
Author’s Accepted Manuscript

Selective Laser Melting of Alumina: A Single
Track Study

Zhiqi Fan, Mingyuan Lu, Han Huang

PII: S0272-8842(18)30477-2
DOI: https://doi.org/10.1016/j.ceramint.2018.02.166
Reference: CERI17568

To appear in: Ceramics International

Received date: 11 December 2017
Revised date: 20 February 2018
Accepted date: 20 February 2018

Cite this article as: Zhiqi Fan, Mingyuan Lu and Han Huang, Selective Laser
Melting of Alumina: A Single Track Study, Ceramics International,
https://doi.org/10.1016/j.ceramint.2018.02.166

This is a PDF file of an unedited manuscript that has been accepted for
publication. As a service to our customers we are providing this early version of
the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting galley proof before it is published in its final citable form.
Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

www.elsevier.com/locate/ceri

http://www.elsevier.com/locate/ceri
https://doi.org/10.1016/j.ceramint.2018.02.166
https://doi.org/10.1016/j.ceramint.2018.02.166


1 

 

Selective Laser Melting of Alumina: A Single Track Study 

 

Zhiqi Fan, Mingyuan Lu
*
, Han Huang

 

 

School of Mechanical and Mining Engineering, University of Queensland, QLD 4072, Australia 

 

*Corresponding author. School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, QLD 4072, 

Australia; mingyuan.lu@uqconnect.edu.au; 

 

Abstract  

Ceramics-based additive manufacturing is a complex process and the solidification 

mechanism and microstructural evolution are currently not fully understood. In this 

work, Al2O3 single tracks were formed using a customised selective laser melting (SLM) 

system equipped with a high power diode laser. The effects of laser energy density 

(LED) on geometry, microstructure and micro-mechanical properties of Al2O3 tracks 

were investigated. To better understand the solidification mechanism, a transient three-

dimensional thermal model was developed for predicting the thermal behaviour of the 

melt pool. The results indicated the use of high LED gave rise to decreased viscosity 

and surface tension of the molten alumina and led to localised melting of the substrate. 

Both, in turn, enabled the formation of a continuous solidified track. The solidified 

tracks were primarily composed of columnar dendrite. When relatively high LED 

(≥25.7 kJ/m) was applied, equiaxed dendrite appeared along the central line near the 
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track surface. The size of dendritic grains decreased with the decreased LED, attributed 

to the increased cooling rate at solidification interface. The micro-hardness of the 

solidified track was found to be inversely proportional to the grain size owning to grain 

boundary strengthening effect. 
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1. Introduction 

Alumina (Al2O3) is one of the most widely used and versatile engineering ceramics, 

owing to its high-temperature strength, high hardness, superior wear and corrosion 

resistance, low density, and bio-inertness [1]. Alumina based ceramics have been widely 

used to make devices and components applied in automotive and aviation industries, 

machining tools as well as medical implants. Conventional forming methods, including 

die pressing, slip casting, extrusion and injection moulding, are used to produce alumina 

ceramics net-shape components. These techniques, however, are commonly followed by 

high temperature sintering and final machining/finishing processes in order to deliver 

the desired component shape with precision [2, 3]. Shrinkage in the course of sintering 

often leads to part distortion and low geometric accuracy [4]. And final machining 

generally requires diamond tooling [5], which is costly and time-consuming. Many of 

those processes can represent up to 80% of the overall manufacturing cost of a ceramic 

product [6]. 
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Selective laser melting (SLM) technique is a promising process for forming components 

with complex shape. In a SLM process, 3D objects are built by selectively fusing 

powder particles using a focused laser beam in a layer by layer fashion, directly from a 

computer aided design (CAD) model [7]. SLM has been widely applied in forming 

metal and polymer parts, whilst SLM for ceramics is still at the very early stage and 

faces great challenges due to their high melting point, low thermal conductivity, low 

thermal shock resistance and inherent brittleness [7, 8]. However, the application of 

SLM into manufacturing of ceramic products has been recently driven by the 

increasingly higher demand for ceramic parts with complex shapes for high 

performance application [9]. 

Previous studies on SLM of ceramics were mainly concerned with the development of 

different strategies for improving laser-powder interaction to achieve high density and 

defect free parts. Effective approaches include the use of laser absorptivity enhancement 

additives [10], preheating [11] and special powder formulation with a eutectic mixture 

(i.e. alumina-zirconia) [2, 12]. In SLM, the quality of the 3D objects is dependent on the 

geometrical stability and site-specific microstructure of each scanned line [13, 14]. To 

produce a part with high density and minimal manufacturing defects, the effects of laser 

processing conditions on the geometries of a single track must also be well understood. 

In addition, rapid cooling and high thermal gradient associated with single track 

formation often result in unique heterogeneous microstructure hence anisotropic and 

varied mechanical properties within the solidified track [15, 16]. However, till now in-

depth understanding of the relationship between process conditions and microstructural 

evolution of ceramic materials processed using SLM is lacking.  
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In this study, alumina single tracks were formed on α-alumina substrates using a high 

energy diode laser (HPDL). The role of laser energy intensity in terms of laser energy 

density (LED) in single track formation was systematically investigated. The 

relationships between the geometry, microstructure and mechanical property of a single 

track and LED were explored systematically. A finite volume method based model was 

also developed to simulate the thermal behaviour of the melt pool in SLM process, 

which was validated using the experimental results.  

2. Methodology 

2.1. Experiment  

2.1.1. Materials  

The powder used in this study was atomised α-Al2O3 powders (99.8% purity) supplied 

by Inno-Trust Tech Co. Ltd, Taiwan. As shown in Fig. 1, the powder particles have 

spherical shapes and the average particle size was 20 μm. The apparent density of the 

powder was approximately 40%. Bulk alumina plates (92% purity, supplied by 

MULTOTEC Australia) were used as substrates. Prior to laser melting, the alumina 

powder was manually spread onto the substrate, and the thickness of the powder layer 

was controlled at approximately 250 μm.   

2.1.2. Selective laser melting 

Alumina single tracks were formed on the substrates using a customized SLM facility 

shown in Fig. 2. This system consisted of a 2 kW continuous fibre coupled diode laser 

(Laserline 2000, Germany), a three-axis motorized stage and a PC controller. The laser 

beam has a wavelength of 980 nm, a spot size of 1.2 mm and a “top-hat” beam intensity 

profile. The laser power (P) and scanning velocity (v) varied from 100 to 400 W with a 
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50 W interval and 300 to 1000 mm/min with a 100 mm/min interval respectively. To 

characterize the combined effect of P and v in SLM, laser energy density (LED, kJ/m) 

was used to characterise the intensity of laser energy input, which is defined as [17]:  

                                                              LED= P / v                                                (1) 

 

2.1.3. Characterization 

The morphology and microstructure of the powder material and solidified tracks were 

characterized using a scanning electron microscope (SEM, JEOL, JSM-7100F, Japan) 

and a confocal optical microscope (OM, Olympus, LEXT OLS4100, Japan). For 

preparing cross-sectional samples, the solidified tracks were sectioned using a M1D15 

diamond saw (Struers, Denmark). The specimens were then embedded in epoxy resin 

using hot-mounting process and polished for metallographic examination.  

Grain size of the solidified materials was quantified using the linear intercept method 

according to the ASTM E112-96 standard [18]. For columnar dendritic grains, the 

primary dendrite arm spacing (PDAS), which is defined as the distance between two 

adjacent dendrite tips, was measured. For each sample, ten measurements were made on 

selected regions and the results were averaged for comparison. Microhardness tests 

were conducted on the polished cross-sections at room temperature using a Vickers 

microhardness tester (Struer, Denmark). The applied load was 2 N and holding time was 

12 seconds.  
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2.2. Numerical modelling 

2.2.1. The heat transfer mechanism 

The interaction between incident laser and alumina powders in a SLM process is a 

complex physical and metallurgical process. When a laser beam irradiates on the 

surface of a powder bed, a significant part of the laser energy is back-scattered into the 

surrounding atmosphere. The remaining concentrated flux of energy will penetrate into 

the powder bed via absorption, transmission and forward scattering. A localized molten 

pool is then formed, which is bonded with the substrate or the previously consolidated 

layer. The in-process heat transfer is controlled by thermal conduction, convection and 

radiation. In the thermal model used in this study, all the three heat transfer mechanisms 

were taken into account. 

2.2.2. Finite volume method (FVM) model 

The geometric model and meshing  

A 3D finite volume method (FVM) model was developed using the FLUENT
®
 software 

(ANSYS Inc, US) for thermal conditions prediction. The model was symmetrical with 

respect to the x-z plane. A half-symmetry model was used in order to reduce 

computation time, as shown in Fig. 3. In the model, dimensions of the powder layer and 

alumina substrate were 7×1.5×0.25 mm
3
 and 7×1.5×0.55 mm

3 
respectively. The powder 

bed was meshed using a uniformly structured meshing method with hexahedral cells of 

50 μm in size. The substrate was meshed using a sweep method, in which the minimum 

size of the hexahedral cell used was 70 μm and the sweep bias was 2. 

To make the complex thermal problem tractable mathematically, the following 

assumptions were applied: (1) the laser energy source had a uniform energy distribution 



7 

 

(i.e. a top-hat profile); (2) the entire powder bed was a homogeneous and continuous 

medium during thermal transmission; (3) heat transfer due to Maragoni convection was 

neglected; (4) the molten pool was flat, and the shrinkage during powder melting was 

not considered; (5) mass and heat loss due to vaporization was neglected. 

Governing equation, initial and boundary conditions 

The heat conduction transfer in SLM process was implemented into the FVM thermal 

model using the governing equation [19]: 

                        
T T T T

c k k k Q
t x x y y z z


          

        
          

                 (2) 

where  is the density (kg/m
3
), c the specific heat (J/kg K), T the temperature (K), and 

k is the thermal conductivity (W/m K) of the powder material, t is time (s), and Q is the 

rate of internal energy conversion per unit volume (W/m
3
). The initial temperature 

distribution for powder-substrate system at t = 0 was treated to be uniform, which was 

expressed as:  

                                                0( , , , ) 298tT x y z t K                                        (3) 

The boundary condition applied on the top surface of the powder bed was given by:  

                                    4 4

0 0( ) ( )
T

k h T T T T q
n




     


                                (4) 

where T is the surface temperature of the powder bed, n is the normal vector of powder 

surface, T0 is ambient temperature, is emissivity,   is the Stefan-Boltzmann constant, 

h is the thermal convection coefficient (W/m
2 

K), and q is the input heat flux (W/m
2
). 
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The volumetric heat source model 

The optical properties of Al2O3 are distinct from those of metallic materials with respect 

to near infrared (NIR) wavelength. While the interaction between NIR laser beam and 

metallic powder are restricted to the vicinity of powder bed surface, the NIR laser 

radiation could penetrate much deeper inside Al2O3 powder media owning to the high 

optical transparency and reflectivity of Al2O3 [20]. Thus, laser absorption of Al2O3 

powder could not be simply modelled as a surface heat flux, and the travel distance of 

laser beam along z axis in alumina powder medium should be taken into accounted. The 

volumetric heat source, which considered laser input spatial distribution, could be used 

in this case, which was described by the Beer-Lamberts law [21]: 

                                                0( , , ) (1 ) ( , ) z

vq x y z R I x y e                             (5) 

where R is the surface reflectivity of alumina, I0 is the collimated laser flux at the top 

surface and α is the absorption coefficient of alumina powders, which could be 

estimated using [20]: 

                                                          0(1 )                                                 (6) 

where 0  is the absorption coefficient of Al2O3 bulk material,  is the porosity of the 

powder bed. I0 is the collimated laser flux at the top surface. Since a top-hat laser was 

utilized in this work, the laser energy was considered to be uniformly distributed within 

the spot size. The collimated laser heat flux I0  was thus modelled as:  

                                                          
2

0 / ( )I P r                                             (7) 
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where P is the laser power, and r is the radius of laser beam. During a SLM process, the 

heat source moved along the x-axis at a pre-set scan speed. The laser deposition region 

at time t was defined as: 

                                               
2 2 2( ) ( )s sx x vt y y r                                      (8) 

where ( sx , sy ) is the coordinates of the initial position of the laser beam centre (at t=0). 

The laser energy deposition outside this area was set to zero during each time step. 

The thermal properties used in the model 

Due to rapid temperature change in SLM, temperature-dependent thermal properties of 

the powder material need to be well defined in the numerical models. Fig. 4 shows the 

dependence of thermal conductivity and specific heat capacity of bulk alumina on 

temperature. The thermal conductivity of a powder material is affected by factors 

including porosity, laser wavelength, packing structure, and size and morphology of the 

powder particles [22, 23]. The effective thermal conductivity of the powder bed can be 

estimated using [24]:                                                                                             

          2 1
1 1 1 1 ln 1

1 1

eff sr r

f ff f f f

s s

k kk k

k kk k k k

k k


 

  
     
                       

  

         (9) 

where   is the porosity of the powder material, ks is the thermal conductivity of the 

bulk material and kf is the thermal conductivity of the ambient atmosphere and kr is the 

thermal conductivity due to the radiation among particles in the powder bed, which is 

expressed as: 
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34r p pk F T D                                                 (10) 

in which σ is the Stefan-Boltzman constant, Dp is the mean diameter of powder particles, 

Tp is the temperature of the particles, and F is a view factor, taken as 1/3. Other physical 

properties of alumina material used in this model are listed in Table 1. 

Phase transformations in the SLM process   

In a SLM process, powder particles were melted when they encountered the high-

energy laser radiation, and then the melt solidified in subsequent cooling. Thus, the 

latent heat of melting need to be taken into consideration for simulating the free energy 

involved in the solid to liquid and liquid to solid phase transformations. To define the 

latent heat, enthalpy can be expressed as a function of temperature [34]: 

                                                             liquidH cdT H                                  (11) 

where  is the density and c is the specific heat capacity of alumina, T is the temperature, 

and liquidH is the latent heat of melting ( liquidH =0 when T<2327 K).   

The user defined memory function (UDMI) in FLUENT
® 

was utilized to identify if the 

temperature of each cell exceeded the melting point at each time step in the recorded 

thermal history. UDMI imposed a threshold for determining the occurrence of phase 

change from solid (powder) to liquid during heating and liquid to solid (consolidated 

bulk material) during cooling. The instantaneous molten pool was isolated from the 

surrounding solid using the 2327 K isotherm and the 3D shape of the melt pool can thus 

be identified and characterized.  
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3. Results from SLM Experiments   

3.1. Process map 

The process map of Al2O3 single tracks is shown in Fig. 5. Three different types of 

tracks were identified, including continuous (A), discontinuous (B), and balled (C) 

tracks. When the laser power used was less than 100 W and the scanning speed was 

higher than 500 mm/min, laser-powder coupling did not occur due to insufficient energy 

input (D). Broken single tracks in Zones B and C were formed attributed to instable 

melt flow behaviour or balling. Further increase in laser power or decrease in scan 

speed led to the formation of stabilized and continuous tracks in Zone A and the 

minimum laser energy density (LED) for obtaining a continuous track was 13.3 kJ/m.   

3.2. Track geometry 

Fig. 6 shows the effects of LED on the geometry and dimensions of single tracks. The 

cross-section profile of a track is defined using width w, depth d and contact angles , as 

shown in Fig. 6 (a). It should be noted that the samples being measured were selected 

from those in Zone A in Fig. 5, i.e. P was in the range of 200 - 400 W and v varied 

between 500 and 900 mm/min. The resulted LED was thus in the range of 13.3 - 48 

kJ/m. As shown in Fig. 6 (b), the track width w increased monotonically with the 

increase in LED, ranging from 1198 μm (at 13.3 kJ/m LED) to 1763 μm (at 48 kJ/m 

LED). Similarly, the track depth d increased with the increase in LED, varying from 

261 μm (at 13.3 kJ/m LED) to 513 μm (at 48 kJ/m LED), as shown in Fig. 6 (c). Fig. 6 

(d) shows that the contact angle decreased from 32.4° to 16.4° as the LED increased 

from 13.3 kJ/m to 48 kJ/m.   
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3.3. Microstructure 

3.3.1 Top surface

Fig. 7 shows the top-surface microstructure of typical single tracks. Two areas of 

interest were examined at high magnifications. They were Zone I, an area within the 

track adjacent to the edge (shown in a-2, b-2, c-2) and Zone II at the centre of the track 

(shown in a-3, b-3, c-3). Two distinct crystalline structures with a range of scales were 

identified, which were columnar and equiaxial dendrites, marked as C and E, 

respectively, in Fig. 7. It’s apparent that the size of both types of grains increased with 

the increase of LED. The size of the columnar dendrites in Zone I were compared in 

Figs. 7 (a-2) to (c-2). It was found that the value of PDAS increased from 2.22 μm (13.3 

kJ/m LED, (a-2)) to 4.01 μm (48 kJ/m LED, Fig. 7(c-2)) with the increasing magnitude 

of LED. In Zone II, a noticeable transition from columnar dendrite to equiaxial dendrite 

was observed. For the track formed using relatively low LED (13.3 kJ/m, Fig. 7 (a-3)), 

only fine columnar dendritic grains was observed. In the track formed using LED of 

25.7 kJ/m, a mixture of columnar and equiaxial dendrites were found, as demonstrated 

in Fig. 7 (b-3). Fig. 7 (c-3) exhibits large and distinctive equiaxial dendrite populated in 

the centre of the track that formed using LED of 48 kJ/m.  

3.3.2 Cross-section 

Fig. 8 (a) shows a typical cross sectional view of a single track (produced using process 

conditions of 25.7 kJ/m, 300 W, 700 mm/min). The growth of columnar dendrites took 

place at the track-substrate boundary and developed towards the top central area. High 

magnification images of regions L1-L5 in Fig. 8 (a) are shown in Figs. 8 (b)-(f), 

respectively. Along the vertical L1-L2-L3 path (from the top to the bottom along the 

vertical central line), an increasing trend in grain size was found; and their PDAS values 
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measured were 4.11 μm, 4.19 μm and 4.24 μm for L1, L2 and L3 respectively. Along 

the horizontal L5-L4-L2 path, the grain size of the columnar dendrites decreased 

gradually from the centre (L2) towards the edge of the track (L5), with the PDAS values 

being 4.4 μm, 3.58 μm and 3.1 μm, for L2, L4 and L5, respectively.     

The average PDAS values of columnar dendrites in different regions of the track cross-

section (L1-L5 in Fig. 8 (a)) were measured and plotted as a function of LED in Fig. 9. 

The value of PDAS was found proportional to the level of LED. The minimum PDAS 

was 2.35 μm when the LED was 13.3 kJ/m, and the maximum PDAS was 5.98 μm 

when LED of 48 kJ/m was applied, clearly indicating the grain coarsening effect as a 

result of the increase of LED. In addition, the PDAS of the dendrites in the centre (L1-

L3) was found consistently greater than that in the area closer to the track edge (L4 and 

L5).  

3.4. Microhardness 

Microhardness was measured at different locations of the single tracks’ cross-sections 

(zones L1-L5 in Fig. 8), and the averaged values were plotted as a function of LED in 

Fig. 10. It is seen that the hardness value was within the range of 15.4-19.9 GPa. The 

averaged hardness appeared to slightly decrease with the increase of LED. The 

maximum was 18.3 GPa at LED of 20 kJ/m, while the minimum was 16.3 GPa at LED 

of 34.3 kJ/m. 

4. Simulation results 

4.1. Temperature distribution  

Fig. 11 (a) shows the transient temperature distribution in the melt pool region when the 

incident laser moved along x-axis, which resulted in an elongated horizontal contour. 
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The maximum temperature (3893 K) was found in the melt track front locating on the x-

axis, which was slightly higher than the boiling temperature of alumina (3700 K) [35]. 

It should be noted that the location of maximum temperature did not coincide with the 

centre of the laser spot. It can be seen in Figs. 11 (b) and 11 (c) that the laser spot centre 

(dashed line, x=0.0048 m) was slightly ahead of the temperature maxima. This was 

likely due to the combination of heat accumulation effect and the change of thermal 

conductivity as a result of powder to solid transition [34]. In addition, the thermal 

gradient of the scanning front was much greater than that of the tail region, which was 

also attributed to the thermal conductivity change during the transition of loose powder 

to dense solid [19]. The shape of molten pool is shown in Fig. 11 (d) the dimension of 

the molten pool is defined using length (l), depth (d) and half width (whalf, w=2whalf). 

Fig. 12 shows the temperature distributions along different axes of y and z, plotted as a 

function of LED. All the curves were originated from the temperature maxima at top 

surface (when y = 0, z = 0), and the LED being applied was in the rang of 13.3-48 kJ/m. 

As shown in Fig. 12, the temperature at any given location increased with the increase 

of LED. In particular, the maximum temperature increased from 3112 K at 13.3 kJ/m 

LED to 5192 K at 48 kJ/m LED. The temperature decreased with the increased distance 

from the centre and a steep temperature drop were found in all curves before they 

reached a plateau in the end.   

4.2. Molten pool geometry 

Fig. 13 shows the influence of LED on molten pool geometry, It was seen that a higher 

LED led to the increases in d, w and l from 211, 1120 and 1659 μm (LED = 13.3 kJ/m) 

to 494, 1482 and 3385 μm (LED = 48 kJ/m), respectively. In order to validate the 

numerical models, the dimensions (d and w) of the calculated molten pool were 
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compared with that obtained experimentally (i.e. the data in Fig. 6). As shown in Fig. 13, 

the simulation results agree well with the experimental measurements. It was also found 

that the simulated molten pools were slightly shallower and narrower than the 

experimental ones. This discrepancy could be caused by the fact that (1) the abrupt 

increase of absorption coefficient [36] at elevated temperature was not considered in 

this model; and (2) material removal due to evaporation was not taken into account in 

the current model. 

4.3. Solidification parameters   

The metallurgical structure of the solidified tracks are dependent on two fundamental 

solidification parameters, namely thermal gradient G (K/m) and solidification rate R 

(m/s). The cooling rate, defined as C=GR (K/s), determines the grain size. In general, 

the higher the cooling rate is, the finer the grains become [37]. The magnitude of G and 

R can be calculated using [38]:  

                                               

22 2
T T T

G
x y z

      
      

      
                             (12)   

                                                                 cos( )R v                                           (13) 

                                                                cos( )
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                                        (14) 
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T

x
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T
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,
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z




 are respective temperature gradients along x, y, z directions, v is the 

laser scan speed, and α is the angle between scan direction and solidification growth 

direction.   
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In order to explore the effect of LED on the solidification parameters, the values of G, R, 

and C of the liquid-solid interface of the molten pool were calculated using Eqs. (12) to 

(14). The mean values (Gm, Rm, and Cm respectively) were plotted in Fig. 14 against the 

level of LED. As shown in Fig. 14 (a), Gm decreased as LED increased, with the 

maximum being 2.89510
6
 K/m at LED of 13.3 kJ/m and the minimum being 2.064

10
6 

K/m at LED of 48 kJ/m. The relationship between Rm and LED was shown in Fig. 

14 (b). The value of Rm decreased from 0.00484 m/s to 0.00169 m/s with the increase of 

LED. Fig. 14 (c) shows that Cm decreased with the increase in LED, with the maximum 

value being 7038.2 K/s at the LED of 13.3 kJ/m and the minimum value being 1704.7 

K/s at the LED of 48 kJ/m.                         

5. Discussion     

Plateau-Rayleigh instability of a molten track [39] is driven by high surface tension 

forces. Therefore, a melt pool with high length-to-width ratio tends to break off into 

smaller entities, attempting to reduce surface energy [40]. The lack of metallurgical 

bonding between the melt and the substrate can also lead to breakup of a melt pool [41]. 

Sufficient substrate remelting is crucial in stabilizing the melt pool [39, 41], which can 

be achieved by properly increasing laser energy. When the incident laser energy is 

insufficiently great to melt both the powder layer and the substrate, the melt is prone to 

coalesce and form a string of disconnected melt beads to reduce surface energy. Our 

experiment and simulation results clearly indicated that LED significantly affects the 

geometries of scanned tracks. As shown in Fig. 5, the use of relatively high LED 

favours the formation of continuous track. In this work, the minimum LED for attaining 

a continuous track was found to be 13.3 kJ/m, below which discontinuous and balled 

tracks were generated.  
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The cross-sections of the continuous tracks were relatively shallow and wide. The 

increase in LED increased the volume of the melt, which in turn widened and deepened 

the solidified tracks (see Figs. 6 (b) and (c)). The contact angle, on the contrary, 

exhibited a downward trend as LED increased (see Fig. 6 (d)). With a higher LED, more 

energy was supplied to the molten alumina, which resulted in higher melt pool 

temperature (see Fig. 12). The increase of temperature subsequently led to the reduction 

of both viscosity and surface tension of the melt [42]. As a result, wetting of the 

substrate was enhanced, manifested by the decrease of contact angle [15, 43].   

Rapid heating and cooling associated with the SLM process led to the formation of 

alumina tracks with unique solidified microstructures, as the cooling rate and 

temperature gradient varied considerably across the moving melt pool. The 

microstructure of the solidified tracks differed significantly from those obtained using 

conventional powder metallurgy methods. For examples, the microstructure of alumina 

parts fabricated using conventional powder metallurgy method is comprised of 

primarily equiaxial grains [44]. In this work, columnar dendrites were found to be the 

predominant microstructural feature in the solidified tracks by SLM, as can be seen in 

Fig. 7 (top view) and Fig. 8 (cross-sectional view. This unique grain shape anisotropy of 

a single track will inevitably result in anisotropic mechanical property of a SLM 

alumina part. Hence, the understanding of the microstructure evolution in the course of 

the solidification process is essential. This can also provide valuable guidance to 

optimize the load bearing capability of a 3D part in a particular application by taking 

advantage of the property anisotropy. This is particularly valuable for manufacturing 

alumina parts used for medical applications such as orthopedic implants, in which the 
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grain orientation of the implant material should be aligned with or correlated to the 

stress tensors. 

In the SLM process, solidification occurred at the fusion boundary (solid-liquid 

interface) by means of epitaxial growth on the partially melted grains in the substrate 

[37]. Columnar dendrites grew in an adverse direction to that of the heat flow. The heat 

flew approximately from the central top region to the substrate/solidified track boundary 

owing to rapid heat dissipation of the substrate. When LED was higher than 25.7 kJ/m, 

equiaxial dendrites started to form at the central region near the surface of the solidified 

track (see Fig. 7b-3 and Fig. 7c-3). Analogous grain structures were also reported and 

discussed in laser surface processing of Al2O3 [45]. The formation of equiaxial dendritic 

grains at relatively high LED could be attributed to the nucleation induced by rapid 

cooling at molten pool surface [46]. When high LED was applied, both radiative and 

evaporative heat loss occurred at the melt pool surface was intensified, which resulted in 

localized high cooling rate. Stable nuclei were then formed in the undercooled melt and 

the subsequent nuclei growth led to the formation of equiaxed dendritic grains [47]. The 

growing columnar dendrites originated from the fusion boundary eventually met the 

equiaxed grains near the centre of the track when the solidification process came to an 

end. As a result, two distinctive microstructural features were observed in the solidified 

single track formed using relatively high LEDs. 

The grain sizes also exhibited a dependence on the magnitude of LED used, as shown in 

Fig. 9. The increase in LED led to the decrease of averaged cooling rate Cm at solid-

liquid interface, as shown in Fig. 14 (c). Since a higher cooling rate is often associated 

with finer microstructure, higher LED resulted in larger grain sizes, as anticipated. The 

grain size, in turn, affected the hardness of the tracks. It was found that the micro-
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hardness values of the tracks slightly increased with the reduction of LED, as shown in 

Fig. 10. The relation between grain size and hardness can be described using the Hall-

Petch relation [48]:  

                                                            
1/2

0H H kD                              (15) 

where H is the hardness of the polycrystalline material, H0 is the hardness of a single 

crystal, k is a constant and D is the grain size. This equation gives an empirical 

description of grain boundary strengthening effect in materials [48]. The micro-hardness 

data was fitted using eq. 15 and the best fitting regression equation was

9.221 12.55y x  with R-squared value of 0.911, as shown in Fig. 15. The hardness 

value is almost linearly proportional to the inverse square root of PDAS, indicating that 

the reduction of LED hardened the alumina tracks via grain refinement.     

The selection of laser source could also have substantial influence on the consolidation 

of ceramic powders, because the laser absorptivity of a powder material is dependent on 

laser wavelength and the metallurgical behaviour of the powder in melting. 

Commercially available SLM/SLS machines typically use CO2 and Nd:YAG lasers. In 

this study, a high power diode laser (HPDL) was utilized. The key advantages of 

applying HPDL laser in material processing include uniform melting/heating zones, 

smooth surface, process consistency and repeatability [49]. These features are primarily 

attributed to the inherent beam stability and uniform laser energy distribution of a 

HPDL laser [50]. The wavelength of a HPDL laser (0.98 μm) locates in the NIR region 

of the electromagnetic spectrum. In general, an incident light within this spectral range 

is weakly-absorbed and highly-reflected by bulk Al2O3 [20, 28]. This seems 

contradicting the findings in a number of studies, reporting that the radiation of a NIR 
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laser could supply sufficient energy to fuse Al2O3 porous material [51]. In this study, 

the minimum LED required for melting Al2O3 powder was only 9 kJ/m (i.e. in Zone C 

in Fig 5), which is much smaller than the energy required for melting bulk Al2O3 

substrate (330 kJ/m). Such finding indicates that the laser absorptivity of powdered 

Al2O3 is much higher than that of bulk Al2O3. This could be due to the enhanced 

penetration of HPDL laser rays in powder medium and multiple scattering effect. When 

the incident radiation energy deposited onto the powder surface, the laser rays 

penetrated the highly porous powder media and interacted with sub-surface particles via 

multiple scattering. The multiple scattering effect subsequently led to improved laser 

absorption, which was verified both numerically [52] and experimentally [53]. The 

enhanced laser absorption of powders therefore makes HPDL laser competitive in the 

powder-bed-based AM applications, which should be an ideal energy source for 

processing ceramic powders. In addition, HPDL laser also has economic benefits, such 

as high energy conversion efficiency, low operating cost, and long service life [49, 50].             

 

Conclusions 

Consolidated alumina tracks were fabricated by means of SLM using a HPDL laser. 

The effects of LED on the geometry, microstructure and hardness of the tracks were 

investigated. It was found that higher laser power and lower scan speed enabled the 

formation of stabilized melt pool and thus continuous solidified tracks, due to the 

reduced viscosity and surface tension of the alumina melt and the enhanced melting of 

the substrate. The increase in LED led to the increases in width and depth of the 

solidified tracks, but the decrease of their contact angles.  
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The primary microstructural feature in the solidified tracks was columnar dendrite. The 

size of the columnar dendrites increased with the increased LED, which was attributed 

to the decrease of cooling rate at solidification interface. A higher cooling rate was 

associated with the formation of finer microstructure. Lower LED resulted in smaller 

grain sizes, which in turn increased the hardness of the tracks. When a relatively high 

LED of 25.7 kJ/m was applied, equiaxed dendrites were formed at the centre of the 

solidified track near the top surface, which was likely due to the enhanced surface 

nucleation as a result of radiative and evaporative heat losses. 
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Fig 1 The SEM image of the Al2O3 powder 
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Fig 2 The schematic of the customised SLM system 
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Fig 3 The meshed powder-substrate structure in the FVM model 
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Fig 4 Thermal conductivity and specific heat of bulk alumina plotted as a function of 

temperature [25, 26] 
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Fig 5 The SLM process map for Al2O3 single tracks 
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Fig 6 (a) The cross-sectional view of typical single tracks  and track (b) width w, (c) 

depth d and (d) contact angles θ plotted as a function of the magnitude of LED 
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Fig 7 Top surface microstructure of single tracks formed using different processing 

parameters: (a) 13.3 kJ/m, 200 W, 900 mm/min, (b) 25.7 kJ/m, 300W, 700 mm/min and 

(c) 48 kJ/m, 400W, 500 mm/min. For each track in (a), (b) and (c), high magnification 

images of the  area within the tracks adjacent to the edge (I) are shown in (a-2), (b-2) 

and (c-2), respectively, in which columnar dendrites (C) populate and high 

magnification images of the centre  of the tracks (II) are shown in (a-3), (b-3) and (c-3), 

respectively,  in which a transition from columnar dendrites to equiaxed dendritic grains 

(E) was found. 
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Fig 8 (a) Cross-sectional image of a single track. The columnar dendrite structures. in 

the different zones of (a), (b) L1, (c) L2, (d) L3, (e) L4, (f) L5. (P = 300 W, v = 700 

mm/min and LED = 25.7 kJ/m) 
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Fig 9 PDAS of columnar dendrites plotted as a function of the magnitude of LED  
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Fig 10 Microhardness of SLM single track plotted as a function of the magnitude of 

LED 
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Fig 11  (a) The 3D profile of transient temperature distribution in a typical melt pool 

(P=300 W, v = 700 mm/min, LED = 25.7 kJ/m) and the temperature coutours of  (b) x-y 

and (c) x-z planes. (d) The geometry of the molten pool  captured from isothermal line 

(2327 K) 
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Fig 12 Temperature variation along (a)  y axis (surface) and (b) z axis (subsurface)for 

different values of LED. The origins of all curves (at y = 0, z = 0) are coincident with 

the temperature maxima.   
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Fig 13 Comparison of simulated and experimentally measured dimensions of the molten 

pools obtained from different LEDs 
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Fig 14 Values of solidification parameters (a) Gm , (b) Rm  and (c) Cm  plotted as a 

function of the magnitude of LED 
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Fig 15 Microhardness plotted as a function of inverse square root of PDAS (primary 

dendrite arm spacing) 
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Table 1 The physical properties of Al2O3 used in simulation 

Property Value Reference 

Melting point  2327 K [27] 

Reflectivity 0.79 [28] 

Absorption coefficient  110.28 cm
-1

 [29] 

Powder material density  1580 kg/m
3
 Measured 

Solid material density  3950 kg/m
3
 [30] 

Liquid material density  2800 kg/m
3
 [31] 

Porosity 0.6 Measured 

Latent heat of melting  1137900 J/kg [27] 

Emissivity 0.7 [32] 

Stefan-Boltzmann constant 5.6704e
-8

 W/m
2
 K

4
 [33] 

Thermal convection coefficient 200 W/m
2
 K

4
 [32] 

 




