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ABSTRACT  

Although germ cells from donor rams transplanted into irradiated recipient testes have produced 

donor derived offspring, efficiency is low. Further optimization of recipient irradiation protocols will 

add precision to the depletion of recipient spermatogonia prior to germ cell transplant. Three 

irradiation doses (9,12,15 Gy) were administered to ram lambs aged 14 weeks (Group 1) and 20 weeks 

(Group 2), then testicular biopsies were collected 1, 2 and 3 months after irradiation. At 1 month after 

irradiation of Group 1, only the largest dose (15 Gy) reduced spermatogonia numbers below 10% of 

non-irradiated controls, whereas in Group 2 lambs, each irradiation dose reduced spermatogonia 

below 10% of controls. In both Groups, fewer differentiated germ cells were present in seminiferous 

tubules compared to controls. At 2 months after irradiation, spermatogonia numbers in both Groups 

increased more than sixfold to be similar to controls, whereas fewer differentiated germ cells were 

present in the tubules of both Groups. At 3 months in Group 1, each irradiation dose reduced 

spermatogonia numbers to < 30% of controls and fewer tubules contained differentiated germ cells. 

Lesser expression of spermatogonial genes, VASA and UCHL-1, was observed in the 15Gy group. In 

Group 2, only 12 Gy treated tubules contained fewer spermatogonia. Knowledge of these subtle 

differences between age groups in the effect of irradiation doses on spermatogonia or differentiated 

germ cell numbers and the duration of recovery of spermatogonia numbers after irradiation will aid 

the timing of germ cell transplants into prepubertal recipient lambs.   
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1. Introduction 

 

The germ cell transplant technique in rodents has proved to be a valuable technique to study 

spermatogonia and the stem cell niche (Oatley and Brinster, 2006; Brinster, 2007). Its translation into 

domestic species has introduced a novel option for breeding improvement programs and an alternate 
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method to produce transgenic animals (Hill and Dobrinski, 2006). Successful germ cell transplantation 

with donor derived spermatogenesis and offspring was first described in mice followed a decade later 

by the adaptation of the technique for agricultural animals (Brinster and Avarbock, 1994; Brinster and 

Zimmermann, 1994; Honaramooz et al., 2002; Honaramooz et al., 2003). Although colonization of 

unprepared recipient testes by germ cell transplantation occurs, prior  removal of endogenous germ 

cells should allow for increased colonization of the donor spermatogonial stem cells (Shinohara et al., 

2001; Brinster et al., 2003; Honaramooz et al., 2003).  

Key to adapting the germ cell transplant from rodents to domestic animals is solving issues related 

to scaling up the procedure to physically much larger animals with much greater testis volumes.  

Younger animals of smaller size have, therefore, been preferred as recipients for germ cell transplant 

particularly when testis irradiation is used to deplete endogenous germ cell populations. Several 

studies have used irradiation in rodents and various domestic species to estimate the optimal time for 

germ cell transplantation (Izadyar et al., 2000; Creemers et al., 2002; Schlatt et al., 2002; Izadyar et 

al., 2003; Honaramooz et al., 2005; Oatley et al., 2005; Kim et al., 2006; Trefil et al., 2006; Zhang et al., 

2006). Most studies have proposed, based on the timing of endogenous recovery, that the optimal 

time to perform germ cell transplants in livestock animals is between 1 and 2 months post irradiation 

(Honaramooz et al., 2005; Herrid et al., 2006; Herrid et al., 2011). The majority of studies have used 

large irradiation doses (>5Gy) which are generally needed to deplete spermatogonia stem cells. Large 

irradiation doses must be balanced against the potential to cause long-term sterility. Doses of 9 Gy in 

rats and 12 Gy in mice (Meistrich et al., 1978; Pinon-Lataillade et al., 1991) have resulted in permanent 

sterility. 

The current study in prepubertal rams expands upon earlier transplant studies using pubertal rams 

irradiated with 9 Gy or 15 Gy followed by germ cell transplant 6 weeks later (Herrid et al., 2009). The 

effect of irradiation on seminiferous tubules was not studied specifically although reductions in 

testicular size (scrotal circumference) in the 3 months following irradiation were indicative of reduced 

cellularity within seminiferous tubules and intertubular compartments. To quantify the impact of 

irradiation on seminiferous tubules the current study analysed testicular biopsies taken from pubertal 

ram lambs for 3 months following irradiation.  

2. Materials and methods 

 

2.1. Study design 

Two age groups of animals were randomly selected (n = 12 per group). Group1 contained animals 

aged 14 weeks (± 2 weeks) with mean body weights of 22.6 kg and mean scrotal circumference of 13.4 

cm. Group 2 were older and aged 20 weeks (± 2 weeks) with mean body weights of 27.5 kg and mean 

scrotal circumference of 21.5 cm. Animals from each group were randomly allocated to receive 

irradiation doses of 0, 9, 12 or 15 Gy. Animals were handled and treated according to the guidelines 

of the CSIRO animal ethics committee and located at CSIRO, Armidale, NSW, Australia. 

 

2.2. Selection of animals 

The two age groups were selected to compare the effects of irradiation in young Merino rams 

during early and late puberty. During early puberty (Group 1 animals aged 14 weeks with a scrotal 

circumference range of 13 to 15cm) the most advanced germ cell types within the seminiferous 

tubules are spermatogonia and/or spermatocytes (Skinner et al., 1968). This early puberty group was 
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compared to a late puberty group, (Group 2 aged 20 weeks with a scrotal circumference range of 18 

to 25cm) which corresponds to seminiferous tubules containing active spermatogenesis with 

spermatozoa at the most advanced germ cell stage.  

 

2.3. Testicular irradiation 

The irradiation doses of 9, 12 or 15 Gy were delivered by a 6 MV photon beam produced by a 

linear accelerator at a dose rate of 2.5 to 3 Gy/min.  Each lamb was anesthetized using a 0.1 ml/kg i.v. 

of a   combination of tiletamine and zolazepam (Zoletil 100mg/ml; Virbac Corporation). The diameter 

of the testes was measured, and delivery of irradiation calculated accordingly to deliver a consistent 

dosage throughout the full depth of the testis to within +/- 6.5%, at a dose rate of 2.5 to 3 Gy/min. 

Control animals were not placed inside the linear accelerator and did not receive an irradiation dose.  

 

2.4. Records and sample collection 

At 1, 2 and 3 months after irradiation, the left testis was biopsied. The biopsies were performed 

under general anaesthesia (2% to 3% Isoflurane vapour in oxygen + NO2).  The biopsies were fixed in 

Bouin’s solution for 3 to 6 hours, followed by transfer into 70% alcohol.   

At 3 months after irradiation both testes were removed under general anaesthesia. Testis and 

epididymis weights were recorded.  Testis fluid was collected by an impression smear taken from the 

freshly cut surface of the testis, while fluid from the head and tail of the epididymis was collected and 

transferred to a glass slide.  All slides were examined using a light microscope for the presence of 

spermatozoa.  The presence/absence, motility and morphology of spermatozoa in the testis and 

epididymal fluids were recorded.  

Testis tissue was collected and fixed in Bouin’s solution overnight and transferred into 70% 

Ethanol prior to paraffin embedding and processing. Sections were cut at 5 µm then left unstained for 

immunohistochemistry or stained with haematoxylin and eosin (H&E).   

 

2.5. Histology and immunohistochemistry  

Immunohistochemistry was conducted essentially as described previously using antibody dilutions 

of 1:400 for PGP 9.5/UCHL-1 (Dako, Denmark;(Herrid et al., 2009). Spermatogonia were identified 

using the PGP 9.5/UCHL-1 antibody to count positive cells counted in 100 tubule cross sections. Sertoli 

cells (non-staining) were counted from the same slides. Antigen retrieval was conducted by boiling 

sections in 0.01M citrate buffer (pH 6.0) for 10 min on high power in a microwave oven. After cooling 

and rinsing, the sections were quenched in 1.5% peroxide for 10 min then rinsed in TRIS-buffered 

saline + 0.05% tween-20 (TBST). The primary polyclonal rabbit antibody to PGP 9.5/UCHL-1 was 

applied to sections at a dilution of 1:400 in TBS + 0.5% BSA for 30 min at room temperature. Sections 

were rinsed with TBST, then Envision + Dual Link System peroxidase (anti-rabbit and anti-mouse 

complex, Dako, Denmark) was applied for 30 in. Sections were rinsed in TBST and colour developed 

using peroxidase DAB solution (Dako, Denmark) for 3 to 5 min. Sections were rinsed then 

counterstained with Harris’s hematoxylin (4:1) for 20 seconds, de-hydrated and mounted.  

The H&E testis sections were used to record tubule diameter and examine seminiferous tubules 

by examining 100 tubule cross-sections for the presence of differentiated germ cells (spermatocytes, 

round and elongated spermatids and spermatozoa). Spermatogenic progression score (most advanced 

germ cell type present) was assessed using 25 tubule cross sections to assign tubules to a category 

based on the most advanced germ cell type present within that tubule (Huang et al., 2008). The 

spermatogenic progression score categories were: 0 = Sertoli cell only, 1 = spermatogonia, 2 = 
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spermatocytes, 3 = round spermatids, 4 = elongated spermatids, 5 = spermatozoa. An average score 

was then calculated and used as a repopulation index to indicate onset and progress of recovery of 

spermatogenesis following irradiation.  

 

2.6. Gene Expression for VASA and UCHL-1 – RNA extraction and RT-PCR analysis 

The VASA gene is expressed in all ovine germ cells, including gonocytes, while UCHL-1 is 

expressed by a sub-population of ovine gonocytes and by all ovine spermatogonia (Rodriguez-Sosa 

et al., 2006; Borjigin et al., 2012; Yue et al., 2015).  

Total RNA was extracted from irradiated and control sheep testicular tissue using TRIzol Reagent 

(Invitrogen) following manufacturer’s instructions, with slight modifications.  As slightly larger sample 

sizes were used (100 to 300 mg), samples were firstly cut up into smaller sections using a scalpel and 

homogenized, using glass beads in 1.5 ml of TRIzol Reagent.  After homogenization, 750 µl (half of the 

sample) was removed and transferred into a new Eppendorf tube and another 250 µl of TRIzol reagent 

was added to each tube. The subsequent steps were conducted as directed by the manufacturer. After 

RNA extraction, contaminating DNA was removed from the RNA preparations using TURBO DNA-free 

Kit (Ambion) and confirmed PCR for GFRα1.  All samples were run on an agarose gel and RNA 

concentration was estimated by spectrophotometry (Nanodrop).  For first strand cDNA synthesis, the 

SuperScript III First-Strand System for RT-PCR (Invitrogen) was used according to the manufacturer’s 

instructions.  There was 2 µg of each RNA sample used in the RT reactions and the resulting cDNA 

samples were diluted to a concentration of 10 ng/µl.   

Master mixes for each primer set contained 500 nM each of the forward and reverse primers, 25 

µl SYBR green (Applied Biosystems) and 15.5 µl water for each reaction. Forward primer sequence for 

VASA was AGAAAGTAGTGATACTCAAGGACCA and reverse was TGACAGAGATTAGCTTCTTCAAAAGT. 

For UCHL-1 the forward primer was CCCCTGAAGACAGAGCAAAG and reverse primer was  

CCGACATTGGCCTTCCTG. The master mixes were aliquoted into 96 well PCR plates and 2.5 µl (25 ng) 

of cDNA was added to each well.  Each sample was then divided into 4 x 5 µl replicates in 384 well PCR 

plate using a robot (Biomek 2000, Beckman).  Quantitative PCR was performed using a 7900HT 

Sequence Detection System (Applied Biosystems).   A dissociation stage was added to the RT-PCR and 

was assessed to ensure only one product was being amplified then results from the qPCR reactions 

were normalized against a reference gene (18s or GAPDH)  

 

2.7. Statistical analysis 

Data from each testicular development group were analysed using a linear mixed model analysis 

in Genstat software.  Time and treatment (irradiation dose) were set as fixed effects and animal as a 

random effect.  To obtain multiple comparisons between treatments within each time point, separate 

ANOVA’s were conducted at each time point, and all pairwise comparisons were obtained using the 

Bonferonni procedure.  These analyses were only conducted if the treatment or the treatment by time 

interaction was significant in the overall linear mixed model.  The relative gene expression was 

transformed to a Log base 2 value prior to analysis to achieve better data normality (Reverter et al., 

2003). Multiple comparisons between the overall treatments and time points were made using the 

Bonferonni correction procedure from the initial linear mixed model. Means were considered 

statistical significant if P<0.05. 
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3. Results 

 

3.1. Body and testis measurements 

There was no effect of irradiation treatment on growth rate. In the older animals (Group 2), wool 

loss and thickening of the scrotum occurred from Day 30, at all irradiation doses.  There were no signs 

of inflammation or radiation burns to the skin.  Scrotal wool started to regrow between Days 40 and 

50, leaving only small areas of wool loss after 90 days (Figure 1).   

Following irradiation of the older animals (Group 2) mean scrotal circumference decreased from 

8 to 15 days post irradiation and by Day 40 was 3.5 cm less than controls. Mean scrotal circumference 

then increased to be similar to controls by 3 months post irradiation. After castration at 3 months, 

testicular weights were similar to controls. In Group 1, testicular weights at 3 months post irradiation 

were not significantly less for irradiated testes (33 g ±5, 40 g ±14, 42 g ±6 compared with controls 65 

g ±13; P = 0.137).  

  

3.2. Irradiation effects at 1 month post irradiation 

Each irradiation dose significantly reduced the number of spermatogonia per cross section in both 

Group 1 (1.3 at 15 Gy; 2.6 at 12 Gy; 4.3 at 9 Gy compared with 6.7 in Controls; P<0.05, Table 1, Figure 

2) and Group 2 (0.5 at 15 Gy; 0.7 at 12 Gy; 1.2 at 9 Gy compared with 10.2 in Controls; P<0.05). There 

was no effect of treatment on Sertoli cell numbers or tubule diameter in either group although Group 

2 tubule diameters tended to be less than controls (106–109 μm for 9-15 Gy treatments compared 

with 137 μm in controls, P = 0.053). At 1 month post irradiation, tubules from Group 1 animals 

consisted of a single layer of cells (Sertoli cells and a few spermatogonia) and in some sections, gaps 

between Sertoli cells were observed. 

Stage of spermatogenesis was assessed by recording presence of germ cell stages in tubule cross 

sections. In Groups 1 and 2, fewer irradiated tubules contained differentiated germ cells (Table 1). 

Further analysis of the progression of spermatogenesis in tubules was provided by spermatogenic 

progression scores (Figure 3). In Group 1, scores were less than controls for tubules treated with 12 

Gy and 15 Gy  (P<0.05) and in Group 2 scores were less at each irradiation dose (0.4 at 15 Gy; 0.5 at 

12 Gy; 1.0 at 9 Gy compared with 3.2 in Controls;  P<0.05).  

 

3.3. Irradiation effects at 2 months post irradiation 

In Group 1, the number of spermatogonia per cross section increased approximately six fold in 

irradiated tubules to be similar to controls. For both Groups, the number of spermatogonia per cross 

section were similar to controls (Figures 4, 5). There was also no effect of treatment on Sertoli cell 

numbers. Group 1 tubule diameters were less in 12 Gy- and 15 Gy-treated tubules (P<0.05) but were 

not different in Group 2.  In control animals, there was a numerical decrease in spermatogonia per 

cross section in Group 1 and 2 between the 1- and 2-month biopsies (Group 1 controls from 6.7 to 5.8 

and Group 2 controls from 10.2 to 5.4).  

In Group 1, fewer tubules contained differentiated germ cells after high irradiation doses (52% in 

12 Gy and 66% in 15 Gy compared with 99.3% in the controls). Accordingly, spermatogenic progression 

scores were less in Group 1 tubules (1.5 at 12 Gy, 1.8 at 15 Gy compared with 3.6 in the controls; 

P<0.05). Scores were greater than those at the time of the first biopsy which indicated that 

spermatogenesis had commenced. In Group 1, the most advanced germ cells that were observed were 

round spermatids in the 9 Gy-treatment group, spermatocytes in 12 Gy- and 15 Gy-treated tubules 

and spermatozoa in controls.  
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In Group 2, fewer irradiated tubules contained differentiated germ cells (23% in 15 Gy; 35% in 12 

Gy; 43% in 9 Gy compared with 94% in the controls; P<0.05). Spermatogenic progression scores were 

less for Group 2 treatments (P<0.05).  

 

3.4. Irradiation effects at three months post irradiation 

In contrast to the 2 month evaluation there were less spermatogonia per tubule cross section in 

Group 1 irradiated testes (3.0 at 15 Gy; 2.9 at 12 Gy; 3.2 at 9 Gy compared with 10.0 in the controls; 

P<0.05). Fewer tubules contained either round (1.7% 15 Gy, 11% 12 Gy, 7.7 % 9 Gy compared with 

77% in the controls) or elongated spermatids (2% 15 Gy, 0.3% 12 Gy, 7% 9 Gy compared with 54% in 

the controls). There were no spermatozoa in treated tubules (0% compred with 24% in the controls; 

P < 0.05). Spermatogenic progression scores from all treatments were less than controls (P<0.05), with 

spermatocytes the most advanced germ cell type present in treated tubules, compared to round and 

elongated spermatids for the controls.   

In Group 2, the 12 Gy treatment had less spermatogonia per tubule cross section than controls 

(9.6 compared with 12.7 in controls; P<0.05). A lesser percentage of 15 Gy-treated tubules contained 

spermatozoa (16% compared with 36% for the controls; P<0.05) and 15-Gy treated tubules had a 

lesser  spermatogenic progression score (P<0.05).  

Tubule diameters increased over the 3 month period for both treated and control tubules in Group 

1 (from 92 to 138 µm) and Group 2 (from 115 to 172 µm; P<0.05). Sertoli cell numbers per tubule cross 

section decreased over the 3 month period for both treated and control tubules in Group 1 (from 27 

to 21) and Group 2 (from 26 to 20; P<0.05).  

 

3.5. Gene expression analysis of Group 1 testes 

At 3 months post irradiation relative abundance of VASA and UCHL-1 mRNA in Group 1 was less 

in the 15 Gy but not the 9 Gy treatment group compared to controls (P<0.05). The relative abundance 

of C-kit, PLZf and GRFα1 mRNA had a consistent though non-significant reduction. The relative 

abundance of mRNA of the two Sertoli cell associated genes (SCF and GATA 4) was not significantly 

different between irradiation treatment groups, although SCF expression tended to be greater in the 

15 Gy-treated testes.   

4. Discussion  

 

This study demonstrated testicular irradiation at moderately large doses (12 or 15 Gy) reduced 

spermatogonia numbers by up to 95% in ram lambs. The fewest spermatogonial numbers were 

observed in the 5-month-old Group 2 lambs at 1 month following irradiation. In Group 2 lambs, the 

initial marked decrease in numbers of spermatogonia at 1 month was associated with a 3.5 cm 

reduction in mean scrotal circumference and a trend (P = 0.053) towards lesser tubule diameters. This 

is consistent with studies in mice where irradiation  reduced spermatogonia in mice by 90% 4 weeks 

after irradiation with 12 Gy, in  humans, where 6 Gy reduced spermatogonia numbers by 60%, but 

differs from rats where differentiated germ cells (round and elongated spermatids) remained 3 weeks 

after irradiation with 9 Gy (Rowley et al., 1974; Meistrich et al., 1978; Pinon-Lataillade et al., 1991; 

Zhang et al., 2006).  

Differential duration of effect of irradiation was observed between the two groups of prepubertal 

ram lambs. While spermatogonia numbers decreased precipitously at 1 month following irradiation in 
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both Group 1 and 2 lambs, the inhibition of spermatogenesis was prolonged in the younger Group 1 

lambs, such that 3 months after 12 or 15 Gy irradiation spermatogonia numbers were only 30% that 

of controls. This may indicate that larger irradiation doses were required to reduce the stem cell 

population and then to inhibit the regenerative capacity of the tubules (Erickson, 1976).  In Group 1, 

expression of germ cell genes, VASA and UCHL-1 (PGP 9.5) was also less in the 15 Gy- but not in the 9 

Gy-treated testes. Spermatogonia numbers from older Group 2 lambs recovered earlier after 

irradiation to be 87% to 93% of control values by 3 months after irradiation.  

The initial large reductions in numbers of spermatogonia were not permanent as recovery of 

spermatogonia numbers began at 2 months after irradiation in both groups. The current study used 

lambs aged 14 to 20 weeks and a single delivery of irradiation which builds upon information available 

for young goats aged less than 10 weeks which received fractionated doses of irradiation of 9 Gy 

delivered over 3 consecutive days (Honaramooz et al., 2005). In this previous study, initial reductions 

in spermatogonia numbers were followed 6 months later by variable recovery of spermatogenesis in 

29% to 60% of tubules. In adult rams, a larger proportion of tubules recovered germ cells by 4 months 

following irradiation with 12 Gy (van Vliet et al., 1988; Oatley et al., 2005).   

Differential sensitivity to increasing irradiation dose was observed between Groups 1 and 2 in the 

present study. In the younger Group 1 lambs, each increase in radiation dose resulted in a decrease in 

spermatogonia numbers. Yet in Group 2, each dose resulted in a similar large reductions in 

spermatogonia numbers. At the time of irradiation in the 5-month-old Group 2 animals, 

spermatogenesis would  be well advanced (Skinner et al., 1968). The presence of differentiating 

spermatogonia, which are more sensitive to irradiation, may be an explanation for the increased 

sensitivity of spermatogonia of the older lambs to radiation (Erickson, 1976; van der Meer et al., 1992).  

The pattern of change in spermatogonia number over time differed between the treatment 

groups. Spermatogonia numbers in Group 2 initially decreased rapidly, then increased steadily over 

the next 2 months to be similar to or approach that of controls. Spermatogonia numbers from Group 

1, however, increased at 2 months after irradiation to be similar to controls then decreased again to 

be significantly less than control numbers at 3 months. This pattern of an initial increase followed by 

a later decrease has also been reported in the pre-pubertal and adult rats (Erickson and Blend, 1976; 

Pinon-Lataillade et al., 1991; Kangasniemi et al., 1996). Radiation may have induced a defect in  

spermatogonial stem cells that limited self-renewal order to repopulate depleted seminiferous 

tubules (Beamer et al., 1988; Parreira et al., 1998). Defects in the Sertoli cell could also result in the 

failure of spermatogonia stem cells to self-renew (Zhang et al., 2007).   

Regeneration of spermatogonia numbers in Group 2 over time was remarkable as spermatogonia 

numbers were initially reduced by 88% to 95%. The number of spermatogonia per cross section in the 

15 Gy-treatment-group increased 20 fold from 0.5 at 1 month to 11.1 at 3 months post irridiation. The 

spermatogenic progression score in each Group 2 treatment increased slowly between 1 and 2 months 

then more rapidly in the final month post irridiation. Although recovery of spermatogenesis by 3 

months was rapid in Group 2, less spermatogonia numbers in the 12 Gy-treated tubules and a lesser 

spermatogenic progression score in 15 Gy-tubules indicated recovery was not yet complete. Also, 12% 

of the 15 Gy-treated tubules did not contain differentiated cells which appears similar to the 

proportion of regressed tubules (20%) observed in adult rams treated with a 12 Gy treatment (Oatley 

et al., 2005). Although results of the present study indicated substantial recovery of spermatogenesis 

by 3 months post irradiation, it is possible that complete recovery of all tubules will not occur 

(Meistrich, 1986).         
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The information that spermatogonia numbers are least at 1 month after irradiation then increase 

quickly to be similar to controls after 2 months, has applications for timing of both germ cell transplant 

and for sterilization procedures. To improve the efficiency of ‘sterilization’ of ram lambs, a second 

irradiation dose administered between 1 and 2 months after the initial dose would occur when there 

were mitotically active spermatogonia which are likely to have a greater sensitivity to radiation and 

thus an increased probability of permanent sterility. Temporary reduction in spermatogonia numbers 

also creates an opportune time for germ cell transplantation to take advantage of vacant stem cell 

niches. It is presumed greater available numbers of niches will increase uptake of transplanted germ 

cells (Brinster et al., 2003). The opportunity, however, is likely to be brief in older Group 2 animals as 

by 2 months spermatocytes were again present, followed 1 month later by spermatozoa production 

even at the largest dose of 15 Gy.  The rapid recovery of these animals, indicates that the testicular 

environment can still support spermatogenesis.      

Another factor to consider is the longer term impact of irradiation damage to spermatogonial 

stem cell niches and to Sertoli cell function. Any effect of irradiation on Sertoli cells is important as 

number and function is essential to a healthy seminiferous tubule epithelium (de Rooij et al., 2002).  

In the present study, irradiation did not change Sertoli cell numbers, which indicated the resistance of 

these cells to irradiation in 3 to 5-month-old lambs. While changes to Sertoli cell numbers were not 

observed, Sertoli cell morphology or function may have been impaired with an outcome of less 

support for germ cell differentiation (Kangasniemi et al., 1996; Zhang et al., 2007).  

The radiation doses delivered had minimal side effects on the health of the animals. Skin changes 

were seen only in the older Group 2 animals where loss of wool and thickened skin occurred. This 

effect was short term and recovery was apparent within 3 months of irradiation. In contrast, relatively 

larger irradiation doses (17.5 Gy) intentionally directed within 1 to 2 mm of the ovine skin surface 

causes long term damage to, and loss of, wool follicles (Sorell et al., 1990). In the present experiments, 

radiation delivery and damage to the skin surface was calculated precisely and predicted to be 

minimal. Thus wool loss was temporary in Group 2 lambs and not of practical use for fly strike 

prevention. In Group 1 lambs, there was no apparent wool loss and it is presumed that wool follicles 

were less mitotically active than in the older lambs of Group 2.  

It has previously been reported that there is production of live progeny following testis germ cell 

transplantation of donor cells into irradiated recipient rams. Of the two recipients that produced 

donor derived progeny, one was irradiated at a similar developmental age as the current Group 1 

animals and the other at a similar age as Group 2 animals (Herrid et al., 2009; Herrid et al., 2011). The 

current results from both Groups 1 and 2 support the use of larger doses of irradiation (12-15 Gy) to 

prepare pre-pubertal lambs as recipients for germ cell transplant and are consistent with results of 

previous studies in other species suggesting that  germ cell transplants should be performed prior to 

repopulation of the tubules and between 3 and 4 weeks after irradiation (Shinohara et al., 2001; 

Honaramooz et al., 2005). 
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Legends to figures 

  

Fig 1.   In the sixth week post irradiation, wool loss and thickening of the skin was observed in irradiated 

animals in the older age group (left), but not in control animals of similar age (right). 

 

Fig 2. Irradiation resulted in differential effects over time on the mean number of spermatogonia per 

cross section between Groups 1 and 2. In Group 1, only 12 and 15 Gy significantly reduced 

spermatogonia number by 1 month after irradiation, while at 3 months after irradiation, 

spermatogonia numbers were less in all treated tubules.  In Group 2, each irradiation dose reduced 

spermatogonia numbers to <12% of controls by one month and by 3 months spermatogonia numbers 

were similar to controls in the 9 and 15 Gy treatment groups but less in 12 Gy-treated tubules.  

 

Fig. 3.  Spermatogenic progression scores (mean advanced germ cell type) for control and irradiation 

treatments (9, 12 and 15 Gy) at 3, 8 and 13 weeks post irradiation.  Means with different superscript 

letters within each time point, were different (P<0.05).   

 

Fig 4. Group 1 seminiferous tubules containing spermatogonia highlighted by UCHL-1 antibodies.  

Irradiation doses are in separate rows (e.g., 0 Gy is A,B,C) and columns depict the interval since 

irradiation (e.g., 1 month is A,D,G). Micrographs are magnified at 400x. At 1 month after irradiation, 

12- and 15-Gy treated tubules possess no differentiated germ cells, markedly fewer spermatogonia 

(brown) and an equivalent  numbers of Sertoli cells compared to controls.     

 

Fig 5. Group 2 seminiferous tubules containing spermatogonia highlighted by UCHL-1 antibodies.  

Irradiation doses are in separate rows (e.g., 0 Gy is A,B,C) and columns depict the interval since 

irradiation (e.g. 1 month is A,D,G).) Micrographs are magnified at 400x. At 1 month after irradiation, 

9-, 12- and 15-Gy treated tubules possess no differentiated germ cells, far fewer spermatogonia 

(brown) and an equivalent number of Sertoli cells compared to controls.     

 

Fig 6. Relative abundance of VASA (a) and UCHL-1 (b) mRNA in testicular tissue from control and 

irradiated animals (9 and 15 Gy) at 3 months post irradiation.  Means with different superscript letters 

within each time point are different (P<0.05). 
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Tables 

 

Table 1  
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Numbers of spermatogonia within seminiferous tubule cross sections and percentage of sections 

containing differentiated germ cells for  control (0 Gy) and irradiated treatments (9, 12, 15 Gy) at 1, 2 

and 3 months after irradiation.  

Duration  
after  irradiation 

Group Radiation dose 

  0 Gy 9 Gy 12 Gy 15 Gy 

  Spermatogonia per tubule cross section 
1 month 1 6.7a 4.3ab 2.6b 1.3b 

2 10.2a 1.2b 0.7b 0.5b 
2 months 1 5.8a 5.9 a 4.6 a 4.1a 

2 5.4a 5.2a 4.3a 3.4a 
3 months 1 10a 3.2 b 2.9 b 3.0 b 

2 12.7a 11.8ab 9.6b 11.1ab 
      
  % of tubules containing  differentiated germ cells 
1 month 1 84a 26b 10b 0b 

2 80a 15b 4b 3b 
2 months 1 99.7a 96.7a 52b 66b 

2 94a 57b 36b 13b 
3 months 1 98.3a 66b 68b 50b 

2 100a 96a 96.2a 88a 

*Numbers in the row with different superscripts differ (P<0.05)  
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