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ABSTRACT

To provide a quantitative cosmological context to ongoing observational work on the formation
histories and location of compact massive galaxies, we locate and study a sample of exception-
ally compact systems in the BoLsHoOI simulation, using the dark matter structural parameters
from a real, compact massive galaxy (NGC 1277) as a basis for our working criteria. We find
that over 80 per cent of objects in this nominal compact category are substructures of more
massive groups or clusters, and that the probability of a given massive substructure being this
compact increases significantly with the mass of the host structure; rising to ~30 per cent for
the most massive clusters in the simulation. Tracking the main progenitors of this subsample
back to z = 2, we find them all to be distinct structures with scale radii and densities repre-
sentative of the population as a whole at this epoch. What does characterize their histories,
in addition to mostly becoming substructures, is that they have almost all experienced below-
average mass accretion since z = 2; a third of them barely retaining, or even losing mass
during the intervening 10 Gyr.
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1 INTRODUCTION

Massive (M, > 10" M) compact (R. < 1.5 kpc) galaxies are ex-
tremely rare in the present-day Universe, several groups estimating
their number density to be currently n < 10~% Mpc—3 (Trujillo et al.
2009; Taylor et al. 2010). As well as for their scarcity, these ob-
jects are of great interest because their structural properties Trujillo,
Carrasco & Ferré-Mateu (2012) are comparable to a large fraction
of the massive galaxy population 10 Gyr ago at a redshift of z ~2
(e.g. Trujillo et al. 2007; Buitrago et al. 2008; Carrasco, Conselice
& Trujillo 2010; Chevance et al. 2012; Szomoru, Franx & van
Dokkum 2012), when compact massive galaxies were significantly
more abundant ( >10~* Mpc~3; Taylor et al. 2010).

As cosmic time has evolved, these galaxies have progressively
disappeared (Stockton, Shih & Larson 2010; Valentinuzzi et al.
2010; Cassata et al. 2011; Poggianti et al. 2013; Damjanov et al.
2014; Hsu, Stockton & Shih 2014). The decline in the number of
these galaxies has been linked with merging Lopez-Sanjuan et al.
(2012); Newman et al. (2012); Oser et al. (2012); Bédorf & Portegies
Zwart (2013); Hilz, Naab & Ostriker (2013); Quilis & Trujillo
(2013); Shankar et al. (2013) and this scenario can explain a large
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number of observations (e.g. Trujillo, Ferreras & de La Rosa 2011,
and references therein).

The recent discovery of a nearby compact massive ‘relic’ galaxy,
NGC 1277, with similar structural properties to typical galaxies
of the same mass at z ~ 2 Trujillo et al. (2014), has opened the
possibility of exploring the properties of this galaxy population in
unprecedented detail, including in particular some hints about the
dark matter halo properties van den Bosch et al. (2012). Having
access to these characteristics is one key to understanding this type
of object in a cosmological context. In fact, we lack knowledge
about the connection of these compact massive galaxies with the
cosmic structures which they inhabit. In particular, which kind of
dark matter halo they occupy and how these haloes evolve with
time.

In this paper, we aim to fill this gap, and address the following
questions. How do these particular dark matter structure properties
compare with the rest of the population? Are they substructures of
larger dark matter haloes or are they isolated objects? How have the
structural properties of these dark matter haloes evolved with time?

We confront these questions from a cosmological perspective by
taking the dark matter structure properties that would be consistent
with our knowledge of this real system (Section 2), and then looking
for structures in a numerical simulation that share these properties
(Section 3.1). These candidate structures thus identified, we can
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then begin asking where they came from and what has dictated their
evolution (Section 3.2).

2 ASSOCIATING COMPACT GALAXIES
AND COMPACT STRUCTURES

We begin by characterizing the properties of one particularly well-
known compact massive galaxy, NGC 1277, described in Trujillo
et al. (2014) to have a stellar mass of M, = 1.2 + 0.4 x 10'' Mg,
half of which is contained within a circularized radius of just
re = 1.2 £ 0.1 kpc. To make the association between real sys-
tems such as this, and the structures in a cold dark matter (CDM)
simulation, we can draw on both empirical, semi-empirical and
theoretical arguments.

Ideally, we might rely entirely on the empirical measurement
of the real system’s mass profile, but unfortunately the profile is
only marginally constrained by direct measurement. However, we
can still note the best-fitting profile parameters, found from a full
analysis of the stellar kinematics by van den Bosch et al. (2012).
These are p; = 0.027 Mpe~ and ry = 26 kpc, where these apply
to the ‘NFW profile’, the standard fitting function of Navarro, Frenk
& White (1995, 1996, 1997) for density as a function of radius (A1).

To use these figures directly to seek analogue structures in CDM-
only simulations is of course to neglect the effects of the formation
of the galaxy itself on the profile. But given the already stated uncer-
tainty in p, and ry, a detailed attempt to analytically reverse-model
the effects of collapse and ejection of the normal matter component
would be inappropriate. Appealing also to numerical work on this
issue, a recent study by Schaller et al. (2014) compared the den-
sity profiles of structures in the hydrodynamical EAGLE simulations
(Schaye et al. 2015) with the equivalent structures from a ‘dark
matter only’ version. Though both r¢ and p; did differ between the
two cases, with standard deviations at the relevant mass range of
about a factor of 2, the expectation change was always close to
zero. There was no clear tendency for the absence, or presence, of
normal matter in the numerical simulations to shift these parameters
systematically one way or other.

To add to these empirical measurements of profile parameters,
we can also use the stellar mass of NGC 1277 to indicate a likely
structure mass range, by appealing to the abundance-matching hy-
pothesis (e.g. Behroozi, Conroy & Wechsler 2010; Moster et al.
2010). In particular, the expected halo mass for a given stellar
mass,! calculated in this way by Behroozi et al. (2010), would as-
sociate our stellar mass range here, M, ~ 0.8-1.6 x 10'' M@, with
halo masses of

M, ~2 x 107-10" Mg, (1)

where this approximate range incorporates both the uncertainty in
M, and the scatter in the mapping to M,.

As well as using the stellar mass as a guide, we can also draw
on standard theoretical arguments which would expect the radial
extent of the final galaxy to broadly reflect the quantity and distri-
bution of angular momentum in the structure in which it formed
(e.g. Fall & Efstathiou 1980; Fall 1983; Mo, Mao & White 1998).
This idea has recently received a boost of empirical support from
Kravtsov (2013), who showed that galactic radii and host structure
radii linked by the abundance-matching ansatz are directly propor-
tional: (R.) &~ 0.015 (Ran) with a scatter of ~0.2 dex (Ryoo being
the radius that encloses 200 times the critical density).

I"as opposed to the expected stellar mass for a given halo mass.
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This correlation would pair a galaxy of R. ~ 1.2 kpc with a
structure of Rypp =~ 80 kpc, which at z = 0 corresponds to My =
200H; R3,/2G ~ 6 x 10'° M, or a virial mass of approximately
M, ~ 10" M. The discrepancy between this mass, and the range
in the preceding paragraph deduced from the stellar mass, is a
reflection of the exceptional properties of NGC 1277.

To reconcile this, we need to go beyond the theory’s application to
mean or representative values. The standard, more detailed version
is that the net specific angular momentum of material is conserved in
the formation of the galaxy. This would mean that a more compact
halo, with more of its mass at smaller radii, leads to a galaxy formed
from material with less angular momentum — and thus more compact
— than others of the same mass.

For the purposes of our exercise here, it would therefore seem
sufficient to consider a category of compact structures whose mass
exceeds the lower limit of the range indicated in equation (1), have
highly centrally concentrated mass distributions, but with limits
chosen such that our real system would be comfortably included in
the sample (based at least on the best-fitting parameters which are
available).

We thus define our sample of interest in terms of characteristic’
or inner density, ps, and total virial mass, M,:

ps > 0.02Mg pc? and M, > 2 x 10" Mg. )

This total inner density value corresponds to a dark matter density
of 0.02(1 — Qy,/2Mm) ~ 0.016, so the best-fitting dark matter inner
density for NGC 1277 would fall within this category by about a
factor of 2. The sample also contains the best-fitting scalelength
by a similar margin, as can be seen from the upper-right panel of
Fig. 1. In terms of concentration parameter, ¢ = r,/r, the criteria
in equation (2) amounts to a selection of about ¢ 2 20.

So, based on all these combined considerations, we have a well
motivated and interesting category of compact, massive structures.
The next step is to locate such structures in a large numerical sim-
ulation and investigate their whereabouts and histories. This now
follows in Section 3.

3 ANALOGUE COMPACT STRUCTURES
IN SIMULATIONS

The following results and figures are taken from the publicly avail-
able catalogues of structures found within the BoLsHOI simulation
(Klypin, Trujillo-Gomez & Primack 2011; Behroozi et al. 2013b,
and references therein) using the halo finding algorithm presented
in Behroozi, Wechsler & Wu (2013a). The simulation is a cubic box
of 250 2~! comoving Mpc containing 20483 particles of mass just
under 2 x 10° M.

Cosmological parameters were chosen to be consistent with the
Wilkinson Microwave Anisotropy Probe five year (Dunkley et al.
2009; Hinshaw et al. 2009; Komatsu et al. 2009) and seven year data
(Jarosik et al. 2011), notably: 70 = 0.7, 2\ = 0.27, @2, = 0.0469,
og =0.82 and n, = 0.95.

2 “Characteristic density’ is the term used by Navarro et al. (1997). The
mean enclosed density for their profile (A1) falls to this value, pg, at a radius
r=0.72rs. As ry ~ 5-107, this density p is representative of a fairly
centralized region, typically just a few per cent of the total volume. Hence
also ‘inner density’ (Bullock et al. 2001; Wechsler et al. 2002, and here).
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Figure 1. The position of compact structures relative to the overall distributions in the BoLsHo! simulation, and to the position of their host structures, where
relevant. The top panels show the M,—r, plane (left) and the ps—rs plane (right) using the same key. Our category of ‘compacts’ are highlighted as dots, their
hosts in circles, and the distribution of the population is indicated with background shading. The mass and density defining our nominal selection criteria (2)
and other relevant loci, as labelled, are highlighted with dot—dashed lines. The star in the upper-right panel indicates the best-fitting profile parameters for NGC
1277. The bottom panels show the projected distributions on to the respective x-axes.

The virial masses, M., and radii, r,, for structures in the simula-
tion are defined by Klypin et al. (2011) relative to the mean universal

matter density at that redshift:

GM, = 1/2A()HQm(1 + 2)°r2,

3)

where A,(z) is the virial overdensity. For the adopted cosmology,

A(0) =360, whichis equivalent to 2y A, (0)

density. The nominal resolution limit of M, ~

et al. 2013a), is comfortably exceeded by all
are concerned with in this study.

3.1 Where are they now?

=97 times the critical

10" M@ (Behroozi
the structures that we

The final distribution of masses, radii and inner densities of

structures in the simulation is shown in

Fig. 1, highlighting

in particular the location of the 346 structures in the volume
(n ~ 7 x 107°Mpc—3) that meet our nominal compact criteria
defined by equation (2). This subsample constitutes the most com-
pact 1 percent of all structures in the same mass range, as can be
appreciated by their location at the very bottom edge of the M,—r

plane, shown in the upper-left panel.
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The upper-right panel shows the p—r¢ plane. The best-fitting
parameters for NGC 1277, indicated with a star, show that these
values would place it inside our compact subsample (though
the limits were motivated by a combination of factors; see
Section 2).

The lower-left panel of Fig. 1 shows the total mass distribution
of the population and the subsample, divided by distinct systems
and substructures. This provides a key result that over 80 per cent of
such compact massive systems are identified to be substructures of
alarger collapsed region (as compared to 8 per cent of all structures
in the same mass range). Furthermore, of the ~20 per cent of these
exceptional systems that are in fact distinct, we note that over half
are found to have passed through larger structures in the past. So, in
total, 94 per cent of the objects in this subsample are or have been
influenced by a larger collapsed region.

This is in agreement with the overall results from this simula-
tion, which showed a trend for substructures to be more compact
on average than distinct systems of the same mass (Klypin et al.
2011, equations 10-11) and with earlier work (e.g. Ghigna et al.
1998; Bullock et al. 2001). It is also in agreement with the ac-
tual location of our case study, NGC 1277, in the massive Perseus
Cluster.
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Figure 2. The distribution of the compact structures in our nominal defini-
tion (highlighted in Fig. 3) as a function of the mass of their host structure
at z = 0. Specifically, for each host structure we find the number of compact
substructures within it and divide by the number of substructures that lie in
the same mass range. Points show the mean of this fraction for all structures
in each host mass bin that contain one or more substructures in the mass
range. Outer, dashed error bars give the standard deviation in this fraction,
and inner error bars indicate the error on the mean (i.e. o/4/n, where n is
the number of host systems in the mass interval which contain substructures
from the given mass range). Systems containing no substructures in the mass
range are not included in the statistics.

The hosts of these compact satellites® are also highlighted in
Fig. 1, and are shown to have very flat distribution in mass from
1013-10" M@ . So given that you have a compact system it is simi-
larly likely to turn out to be in any sufficiently massive host.

The clause here is emphasized because the converse statement,
is not true. Taking a potential host structure at random, it is over-
whelmingly more likely to find one of these compact substructures
if the host is more massive. This is clear when the number of hosts-
of-compacts (hatched area in Fig. 1) is considered as a fraction of
the number of systems in general (solid line above it), which is
rapidly declining. However, this is to some extent a trivial result in
the sense that there are just more objects inside the most massive
clusters. Whatever it is you are looking for, it therefore seems a
good bet that you are more likely to find it there, and compacts are
apparently no exception.

But with this large and detailed catalogue at our disposal, it should
be possible to get a little beyond these two basic statistical effects
and see if — after these have been accounted for — there remains
any other evidence of a preferred environment for this category of
system (i.e. one that is not also the case for systems in general).

For those that are still substructures, we seek some normalization
of probability that gives us a fair sense of their likely whereabouts.
One such normalization is to look at their abundance as compared
with other substructures that lie in the same mass range as they do.
This comparison is shown in Fig. 2.

The result of this calculation is this: if one finds a substructure in
the given mass range (~2 x 10'>~10'"* M), then the probability
of it being from this highly compact category — the most compact
1 per cent of all structures in that mass range — increases from a few
to 30 per cent as a rising function of the mass of the host structure.

There is considerable scatter in the results, as indicated by the
dashed error bars in Fig. 2. This is perhaps to be expected given the
low number statistics involved in the fraction itself; the number of
such massive substructures contained in any one group or cluster is

3 About 10 per cent of the hosts contain two of the compact systems (none
contain three), so there are slightly fewer hosts than there are compact
substructures.
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Figure 3. The distribution of systems in the mass—density plane (left-hand
panel), showing also the projection on to the density axis (right-hand panel).
Solid and dashed lines show the mean and standard deviation of the inner
density of all structures in each mass bin. The dotted line shows the mean
for substructures only.

at most eight. Many hosts in the sample have one or more massive
substructures but no ‘compacts’ (i.e. O per cent) and some have just
one massive substructure which is compact (i.e. ‘100 per cent’).

However, as there are over 2600 such hosts within the simulated
sample, the trend seen in Fig. 2 is statistically significant. This is
reinforced by the solid error bars, which show the much smaller
error on the mean, o//n. Whilst a randomly selected structure
from this mass range is only ~1 per cent likely to be so compact,
a substructure from the same mass range in a 10" M cluster has
about a 10 per cent chance, rising to 20-40 per cent in a 10" M
cluster.

These conclusions should be followed by reiterating that these
figures are specific to our choice of category, that the percentages
given do not include host structures which have no massive sub-
structures, and that 20 per cent of this compact category are in fact
not substructures at all. But, that said, Figs 1 and 2 reveal a great
deal about these systems’ whereabouts in the single, z = 0, halo
catalogue.

Before moving on to higher redshifts, there are a few small points
of interest concerning features of the general distribution of struc-
tures revealed in Fig. 1. The mean scale radius as a function of
mass, in the upper left-hand panels, is not far from tracking a con-
stant mean density solution, but is a little steeper reflecting the fact
that, at low redshifts, less massive haloes tend to be more concen-
trated (Klypin et al. 2011, fig. 5). A specific consequence of this
shows up in the distribution of inner densities, to the right, showing
that all the highest inner densities are found in small, lower mass
systems. A glance at the lower right-hand panel confirms also that
all these very high inner density systems are substructures.

Having mentioned these features, it is worth taking a quick look
at the mass—density plane itself, shown here for reference in Fig. 3.
This first reconfirms the simple point that all the top three orders
of magnitude in inner density (e.g. 2 0.1 M pc™) occur in low-
mass substructures (i.e. < 10'? M), or former substructures. It
also shows the more general feature of decreasing inner density
with total structure mass. The mean varies by a factor of 10 for
systems in general, with a significantly more pronounced variation
of a factor of a hundred seen in substructures.

Fig. 3 also includes a projection of distribution on to the density
axis, as did Fig. 1, but in this case using a linear scale. This empha-
sizes that, notwithstanding these important variations, the general
distribution is quite sharply peaked and most inner densities lie
within an order of magnitude of this overall mode.

MNRAS 449, 2396-2404 (2015)
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Figure 4. The distributions of the structure population at z = 2, using the same axes and key as Fig. 1. The highlighted subsample here are the most massive

progenitors of the systems that were highlighted at z = 0.

3.2 Where did they come from?

Having located and characterized our subsample of compact mas-
sive structures at z = 0, it is immediately interesting to ask what
the basic features of their histories are. This should help explain
what has led to them being such rare objects, or at least assess any
expectations we may have had already from basic structure theory.

As a first step, we can begin by taking the same axes that were
used to characterize the final properties of the structure population
in Fig. 1, but show the state of affairs 10 Gyr previously, at z = 2.
This is shown in Fig. 4.

Regarding first the two general distributions in these planes, these
do not change a great deal from z = 2 — 0. There is, of course,
continued growth of high-mass structure but these new systems fall
on the existing trends with scale radius and density. So the overall
distributions stay the same in that sense.

The extremes of the density distribution become increasingly
populated with time. The low-density end should not be overin-
terpreted as the NFW fits are no longer reliable as r; — r, (see
appendix A). The high-density end, though, is interesting. That this
tail extends as time goes on is perhaps not as expected, and not all
these extreme objects at z = 0 are simply older structures that have
been stuck in a cluster and not evolving; many become more dense
from z = 2 — 0O (see also Fig. 6 and Fig. B1).

This is a good point to revisit our expectations concerning the
relationship between the ‘age’ of structures and their density. The

familiar statement of this relationship is that structures’ ‘character-
istic densities are just proportional to the cosmic density at the time
they “formed ” (Navarro et al. 1997), where formation is taken to be
the point at which ‘half of the final mass is in collapsed progenitors
more massive than 10 per cent of the final mass’. Here, in Fig. 5, we
take the opportunity to compare this statement with the much more
recent simulation results we now have to hand.

Despite using the slightly later time that is recorded in the BoLsHOI
catalogue (the point at which half the peak mass lies in the most
massive progenitor), the correlation found in Fig. 5 does follow
this well-known rule, at least for typical formation redshifts. This
can be seen by comparing the two solid lines in the bottom panel;
one representing the mean half-mass redshift of structures in the
simulation, and the other showing the locus ps o (1 + 7)%, found by
Navarro et al. (1997), normalized to go through the overall mean
values here. The two lines are overlapping from z ~ 2 — 0.5, during
which period the majority (~60 per cent) of all these M, > 10" M
structures attain half their peak mass.

The mean half-mass redshift for all the structures in our final z =0
sample turns out to be z &~ 1.3. The mean for the compact subsample
is somewhat earlier than that, but this is not necessarily what is
making them exceptional. The distribution of formation times is
broadly representative of the population, so we must assume that it
is the later half of their evolution which makes them exceptional by
z=0.
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With this in mind we now turn back to the compact candidates’
locations in Fig. 4, recalling that, at z = 0, these all end up in a very
sparsely populated region at the edge of the distribution in Fig. 1. At
z = 2, however, it seems that their most massive progenitors were
evenly distributed around the mean trends in both planes. In fact,
none of the progenitors fall within the region on the M,—r, plane
which their descendants will eventually occupy, and very few fall
in this region in the ps—rs plane.

The only thing which these main progenitors of this subsample
seem to have in common at all, at this earlier time, is their mass.
Though the spread is considerable (over an order of magnitude) it
is not actually that much greater than the range of their descendants
at z = 0. And, crucially, the centres of both distributions are almost
the same, meaning that the thing these compacts seem to have in
common is very little mass growth since z = 2.

To explore and quantify this, we can look specifically at the
distribution of structures in terms of this property — mass growth —
and see how this correlates with changes in inner density. This is
shown in Fig. 6.

Concerning first the properties of the population in general, this
figure shows a clear anticorrelation between mass change and in-
ner density change. As inner density for a given mass increases
monotonically with concentration (see Appendix B), Fig. 6 can be
interpreted also in this sense; lesser mass growth tending to lead to
a more concentrated final structure, and mass-/oss even more so.

Fig. 6 also shows that the modal* density change is close to
zero. This runs alongside the prominent idea of inside-out struc-

4The mean density change is a little above zero, due to the skew in the
distribution from systems becoming substructures, but the mode is still
close to zero.
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dashed lines show the mean and standard deviation of the density change in
each mass change bin. Our category of compact structures are highlighted
as circles, and as dots if they end up as substructures at z = 2. The peripheral
panels show the projection of the distributions on to the respective axes, with
dotted lines showing the distribution for those which become substructures
by z = 0. The white dashed lines and error bars show the mean and standard
deviation for the compact subsample. The shaded area in the right-hand
panel highlights the fact that only a minority of structures retain their z = 2
inner density to within a factor of 2.

ture growth (Diemand, Kuhlen & Madau 2007; Cuesta et al. 2008),
which can be further corroborated by looking also at the chang-
ing density inside a fixed physical radius, shown for reference in
Appendix B.

But, in particular when mentioning that notion, the scatter in all
directions in this figure cannot be emphasized enough. All four
quadrants of the main panel are occupied. It is fair to say that
the true fraction of the population lying away from the origin is
exaggerated somewhat by the logarithmic scales, but we set this
visualization issue aside by including the simple statistic in the
right-hand panel that a clear majority of structures experience an
inner density change of more than a factor of 2 from z =2 — 0.

Soin this simulated universe, at least, most outcomes are possible.
Some consistency with our general rules for structure formation can
be seen, but they are indeed general; we should not be surprised
when any one particular bit of universe —real or simulated — chooses
not play by them.

This brings us back to the particular bits of the simulation that
constitute our subsample of compacts. As might be expected from
the original selection criteria, they are all in the upper half of the
main panel, all experiencing an increase in inner density between
the two epochs. This increase is in most cases very significant,
averaging over a factor of 10 for the subsample as a whole, and in
several cases exceeding a factor of 100.

Fig. 6 also confirms the feature identified qualitatively in
Fig. 4, that most of the subsample change relatively little in mass
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({log[M,(z =0)/M,(z =2)]) = 0.12) and some 30 per cent actually
decrease. At the same time, about 10 per cent of the subsample ex-
ceed the average mass increase for the population, thus reinforcing
again the point that we should expect exceptions.

4 SUMMARY

This study begins by taking the parameters of a known massive,
compact galaxy and looking for simulated structures in the BOLSHOI
CDM cosmological simulation that would broadly correspond with
these properties. We find that the best-fitting inner density and NFW
scale radius of the real system would indeed put it amongst the most
compact 1 percent of structures in the simulated population from
the relevant mass-range (Fig. 1).

Of these analogue compact structures in the simulation, the great
majority (= 80 per cent) are substructures within larger collapsed
regions at z = 0, and the majority of the rest were substructures in
the past. The hosts at z = 0 are evenly distributed in mass, meaning
— due to decreasing numbers overall — that the probability of finding
such a compact structure in a given host increases with the host’s
mass (Fig. 2)

In terms of the probability of a substructure of this mass being
compact — which is perhaps a more relevant statistic — we find
that this also increases with host mass, the mean rising from 5 —
30 per cent as My increases from 103 — 10'5 M.

We then trace the main progenitors of these compact analogues
back to z = 2, where they are all found to be distinct systems. At this
earlier time, they also had unremarkable profile parameters (Fig. 4),
none of which would fall into the extreme category that would later
define them at z = 0. What the subsample did appear to have in
common was that they are mostly:

(1) distinct systems that become substructures,
(ii) increasing relatively little, or decreasing, in total mass.

The latter conjecture was quantified, finding that the average
increase in total virial mass to be just half the average growth for
the population (Fig. 6). Their inner densities, meanwhile, had all
increased; on average by a factor of 10, and many by over 100.

Concerning the population of simulated structures as a whole, we
find a clear anticorrelation in the simulation between AM, and A py;
mass-loss usually leading to higher inner densities (more centrally
concentrated mass), and late mass accretion leading on average to
lower eventual inner densities (less centrally concentrated).

In conclusion, the evolutionary paths of simulated structures re-
vealed even just by this simple analysis, are much more rich and
varied than our stock phrases on structure formation would encap-
sulate. Even the relatively small volumes of our simulated universes
are now big enough that improbable things exist, and in great num-
bers. So we should not be afraid to seek them in the real one.
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APPENDIX A: CHECKING THE DENSITY
PROFILES

The inner densities referred to in all the figures and analysis in
Sections 3.1-3.2 are taken from the best-fitting NFW profile to
each structure:

Ps

B
(1)

The profiles are constrained to satisfy Mygw(ry) = M, and then the
best-fitting value of r, (given this constraint) is obtained. The inner
density is therefore found from

_ M ! =D A2
T 4wl mi+o—c/(+0 %Zgﬁ' A2

p(r) = (Al

For the analysis to carry weight, it is therefore important to check
whether or not these fits were successful.

One way of assessing this is to find the radius which encloses
2500 times the critical density, 72500, and compute the mass predicted
to lie within this radius according to the best-fitting NFW profile.
Dividing this expectation by the actual mass enclosed, M»sg, then
gives a useful measure of the fit accuracy (i.e. a value of one suggests
a good fit).

The result of this simple assessment for the population of struc-
tures at z = 0 is presented in Fig. A1, showing that the enclosed
mass predicted by the NFW fit is usually within 10 per cent of the
true value, and almost always within ~20 per cent. More quantita-
tively, 98.6 per cent of the structures have a sufficiently good fit to
lie within the limits of the y-axis in Fig. Al; as can be appreciated
by looking at the projected distribution in the right-hand panel.

The compact structures we are particularly interested in are also
representative of this general distribution. The majority of fits to
these profiles lead to very nearly the correct value for M»sp, and
even the few poorer fits are still within 20 per cent of the mark.

Regarding the one or two in every hundred structures that have
significantly different profiles (i.e. lie outside the plot range), these
are evenly distributed with mass and there is no tendency for being
either distinct or substructures. What these ‘non-NFW’ systems do

—— All structures (mean + s.d.)
------ Substructures

Miyrw(Tason) / Masgo
_ _
= [}

T

o
)

Compacts

10" 10" 10% 10 10% 0 5x10* 10°
Virial mass, M, /M No. of structures

Figure Al. An indication of the accuracy of the NFW density profile fit
to the structures in the BoLsHoI simulation, using the ratio of mass enclosed
within 509 according to the fit and the actual mass enclosed. The main
panel shows the variation in the mean and standard deviation of this ratio as
a function of structure mass, and also the mean value for substructures. The
compact subsample are highlighted as dots. The right-hand panel shows the
projected distribution in the ratio for the entire mass range.
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Figure A2. The concentration parameters of simulated structures as a func-
tion of mass, highlighting in particular (shading) those whose profiles are
poorly matched by an NFW profile, i.e. |Mnrw(r2500)/Mas00 — 1| > 0.3.
As in the other figures, solid and dashed lines show the mean and standard
deviation of the entire sample, and the overall distributions are projected on
to the right-hand panel. Our subsample of compact systems are also high-
lighted as dots, showing that they are safely at the opposite extreme of the
distribution from the poor profile fits.

have in common is that they nearly all produce fits with larger
scalelengths, ry — ry.

This is shown in Fig. A2, in which it is also interesting to see the
variation in concentration for the entire sample. The projection in
the right-hand panel confirms that almost all the poorly fitted profiles
are low-concentration systems, approaching or actually hitting> the
limit r; < r, imposed by the fitting function.

The existence of this limit also means that the inner densities
estimated using these profiles will have a forced minimum, slightly
greater than the overall virial overdensity:

1 M,
In2—-1/2 4mr}
This can be seen as the left-hand cutoff in the density distributions

of Figs 1 and 4 (right-hand panels). The cutoff noticeably occurs at
lower density at the lower redshift, due to evolving p,(z).

£0,min = =1.73 ,(_)V(Z). (A3)

APPENDIX B: SCALE DENSITY
AND ENCLOSED DENSITY

Whether any given aspect of structure growth is best understood in
terms of comoving distances, fixed physical distances, or some other
distance, such as ry, that reflects the self-similarity of the structures,
is not always obvious. The issue can be introduced by rewriting the
expression (A2) for the inner density of the NFW profile, in terms
of py, the mean density enclosed within r,:

3¢?
‘In(l4+¢)—c/(1+c)
1.e. the inner density is a function only of the cosmology and of c.
So Fig. 6 can also be understood as showing concentration change
as a function of mass growth.
To help further interpret Fig. 6, we can investigate what is
happening within a fixed physical radius in each structure as it forms,

Ps = Py = ,va(C), B1)

> About 1000 structures in this My > 10'' M sample hit this Timit (i.c.
¢ < 1.1). Of the whole sample, this is barely 1/1000th, so no great concern.
But of the poor profile fits in general, it constitutes about 1/10th.
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the density enclosed by fixed radius, r, being given by

. 1ot — All structures

é 1000 ) ] ---- Substructure at z=0 B(<r1) = 3M\; Sxew (r /1) (B2)

(% 100 ] Compacts amr - few(©)

‘S [JAn where fypw (%) is the function In (1 4+ x) — 1/(1 + x). The change

2 ""--;:’ Il Substructure at z=0 in density enclosed by the original scalelength of the halo, r[z], is

: therefore

. po(< rs[0D) — M(0) farw(clz]) farw(rs[z]/rs[0]) ®3)
ﬁ pA<rdz)  Mu(2) furw(c[O]) Sxew (1)
% The distribution of this ratio is shown in Fig. B1. The key result is
\ 2 that mass growth does — on average — not affect the inner profiles of
\é the population, over 90 per cent of structures preserving the enclosed
— I e I R density within their original scale radius to within a factor of 2.
~N ) Our selection criteria, picking out extremely concentrated ob-
z'\L 2 jects at z = 0, corresponds here to a subsample which do have a
- slight positive mean fixed density increase. But the relative lack of
N growth in mass — as discussed in Section 3 — sets them apart more
g significantly from the population as a whole.

01 1 10 110 100100010°
Mass growth, M, (2=0)/M,(2=2) No. of Structures

Figure B1. Ananalogous figure to Fig. 6, using an identical key but showing
the change within a fixed physical radius for each structure, r5[z = 2] (rather
than the change in scale density, as before). This paper has been typeset from a TX/IATgX file prepared by the author.
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