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Highlights 

 Susceptibility increased at increasingly negative potentials and at lower pH in 3.5% 

NaCl 

 Susceptibility increased at high charging potentials in 0.1 M NaOH at substantial 

stress rates.  

 The hydrogen influence was manifested by reduced ductility and brittle fracture 

features 

 

ABSTRACT 

This work examines the influence of hydrogen on the mechanical and fracture properties of 

martensitic advanced high-strength steels under conditions relevant to automotive service: (i) 

in 3.5 wt% NaCl at different cathodic potentials, (ii) in acidified 3.5 wt% NaCl and (iii) at 

substantial stress rates. The hydrogen embrittlement susceptibility of the steels increases at (i) 

increasingly negative potentials and at lower pH in 3.5 wt% NaCl, and (ii) at high charging 

potentials in 0.1 M NaOH at substantial stress rates. The hydrogen influence is manifested by 

a reduction in ductility, and the presence of brittle features on the fracture surface. 

 

Keywords: A. steel; B. SEM; C. hydrogen embrittlement  
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1. Introduction 

Martensitic advanced high-strength steels (MS-AHSS) are attracting attention for the 

manufacture of lightweight, crashworthy cars [1-3]. MS-AHSS have good strengths, ranging 

950 to 1700 MPa, are inexpensive to manufacture, but exhibit limited ductility and 

formability [4, 5]. MS-AHSS are used to make automotive body-in-white (BIW) components 

such as (i) bumper beams and reinforcements, (ii) door intrusion beams and reinforcements, 

(iii) windscreen upright reinforcements, and (iv) B-pillar reinforcements [1, 6-8].  

Hydrogen embrittlement (HE) occurs in steels, such as in conventional high-strength 

steels [9-24], advanced high-strength steels [25-39], and medium-strength steels [40-49]. HE 

occurs when the load-bearing steel interacts with a critical amount of hydrogen. HE can result 

in (i) a reduction of mechanical strength, toughness and ductility, together with (ii) subcritical 

crack growth [50, 51]. Alternatively, HE can cause some reduction of ductility without an 

appreciable decrease in yield and tensile strength [52], and without sub-critical crack growth.  

Automotive steels may be subject to corrosion in automobile service. A marine 

environment is a common environment that causes aggressive corrosion of steels in the auto 

body [53]. Similar aggressive corrosion occurs for auto bodies due to de-icing salts used in 

snowy climates. Hydrogen may be produced by the corrosion, may diffuse into the stress-

bearing steel auto component, and could conceivably cause hydrogen delayed fractures [54].   

During accidents, car components are subjected to impact stresses at high-applied 

stress rates. Adequate toughness in automotive steels is needed so that the component fails by 

a ductile mode rather than fractures. Any factor that could lower the toughness of an 

automotive structure, such as hydrogen, requires to be understood by car manufacturers.  

This current research builds on our previous study, which studied the HE 

susceptibility of automotive MS-AHSS in simulated service conditions, using the linearly 

increasing stress test (LIST) and conventional tensile tests [27]. The LIST [55] has been 

widely used to study hydrogen embrittlement (HE) and stress corrosion cracking (SCC) [9, 

10, 14, 42, 56-62]. Our previous work [27] studied four grades of MS-AHSS using LIST at 

the open circuit potential, Ecorr, and at the zinc potential, EZn, equivalent to -950 mVAg/AgCl (-

752 mVSHE), in 3.5% NaCl and at different stress rates. There was minimal HE susceptibility 

in these MS-AHSS at both Ecorr and EZn, and at all stress rates; partly due to the low hydrogen 

concentrations under these hydrogen-charging conditions.  

However, it is possible that HE in these steels could occur at higher cathodic 

potentials where a greater hydrogen fugacity is expected [63]. In addition, it is known that the 
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hydrogen equilibrium potential decreases with decreasing pH [64], so that there is more 

hydrogen evolution during corrosion in acidic solutions. This means that a decrease in pH can 

increase the corrosion rate of steels [53], and would also increase the amount of hydrogen 

produced during corrosion. Also, the presence of NaCl would further add to the 

aggressiveness of corrosion in acidic solutions.  

Acidified NaCl solutions occur during crevice corrosion and pitting corrosion. The pH 

can decrease to below pH 2 inside a crevice and a corroding pit, in a NaCl solution [65]. Thus 

tests on steels immersed in acidified 3.5% NaCl are relevant to understand the sensitivity of 

MS-AHSS to the conditions present in crevice corrosion and pitting corrosion.   

In each case, as in our prior research [25, 27, 39], cathodic pre-charging was carried 

out for 24 h before the commencement of any testing to ensure that (i) there was a stable 

surface condition at the charging surface, and (ii) the hydrogen concentration was uniform 

throughout the specimen. Our prior research using permeation experiments [27-29, 36], 

indicated that long-term hydrogen pre-charging was required to ensure the reduction of the 

initial surface oxides to a steady state condition, for which the permeation current density was 

stable. Furthermore, modelling of the hydrogen concentration using the diffusion coefficients 

measured in the permeation experiments indicated that the hydrogen concentration was a 

constant throughout the specimens used for these long term charging conditions [27-29, 36]. 

Our previous study used tensile tests to study the influence of a substantial-applied 

stress rate on the HE susceptibility of MS-AHSS under conditions of internal hydrogen 

embrittlement (IHE) [27]. IHE refers to HE in the absence of hydrogen charging [66]. The 

hydrogen is already inside the steel, i.e. the hydrogen may have entered the steel during the 

processing or fabrication steps or during previous service corrosion. IHE was evaluated by 

mechanical tests on specimens in the absence of hydrogen charging [27]. Smooth tensile 

specimens were hydrogen charged in tension in the LIST apparatus, dismounted, and then 

subjected to a tensile test using a universal testing machine (UTM) within a short time after 

the end of hydrogen charging. The results did show negligible hydrogen influence on the 

mechanical properties of MS-AHSS, even though modelling indicated that most of the 

hydrogen remained in the steel. 

In contrast, external hydrogen embrittlement (EHE), also known as hydrogen 

environment embrittlement (HEE), results from exposure to a hydrogen-bearing environment 

[67]. For hydrogen gas, hydrogen is believed to enter the metal via the surface adsorption of 

diatomic hydrogen, followed by absorption in the lattice after dissociation into the 
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monoatomic form. EHE is evaluated by mechanical tests in the presence of a hydrogen 

environment. 

 Past research has noted several similarities and differences between IHE and EHE 

[68]. Both processes need a critical level of stress and a critical hydrogen concentration. It is 

possible that the MS-AHSS may behave differently when evaluated under EHE conditions.     

The present paper adds to the knowledge of the relevance of the HE to MS-AHSS in 

automobile service. The specific issues addressed by this work were as follows: 

1. the HE susceptibility of MS-AHSS in 3.5wt% NaCl at -950 mVAg/AgCl (-752 mVSHE) and -

1050 mVAg/AgCl (-852 mVSHE), and the measurement of the hydrogen concentrations in 

the steels at these potentials, 

2. the HE susceptibility of MS-AHSS in pH-modified 3.5wt% NaCl, to assess the HE 

susceptibility of MS-AHSS during pit corrosion or crevice corrosion, and 

3. the EHE of MS-AHSS under a substantial loading rate that is relevant to a crash situation.  

 

2. Experimental methods 

2.1. Steels, electrolytes, and apparatus 

The test materials were four grades of commercial MS-AHSS; namely MS980, 

MS1180, MS1300 and MS1500. The steels were from commercial production, and were 

supplied as flat rolled sheets with the chemical composition and the mechanical properties as 

presented in Table 1. The chemical composition was determined by an independent 

laboratory (Spectrometer Services Pty Ltd, Coberg, Vic), whilst the mechanical properties 

were provided by the steel supplier. The microstructure of these steels consisted of a 

combination of mainly martensite and some ferrite [25], with proportions as listed in Table 1. 

The LIST and tensile test specimens were machined using a water jet cutter to the 

dimensions shown in Fig 1. The long direction of each specimen was parallel to the rolling 

direction. The specimens were mechanically ground using SiC paper (i.e. 320, 600 and 1200 

grit), rinsed with ethanol, and blow-dried. The specimen thicknesses were: (i) 1.5 mm for 

MS980, (ii) 1.70 mm for MS1180, (iii) 1.20 mm for MS1300, and (iv) 1.18 mm for MS1500. 
All solutions, i.e. 3.5wt% NaCl, 0.1 M NaOH, and 0.1 M HCl, were prepared using 

analytic grade chemicals and deionised water. The pH modifiers were analytic grade (i) 

32wt% hydrochloric acid (HCl) and (ii) sodium hydroxide pellets.  
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Electrochemical hydrogen charging used a three-electrode apparatus. The working 

electrode was the steel specimen. The reference electrode was either an Ag/AgCl/sat KCl 

reference electrode when hydrogen charging in 3.5wt% NaCl, or a Hg/HgO/20wt% KOH 

reference electrode when hydrogen charging in 0.1 M NaOH. The counter electrode was 

graphite, because our previous work indicated that a graphite electrode was inert with respect 

to electrolytic hydrogen charging, whereas a platinum counter electrode caused a smaller 

amount of hydrogen to be absorbed by the steel because of the plating of platinum onto the 

steel working electrode [27].  

The Linearly Increasing Stress Test (LIST) has been described previously [25-27, 55]. 

The LIST subjects the specimen, exposed to the environment of interest, to a linearly 

increasing stress until specimen fracture. The LIST is equivalent to a load controlled slow 

strain rate test (SSRT), that is considerably quicker than the SSRT, because specimen fracture 

occurs much earlier, e.g. for a specimen in air, fracture occurs at the maximum load when the 

specimen becomes mechanically unstable and fractures; and the specimen fractures when the 

sub-critical crack reaches a critical size for testing in an environment causing sub-critical 

cracking [58]. The tensile strength, F, and yield and threshold stress, TH, were determined 

using the potential drop method. The reduction in area, RA, was obtained by measuring the 

projected area of the fracture surface. The HE susceptibility index, I, was evaluated as 

follows [25]:  

𝐼 =
𝑅A,air−𝑅A,H

𝑅A,air
 100%                                                                                                        (1) 

where RA,air is the reduction in area in air, and RA,H is the reduction in area in the hydrogen 

charging environment. The value of I can range from 0% to 100%, from no HE susceptibility 

to maximum HE susceptibility due to the complete absence of plastic strain during failure. 

 The conventional tensile tests were conducted using an Instron 4505 universal testing 

machine (UTM) following the ASTM E-8 standard. 

After each mechanical test (i.e. LIST or tensile test), the fractured specimen was 

subjected to fracture analysis. At the end of a test that involved electrochemical charging, the 

fractured specimen was immediately removed from the charging electrolyte to prevent 

corrosion of the fracture surface. The specimen was rinsed in distilled water, blow-dried, 

immersed in EDTA solution for 5 minutes, rinsed with ethanol and blow-dried. Each 

specimen was cut to an appropriate size using an alumina saw, ultrasonically cleaned in a 

4wt% alconox solution for 30 minutes, rinsed in deionized water, and blow-dried. The 
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specimen was mounted on an aluminium stub using a conductive carbon tape, and examined 

using a scanning electron microscope (JEOL 6610 SEM). 

 

2.2. LISTs in 3.5wt% NaCl with applied potentials 

2.2.1. EZn 

Four grades of MS-AHSS (i.e. MS980, MS1180, MS1300 and MS1500) were 

studied. The LIST specimen was fixed into the solution chamber and the chamber was 

mounted on the LIST apparatus. An initial tensile stress equivalent to 20% of the nominal 

yield stress was applied to the specimen. The 3.5wt% NaCl charging solution was poured into 

the chamber, the appropriate reference and counter electrodes were inserted, and a cathodic 

potential equivalent to EZn (-950 mVHg/HgO (-752 mVSHE)) was applied to the specimen for 24 

hours to attain hydrogen saturation throughout the specimen, as verified by our prior 

modelling of the hydrogen profile in the specimen [27]. At the end of the charging period, the 

LIST commenced. An applied stress rate equivalent to the 3 revolutions/h (rph) motor was 

applied on the specimen. The stress rate was determined from the cross-sectional area of the 

specimen and the speed of the servomotor used (e.g. 3 or 30 rph motor), and is provided with 

the results in the appropriate table.  

2.2.2. -1050 mVAg/AgCl 

The two strongest grades of MS-AHSS; namely, MS1300 and MS1500, were used in 

these tests as these showed the most hydrogen sensitivity [25]. The test procedure was as 

described in section 2.2.1, except that (i) the cathodic charging potential applied was -1050 

mVAg/AgCl (-852 mVSHE) and (ii) two stress rates were studied corresponding to the 30 (0.08 

MPa s-1) and 3 rph (0.008 MPa s-1) motors. 

 

2.3. Permeation tests 

The permeation tests were conducted to determine (i) the hydrogen concentrations in 

the MS1300 and MS1500 during charging in the 3.5wt% NaCl at the different potentials, and 

(ii) the effective hydrogen diffusion coefficients. The tests were performed as described 

previously [27] including precharging for 24 h at -1050 mVAg/AgCl in 3.5wt% NaCl. There 

were attempts to do charging at potentials more negative than -1050 mVAg/AgCl (-852 mVSHE). 

However, beyond -1050 mVAg/AgCl (-852 mVSHE), the toxic gas chlorine was evolved, 

probably due to the oxidation of chloride ions at the counter electrode; and thus the tests were 

discontinued. The specimen thicknesses were 1.13 mm for MS1300 specimens and 1.09 mm 

for MS1500 specimens. 
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The permeation transients were as follows: (i) successive decay transients from -1050 

to -950, then -950 to -850 mVAg/AgCl; (ii) successive rise transients from -850 to -950, then -

950 to -1050 mVAg/AgCl; and (iii) full decay from -1050 mVAg/AgCl to the open cell potential.  

The permeation tests were analysed as previously [27]. Permeation transients were 

fitted with the theoretical curves derived from the appropriate mathematical model that 

describes a rise or a decay transient; expressed as follows [69]: 

Rise:               
𝑖p−𝑖p

0

𝑖p
−𝑖p

=
2𝐿

√𝜋𝐷eff𝑡
∑ exp (−

(2𝑛+1)2𝐿2

4𝐷eff𝑡

𝑛=0 )                                                         (2) 

Decay:            
𝑖p−𝑖p

0

𝑖p
−𝑖p

0 = 1 −
2𝐿

√𝜋𝐷eff𝑡
∑ exp (−

(2𝑛+1)2𝐿2

4𝐷eff𝑡

𝑛=0 )                                                  (3) 

 

where 𝑖p is the permeation current during a build-up or decay transient at time, t, Deff is the 

effective diffusion coefficient, L is the specimen thickness, 𝑖p
0  is the initial permeation 

current density, and 𝑖p
  is the steady-state permeation current density at that applied potential. 

The fitted curve yielded the effective hydrogen diffusion coefficient in the steel, Deff. The 

subsurface concentration of hydrogen, CH, at the entry side of the steel during charging in the 

permeation test was evaluated from [69, 70]: 

𝐶H =
𝑖𝐿

𝐹𝐷eff
                                                                                                                                         (4) 

where i is the steady state permeation current density,  L is the steel membrane thickness, 

and F is the Faraday constant (96485 C mol-1). 

 

2.4. LISTs in pH-modified 3.5wt% NaCl 

Only MS1500, which has the highest HE susceptibility, was used in this test. LISTs 

were performed in pH-modified 3.5wt% NaCl at the open cell potential, Ecorr, at commencing 

pH values of 1, 3, 5 and 9. The as-prepared or unmodified 3.5wt% NaCl solution had a pH 

value of 7.4. The pH was modified using analytic grade (i) 32wt% hydrochloric acid (HCl) 

and (ii) sodium hydroxide pellets. The LIST specimen was placed in the charging cell 

together with the charging solution, and pre-charged for 24 h at 20% yield stress. The test 

was performed at a stress rate corresponding to the 30 rph (0.08 MPa s-1) motor. Another test 

was done in 0.1 M HCl solution with pH 1. 

 

2.5. Tensile tests 
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Tensile tests were conducted in (i) air; (ii) in 0.1M NaOH whilst hydrogen charging at 

-1100 mVHg/HgO (-1002 mVSHE), -1400 mVHg/HgO (-1302 mVSHE) and -1700 mVHg/HgO (-1602 

mVSHE); and (iii) at EZn equivalent to -950 mVAg/AgCl (-752 mVSHE) in 3.5wt% NaCl. The 

same charging chamber used in the LIST was adopted for the tensile test. The specimen was 

mounted in the charging chamber then connected to the UTM. The charging solution was 

poured in the chamber, and the electrodes were inserted. A pre-test load was applied on the 

specimen during charging equivalent to 20% of the nominal yield stress of the steel. The 

appropriate charging potential was applied on the specimen for 24 hours. At the end of the 

hydrogen charging step, the tensile test commenced. The applied strain rate was 0.015 

mm/mm/min. This deformation rate was equivalent to 50 MPa s−1 in the initial elastic part of 

the test, which was about six hundred times faster than the stress rate of 0.080 MPa s−1 using 

the 30 rph LIST motor. Due to the absence of a yield plateau, the yield stress, y, was 

obtained at the 0.2% offset strain. The ultimate tensile stress, f, was obtained at the point of 

maximum load, whilst ductility was measured from the % reduction in area, RA.  

The tensile test was carried out under strain control compared with the LISTs, which 

are load controlled. Thus the specimen in a LIST necks and fractures at the ultimate tensile 

strength, whereas there is considerable additional deformation in the tensile test after necking 

at the maximum load. 

An extensometer could not be used in these tensile tests since the charging cell 

prevented mounting the extensometer on the specimen. The extensions were measured from 

the displacement of the crosshead. Experience has indicated that, when extension is taken 

from the crosshead displacement, the gauge length is equivalent to the distance between 

grips. In these tests, the distance between grips was about 75 mm. 
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3.0 Results 

3.1. LIST in 3.5wt% NaCl solution with applied potentials 

Fig. 2 shows typical LIST potential-drop data, consisting of plots of the potential drop 

across the specimen versus the applied stress. The yield or threshold stress, TH, was 

determined as the transition stress corresponding to the significant increase in the slope. The 

fracture stress, F, was determined from the maximum load. Table 2 presents a summary of 

the measured values of TH, the tensile fracture stress, F, the reduction in area, RA, and the 

hydrogen embrittlement index, I, obtained from the LISTs in air, and in 3.5wt% NaCl at the 

stated charging potentials and stress rates. 

 The values of TH and F for the four MS-AHSS evaluated using LISTs in air were 

similar to the values obtained from the steel supplier as listed in Table 1.  

3.1.1. EZn and -1050 mVAg/AgCl 

Table 2 indicates that, for the four steels tested in the LIST in 3.5wt% NaCl at EZn at 

the slowest stress rate (3 rph), the values of TH and F were similar to the values measured in 

air. However, there were changes in ductility that were reflected in the corresponding I value. 

MS980, MS1180 and MS1300 exhibited little change in ductility and had low values I; whilst 

MS1500 showed a significant decrease in ductility as indicated by the higher I value.  

At the more cathodic potential of -1050 mVAg/AgCl (-852 mVSHE), the values of TH 

and F of MS1300 and MS1500 were again similar to the values measured in air. However, 

the two steels showed considerable HE susceptibility, as indicated by a decrease in the value 

of RA and an increase in the value of I. MS1500 exhibited higher I values than MS1300. 

Furthermore, the MS1300 and MS1500 both exhibited higher I values at the lower applied 

stress rate.  

3.1.2. Fracture characteristics  

There were two types of fractures: (i) cup-cone fracture and (ii) shear fracture. 

Representative images of these two fracture modes are shown in Fig. 3.  

Cup-cone fracture was typically accompanied by considerable necking, and indicated 

ductile behaviour. There was cup-cone fracture in the specimens tested (i) in air, or (ii) for the 

steels with minimal hydrogen influence as indicated by low I values (e.g. MS980-Ezn-3 and 

MS1300-E-30). The typical features present in the cup-cone fracture are shown in Fig 4: (i) 

the central fracture region (‘C’) and (ii) the shear lip region (‘S’). The arrows indicate crack 

propagation. The typical fracture morphologies in the ‘C’ region were micro-void 
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coalescence (MVC) dimples, as shown in Fig 4b. In the ‘S’ region there were shallow 

parabolic MVC dimples, as shown in Fig 4c. In some of the specimens, such as MS1500-E-

30, surface cracks were present in the neck region of the cup-cone fracture, but there were, in 

no case, cracks in the uniformly deformed part of the specimen.  

Shear fracture was an indication of more macroscopically-brittle behaviour. This 

fracture mode was also accompanied by some necking and surface cracks near the crack lip, 

but there were, in no case, cracks in the uniformly deformed part of the specimen away from 

the final fracture. The shear fracture occurred for steels with a substantial hydrogen influence 

that correlated with higher I values (e.g. MS1500-E-3, MS1500-Ezn-30 and MS1300-E-3). 

Details of the shear fracture are shown in Fig. 5.  Three fracture zones were identified: 

(i) fracture initiation (‘I’); (ii) fracture propagation (‘P’); and the (iii) final fracture (‘F’) 

region. The ‘I’ region commonly possessed brittle features such as a mix of intergranular, 

transgranular and quasi-cleavage fractures, as shown in Fig 5b. The ‘P’ region consisted of 

shallow, shear MVC dimples, as shown in Fig 5c. The fracture propagated typically at an 

angle of 45o with respect to the direction of the tensile load. The ‘F’ zone, shown in Fig 5d, 

possessed brittle features that were similar to those observed in the fracture initiation zone.  

3.2. Permeation tests 

Fig. 6a shows the transient loop conducted during the permeation test. Fig. 6b shows a 

typical build-up or rise transient curve fitted with the theoretical curve derived using the 

appropriate mathematical model [27, 63]. Table 3 presents the steady state permeation 

current, i∞, the effective hydrogen diffusion coefficient, Deff, and the subsurface hydrogen 

concentration, CH, for MS1300 and MS1500.  

 The values of CH increased with increasingly negative charging potentials. The values 

of CH ranged from 0.024 to 0.137 µg g-1 in MS1300, and 0.014 to 0.115 µg g-1 in MS1500, 

for a potential range of -850 (-652 mVSHE) to -1050 mVAg/AgCl (-852 mVSHE).  The calculated 

mean Deff in MS1300 was 12.3 x 10-7 cm2 s-1, which was slightly lower than that of MS1500 

at 13.2 x 10-7 cm2 s-1.  

3.3. LIST in pH-modified 3.5wt% NaCl 

3.3.1. LIST results 

Table 4 presents the LIST results for MS1500 tested in (i) different pH-modified 

3.5wt% NaCl solution and (ii) NaCl-free pH 1 HCl solution at an applied stress rate of 0.08 

MPa s-1 and at Ecorr. The specimens immersed in the pH 5, 7 and 9 NaCl solutions formed a 

visible red precipitate, attributed to rusting of the steel to form ferric oxide/hydroxide. Some 
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of the precipitates dislodged from the specimen and settled at the bottom of the charging 

chamber. In the pH 1 and 3 NaCl solutions, there were no visible corrosion products at the 

specimen surface. However, there was a considerable amount of gas bubbles at the surface of 

the steel immersed in the pH 1 solutions, attributed to hydrogen evolution at the specimen 

surface as the cathodic partial reaction. 

In most of the tests, both TH and F of MS1500 had values similar to the values 

obtained in air. In contrast, each steel immersed in the two pH 1 solutions (i.e. MS1500-S-

pH1 and MS1500-pH1) had a significant reduction in both TH and F. The measured TH and 

F values of MS1500 in these two tests were almost similar, although there were significant 

differences in the RA and I values. 

Table 4 indicates that, as the pH of the NaCl solution decreased, the ductility of 

MS1500 decreased, and consequently the I value increased. MS1500 immersed in the pH 1 

NaCl solution had the highest I value of 84. The I values of MS1500 at the higher pH NaCl 

solutions; i.e. from pH 3 to pH 7, were significantly lower than that measured in pH 1, and 

decreased from 26 to 2. At pH 9, the I value of MS1500 (I = 8) was slightly higher than in pH 

7 (~2).  

The ductility of MS1500 was appreciably lower in the NaCl pH 1 solution than in the 

NaCl-free HCl solution at the same pH of 1. Consequently, the I value was higher for 

MS1500 immersed in the pH 1 3.5wt% NaCl. There was more than a 50% increase in the I 

value from MS1500-pH1 (I = 54) to MS1500-S-pH1 (I = 84). 

3.3.2 Fracture characteristics in pH-modified 3.5wt% NaCl 

Table 4 summarizes the fracture characteristics of MS1500 in the acidified 3.5wt% 

NaCl. Similar to previous results, MS-AHSS exhibited two fractures modes under these 

charging conditions: (i) ductile, cup-cone and (ii) brittle, shear failure.  

The steels tested in air, and immersed in the pH 5, 7 and 9 3.5wt% NaCl solutions 

underwent ductile, cup-cone fracture accompanied by considerable necking. Typical SEM 

images of these fractures are presented in Fig. 7.  

The steels immersed in both pH 1 solutions (i.e. acidified 3.5wt% NaCl pH 1 and the 

NaCl-free HCl solution) exhibited shear fracture. Fig. 8 presents a comparison of these 

fractures viewed from the transverse side. In the pH 1 3.5wt% NaCl, the shear fracture in 

MS1500-S-pH1 was quite sharp, and without visible necking. In the NaCl-free pH 1 HCl, the 

shear fracture in MS1500-pH1 occurred with some plastic deformation (i.e. some necking).  
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Fig. 9a and 9b shows the details of the shear fracture for the two tests in the pH 1 

solutions. The two fractures possessed typical shear fracture features as described previously: 

(i) ‘I', (ii) ‘P’, and (iii) ‘F’ regions. The ‘P’ region of MS1500-S-pH1 was significantly 

smoother than that of MS1500-pH1. Fig 9c and 9d present a magnified view of the P region. 

MS1500-S-pH1 consisted of shallow and fine MVC shear dimples; whilst MS1500-pH1 

possessed coarse MVC dimples. The MVC dimples in MS1500-S-pH1 were about 4 to 8 

times smaller than MS1500-pH1.  

  Fig. 10 presents the fracture mode for MS1500 immersed in the pH 3 3.5wt% NaCl 

solution at a stress rate of 0.080 MPa s-1; this fracture can be considered mixed cup-cone and 

shear fracture. Fig. 10a presents the top view of the fracture. From this view, the fracture 

propagation history and the features are characteristic of ductile, cup-cone fracture; i.e. (i) a 

central, fracture nucleation region; and (ii) a shear lip region. There were signs of necking. 

The size of the central region was unusually small, and the shear lip region appears blocky 

and jagged. In contrast, the view from the transverse side shows: (i) a coarse, jagged fracture, 

as shown in Fig. 10b; and (ii) surface cracks at 45o indicative of shear fracture, as shown in 

Fig. 10c. Both of these features suggest some brittle behaviour. 

3.4. Tensile tests 

3.4.1. 0.1 M NaOH and 3.5wt% NaCl 

Fig. 11 shows the typical stress-strain curves obtained from the tensile tests. The tensile tests 

in solution were carried out after 24 h hydrogen pre-charging and had simultaneous hydrogen 

charging during the tensile tests. Table 5 presents the values y, F, RA, and I of the four MS-

AHSS charged at (i) different potentials in 0.1 M NaOH and at (ii) EZn in 3.5wt% NaCl. In a 

majority of the tests in 0.1 M NaOH, the y and F of the MS-AHSS were similar to their 

corresponding tensile values in air. Only MS1500 charged at -1700 mVHg/HgO (-1602 mVSHE) 

had some reduction of about 100 MPa in both y and F. The values of the elastic modulus, 

evaluated from the slope of the stress-strain curve for MS1500 in air, and at -1100 mVHg/HgO, 

and -1400 mVHg/HgO were quite similar; the average was about 213 GPa, close to the expected 

value. In contrast, the elastic modulus for MS1500 at -1700 mVHg/HgO was about 185 GPa, 

about a 10% decrease. 

As the charging potential became increasingly negative, the ductility decreased and 

the I values consequently increased. In the 0.1 M NaOH at -1100 mVHg/HgO, (-1002 mVSHE), 

all the MS-AHSS showed no significant reduction in ductility, as reflected by the low I 
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values. At the higher charging potentials of -1400 and -1700 mVHg/HgO (-1302 and -1602 

mVSHE), the four MS-AHSS exhibited significant decreased ductility and increased I values. 

From I of less than 10 at  -1100 mVHg/HgO (-1002 mVSHE), the I increased by more than 6 

times at -1400 mVHg/HgO (-1302 mVSHE). Except for MS1180, there were only marginal 

differences between the I values of the MS-AHSS at -1400 mVHg/HgO (-1302 mVSHE) and at -

1700 mVHg/HgO (-1602 mVSHE). For instance, MS1500 charged at -1400 mVHg/HgO (-1302 

mVSHE) had an I of 51; whilst at -1700 mVHg/HgO (-1602 mVSHE), I was 52.  Similarly at -

1400 mVHg/HgO (-1302 mVSHE), I for MS1180, MS1300 and MS1500 at -1700 mVHg/HgO (-

1602 mVSHE) were 49, 50 and 52, respectively. In fact, all the four steels had similar I values 

at each charging potential. 

In the 3.5wt% NaCl at EZn, the TH, F and RA of the four MS-AHSS were similar to 

their values in air, and consequently all the I values were equal to zero. 

3.4.2. Fracture characteristics in tensile tests 

Similar to previous observations, the ductile and brittle behaviour of the MS-AHSS 

subjected to the tensile test were characterized by cup-cone and shear fracture, respectively. 

Table 5 indicates that a majority of the steels showed ductile cup-cone fracture, such as the 

steels tested in (i) air; (ii) -1100 mVHg/HgO (-1002 mVSHE) and -1400 mVHg/HgO (-1302 mVSHE) 

in 0.1 M NaOH; and (iii) EZn in 3.5wt% NaCl. Fig. 12 presents representative images of these 

cup-cone fractures viewed from the transverse side. Except in the three steels charged at -

1400 mVHg/HgO (-1302 mVSHE), the cup-cone fractures possessed the usual characteristic 

morphologies. Also, all the steels charged at -1100 mVHg/HgO (-1002 mVSHE) had surface 

cracks in the neck region. The population of these cracks increased with the strength of the 

steel.   

All the steels charged at -1700 mVHg/HgO (-1602 mVSHE) and the MS1500 charged at -

1400 mVHg/HgO (-1302 mVSHE) in 0.1 M NaOH exhibited shear fractures. Fig. 13 presents 

typical examples of these shear fractures from the transverse side. All the shear fractures 

were typical, similar in features to what was previously described in 3.1.2. Also, the shear 

fractures were accompanied by different amounts of necking depending on the strength of the 

MS-AHSS. The amount of necking decreased as the strength of the steel increased. 

The fracture features for MS980, MS1180 and MS1300 charged at -1400 mVHg/HgO (-

1302 mVSHE) had a slightly different morphology than the typical cup-cone morphology. Fig. 

14 shows the fractures for MS1180 and MS1300 viewed from the transverse side. While the 

typical cup-cone bears a flat profile when viewed from the transverse side, these steels had an 
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angled fracture profile, indicative of shear fracture. Fig. 15a shows the fracture in the 

hydrogen charged MS1180 viewed normal to the fracture surface, whilst Fig. 15b shows 

details of the fracture of MS1180 tested in air. 

When viewed normal to the fracture surface, the features were typical of cup-cone 

fracture; i.e. (i) middle section consisting of microvoid coalescence (MVC) dimples and (ii) 

shear lip region containing elliptical MVC dimples. Closer inspection at higher magnification 

indicated that the middle section of the fractured steels was different from the typical cup-

cone fracture. Fig. 15c-d shows details of the central region in the hydrogen-charged MS1180 

and Fig. 15e shows the same details for the MS1180 tested in air. Comparing these images, 

the MVC dimples in the hydrogen-charged MS1180 were (i) slightly smaller and shallower 

and were (ii) interspersed with regions of brittle features similar to fisheyes. 

 

4. Discussion 

4.1. Cathodic charging in 3.5wt% NaCl 

The values of TH and F for the four MS-AHSS measured using LISTs in air were in 

good agreement with the corresponding values measured using conventional tensile tests by 

the steel supplier. The marginal differences between the results are attributed to inter-

specimen variability. This indicates that the LIST apparatus is calibrated to give accurate 

measurement of the yield and ultimate tensile strength. 

Except for MS1500, the MS-AHSS showed minimal HE susceptibility after LIST at 

EZn in 3.5wt% NaCl at the lowest stress rate (~3 rph motor). MS1500 had an I of 41, while 

the I of the other steels ranged from 7 to 12. These results are attributed to the low hydrogen 

concentration in the steels for this charging condition, as indicated by the permeation test 

results in Table 3. The results for MS1500 were surprising given the relatively low hydrogen 

concentration in the MS1500 after charging at EZn. Our previous study showed no to little HE 

susceptibility in the four MS-AHSS at similar test conditions, with I values ranging from 0 to 

10 [27]. These tests were done using a platinum electrode. In the previous study, we also did 

a LIST on MS1500 charged at EZn at the lowest stress rate using a graphite electrode, and 

measured an I of 47. This test was repeated in the current study, and MS1500 registered a 

slightly lower I of 41. Clearly, this difference in result may be attributed to the use of 

platinum counter electrode in the previous test. At sufficiently high cathodic potentials, the 

use of platinum counter electrode was found to reduce the hydrogen uptake of the steel 

ACCEPTED M
ANUSCRIP

T



Final.docx Page 15 of 51 

during electrochemical charging as some platinum was electroplated onto the steel surface 

[27]. Graphite electrodes did not exhibit this inhibiting effect on hydrogen uptake.   

Table 2 indicated that the HE susceptibility of MS1300 and MS1500 increased when 

(i) charged at the more cathodic potential -1050 mVAg/AgCl (-852 mVSHE) or when (ii) tested at 

the lower stress rate, consistent with previous results in 0.1M NaOH [25]. The hydrogen 

fugacity, and the subsequent hydrogen uptake of the steel, is expected to increase with 

increasingly negative charging potentials. Consequently, the hydrogen sensitivity of the steel 

increased [51]. Low applied stress rates favour HE since hydrogen is given ample time to 

diffuse to critical sites (e.g. defects) and induce embrittlement [71], although it is emphasised 

that the hydrogen concentration was uniform throughout the specimen volume as shown by 

our previous modelling of the hydrogen distribution in these steels [27]. However, even 

though, the hydrogen global concentration was uniform, the deformation creates micro 

regions (i.e. crack tip) where H must locally diffuse in order to sustain sub-critical crack 

growth, if that is the mechanism of hydrogen embrittlement. This local diffusion process 

takes time and may be favoured by low applied stress rates.  The fact that the H 

concentration is uniform does not mean that HE would take place at any applied stress 

rate. 

 Past studies have reported that HE susceptibility of AHSS correlates with hydrogen 

concentration, whilst hydrogen concentration correlates with strength [33]. However, the 

permeation test results from the current study indicate that the hydrogen concentration, 

measured by CH, did not correlate with the strength. MS1300 had a somewhat higher 

hydrogen concentration than MS1500. This result is consistent with our previous work [27], 

wherein MS1300 showed a higher hydrogen concentration than MS1500 during cathodic 

charging in 0.1 M NaOH.  

In the 3.5wt% NaCl solution, the measured Deff for MS1300 and MS1500 was 12.3 x 

10-7 cm2 s-1 and 13.2 x 10-7 cm2 s-1, respectively.  These values were in good agreement with 

the measured Deff values in the same steels (i.e. 11.3 x 10-7 cm2 s-1 for MS1300 and 10.2 x 10-

7 cm2 s-1 for MS1500) charged in 0.1 M NaOH, as reported in our previous work [27] and are 

within the known scatterband of Deff values for martensitic steels [72]; i.e 1 x 10−7 to 1 x 10−5 

cm2 s-1 at room temperature. 

 The highest hydrogen concentrations in MS-AHSS were measured after cathodic 

charging at -1050 mVAg/AgCl (-852 mVSHE) in 3.5wt% NaCl; i.e. 0.137 µg g-1 in MS1300 and 

0.115 µg g-1 in MS1500. Conder et al. [73] tested hydrogen concentrations in low carbon 
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martensite sheets (LCMS) cathodically charged in 3.5wt% NaCl solution. LCMS are steels 

similar to MS-AHSS in terms of carbon content and microstructure. They measured hydrogen 

concentrations of 0.2 µg g-1 and 1.3 µg g-1 at -900 mVSCE (-654 mVSHE) and -1300 mVSCE (-

1054 mVSHE) respectively. These values are significantly higher than those in the current 

study, despite being in the same cathodic charging potential range. Furthermore, Conder et al 

did not observe any HE susceptibility in the LCMS (f =1400 MPa) at these charging 

conditions, in contrast to the considerable HE susceptibility in MS1500 at EZn (-752 mVSHE) 

and at -1050 mVAg/AgCl (-852 mVSHE). This disparity in results may be due to differences in 

alloy composition or microstructure, as the MS-AHSS used in the present study contained 

some ferrite. 

Hydrogen had no influence on both TH and f but decreased the ductility of the MS-

AHSS after charging at EZn or -1050 mVAg/AgCl (-852 mVSHE) in 3.5wt% NaCl. There were 

similar observations in MS-AHSS after LIST in 0.1 M NaOH at different cathodic potentials 

in our prior study [25].  

The occurrence of cup-cone and shear fracture in hydrogen-influenced MS-AHSS has 

been previously observed [25, 27] and the fracture mechanism of MS-AHSS in both modes 

has been discussed [25]. Nevertheless, it is worthwhile to summarize these mechanisms here. 

In the cup-cone fracture, the central region is the fracture nucleation region. Fracture 

nucleation occurs by the formation and coalescence of micro-voids. As the fracture 

propagates, the load-bearing area decreases. As the growing fracture approaches the surface, 

shear stresses cause the final fracture and the shear lip region is formed. All these fracture 

events occur in the necked region, when the specimen is mechanically unstable in a stress-

controlled test, like the LIST. These fracture events occur rapidly during the final fracture of 

the LIST specimen.  

In contrast, in the shear fracture, fracture nucleation starts at the specimen surface, 

usually at a corner. The fracture extends diagonally at an angle of 45o with respect to the 

direction of the tensile load, creating the characteristic angled fracture profile. As the fracture 

nears the other side of the specimen, the stress is amplified in the remaining load-bearing area 

and exceeds the fracture strength. Consequently, final fracture occurs. Again, the existence of 

necking indicates that these fracture events all occur during final specimen fracture, and 

occur quickly. 

In some of the hydrogen-charged specimens, surface cracks were present in the neck 

region, but there were never any cracks in the uniformly deforming part of the specimen. This 
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indicates that hydrogen influence only manifested during the final stage of fracture when the 

neck was formed, and the specimen was mechanically unstable and undergoing final fracture. 

This observation may also suggest that stress alone may not be sufficient but that dynamic 

strain (deformation) is a more important (and even necessary) factor for the hydrogen 

embrittlement. 

 

4.2 Influence of pH  

Table 4 indicates that, as the pH of the 3.5wt% NaCl solution decreased, the HE 

susceptibility of MS1500 increased, as indicated by the corresponding increase in I values. 

The steel immersed in the pH 1 NaCl solution experienced the highest degree of 

embrittlement with I of 84. 

The results of the test in acidified 3.5wt% NaCl gave two conclusions. Firstly, an acidic 

environment enhances the HE susceptibility of MS1500 in a NaCl solution. This correlates 

well with the predicted reduction of the hydrogen potential as pH decreases [64], and is 

consistent with the observation that copious amounts of hydrogen bubbles were immediately 

formed on the specimen upon immersion. On the other hand, the alkaline NaCl solution was 

actually benign to the steel. In fact, it is known that beyond pH 10, carbon steels form a 

passive layer than protects the steel from general corrosion [53]. Secondly, the presence of 

NaCl in acidic solutions significantly enhances the HE susceptibility of MS1500, as indicated 

by (i) the high I, (ii) the sharp shear fracture, and the (iii) fine and shallow MVC shear 

dimples in MS1500-S-pH1.  

These results indicate that the combination of NaCl and low pH (i.e. < pH 3) leads to 

embrittlement of MS1500, and needs to be avoided in service. Pit and crevice corrosion, 

especially those in marine environment, could be a concern for the steel. 

The MS1500 immersed in the pH 1 HCl solutions exhibited significant reduction in 

both TH and f. The hydrogen-induced solid solution softening has been explained as due to 

the interaction of hydrogen with lattice dislocations [74, 75].  

The hydrogen influence on the fracture characteristic of MS1500 in the acidified 

3.5wt% NaCl was manifest in the transition from cup-cone to shear fracture. Except for 

MS1500-S-pH3, the cup-cone and shear fractures in the steels were typical and followed the 

same mechanisms as described in section 3.1.2.   

The fracture feature for MS1500-S-pH3 possessed a combination of cup-cone and 

shear fracture. The cup-cone mode dominated this fracture, as confirmed by the high RA and 
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low I. Fracture nucleated at the centre via void coalescence that was typical of cup-cone 

fracture. However, the area of the central region was smaller than the typical area for steels 

not influenced by hydrogen. Most of the influence of hydrogen was manifest in the shear lip 

region. The shear lip area was blocky and coarse, which contrasted with the smooth areas for 

typical cup-cone failures. There were also surface shear cracks. This was the first time that 

such morphologies occurred in a ductile cup-cone fracture of MS1500. The most common 

manifestation of hydrogen influence on ductile fracture was the occurrence of surface cracks 

in the neck region.    

 The influence of hydrogen on fracture may occur preferentially near the surface, 

because surface cracks are twice as effective as internal cracks at causing fracture because the 

stress intensity factor for a surface crack is twice that of an internal crack of the same 

geometry [76]. Consequently, most of the brittle shear fractures in MS-AHSS were initiated 

at the surface. The fracture in MS1500-S-pH3 revealed a case where the hydrogen influence 

was not sufficient to initiate fracture nucleation at the surface. This could have occurred 

either due to (i) inadequate hydrogen concentration or (ii) insufficient stress. After fracture 

initiation and growth had occurred in the central region, some conditions appeared that 

favoured HE. The stress in the remaining load-bearing area increased significantly. Hydrogen 

is also known to be released during plastic deformation and fracture [77]. It is thus possible 

that some of the hydrogen in the fractured central region was released in the adjacent areas, 

thereby increasing the hydrogen concentration in these regions. These conditions may have 

collectively contributed to the embrittlement that occurred in the shear lip region.    

 

4.3 EHE of MS1500  

HE of steels is known to be favoured at low applied stress or strain rates, and even 

static stress conditions [54]. It is therefore expected that lower HE susceptibilities are 

measured in the conventional tensile test compared to other mechanical tests with slower 

strain or stress rates such as the SSRT or the LIST. This would explain some of the results 

obtained in the tensile test. For example, the MS-AHSS charged at EZn in 3.5wt% NaCl 

showed some HE susceptibility in the LIST; but showed no hydrogen influence, as indicated 

by zero I values, in the tensile test.  

Table 5 indicated that HE susceptibility of MS-AHSS, at substantial stress rates with 

simultaneous hydrogen charging in 0.1 NaOH, (i) increased with increasingly negative 

charging potentials and (ii) and increased somewhat with increasing strength. This is 

consistent with our previous tests on the four MS-AHSS using the LIST with similar charging 
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conditions [25]. However, the measured HE susceptibilities of the steels in the previous LIST 

study, particularly for MS1180, MS1300 and MS1500 at the lowest stress rate in LISTs, were 

somewhat higher than those measured in the current work. This difference in results of the 

two tests could be attributed to the influence of stress rate on HE susceptibility. As earlier 

mentioned, substantial stress rates can produce lower sensitivity to hydrogen, as hydrogen 

does not have time to diffuse and accumulate to the necessary levels to cause embrittlement 

[71].   

Table 5 shows that, in the current study, all four steel showed significant HE 

susceptibility at substantial stress rates with simultaneous hydrogen charging in 0.1 NaOH 

when charged at -1400 mVHg/HgO (-1302 mVSHE) and at -1700 mVHg/HgO (-1602 mVSHE), and 

there was marginal difference in the HE susceptibility of these four steels under these 

hydrogen charging conditions. Furthermore, there were minimal differences in the HE 

susceptibility of MS980, MS1300 and MS1500. These results suggest that HE susceptibility 

at substantial stress rates reaches a maximum or a plateau beyond a (i) critical strength and 

(ii) critical hydrogen concentration.  

Our previous study found no HE susceptibility in the MS-AHSS tested under IHE 

conditions [27] at the substantial stressing rates as used in this present study. Our previous 

study used the same hydrogen charging as used in the current study (i.e. hydrogen charging at 

-1100, -1400, and -1700 mVHg/HgO in 0.1 M NaOH), but hydrogen charging was conducted 

separately in the LIST apparatus, and then the specimen was transferred to the UTM for the 

subsequent mechanical testing. Our modelling of hydrogen egress indicated that 90% of the 

hydrogen remained in the specimen. Nevertheless, as the hydrogen charging was the only 

difference between the previous tests and the current tests, the lack of HE susceptibility in the 

previous tests is attributed in part to the small amount of egress of diffusible hydrogen from 

the hydrogen-charged steel during the transfer from LIST to UTM in the previous tests. It is 

also possible that the rate of release of hydrogen increased during the mechanical testing [77], 

which further reduced the hydrogen concentration in the prior tests.  

In the current work, hydrogen charging was done in-situ, and the hydrogen charging 

was maintained even during mechanical testing. This kind of test evaluates EHE. Thus, the 

observed HE susceptibility in MS-AHSS in the current study was likely due to the presence 

of considerable hydrogen fugacity during the mechanical tests. In addition, in-situ charging is 

expected to maintain a constant hydrogen concentration throughout the specimen, whereas 

the hydrogen concentration in the pre-charged specimens was expected to be zero at the 

specimen surface, to increase rapidly in a diffusion profile towards the specimen centre, and 
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be essentially unchanged in the specimen centre, the same as during the hydrogen pre-

charging. The higher hydrogen susceptibility under in-situ charging conditions can therefore 

be attributed to the low hydrogen concentrations at the surface for pre-charged specimens. In 

contrast, for in-situ hydrogen charging, the substantial hydrogen concentrations at the surface 

enabled hydrogen fracture events to be initiated at the specimen surface. These results leads 

to the conclusion that the EHE of MS-AHSS can occur more easily and at a lower equivalent 

fugacity than IHE, consistent with previous studies on conventional steels [68]. For IHE to 

occur, the existing hydrogen concentration should be high enough to accommodate for 

hydrogen loss during the mechanical test, particularly at the specimen surface.  

It is also worth stressing that these results indicate that the HE susceptibility of a 

hydrogen charged specimen is lost quickly under IHE conditions, within 10 min, due to the 

lowering of the hydrogen concentration in the surface. The hydrogen embrittlement 

susceptibility can be lost without the requirement for a low hydrogen concentration 

throughout the specimen; it is only necessary for there to be a low surface hydrogen 

concentration. 

Only MS1500 tested at -1700 mVHg/HgO (-1602 mVSHE) in 0.1 M NaOH exhibited a 

reduction in TH and f, in the present tests under EHE conditions The stress-strain curve 

presented in Fig. 11 indicated a decrease in the elastic modulus, E, of the steel; indicated by 

the reduction in the slope of the elastic region. The values of the elastic modulus, evaluated 

from the slope of the stress-strain curve for MS1500 in air, and at -1100 mVHg/HgO, and -1400 

mVHg/HgO were quite similar; the average was about 213 GPa, close to the expected value. In 

contrast, the elastic modulus for MS1500 at -1700 mVHg/HgO was about 185 GPa, about a 10% 

decrease. This observed weakening of the atomic bonds is different to the solid solution 

softening of the MS-AHSS due to hydrogen [74, 75]. Solid solution softening is caused by 

hydrogen lowering the repulsive force between dislocations, making dislocation slip easier 

[74, 78]. In contrast, the decrease in the elastic modulus relates to the decreasing the cohesive 

bond strength between atoms [79-81] so that fracture becomes easier. 

 

4.4 Fracture mechanism at substantial stress rates 

 Similar to observations in the other tests, the full influence of hydrogen on MS-AHSS 

subjected to substantial-applied stress rates was manifested in the occurrence of shear 

fractures.  
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The influence of hydrogen on the ductile, cup-cone fracture is evident in Fig. 12 and 

Fig. 15. Hydrogen induced the formation of surface cracks in the neck region of the steels 

charged in -1100 mVHg/HgO (-1002 mVSHE) in 0.1 M NaOH. The increase in the number of 

these cracks with increasing strength is consistent with increasing strength correlating with 

increased hydrogen sensitivity. Hydrogen also induced the formation of brittle fracture events 

that were manifest as fisheyes interspersed with the MVC dimples present in the central 

fracture initiation region.  

This was our first case where hydrogen had clearly influenced the central crack 

initiation region in a cup-cone fracture. In our past work, fisheyes were present in the shear 

fracture of the two strongest MS-AHSS; namely MS1300 and MS1500, for LIST at the 

highest hydrogen fugacity and at the slowest stress rate [25]. These fisheyes were mostly 

found in the fracture propagation region, also interspersed with MVC shear dimples and 

surrounded by MVC dimples. One conclusion derived from those observations was that 

fisheye formation was favoured at slow stress rates, as slow rates allow hydrogen to diffuse 

into critical parts and cause embrittlement. Alternatively, fisheyes may be associated with a 

process similar to solid solution softening by hydrogen, which must be associated with the 

rearrangement of major dislocation arrangements by hydrogen to cause increased plasticity 

and to decrease the yield stress, which were experimentally observed to be slow processes. 

Similarly, fisheyes may be associated with such hydrogen caused dislocation rearrangement, 

although it is stressed that the actual fisheye formation was an extremely fast process that 

competed with the final ductile fracture process when the specimen was mechanically 

unstable and was actively undergoing final fracture.  

In contrast, in the current study, the fisheyes were (i) also found in the softer steels 

(MS980, MS1180 and MS1300) and (ii) occurred at much higher stress rates. In light of these 

new observations, a review is needed of the mechanism of (i) hydrogen-influenced cup-cone 

fracture of MS-AHSS and (ii) fisheye formation at substantial stress rates. In our prior study 

where there were fisheyes under testing conditions of low applied stress rates, the fisheyes 

occurred during the fracture propagation stage of the shear fracture. These fisheye fracture 

events occurred in competition with the overall ductile micro-void coalescence processes. It 

is expected that there was a similar situation in the present study where the brittle fisheye 

fracture processes were occurring simultaneously with the ductile micro-void processes. 

At this point, we propose a mechanism for fisheye formation during the fracture 

initiation stage. At the point of maximum load, since no fracture nucleation occurred at the 

surface due to lack of hydrogen influence, then microvoid nucleation and coalescence 

ACCEPTED M
ANUSCRIP

T



Final.docx Page 22 of 51 

initiated in the centre of the specimen. Hydrogen is also known to enhance dimple formation 

since it can induce localized plasticity [82]. As MVC dimples coalesce, the hydrogen released 

by the dimples accumulates locally and reaches a critical concentration. Consequently, brittle 

fracture occurs in these hydrogen-enriched zones and creating the ‘fisheye’ structure that was 

interspersed with the MVC dimples, and surrounded by MVC dimples. 

It is clear that when the hydrogen concentration exceeds the critical amount in MS-

AHSS, hydrogen embrittlement occurred as manifested by the typical shear fracture. In this 

case, the fracture often started at the surface (assumed at a stress concentrator), then 

propagated across the specimen to cause specimen rupture. This occurred for MS1500 

charged at -1400 mVHg/HgO (-1302 mVSHE). However, for the same charging condition, 

MS980, MS1180 and MS1300 did not exhibit shear fracture, but instead, these three steels 

exhibited the hydrogen influenced cup-cone fracture presented in Fig 15, despite having I 

values almost the same as those of MS1500. This behaviour could be due to the difference in 

hydrogen sensitivity of the steels. It is known that as steels become stronger, the critical 

hydrogen concentration to cause HE decreases [54]. It may also be argued that the difference 

could be due to a difference in the hydrogen concentration of the steels. However, our past 

work has already proven that (i) there was no significant difference in the hydrogen 

concentration of the four MS-AHSS, and (ii) there was no correlation between the hydrogen 

concentration and the mechanical strength of the steels [27]. It could also be related to the 

ease with which hydrogen can initiate cracks at the ultimate tensile strength of the steel. 

It needs to be considered that in our previous LIST test of MS1300 at -1400 mVHg/HgO 

(-1302 mVSHE) and at 30 rph [25], the steel exhibited almost similar HE susceptibility (I = 

53) but with shear fracture. This was in contrast to the cup-cone fracture in the current study, 

and implies that the occurrence of shear fracture was also influenced by the stress rate.  

 

5. Conclusions 

1.  There was minimal influence of hydrogen for MS980, MS1180 and MS1300 in the LIST 

in 3.5 wt% NaCl at EZn, (-950 mVAg/AgCl (-752 mVSHE)), whereas MS1500 showed some 

HE susceptibility for this test condition.  

2.  The HE susceptibility of MS1300 and MS1500 was increased at the more negative 

potential of -1050 mVAg/AgCl (-852 mVSHE) in 3.5 wt% NaCl, and was increased at the 

lower applied stress rate.  
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3.  The hydrogen concentration of MS1300 and MS1500 increased with increasingly 

negative applied potential in 3.5 wt% NaCl. However, there was no clear correlation 

between hydrogen concentration with the mechanical strength of the two steels. 

4.  The influence of hydrogen on MS1500 increased with decreasing pH in 3.5 wt% NaCl. 

At the same pH, the presence of NaCl increased HE susceptibility. The combination of 

NaCl and a critically low pH could cause HE in MS-AHSS. 

5.  At substantial stress rates and high hydrogen fugacity, considerable HE susceptibility 

occurred in the four MS-AHSS. MS1500 with in-situ hydrogen charging at -1700 

mVHg/HgO (-1602 mVSHE) in 0.1 M NaOH showed significant solid solution softening by 

hydrogen (lowering of yield strength by 100 MPa) and a decrease of elastic modulus by 

10%. 

6.  There was some degradation of mechanical strength (i.e. TH and f) of MS-AHSS (i) in 

the pH 1 solutions, and (ii) at substantial stress rates at the most negative charging 

potential in 0.1 M NaOH.  This is attributed to solid solution softening by hydrogen. 

7.  Hydrogen influenced (i) the fracture initiation in the cup-cone fracture in MS1500 

immersed in pH 3 3.5 wt% NaCl, and (ii) and the final fracture in the cup-cone fracture 

in M980, MS1180 and MS1300 charged at -1400 mVHg/HgO (-1302 mVSHE) at substantial 

stress rates. This manifested as fisheyes present in the central fracture initiation region, 

and the formation of coarse and jagged fractures in the shear lip region. 
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Fig. 1. Schematic of a LIST specimen. Dimensions are in mm. 

The specimen thicknesses were: (i) 1.5 mm for MS980, (ii) 

1.70 mm for MS1180, (iii) 1.20 mm for MS1300, and (iv) 

1.18 mm for MS1500   
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Fig. 2. Typical plots of potential drop versus stress obtained 

from a LIST.  The threshold stress, 
TH

, was determined as the 

transition stress corresponding to the significant increase in 

the slope. The two plots have been displaced vertically for 

ease of viewing. 
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Fig. 3. (a) A typical ductile cup-cone fracture  (specimen: 

MS1500-A-30 tested in air) and (b) a typical shear fracture 

(specimen: MS1500-E-3 tested in 3.5wt%NaCl). The arrow 

shows the direction of the applied tensile load. The mean 

thickness of the MS1500 specimen was 1.18 mm. 
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Fig. 4. (a) Normal (or top) view of a typical cup-cone 

fracture; the arrows show the fracture propagation directions. 

High magnification images show details of (b) the central (C) 

region and (c) shear lip (S) region consisting of round and 

parabolic MVC dimples, respectively. (Specimen: MS1500-A-

30 tested in air).  
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Fig. 5. (a) Normal (or top) view of a typical shear fracture. 

The arrows show the fracture propagation directions. High 

magnification images show details of (b) the fracture initiation 

(‘I’) region with a mixture of intergranular and quasi-cleavage 

fracture features; (c) fracture propagation (‘P’) region 

consisted of shallow shear MVC dimples; and (d) final 

fracture (‘F’) region consisting of brittle features similar to 

those in region “I”. (specimen: MS1500-E-3 tested in 3.5wt% 

NaCl).  
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Fig. 6 (a) A typical permeation transient loop obtained from 

the permeation tests using MS1500 steel. The solutions in the 

entry cell and exit cell consisted of 3.5 wt% NaCl and 0.1 M 

NaOH, respectively. The permeation transients were as 

follows: (i) successive decay transients from -1050 to -950, 

then -950 to -850 mV
Ag/AgCl

; and (ii) successive rise transients 

from -850 to -950, then -950 to -1050 mV
Ag/AgCl

. The arrows 

indicate the time at which the new constant potential was 

applied to the hydrogen entry side of the permeation 

specimen. The permeation transient measured the current 

density at the exit side of the permeation specimen (which 

represents the flux of hydrogen, which had permeated through 

the specimen. (b) An experimental rise permeation transient (-

850 to -950 mV
Ag/AgCl

) fitted to the appropriate mathematical 

model.  
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Fig. 7. Cup-cone fractures for MS1500 in the 3.5wt% NaCl 

solution at (a) pH 5, (b) pH 7, and (c) pH 9. 
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Fig. 8. Comparison of the shear fractures for MS1500 in the 

(a) pH 1 3.5wt% NaCl solution and in the (b) NaCl-free pH 1 

HCl solution.  
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Fig. 9. Comparison of the shear fracture for MS1500 in (a) the 

NaCl-free pH 1 HCl solution and (b) pH 1 3.5wt% NaCl 

solution. Details of the ‘P’ region for (c) MS1500-pH1 and (d) 

MS1500-S-pH1.   Arrow shows direction of crack 

propagation. . 
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Fig. 10. Details of the fracture surface for MS1500 after LIST 

in pH 3 3.5 wt% NaCl solution at a stress rate of 0.08 MPa s
-1

; 

viewed (a) normal to the fracture surface, and from (b) the 

wide transverse side and (c) the short transverse side. This 

fracture possessed a mix of cup-cone and shear fracture 

features 
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Fig. 11. Stress-strain curve for MS1500 in air, and with 

precharging and simultaneous in-situ hydrogen charging at -

1100, -1400 and -1700 mV
Hg/HgO

 in 0.1 M NaOH 
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Fig. 12. Cup-cone fractures in tensile test specimens as 

viewed from the transverse side: (a) MS980 and (b) MS1500 

charged at E
zn

 in 3.5 wt% NaCl. (c) MS980 and (d) MS1500 

charged at -1100 mV
Hg/HgO

 in 0.1 M NaOH; all showing 

surface cracks in the neck region. 
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Fig. 13. Fracture images of (a) MS980, (b) MS1180, (c) 

MS1300 and (b) MS1500 all charged at -1700 mV
Hg/HgO 

in 0.1 

M NaOH. The view is from the transverse side. All the  

fractures were shear, but accompanied by decreasing amounts 

of necking with increasing strength of the MS-AHSS. 
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Fig. 14. Details of the fracture of (a) MS1180 and (b) MS1300 

charged at -1400 mV
Hg/HgO 

in 0.1 M NaOH viewed from the 

wide transverse side. These specimens possess a shear fracture 

profile but with a fracture mode that was akin to a cup-cone 

fracture 
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Fig. 15. Details of the fracture surface of  MS1180 (a) charged at -

1400 mV
Hg/HgO 

in 0.1 M NaOH compared with the same steel tested in 

(b) air. Arrows shows crack propagation directions. Magnified images 

of the central region of : (c-d) hydrogen charged MS1180 consisting 

of a mix of MVC dimples interspersed with circular brittle regions 

similar to fisheyes, and (e) MS1180 in air consisting of typical MVC 

dimples.  
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Table 1 Chemical composition (in wt %), microstructural composition (in %), and 

mechanical properties of the MS-AHSS. 

Steel 

designat

ion 

C Si M

n 

S P Al Ti Cr % 

martens

ite 

%   

ferrit

e 

Yield 

stress, 

MPa 

Tensile 

stress, 

MPa 

ef, 

% 

MS980 0.1

2 

0.

37 

1.

63 

<0.

01 

<0.

01 

0.0

3 

0.0

4 

0.0

2 

70 30 883 1070 5 

MS1180 0.1

5 

0.

37 

1.

64 

<0.

01 

<0.

01 

0.0

3 

0.0

3 

0.0

2 

84 16 1176 1355 3 

MS1300 0.1

5 

0.

39 

1.

67 

<0.

01 

<0.

01 

0.0

4 

0.0

3 

0.0

1 

90 10 1108 1367 2.9 

MS1500 0.1

9 

0.

36 

1.

51 

<0.

01 

<0.

01 

0.0

4 

0.0

3 

0.0

2 

92 8 1326 1512 2.4 
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Table 2 LIST results for different MS-AHSS in (a) air or in (b) 3.5wt% NaCl solution, 

at the two charging potentials: (i) EZn = -950 mVAg/AgCl (-752 mVSHE) and (ii) -1050 

mVAg/AgCl (-852 mVSHE). The applied stress rates are given and were equivalent to those 

produced by the 30 (intermediate) and 3 (slow) rph motors. Unless otherwise noted in 

‘Remarks’, fractures were ductile, accompanied by necking and cup-cone fracture, and 

MVC dimples present on fracture surface. n/a means not applicable.   

Speci

men 

design

ation 

E

nv

ir

on

m

en

t 

Pote

ntial

, 

mVA

g/AgCl 

App

lied 

stres

s 

rate, 

MPa 

s-1 

Thre

shold 

or 

yield 

stres

s, 

TH, 

MPa 

(±5) 

Fract

ure 

stress

, 

UTS, 

F, 

MPa 

(±2) 

Redu

ction 

in 

area, 

RA, 

% 

Hydro

gen 

embrit

tlemen

t 

index, 

I 

Remarks 

MS980-

A-30 

Ai

r 

n/a 0.06

4 

910 1040 73 n/a  

MS118

0-A-30 

Ai

r 

n/a 0.05

4 

1170 1342 71 n/a  

MS130

0-A-30 

Ai

r 

n/a 0.08

0 

1120 1308 65 n/a  

MS150

0-A-30 

Ai

r 

n/a 0.08

0 

1310 1518  61 n/a  

MS980-

Ezn-3 

N

aC

l 

-950 0.00

64 

900 1010 68  7 . 

MS118

0-Ezn-3 

N

aC

l 

-950 0.00

54 

1175 1310 66 7  

MS130

0-Ezn-3 

N

aC

l 

-950 0.00

80 

1180 1350 57 12  

MS150

0-Ezn-3 
N

a

C

l 

-950 0.00

80 

1320 1496 36 41 Shear fracture 

accompanied by 

some amount of 

necking.  

MS130

0-E-30 

N

aC

l 

-1050 0.08

0 

1105 1296 58 11  

MS130

0-E-3 
N

a

C

l 

-1050 0.00

80 

1085 1298 34 48 Shear fracture 

accompanied by 

some amount of 

necking. 
MS150

0-E-30 

N

aC

l 

-1050 0.08

0 

1260 1490 53 13 Ductile; 

necking and 

cup-cone 

fracture, but 

with shallow 

surface 

fractures in the 

neck. 
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MS150

0-E-3 
N

a

C

l 

-1050 0.00

80 

1240 1526 13 79 Sharp shear 

fracture without 

necking. Surface 

fractures found 

near fracture lip. 

 

 

 

 

Table 3 Deff and CH for MS1300 and MS1500 obtained from decay and rise transients in 

the permeation experiments. The solutions in the entry cell and exit cell consisted of 3.5 

wt% NaCl and 0.1 M NaOH, respectively. 
Specime

n 

Applied potential, 

mVAg/AgCl 

Thickness, 

mm 

i, A 

cm-2 

Deff, cm2 s-1 CH, ug g-

1 

MS1300 Start at -1050 1.13 1.40  0.137 

 -950 (decay)  0.84 13.0 x 10-7 0.082 

 -850 (decay)  0.24 15.5 x 10-7 0.024 

 -950 (rise)  0.51 12.0 x 10-7 0.049 

 -1050 (rise)  0.73 8.8 x 10-7 0.070 

    Ave: 12.3 x 

10-7 

 

      
MS1500 Start at -1050 1.09 1.09  0.115 

 -950 (decay)  0.43 13.0 x 10-7 0.046 

 -850 (decay)  0.13 15.0 x 10-7 0.014 

 -950 (rise)  0.51 15.5 x 10-7 0.054 

 -1050 (rise)  0.73 9.2 x 10-7 0.077 

    Ave: 13.2 x 

10-7 

 

 

 

 

 

 

 

 

ACCEPTED M
ANUSCRIP

T



Final.docx Page 49 of 51 

 

 

 

Table 4 LIST results for MS1500 steel in (i) air, (ii) acidified 3.5 wt% NaCl, and (iii) 0.1 M 

HCl solution, at the open circuit potential, Ecorr. The applied stress rate was 0.080 MPa s-1. 

Unless otherwise noted in ‘Remarks’, fractures were ductile, accompanied by necking and 

cup-cone fracture, and MVC dimples present on fracture surface. n/a means not applicable. 

Specimen 

designati

on 

Environ

ment 

Threshol

d or 

yield 

stress, 

TH, 

MPa 

(±5) 

Fracture 

stress, 

UTS, f, 

MPa 

(±2) 

Reduct

ion in 

area, 

RA, % 

Hydrogen 

embrittle

ment 

index, I 

Remarks 

MS1500-A Air 1275 1470 61  n/a  
MS1500-S-

pH1 

3.5 wt% 

NaCl 

1070 1266 10 84 Sharp shear fracture without necking. 

MS1500-S-

pH3 

3.5wt% 

NaCl 

1210 1340 45 26 Mixed shear-ductile fracture with 

some amount of necking. Surface 

cracks in the neck area. 

MS1500-S-

pH5 
3.5wt% 

NaCl 

1220 1422 55 10 Cup-cone fracture with necking but 

with some surface cracks in the neck 

area. 

MS1500-S-

pH7 
3.5wt% 

NaCl 

1265 1430 60 2  

MS1500-S-

pH9 
3.5wt% 

NaCl 

1240 1476 56 8  

MS1500-

pH1 
0.1 M 

HCl 

1090 1270 28 54 Sharp shear fracture with small 

amount of necking. Small surface 

cracks near fracture lip. 
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Table 5 Tensile test results for different MS-AHSS in (i) air, (ii) 0.1 M NaOH, and (iii) 

3.5wt% NaCl. The applied strain rate was 0.015 mm/mm/min. Unless otherwise noted 

in ‘Remarks’, fractures were ductile, accompanied by necking and cup-cone fracture, 

and MVC dimples present on fracture surface. n/a means not applicable. *Potential was 

measured versus Ag/AgCl/sat KCl. 

Specimen 

designati

on 

Enviro

nment 

Poten

tial, 

mVHg

/HgO 

Yield 

stress,y 

MPa 

(±5) 

Fracture 

stress, 

UTS, f 

, MPa 

(±2) 

Reduc

tion in 

area, 

RA, % 

Hydrog

en 

embrittl

ement 

index, I 

Remarks 

MS980-A Air n/a 895 1105 72 n/a  
MS980-

H1100 

0.1 M 

NaOH 

-1100 910 1160 67 6 Cup-cone fracture with 

some cracks in the neck 

region. 
MS980-

H1400 
0.1 M 

NaOH 

-1400 900 1090 41 42 Cup-cone fracture with 

brittle features at the core. 

Some cracks in the neck 

area. 
MS980-

H1700 

0.1 M 

NaOH 

-1700 890 1130 40 43 Shear fracture with some 

amount of necking. 

MS1180-A Air n/a 1170 1310 70 n/a  
MS1180-

H1100 

0.1 M 

NaOH 

-1100 1190 1375 65 7 Cup-cone fracture with 

some cracks in the neck 

region. 
MS1180-

H1400 
0.1 M 

NaOH 

-1400 1190 1360 40 42 Cup-cone fracture with 

brittle features at the core. 

Some cracks in the neck 

area. 
MS1180-

H1700 

0.1 M 

NaOH 

-1700 1180 1370 36 49 Shear fracture with some 

amount of necking. 
MS1300-A Air n/a 1190 1370 63 n/a  
MS1300-

H1100 

0.1 M 

NaOH 

-1100 1200 1400 60 5 Cup-cone fracture with 

some cracks in the neck 

region. 
MS1300-

H1400 
0.1 M 

NaOH 

-1400 1185 1395 34 47 Cup-cone fracture with 

brittle features at the core. 

Some cracks in the neck 

area. 
MS1300-

H1700 

0.1 M 

NaOH 

-1700 1170 1405 31 50 Shear fracture with some 

amount of necking. 
MS1500-A Air n/a 1340 1525 55 n/a  
MS1500-

H1100 

0.1 M 

NaOH 

-1100 1350 1565 53 5 Cup-cone fracture with some 

cracks in the neck region. 

MS1500-

H1400 
0.1 M 

NaOH 

-1400 1335 1535 27 51 Shear fracture with some 

amount of necking; surface 

cracks near fracture lip. 

MS1500-

H1700 

0.1 M 

NaOH 

-1700 1205 1440 26 52 Shear fracture with little 

necking. 
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MS980-

Ezn 

3.5wt% 

NaCl 

-950* 900 1125 71 0  

MS1180-

Ezn 

3.5wt% 

NaCl 

-950* 1190 1330 69 0  

MS1300-

Ezn 

3.5wt% 

NaCl 

-950* 1185 1355 63 0  

MS1500-

Ezn 

3.5wt% 

NaCl 

-950* 1585 1585 56 0  
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