIDSISEVNM PAIPVGVDVOVESLIDSISEVDM PAVPVGVDVQVESLDSISEVDM PPVNVAMAIEVASIDHISEANM PPVDVGMSIDISSIDMVSEVNM APVAVGMNIDIASIDMVSEVNM APVAVGMSIDVASIDMVSEVNM APVAVGMSIDVASIDMVSEVNM GPVIVIGMSLDIASIDTIDASEISETNM

Figure 3. mRNAs without exon 3 may be degraded via NMD. Translated mRNAs of rho2b with (A) and without (B) exon 3 show that when exon 3 (red in (A)) is excluded, a frame-shift occurs in exon 4 resulting in a PTC (red in (B)). C) Zebrafish larvae were treated in a petri dish with DMSO only (CON) or 0.1% cycloheximide (a translation inhibitor) in DMSO (CHX) for 24 hours before RNA Extraction, and RTPCR using primers that flanked alternative exon 3 . Expected sizes for products were: +e3: 317 bp, - e3 $249 \mathrm{bp} .2 \%$ agarose gel shows shift in percentage of transcripts containing exon 3 when NMD pathways are inhibited. (D) Quantification of relative band intensity of PCR products shown in (C).

Future Directions

Preliminary data from cycloheximide treated larvae shows evidence that nonsense mediated decay degrades mRNA transcripts that are produced as a result of alternative splicing. Our next steps are to repeat experiments with CHX and other translation inhibitors (e.g., puromycin) for different incubation times in an attempt to verify our findings.

