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ABSTRACT 

Fluvial sediments with multi-scale channels are difficult to model using classical two-point 

statistical methods, e.g. sequential indicator simulation (SIS) or object-based modelling 

(ObjM). Multiple-point statistics (MPS) has been used to generate facies, fracture and 

porosity distributions based on pattern statistics derived from training datasets. However, the 

ability of these three methods to reproduce channel geometry and continuity is not clear, 

especially when using differently spaced conditional data. This paper presents a case study to 

compare the application of these three methods in reproducing channels from a section of 

Amazon River based on two differently spaced conditional data sets. Results show that: the 

reproduction accuracy is similar between MPS and SIS; MPS provides the most connected 

channel facies (or most channel continuity) as compared to SIS and ObjM; and using a hand-
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drawn facies based on the sampling points yield a similar accuracy to that achieved by using 

the reality facies distribution as the training image. Finally, we conclude that the application 

of MPS does not significantly increase the reproduction accuracy when compared to SIS 

channel models; however, MPS can generate realistic models with respect to channel 

geometry and continuity. 

 

Keywords: Sequential indicator simulation; Object modelling; Multiple-point statistics; 

Channel geometry and continuity; Amazon River.  

 

1. INTRODUCTION 

Fluvial channels may be broadly classified on the basis of channel sinuosity and 

multiplicity into four-part taxonomy including straight, braided, meandering and 

anastomosing river systems (Rust, 1977; Miall, 2014). Individually, these channels can 

include up to 17 types of discrete lithologies grouped into 8 architectural elements (Miall, 

2006).  Due to the inherent complexity of these systems resulting in severe heterogeneity, 

channel systems have been the focus for many researchers (Chen et al., 2015).  

In geological modelling, sequential indicator simulation (SIS) and object modelling 

(ObjM) are widely used to populate categorical variables such as facies, while multiple-point 

statistics (MPS) is used comparatively less due to its inherent complexity and practical 

limitations such as increased run time and practical issues such as (1) uncertainty in 

geological scenarios, (2) scanning template (or search mask) and non-stationarity (Strebelle 

and Zhang, 2004; Eskandari and Srinivasan, 2010), and (3) subjectively in training image 

selection (Strebelle, 2002). Stationarity, one of the main requisites for the construction of a 

valid training image, requires the mean and variance of a variable be constant throughout a 

model area.  In reality, this is seldom the case for most geological systems at regional scales. 
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SIS populates properties using variogram models, which describe the change of linear 

correlation with increasing offset – a technique known as two-point geostatistics (Journel, 

1983; Journel and Isaaks, 1984; Journel and Alabert, 1988; Deutsch, 2006). This method is 

most appropriate if (1) the shape of particular facies bodies is not clear (Pyrcz and Deutsch, 

2014), or (2) with a high density of conditional data, e.g. with close well spacing or dense 3D 

seismic data (Zhou et al., 2016). Facies distributions generated by SIS can appear patchy or 

unstructured when unconstrained by secondary data (Deutsch, 2006). ObjM, also known as 

marked point process (Haldorsen and Chang, 1986; Haldorsen and MacDonald, 1987; 

Haldorsen and Damsleth, 1990; Holden et al., 1998) or Boolean simulation (Seifert and 

Jensen, 2000), populates facies based on pre-defined geometries (i.e., objects) rather than 

two-point geostatistics. Facies fraction, orientation, amplitude, wavelength, width, and 

thickness are some of the input parameters needed to define the objects for ObjM (Holden et 

al., 1998; Manzocchi et al., 2007; Stephen et al., 2001). MPS, a pixel-based sequential 

simulation algorithm, is capable of producing models with more geological complexity than 

SIS and better honours hard data than ObjM (Strebelle and Journel, 2001; Strebelle, 2002; 

Mariethoz et al., 2010; Rezaee et al., 2015). In particular, MPS generates models by 

rendering complex facies connectivity patterns which may be critical for the prediction of 

fluid flow and transport problems (Mariethoz et al., 2010).  Applications of the algorithm 

have ranged from a simulation of a fluvial reservoir facies using different training images and 

nested sequences (Strebelle, 2002) to modelling porosity distributions in a carbonate reservoir 

(Zhang et al., 2006). MPS has also been used to generate facies and fracture distributions 

(Erzeybek et al., 2012; Peredo and Ortiz, 2012; Stuart et al., 2014). In practice, ObjM uses 

multiple iterations to place the geo-bodies into the 3D grid, and hence requires longer run-

times to honour hard data as compared to either SIS or MPS (Caers, 2001; Strebelle and 

Journel, 2001; Strebelle, 2002; Caers and Zhang, 2004; Liu et al., 2004). Additionally, ObjM 
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may not honour all hard data, e.g. facies fraction or object geometries particularly with 

respect to datasets with an abundance of hard data.  

To understand the difference between SIS, ObjM and MPS, Bastante et al. (2008) 

compared these three methods in modelling slate deposits. They concluded that the estimated 

useful slate percentages by MPS were much closer to reality than indicator Kriging (IK) or 

SIS but the results relied partly on information obtained via IK. Larriestra and Gomez (2010) 

compared SIS, ObjM and MPS for a high sinuosity fluvial system and concluded that channel 

probability modes were represented more realistically by MPS than other modelling 

techniques. De Iaco and Maggio (2011) compared the predicted spatial distribution of 

limestone by SIS and MPS and concluded that MPS better reproduced the spatial distribution 

of limestone and meandering channels. Though these three modelling methods have been 

tested, evaluated and compared in the oil and gas industry, comparing the effectiveness of 

SIS, ObjM and MPS in reproducing channel distribution with different spaced data has not 

been adequately covered in academia. While data spacing plays a critical role in geological 

modelling.  

 

2. DATA AND METHODOLOGY 

2.1. Data 

This study focuses on one section of the Amazon River (Fig. 1a), located in Brazil near 

the Atlantic Ocean. An area of 80×80 km2 was digitised and imported into PetrelTM (Fig. 1b). 

Figures show that there are three distinct orders (scales) of channels which can be classified 

based on their unique depositional architectures, e.g. into primary, secondary and tertiary 

channels with widths of approximately 8 km, 3 km and 1 km, respectively. The areal 

fractions are 17.8%, 8.1% and 6.4% for primary, secondary and tertiary channels, 

respectively (Fig. 1b). The total areal fractions are 32.3% and 67.7% for channel and 
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floodplain respectively. In the following study, we combined primary, secondary and tertiary 

channels as one facies of channel in modelling because we have no training image for each of 

these channels. 

Fig. 2 shows the sampled data points (used as model inputs) using two different spacings, 

e.g. 2.5 km and 5.0 km. Fig. 2a shows data points with sampling spacing of 2.5 km. We can 

see most points consist of primary channels and partial secondary channels, hence primary 

and secondary channels will be well represented in the model. If a sampling interval of 5.0 

km is used, most sample points are from primary channels hence only the primary channel 

will be adequately represented in the models. The original fraction calculated from these data 

points was used as the target input statistic in the modelling process.  

 

2.2. Methodology 

The intent of this paper is to compare the ability of SIS, ObjM and MPS to reproduce 

channel geometry and continuity by assessing the reproduction accuracy and facies 

connectivity of models constructed with the various methods. Note that the accuracy in 

geomodelling is better measured by assessing the geological models by means of dynamic 

simulation, in which the behaviour of a static grid is interrogated by varying dynamic 

conditions. In this study, the reproduction accuracy means the ratio of cells, which have same 

facies as the given facies distribution, to the total cells in the model. The conditional data 

(hard data) were sampled based on the digitised facies distribution with two different 

spacings of 5.0 km and 2.5 km respectively. 

The algorithms for SIS, ObjM and MPS are briefly described herein; however, for a 

more comprehensive background regarding the application of these three techniques readers 

are referred to Bastante et al. (2008). Table 1 presents the comparison of steps for these three 

methods. 
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The indicator approach used by SIS transforms facies into binary variables when dealing 

with categorical variables like facies (Falivene et al., 2006). SIS is based on indicator kriging 

which gives an estimation of relative proportions of the different facies. SIS generates a 

random sequential path for property population using a pseudo-random number generator that 

allows the user to enter a given seed values so that multiple stochastic runs are repeatable. 

Each other unknown location within a grid is sequentially visited and a value for the variable 

is estimated based on the predicted relative probabilities.  

In ObjM, object facies were introduced to replace a background facies such as 

undifferentiated floodplain sediments or marine shales (Falivene et al., 2006). The geometric 

and dimensional ranges of the introduced object facies are defined to reproduce the 

variability of sedimentary elements in the depositional model (Haldorsen and Chang, 1986; 

Clementsen et al., 1990; Tyler et al., 1994; Deutsch and Wang, 1996; Deutsch and Tran, 

2002). The algorithm begins by finding a point in the model which has the same facies code 

as the body; then makes a body for the given facies with its predefined geometry; then the 

body is located in the model to honour hard data. These processes iterated until the object 

facies proportions, which are generally considered as the most critical parameter (Falivene et 

al., 2006), are consistent with facies global fraction.  

MPS is based on a stationary training image which can be generated using densely and 

regularly sampled field-data (Okabe and Blunt, 2005), photographs of outcrops or aerial 

photographs processed with a computer-aided design (CAD) algorithm, ObjM (Bastante et al., 

2008) or hand-drawn models (Zhou et al., 2016). A training image is a 3D model defining the 

typical geometries and relationships that will be converted to conditional probability 

distributions known as a multi-point facies pattern. The training image is used to define the 

neighbourhood relationship of respective facies by creating patterns defined by probability 

distribution functions (pdf). During the pattern creation, multi-grids (Strebelle, 2002) are used 
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to describe both small and large-scale structures, similar to short and long variogram ranges if 

using two-point geostatistics (Okabe and Blunt, 2005; Xu et al., 2012). The multi-grids 

concept was initially proposed by Gómez-Hernández (1991) and Tran (1994). The multi-

grids number and search radius are provided in an ellipsoid search mask to create the patterns. 

Using different multi-grid schemes yields different results (Comunian et al., 2012; Straubhaar 

and Malinverni, 2014). In MPS modelling, the digitised distribution of channels and 

floodplain in Fig. 1 is used as the training image. The MPS algorithm of SNESIM, introduced 

by Strebelle (2002), in PetrelTM was used in MPS modelling.  

Fig. 3a is a training image with a channel areal ratio of 26%. This area is gridded into 

400 cells. According to the events’ template with four neighbour conditioning data (Fig. 3b), 

the data event number is 24=16 (Fig. 3b); then we can account for the probability of each 

event globally as shown in Table 2. For example, there are 168 grids are cross-connected 

with four neighbouring grids at event #1 (EV1); 5 of those 168 grids are channel facies.  

 

3. RESULTS AND DISCUSSION 

3.1. Modelling results with data sampling space of 2.5 km 

Based on a sampling space of 2.5 km, the input fraction of channels is 32.5% which is 

similar to the actual volume channel percentage of 32.3%. In order to use SIS, we first 

analyse the horizontal indicator variogram using a maximum search distance in x- and y-

direction of 60 km and a lag distance of 10 km. Fig. 4a shows the generated horizontal 

variogram map which indicates a major orientation of about 45˚.  We then generated the 

directional variogram along major and minor orientation respectively. The lag distance is 2 

km and the number of lags is 30 for both major and minor orientation. The band-width is 2.5 

km; tolerance angle is 45˚; lag tolerance is 50%. Fig. 4b and 4c show the experimental 

standardised semivariance (Zhou et al., 2015) and its regressions. Results show that the sill is 
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1.08 and major and minor ranges are 16.2 km and 7.4 km respectively. The major and minor 

ranges from indicators are similar to the maximum width and length of the channel facies 

(Guo and Deutsch, 2010). 

SIS is used to generate the facies distributions as shown in Fig. 5 with nine realisations 

based on the results of variogram analysis.  Results show that the primary channel polygons 

are filled with channels, reflecting the techniques generally high accuracy of reproducing 

primary channels; however, the secondary and tertiary channels are more difficult to 

reproduce because their major and minor orientations are not the same as the inputs. If the 

secondary and tertiary channels are given different facies codes, they can have different 

variograms with different orientations. Also, if the variogram model has nested structures the 

short-range structures can have different orientation and anisotropy to the longer structures. 

This study combined all the channels and the accuracies are quantified in section 3.3. 

In ObjM input fractions and geometries, e.g. orientation, amplitude, wavelength, width, 

thickness, and trends for channels are defined a priori. Table 3 lists the modelling parameters 

used in which the channel orientation is taken from the variogram analysis while channel 

width is derived from the digitised statistics. The amplitude and wavelength are assumed as 

listed in Table 3 because they are difficult to be measured for the channels in Fig. 1. In ObjM, 

we selected honouring hard data as the honouring priority and Fig. 6 shows that ObjM 

struggles to honour all hard data. In addition, it is a time-consuming technique with 

approximately 3hrs required to generate 9 realisations compared to several minutes for 

equivalent SIS or MPS models. It is worth noting that changing the inputs, e.g. channel 

geometry, trends may improve the conditioning of hard data and modelling accuracy.  

In MPS modelling, the digitised distribution of channels and floodplain in Fig. 1 is used 

as the training image. Ellipsoid search mask with a radius of 10 grid nodes and number of 

multi-grids of 3 is used to create the patterns. Note that the ellipsoid search mask defined in 
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PetrelTM, which uses the SNESIM code, is quantified in nodes. In this study, the simulation 

grid size is same as the training image so no scaling is needed. Fig. 7 shows nine realisations 

which indicate a good match for the primary channel and significant characterisation of 

secondary and tertiary channels.  

 

3.2. Modelling results with data sampling spacing of 5.0 km 

With a sampling space of 5.0 km, the fraction of channels (the ratio of sampling points 

met with channel facies to the total number of sampling points) is 36.0%, which is higher 

than the actual value of 32.3% calculated from the digitised map. This result indicates that 

there is often a bias for the calculated fraction of channels from sampling points even with a 

regular data sampling spacing. In order to compare the results with the actual distributions as 

shown in Fig. 1b, a channel fraction of 32.3% was used to generate subsequent models. Fig. 

8a shows that the horizontal variogram indicates a major range orientation of about 80˚. The 

major and minor ranges are 14.5 km and 11.8 km respectively (Figs. 8b and 8c), which 

indicate that the heterogeneity describing capacity decreases with the increase of sampling 

spacing. Note that the histogram of pairs suggests an inadequate sampling (non-homogenous) 

and the experimental variogram is distorted. 

Fig. 9 shows the nine realisations of channel and floodplain distribution by SIS based on 

the sampled data with a spacing of 5.0 km. Results indicate that the estimated channel at right 

side matches well with the digitised image. The accuracy is higher than 90% for the largest 

channel in the right-hand image. 

Fig. 10 shows the nine realisations of channel and floodplain distribution by MPS based 

on the sampled data with a spacing of 5.0 km. Results indicate that the estimated channels 

match well with the digitised image at some locations. 
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3.3. Accuracy comparison in reproducing channels 

The accuracy, which is defined as the ratio of the matched grid number between 

estimations and the digitised image over the total number of grids, is used to compare the 

modelling results from different methods each with nine realisations. Based on the sampled 

data points with spacing of 2.5 km, the accuracy of SIS results ranges from 81% to 82% with 

an average of 81%; for MPS results, it ranges from 83% to 85% with an average of 84%; for 

ObjM results, it ranges from 57% to 65% with an average of 62%. Based on sampled data 

points with spacing of 5.0 km, the accuracy for SIS results ranges from 67% to 71% with an 

average of 70%; for MPS results, it ranges from 68% to 74% with an average of 71%. Note 

that the variogram for the floodplain is same as for the channels for a two facies model. The 

modelling results using the channel as the background facies are similar with those using 

floodplain as the background facies. 

 

3.4. Comparison of channel connectivity 

Journel et al. (1989) used a multiple step connectivity experiments to assess the 

geological modelling results. In this study, geometrical modelling is used to generate the 

distribution of connected volumes (bodies; Fig. 11). The probability of each connected 

volume is calculated based on the summation of juxtaposed grid blocks containing the 

channel facies code. Fig. 12 shows the cumulative probability for connected channels 

generated from SIS, ObjM and MPS based on sampled data with a spacing of 2.5 km. Results 

show that MPS has the greatest proportion of connected channels. Results show that the 

probability of the biggest connected channels ranges from 32% to 55% with an average of 45% 

by SIS; ranges of 43% to 61% with an average of 52% by ObjM; and ranges from 87% to 97% 

with an average of 92% by MPS. The probability of connected channels is 100% in Fig. 1b 

which indicates MPS results match well with reality. Note that assuming a complete set of 
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connected channel sands is hardly ever the case in a subsurface sedimentary record. 

Integration and representation of thin shale layers, their lateral extension and potential impact 

on flow behaviour are the challenges in the modelling of lobes and channel architecture 

(Falivene et al., 2006). Bastante et al. (2008) also reported that areas of slate by MPS are 

more regular and continuous than other methods. 

Fig. 13 shows the cumulative probability of connected channels from SIS, ObjM and 

MPS based on sampled data with a spacing of 5.0 km. Results show that the probability of 

the biggest connected channels ranges from 30% to 78% with an average of 45% by SIS and 

ranges from 79% to 99% with an average of 89% by MPS. This indicates that the uncertainty 

increases with increasing data sampling spacing. Results by MPS match well with reality 

based on sampled data with a spacing of 5.0 km. 

As reported by Caers and Zhang (2004), subsurface reservoir modelling is undertaken to 

produce models that accurately predict global flow properties while also estimating local 

recoverable grades of ore in mining. Therefore, the channel connectivity is an important 

factor on fluid flow and recoverable volumes. The connectivity in this study is quite simple 

which does not address more geological details, such as the relationships of connectivity with 

net: gross ratio and dynamic performance  (Larue and Hovadik, 2006; Pranter, 2014).  

 

3.5. Training image 

Generating training images using densely and regularly sampled data (Okabe and Blunt, 

2005), photographs of outcrops or aerial photographs processed with a computer-aided design 

(CAD) algorithm, ObjM and hand-drawn models may contradict the non-stationary 

requirement for training images. Image patterns, sourced from a training image, record the 

probability of each event (Zhou et al., 2016) regardless of the location of these events in the 

training image; hence MPS models cannot preserve the non-stationary features of the training 
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image (Strebelle and Zhang, 2004). Nested methods using several auxiliary variables, e.g. 

zones, distances, facies belt and rotation angles, as trend information were used to model 

non-stationary reservoir characteristics (Strebelle and Zhang, 2004; Yin et al., 2015), but the 

process requires known trends of the object property for locating the non-stationary reservoir 

characteristics. 

Generating a training image by combining hard data and soft data from the whole object 

field will reduce the effect of non-stationary problems (Lorentzen et al., 2012). Figs. 14a and 

13b show the processes to prepare a training image manually based on the sampled hard data 

with a spacing of 5.0 km and current direction and channel size. Note that the width of the 

secondary channel and the tertiary channel is assumed as 2.5 km and 1.0 km, respectively. 

Three steps are used in mapping channels; firstly, outline the primary channel according to 

the channel direction; then outline secondary channel which has similar flow trend as primary 

channel but also distribute between channels; the tertiary channel is outlined according to its 

width and flow direction of the primary and secondary channel. Facies are mapped based on 

the outline as shown in Fig. 14b then are converted into binary (categorical) facies, channel 

(including primary, secondary and tertiary channels) and floodplain. The distributed binary 

facies are used as training images for creating the MPS patterns. 

Fig. 15 shows the simulated facies distribution with nine realisations. The accuracy of 

estimation of channels compared with reality ranges from 64% to 73% with an average of 

69%. Results show that the accuracy is similar to that achieved by using the reality facies 

distribution as the training image.  

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

13 

4. CONCLUSIONS 

In this study, a section of Amazon River is used to compare the application of SIS, ObjM 

and MPS in reproducing channels based on the digitised facies distribution in 2D with two 

different sampling spacing, 2.5 km and 5.0 km.  

The reproducing accuracy by MPS is similar to that by SIS but higher than that by ObjM 

which was run with drilling data and channel orientation. Dense conditional data leads to 

high accuracy in reproducing facies distribution which means the harder data available to 

condition the simulations, the more deterministic the simulations become. MPS generated 

better-connected model than ObjM and SIS. Results by MPS match better with reality for the 

biggest connected channels than those produced by SIS and ObjM. However, generating a 

robust training image for MPS is still challenging in geological modelling. ObjM was used in 

generating the training images because it can well capture the shape and geometry of 

depositional bodies. This study shows that a manually generated training image yields a 

similar accuracy to that achieved by using real facies distribution as the training image. 

 

ACKNOWLEDGEMENT 

We acknowledge the Centre for Coal Seam Gas and its member companies (APLNG, 

Arrow Energy, QGC and Santos) for the support and Schlumberger for providing the license 

of PetrelTM.  We thank Helen Schultz for comments and corrections. We also thank the 

anonymous reviewers for providing the constructive comments. 

 

REFERENCES 

Bastante, F.G., Ordonez, C., Taboada, J., Matias, J.M., 2008. Comparison of indicator kriging, 

conditional indicator simulation and multiple-point statistics used to model slate deposits. 

Engineering Geology 98, 50-59. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

14 

Caers, J., Zhang, T., 2004. Multiple-point geostatistics: a quantitative vehicle for integrating 

geologic analogs into multiple reservoir models. In: Grammer, G. M., Harris, P. M., 

Eberli, G. P (Eds.). Integration of outcrop and modern analogs in reservoir modeling. 

AAPG Memoir 80, 383-394. 

Chen, S., Lin, C., Liu, W., 2015. 3D geological modelling method of fluvial facies 

considering the information of sedimentary process. EJGE 20(6), 1487-1497. 

Comunian, A., Renard, P., Straubhaar, J., 2012. 3D multiple-point statistics simulation using 

2D training images. Computers & Geosciences 40, 49-65. 

De Iaco, S., Maggio, S., 2011. Validation Techniques for Geological Patterns Simulations 

Based on Variogram and Multiple-Point Statistics. Mathematical geosciences 43, 483-

500. 

Deutsch, C.V., 2006. A sequential indicator simulation program for categorical variables with 

point and block data: BlockSIS. Computers & Geosciences 32, 1669-1681. 

Deutsch, C.V., Journel, A.G., 1998. GSLIB Geostatistical Software Library and User's Guide. 

Second Edition. 

Erzeybek, S., Srinivasan, S., Janson, X., 2012. Multiple-point statistics in a Non-gridded 

domain: Application to karst/fracture network modeling. Quantitative Geology and 

Geostatistics 17, 221-237. 

Eskandari, K., Srinivasan, S., 2010. Reservoir Modelling of Complex Geological Systems--A 

Multiple-Point Perspective. Journal of Canadian Petroleum Technology 49, 59-68. 

Falivene, O., Arbués, P., Gardiner, A., Pickup, G., Muñoz, J.A., Cabrera, L., 2006. Best 

practice stochastic facies modelling from a channel-fill turbidite sandstone analog (the 

Quarry outcrop, Eocene Ainsa basin, northeast Spain. AAPG Bulletin 90(7), 1003-1029.  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

15 

Gómez-Hernández, J., 1991. A stochastic approach to the simulation of block fields’ 

conductivity upon data measured at a smaller scale. PhD thesis, Stanford University, 

Stanford. 

Guo, H., Deutsch, C.V., 2010. Fluvial channel size determination with indicator variograms. 

Petroleum Geoscience 16, 161-169. 

Haldorsen, H.H., Chang, D.M., 1986. Notes on stochastic shales from outcrop to simulation 

models. In Reservoir Characterization, ed. Lake, L.W. and Carol, H.B., pp. 152-167. 

New York, USA: Academic. 

Haldorsen, H.H., Damsleth, E., 1990. Stochastic modelling. Journal of Petroleum Technology 

42(4), 404-412.Holden, L., Hauge, R., Skare, O., Skorstad, A., 1998. Modeling of fluvial 

reservoirs with object models. Mathematical Geology 30, 473-496. 

Haldorsen, H.H., MacDonald, C.J., 1987. Stochastic modelling of underground reservoir 

facies (SMURF). SPE paper 16751 presented at the 62nd Annual Technical Conference 

and Exhibition held in Dallas, Texas. 

Journel, A.G., 1983. Nonparametric estimation of spatial distribution. Mathematical Geology 

15 (3), 445-468. 

Journel, A.G., Alabert, F.G., 1988. Focusing on spatial connectivity of extreme valued 

attributes: stochastic indicator models of reservoir heterogeneities, SPE Paper 18324. 

Journel, A.G., Isaaks, E.H., 1984. Conditional indicator simulation: application to a 

Saskatchewan uranium deposit. Mathematical Geology 16 (7), 685-718. 

Journel, A.G., Journal, A.G., Alabert, F., 1989. Non-Gaussian data expansion in the Earth 

Sciences. Terra nova (Oxford, England) 1, 123-134. 

Larue, D.K., Hovadik, J., 2006. Connectivity of channelized reservoirs: a modelling approach. 

Petroleum Geoscience 12, 291-308. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

16 

Larriestra, C.N., Gomez, H., 2010. Multiple-point simulation applied to uncertainty analysis 

of reservoirs related to high sinuosity fluvial systems: Mina EI Carmen Formation, San 

Jorge Gulf Basin, Argentina. AAPG International Conference and Exhibition, Rio de 

Janeiro, Brazil, November 15-18, 2009. 

Liu, Y., Rusty Gilbert, A.H., Journel, A., 2004. A workflow for multiple-point geostatistical 

simulation. In Geostatistics Banff, eds. Leuangthong, O., Deutsch, C.V., pp. 245-254. 

Netherlands: Springer. 

Lorentzen, R.J., Flornes, M., Naevdal, G., 2012. History matching channelized reservoirs 

using the Ensemble Kalman Filter. SPE Journal 17(1), 137-151. 

Manzocchi, T., Walsh, J.J., Tomasso, M., Strand, J., Childs, C., Haughton, P.D.W., 2007. 

Static and dynamic connectivity in bed-scale models of faulted and unfaulted turbidites. 

In: Jolley, S.J., Barr, D., Walsh, J.J., Knipe, R.J. (eds) Structurally Complex Reservoirs, 

Geological Society, London, Special Publications, 292, 309-336. 

Mariethoz, G., Renard, P., Straubhaar, J., 2010. The direct sampling method to perform 

multiple-point geostatistical simulations. Water Resources Research 46, W11536, 

doi:10.1029/2008WR007621. 

Miall, A.D., 2014. Chapter 2: The facies and architecture of fluvial systems. In: Fluvial 

depositional systems. Springer Geology. Springer International Publishing Switzerland. 

Miall, A.D., 2006. Reconstructing the architecture and sequence stratigraphy of the preserved 

fluvial record as a tool for reservoir development: a reality check. AAPG Bulletin 90(7), 

989-1002. 

Okabe, H., Blunt, M.J., 2005. Pore space reconstruction using multiple-point statistics. 

Journal of Petroleum Science and Engineering 46, 121-137. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

17 

Peredo, O., Ortiz, J.M., 2012. Multiple-point geostatistical simulation based on genetic 

algorithms implemented in a shared-memory supercomputer. Quantitative Geology and 

Geostatistics 17, 103-114. 

Pranter, M.J., 2014. Fluvial architecture and connectivity of the Williams Fork Formation, 

Piceance Basin, Colorado: combining outcrop analogs and reservoir modelling for 

stratigraphic reservoir characterization. Search and Discovery Article #50959, 

presentation at Oklahoma City Geological Society, January, 2014, and Tulsa Geological 

Society, February 25, 2014. 

Pyrcz, M.J., Deutsch, C.V., 2014. Geostatistical Reservoir Modeling, Oxford University 

Press, 2nd edition, USA, pp236. 

Rezaee, H., Marcotte, D., Tahmasebi, P., Saucier, A., 2015. Multiple-point geostatistical 

simulation using enriched pattern databases. Stochastic Environmental Research and 

Risk Assessment 29, 893-913. 

Rust, B.R, 1977. A Classification of Alluvial Channel Systems.  Fluvial Sedimentology — 

Memoir 5, 187-198. 

Seifert, D., Jensen, J.L., 2000. Object and pixel-based reservoir modeling of a braided fluvial 

reservoir. Mathematical Geology 32(5), 581-603. 

Stephen, K.D., Clark, J.D., Gardiner, A.R., 2001. Outcrop-based stochastic modelling of 

turbidite amalgamation and its effects on hydrocarbon recovery. Petroleum Geoscience 7, 

163-172.  

Straubhaar, J., Malinverni, D., 2014. Addressing Conditioning Data in Multiple-Point 

Statistics Simulation Algorithms Based on a Multiple Grid Approach. Mathematical 

geosciences 46, 187-204. 

Strebelle, S.B., 2002. Conditional simulation of complex geological structures using 

multiple-point statistics. Mathematical Geology 34, 1-21. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

18 

Strebelle, S.B., Journel, A.G., 2001. Reservoir modeling using multiple-point statistics. SPE 

paper 71324 presented at the SPE Annual Technical Conference and Exhibition held in 

New Orleans, Louisiana, 1–11. 

Strebelle, S.B., Zhang, T., 2004. Non-stationary multiple-point geostatistical models. In: 

Leuangthong, O., Deutsch, C.V. (Eds.), Geostatistics Banff, 2004, 235-244. 

Stuart, J., Moundney, N.P., McCaffrey, W.D., Lang, S., Collinson, J.D., 2014. Prediction of 

channel connective and fluvial style in the flood basin successions of the Upper Permian 

Rangal Coal Measures (Queensland). AAPG Bulletin 98(2), 191-212. 

Tran, T., 1994. Improving variogram reproduction on dense simulation grids. Computers & 

Geosciences 20, 1161–1168. 

Xu, Z., Teng, Q.Z., He, X.H., Yang, X.M., Li, Z.J., 2012. Multiple-point statistics method 

based on array structure for 3D reconstruction of Fontainebleau sandstone. Journal of 

Petroleum Science and Engineering 100, 71-80. 

Yin, Y., Zhang, C., Li, S., 2015. A Location-Based Multiple Point Statistics Method: 

Modeling the Reservoir With Non-Stationary Characteristics. AAPG Annual Convention 

and Exhibition, Denver, CO., May 31 - June 3, 2015 

Zhang, T., Bombarde, S., Strebelle, S.B., Oatney, E., 2006. 3D Porosity Modeling of a 

Carbonate Reservoir Using Continuous Multiple-Point Statistics Simulation. SPE 

Journal 11(3), 375-379. 

Zhou, F., Shields, D., Tyson, S., Esterle, J., 2016. Nested approaches to modelling swamp 

and fluvial channel distribution in the Upper Juandah Member of the Walloon Coal 

Measures, Surat Basin. The AAPEA Journal 56, 81-100. 

Zhou, F., Yao, G., Tyson, S., 2015. Impact of geological modelling processes on spatial 

coalbed methane resource estimation. International Journal of Coal Geology 146, 14-27. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

1 

Table 1. Comparison of workflows between SIS, ObjM and MPS. 

SIS (Deutsch and 
Journel, 1998) 

ObjM (Petrel, 2014) MPS (Liu et al., 2004) 

1. Establish grid 
system; 

2. Assign data to the 
nearest grid node; 

3. Build a random path 
through all of the 
grid nodes by seed 
number; 

4. Search nearby data 
and previously 
simulated grid 
nodes; 

5. Construct the 
conditional 
probabilities by 
Kriging; 

6. Draw a value from 
conditional 
distribution; 

7. Check results. 

1. Find a point having the same 
facies code as the body; 

2. Make a body with the given 
facies and geometry for the 
body; 

3. Choose a random insertion 
point on the body; 

4. Calculate the body thickness 
at the insertion point; 

5. Search for that thickness 
among the upscalled wells 
still left to be honoured ; 

6. Ensure that the body about 
to be inserted does not 
conflict with other upscalled 
cells;  

7. If the body passes these 
checks, insert the body; 

8. Loop from 2-7 until the 
global fraction is satisfied. 

 

If no soft information is available, the 
steps are: 
1. Scan training image to calculate the 

conditional probability, P(A|B),  for 
facies A at data events B. P(A|B) is 
stored in the form of a tree called a 
multi-point facies pattern; 

2. Define a random path to visit each 
unknown node u 

3. Generate a probability for visiting 
node; 

4. At location u, read B(u) with hard 
data plus previously simulated 
values; then retrieve conditional 
probability; P(A|B)(u) according to 
B(u); 

5. Draw a value (facies) according to 
P(A|B)(u) and step (3) generated 
probability; 

6. Repeat steps (3) to (5) till visited all 
unknown node. 
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Table 2. Statistic of global event probability and grid channel probability (Zhou et al., 

2016). 

Data event 
Grid numbers 

Event probability, % Channel probability, % 
Channel Floodplain 

EV1 5 163 42 3.0 
EV2 5 9 3.5 35.7 
EV3 7 16 5.75 30.4 
EV4 10 4 3.5 71.4 
EV5 3 19 13.6 9.1 
EV6 0 0 0 0.0 
EV7 6 0 1.5 100.0 
EV8 30 37 16.75 44.8 
EV9 26 43 17.25 37.7 
EV10 1 0 0.25 100.0 
EV11 1 2 0.75 33.3 
EV12 5 0 1.25 100.0 
EV13 2 1 0.75 66.7 
EV14 3 1 1 75.0 
EV15 0 0 0 0.0 
EV16 1 0 0.25 100.0 
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Table 3. Parameters used in ObjM. 

Parameters Distribution Min Mean Max 
Orientation Triangular 30˚ 45˚ 50 ˚ 
Amplitude Triangular 6km 8km 10km 
Wavelength Triangular 10km 15km 20km 
Width Triangular 1.5km 7.4km 10km 

Thickness Not applicable because of 2D models were built 

Trends Not used 
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Fig. 1. Earth view of one section of Amazon River near Atlantic Ocean (a) and digitized 

channel and floodplain distribution (b). The location of study area is uploaded as an 

Interactive Map Data (KMZ). Note that the width of tertiary channel is enlarged in 

digitization and some small channels were ignored. The enlargement is help to visualize it in 

modelling. 

  

80km

80km

8
0

km

8km

3km

1km 8
0

km

(a) (b)

Primary channel

Tertiary channel

Secondary channel



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

2 

 

 

Fig. 2. Sampled data with spacing of 2.5 km (a) and 5.0 km (b). Red points were sampled 

from channel and grey points were sampled from floodplain. 
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Fig. 3. A training image with marked event number (a) according to its 16 data events 

with four conditioning data (b) (Zhou et al., 2016). Filled grids=channel; blank=floodplain.  
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Fig. 4. Horizontal variogram (a), variogram along major direction (45˚; b) and variogram 

along minor direction (135˚; c). Note that the distance scale is 1:10 to reality.  
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Fig. 5. Outlines of real channels overlap nine realisations of channel and floodplain 

distribution by SIS based on the sampled data with spacing of 2.5 km. 
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Fig. 6. Outlines of real channels overlap nine realisations of channel and floodplain 

distribution by ObjM based on the sampled data with spacing of 2.5 km. 
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Fig. 7. Outlines of real channels overlap nine realisations of channel and floodplain 

distribution by MPS based on the sampled data with spacing of 2.5 km. 
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Fig. 8. Horizontal variogram (a), variogram along major direction (80˚; b) and variogram 

along minor direction (170˚; c) based on the sampled data with spacing of 5.0 km (Fig. 2b). 

Note that the map scale is 1:10 to reality.  
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Fig. 9. Outlines of real channels overlap nine realisations of channel and floodplain 

distribution by SIS based on the sampled data with spacing of 5.0 km. 
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Fig. 10. Outlines of real channels overlap nine realisations of channel and floodplain 

distribution by MPS based on the sampled data with spacing of 5.0 km. 
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Fig. 11. Connected channels for realisation No.1 from SIS (a), ObjM (b) and MPS (c) based 

on sampled data with spacing of 2.5 km. Different colour represents different connected body. 
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Fig. 12. Connected grid number of channels from SIS (a), ObjM (b) and MPS (c) based on 

sampled data with spacing of 2.5 km. 
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Fig. 13. Connected channels from SIS (a) and MPS (b) based on sampled data with spacing 

of 5.0 km. 
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Fig. 14. Training image is prepared manually. (a) Channel outlines and (b) channel 

distribution filled manually. 
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Fig. 15. Outlines of real channels overlap nine realisations of channel and floodplain 

distribution by MPS based on the sampled data with spacing of 5.0 km. Note that the training 

image is from manual mapped facies as shown Fig. 14b. 
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Highlights 

• Multiple-point statistics is used in reproducing an active river’s distribution. 

• Sequential indicator simulation, object modelling and multiple-point statistics are 

compared. 

• Two different dense data sets are used in modelling and compared for results. 


