Lipid-Coated Core-Shell Noble Metal Nanoparticles

Introduction

Applications of gold nanoparticles are on the forefront of research in many areas, including environmental, industrial, and biomedical sciences. Altering the surface treatment of spherical gold nanoparticle cores, particularly those smaller than 100 nm, can influence their potential use in a number of ways.

Surface-enhanced Raman spectroscopy (SERS) is important due to its ability to allow deep and high resolution volumetric imaging of biological tissues. By using a 532 nm laser, the plasmon resonance of silver is more intense than gold, for that reason the Au-NP's are coated with silver (Fig. 1)

As an effort to create a nanoparticle therapeutic delivery system, yeast cells are used for the reason that they are eukaryotic cells like human cells and have the advantage of growing rapidly (Fig. 4).

The strand of yeast grown was BY4743 and grown in a yeast extract, peptone, dextrose medium (YPD).

Materials and Methods

Au-NP synthesis: All glassware was cleaned with Aqua Regia (3:1, conc.HCL:conc.HNO₃) and rinsed with deionized water. Chloroauric acid (1.5 mL, 0.015 mM) and deionized water (50 mL) were refluxed until boiling. Sodium citrate (1%, 1.0 mL) was added to the solution and was refluxed for an additional 30 minutes until color change indicated production of colloidal nanoparticle solutions with a range of particle sizes.

Silver coating: Au seeds (5 mL) were diluted in deionized water (93.65 mL) and heated until ebullition. Once boiling, silver nitrate (450 μ L, 30 mM) is added and immediately after, trisodium citrate (1mL, 170mM).

Yeast cultivation: In a sterile environment YPD medium(1.5 mL) we placed in a vile. Yeast culture was mixed into the medium. Yeast cells were incubated and shaken at a temperature of 30° C for 24 hrs. The growing period for yeast is about three days (Fig. 4).

Spectroscopy analysis: Nanoparticle solutions were characterized using Hitachi UV-vis spectrophotometer and NanoSight LM10HS particle sizer, and Raman excitation at 532 nm.

Ana Alfaro, Dr. Brian D. Gilbert Linfield College Department of Chemistry McMinnville, Oregon 97128

Results

article grows in size wi

Figure 1: Gold core nanoparticles coated with silver.¹

Figure 2: UV-vis extinction spectra of gold seed nanoparticle

Figure 3: Characterization of Silver coated gold nanoparticle cores and Au seeds using NanoSight.

Figure 4: Growth curve of yeast cells⁴

	Conc
	Small i
	coating
	were s
	optical
rticle	nanopa
	there v
	silver.
	Contin
h	-Break
	improv
	- Attac
	making
- Au-NP - Au-NP coated in Ag	Ref
	1. [
	2. F
650 700 750 800	
as and silver coated Au nanonarticles	
s and shver coaled Au nanoparticles	A

4.

We would like to thank the Linfield College Student-Faculty Collaborative Research Grant for funding this research. We would also like to thank the Linfield College Chemistry department, especially Dr. Megan Bestwick, for assistance throughout the research project. An additional thank you is extended to my research partner Fatima Falcon.

lusions

increases in diameter suggest successful g of Au-NP with silver. Cultivation of yeast cells successful and observed through calculations of density using UV-Vis. Tests for localization of particles in yeast cells were inconclusive as was no peak at 400 nm resembling that of

nuing Research:

king down yeast cell wall with lyticase to ve uptake.

ching specific antibodies to nanoparticles, g them more attractive to yeast cells.

erences

David, R. and Michel, M. Journal of Physical Chemistry. **2015**, 119,13160-13168. -u, Y.; Yang, Y.; Li, J.; KDu.; Y. and Jiang, L.: Isolation of Discrete Nanoparticle-DNA Conjugates for Plasmonic Applications. *Nanotechnology***17**, 5147-5150 (2006). Frederick A.;Roger, B.; Robert K.; David, M.; J.G. S.; John S.; Kevin S.: *Current Protocols in* Molecular Biology (2003)

Tamara S.; Claudia, M.; Leica M.; Leica

Microsystems (2014)

Acknowledgments