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Abstract

Cell-freemethods of protein synthesis offer rapid access to expressed proteins. Though

the amounts produced are generally only at a small scale, these are sufficient to perform

protein-protein interaction assays and tests of enzymatic activity. As such they are

valuable tools for the biochemistry and bioengineering community. However the most

complex, eukaryotic cell-free systems are difficult to manufacture in house and can be

prohibitively expensive to obtain from commercial sources. The Leishmania tarentolae

system offers a relatively cheap alternative which is capable of producing difficult to

express proteins, but which is simpler to produce in large scale. However, this system

suffers from batch-to-batch variability, which has been accepted as a consequence of

the complexity of the extracts. Here we show an unexpected origin for the variability

observed and demonstrate that small variations in a single parameter can dramatically

affect expression, such that minor pipetting errors can have major effects on yields. L.

tarentolae cell-free lysate activity is shown to be more stable to changes in Mg2+

concentration at a lower ratio of feed solution to lysate in the reaction than typically

used, and a higher Mg2+ optimum. These changes essentially eliminate batch-to-batch

variability of L. tarentolae lysate activity and permit their full potential to be realized.
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1 | INTRODUCTION

The use of cell-free methods for protein synthesis is now common-

place. A wide variety of systems are available, each with their own

strengths and weaknesses. For example, wheat-germ extract, one of

the first systems to be developed, is well characterized and has been

developed such that protein synthesis by means of this system can

rapidly and reliably deliver milligram quantities of protein (Harbers,

2014; Takai & Endo, 2010; Takai, Sawasaki, & Endo, 2010). However,

the wheat-germ system is expensive, and preparation of wheat-germ

extract is complex and time-consuming. By contrast, E. coli cell-free

extract is both cheaply and rapidly produced, but does not provide

post-translational modifications, and is less successful at producing

high-quality eukaryotic proteins, than wheat-germ, or other

eukaryote-derived systems, such as rabbit reticulocyte lysate (Gagoski

et al., 2016). Nonetheless, because of the ease and low cost of its

production, considerable efforts have beenmade to improve the E. coli

cell-free system. In themain, these efforts have focussed on the supply

of energy to the translation reaction (Calhoun & Swartz, 2007), with

glycolytic intermediates (H. C. Kim et al., 2008), glucose, oligosac-

charides (H.-C. Kim, Kim, & Kim, 2011; Wang & Zhang, 2009), and

combinations of thesemethods (T.W. Kim et al., 2007) being tested. In

addition, a shift toward the use of components which more faithfully

mimic the cell cytoplasm (the so called “cytomim” system) has been

Biotechnology and Bioengineering. 2018;1–11. wileyonlinelibrary.com/journal/bit © 2018 Wiley Periodicals, Inc. | 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/156884925?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orcid.org/0000-0002-1826-6902


examined (Calhoun & Swartz, 2007; Jewett & Swartz, 2004).

Alternative improvements have been described by Pedersen, Hellberg,

Enberg, & Karlsson, 2011, who performed a number of rounds of

optimization on a traditional E. coli cell-free system. A shift from an S30

to an S12 extract, together with minor concentration changes to

various components, increases in particular amino acids (Ser, Gln), and

the use of malic acid, 2-oxoglutaric acid and succinic acid as additives

being shown to increase yields two to three-fold.

Several other sources for cell-free systems have also been studied,

such as those from insect cells (Kubick, Gerrits, Merk, Stiege, &

Erdmann, 2009; Merk et al., 2015; Stech et al., 2012), yeast (Gan &

Jewett, 2014; Hodgman & Jewett, 2013; Schoborg, Hodgman,

Anderson, & Jewett, 2014) and the protozoan lizard parasite

Leishmania tarentolae (Gagoski et al., 2016; Johnston & Alexandrov,

2014; Kovtun, Mureev, Johnston, & Alexandrov, 2010; Kovtun et al.,

2011; Mureev, Kovtun, Nguyen, & Alexandrov, 2009; Ruehrer &

Michel, 2013), each with their own advantages and disadvantages.We

routinely use the L. tarentolae system, since it offers the low cost, ease

of culture and simple cell-free lysate production of the E. coli system,

with the ability to more faithfully express eukaryotic proteins (Gagoski

et al., 2016). In our laboratory, this system is used to co-express human

proteins of interest for protein-protein interaction studies by

AlphaScreen and single molecule fluorescence technologies (Gambin

et al., 2014; Han et al., 2014; Sierecki et al., 2013; Sierecki et al., 2014).

However, our use of this system has been plagued with difficulties

arising from apparent batch-to-batch variations in lysate activity and

magnesium dependency. Further, to our knowledge, no comprehen-

sive optimization of the L. tarentolae system has been published.

Routine growth of L. tarentolae and production of cell-free lysate

was easily established, but protein expression by this system had

significant lysate batch-to-batch variations in both activity—the overall

yield of expressed proteins—and expression quality—the degree of

truncated expression, or of aggregation of expressed proteins

observed. A related issue was the lysate batch-to-batch variation of

the dependence of expression activity on magnesium concentration,

as noted in (Johnston & Alexandrov, 2014). Further, the results of test-

scale investigations of supplementation conditions and subsequent

large-scale supplementations were not consistent, with conditions

established in the former often yielding little to no activity when

applied to large scales. We therefore undertook a program of

optimization of reaction conditions and of the feed solution for cell-

free transcription to eliminate this variability and to better understand

the L. tarentolae cell-free system.

2 | MATERIALS AND METHODS

Leishmania tarentolae Parrot strain was obtained from Jena Bioscience

GmBH, Jena, Germany, as the Lexsy host P10 for constitutive

expression. L. tarentolae cultures were maintained in modified Terrific

broth with both glycerol and glucose (TBGG), containing 0.2% v/v

Penicillin/Streptomycin (Life Technologies, Australia Pty. Ltd., Mul-

grave, VIC, Australia) and 0.05% w/v Hemin (MP Biomedicals, Santa

Ana, CA), in 50ml volumes (Johnston & Alexandrov, 2014). For lysate

production, culture volumes were sequentially increased to 100ml,

1 L, and 4 L. 4 L cultures were grown in a Biostat A fermentor

(Sartorious Stedim, Australia Pty. Ltd., Dandenong South, VIC,

Australia) for ∼18 hr in TBGG medium with penicillin/streptomycin

and hemin additions as above. During the final 4 L growth, culture

oxygen tension was maintained at 10% or above, and pH was

controlled at 7.4.

2.1 | Lysate production

Lysate production was carried out as described in (Johnston &

Alexandrov, 2014). Briefly, L. tarentolae cells were harvested at an OD

of ∼6 by centrifugation at 2500g. Harvested cells were washed twice

by resuspension in ice cold 45mMHEPES, pH 7.6, containing 250mM

Sucrose, 100mM Potassium Acetate, and 3mM Magnesium Acetate

(SuEB). Cells were then resuspended to 0.25 g wet weight cells per g

cell suspension in SuEB andwere placed in a cell disruption vessel (Parr

Instruments, Moline, IL). The cell suspension was incubated under

7000 KPa nitrogen for 45min on ice, then the cells were lysed by rapid

release of pressure. The cell lysate was clarified by sequential

centrifugation at 10,000g and 30,000g and anti-splice leader DNA

oligonucleotidewas added to 10 μM. The lysatewas then desalted into

45mM HEPES, pH 7.6, containing 100mM Potassium Acetate and

3mM Magnesium Acetate (EB) using illustra NAP-25 columns, snap-

frozen in liquid nitrogen in small aliquots and stored at −80 °C until

required.

2.2 | Plasmid DNA

Plasmids for expression were constructed using the pCellFree

backbone (Gagoski et al., 2015) with insertions cloned from the

human ORFeome library described in (Škalamera et al., 2011). Plasmid

stocks were prepared by midi-prep (ZymoPURE Midiprep Kit, Zymo

Research, Irvine, CA) and normalized to 500 ngDNA/μL. The following

plasmids were routinely used: pCellFree_G04-SOX18 (SOX18-GFP),

pCellFree_G08-SOX18 (SOX18-Cm), pCellFree_G04-RBPJ (RBPJ-

GFP), pCellFree_G03-CAV1 (GFP-CAV1), pCellFree_G08-VAMP2

(VAMP2-Cm), pCellFree_G10-mCherry (mCh-sfGFP).

2.3 | Protein expression using L. tarentolae lysate

Protein expression was performed in batch reactions. A nominally 5 ×

concentrated Feeding solution (FS) was used, which contained

8.5 mM ATP, 3.18mM GTP, 2.5 mM CTP, 2.5 mM UTP, 1.2 mM

spermidine, 10 mM DTT, 200mM creatine phosphate, 100mM

HEPES-KOH pH 7.6, 5% (v/v) PEG 3350, 5 × complete protease

inhibitor, 3.5 mM amino acid mixture, 1 mM anti-splice leader DNA

oligonucleotide, 5 U/μl creatine phosphokinase. When diluted at a

FS: (FS + Lysate) ratio (FSR) of 0.2 (i.e., to a nominal 1 × dilution), this

gave 1.7 mM ATP, 0.635mM GTP, 0.5 mM CTP, 0.5 mM UTP,

0.24mM spermidine, 2 mM DTT, 40mM creatine phosphate, 20 mM

HEPES-KOH pH 7.6, 1% (v/v) PEG 3350, 1 × complete protease
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inhibitor, 0.133mM amino acid mixture, 0.2 mM anti-splice leader

DNA oligonucleotide, 1 U/μl creatine phosphokinase.

In typical expression reactions, thawed L. tarentolae lysate was

first combined with FS to the desired FSR. T7 DNA polymerase,

expressed from the Sigma–Aldrich TargeTron Vector pAR1219,

(Sigma–Aldrich Australia Pty. Ltd., Sydney, NSW, Australia) and

purified by the method of (Davanloo, Rosenberg, Dunn, & Studier,

1984) RNaseOUT (Life Technologies) and Mg2+ (as the acetate salt)

were then added to the desired concentrations.Where further dilution

of the Lysate-Feed Solution mixture was desired, MilliQ water

containing magnesium acetate was used, such that the Mg2+

concentration remained constant. Expression reactions were started

by the addition of 9 μL aliquots of this master mix to 1 μL (500 ng) of

plasmid DNA. Expression reactions were performed in 200 μL PCR

tube strips, at 27 °C, for 3 hr. Tube caps were pierced to permit the

maturation and full development of mCherry fluorescence. Variations

to these conditions are noted in the text.

Protein expression was quantitated by means of GFP or mCherry

fluorescence. Fluorescence was measured in real time using a Synergy

4 plate reader (BioTek,Winooski, VT), or at discrete time points using a

Chemidoc MP imaging system (Bio-Rad, Laboratories Pty. Ltd.,

Gladesville, NSW, Australia) equipped with epi-red, epi-green, and

epi-blue LED modules. Protein expression was also quantitated by

SDS-PAGE, with detection of expressed GFP- or mCherry-tagged

constructs by means of the ChemidocMP imaging system. Samples for

gels were prepared by combining 10 μL sample aliquots with 4 μL Bolt

LDS sample buffer (Life Technologies Australia Pty. Ltd.). A total of

4 μL samples were then loaded onto precast Novex BOLT 4–12% Bis

Tris gels (Life Technologies Australia Pty. Ltd.). Following electropho-

resis, gels were imaged without further processing, using the inbuilt

Alexa 488 (GFP), Alexa 546 (mCherry), and Cy5 (prestained markers)

settings.

3 | RESULTS

To understand the potential origins of batch-to-batch variability, we

set out to systematically explore the effect of the different parameters

on protein expression. This was assessed by quantifying the

fluorescence of GFP or mCherry-tagged proteins under different

expression conditions. We started with the most obvious parameters,

such as temperature, magnesium concentration, pH of reactions,

before a chance observation lead us to vary more parameters.

Initial experiments established a broad temperature optimum

between 21 and 27 °C, the exact optimum depending on the construct

used (Supplementary Figure S1a–f). Expression temperature had little

effect on the quality of protein expression, as, determined by SDS-

PAGE, with the exception of the SOX18-GFP construct (Supplemen-

tary Figure S1g–j). SOX18-GFP expression reactions produced a large

number of lower mass species, notably at ∼30 kDa, ∼50 kDa, and

multiple bands between 55 kDa and 70 kDa. The lower mass bands

followed a similar distribution with temperature to the overall

expression levels, however the multiple bands over 55 kDa were

suppressed above 29 °C, and the full length SOX18-GFP, essentially

absent below 18.8 °C, became more prominent. For instrument-

related reasons, expressions were routinely carried out at 27 °C.

Because of its sensitivity to expression conditions, SOX18-GFP was

routinely used in testing, together with the mCh-sfGFP tandem

construct. This allowed full length expression to be tracked, together

with folding—sfGFP is a highly robust, fast folder, while mCherry folds,

and matures slowly (Pedelacq, Cabantous, Tran, Terwilliger, & Waldo,

2006; Shaner et al., 2004).

3.1 | Effect of magnesium concentration

Magnesium ion concentration iswell known to be a critical parameter in

cell-free expression, since it acts as a counter-ion to the nucleotide

phosphates used both as energy sources for the expression and as raw

materials for the transcription portion of expression. In order to assess

the role of magnesium in protein expression by L. tarentolae lysate, the

magnesium dependence of expression of SOX18-GFP and mCh-sfGFP

was investigated over a wide range of magnesium concentrations

(2–32mM), in a plate reader, so that effects onexpression kinetics could

alsobeassessed.Figure1ashowsthatdespite theoptimal concentration

for expression for the three lysates tested being similar (4–6mM),

detectable activity remained at concentrations up to 20mM Mg2+.

Inspection of the time courses (Figure 1b), and rates of expression

(Figure 1c) suggested that for two of the lysates at [Mg2+] greater than

optimum, in addition to decreased overall expression, the time taken to

reach maximal expression and the lag time for commencement of the

reaction both increased. In the third lysate, the maximum rate of

expression was reached at a significantly higher [Mg2+], and the time

taken to reach maximum rate, and the lag time decreased as [Mg2+]

increased. Subtraction of the lag time from the time taken to maximum

rate (Figure 1d) removed most of the effect of changing [Mg2+],

suggesting that the changes observed in the expression kinetics were

due tochanges in the lag timesof theexpressionreaction.Analysisof the

expression products by SDS-PAGE demonstrated no significant differ-

ences in expression quality over the range of magnesium concentration

investigated (not shown).

3.2 | Effect of feed solution ratio

During one of the screening phases, reactions were set up with smaller

volumes, and 1 μL of pure water was omitted from the 10 μL total

volume of the mix. To our surprise, this small variation led to a

complete shutdown of protein expression in the system. Repeats of

the same experiments showed that the balance between lysate and

feed solution was critical.

We set up to investigate in more detail the importance of the feed

solution ratio, here defined as the ratio of the volume of feed solution

to volume of total reaction, that is,

FSR ¼ Vol:FS
Vol:FSþ Vol:Lysateð Þ
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The normal reaction set up (Johnston &Alexandrov, 2014) uses an

FSR of 0.2; varying this ratio alters the concentration of feed solution

components to lysate in a concerted manner.

Figure 2a shows expression of SOX18-GFP and mCh-sfGFP at

four FSR values, each at three concentrations of magnesium. This

reveals that at 5 mMMg2+, expression of SOX18-GFP drops by ∼65%

when the FSR is altered from 0.18 to 0.21. In a 10 μL reaction, this

corresponds to a change in added feed solution of 0.3 μL, well within

pipetting error, especially of the somewhat viscous feed solution. Over

the FSR range 0.15–0.24, corresponding to a volume change of 0.9 μL,

the expression activity falls by approximately 90%. Though such

volume errors can be mitigated by using larger volume master mixes,

such major changes in activity with minor changes in reaction

composition are noteworthy.

Following averaging within each FSR value, comparison of the

standard deviations and coefficients of variation between each

suggests that lysate activity is more stable to variations in the

concentration of magnesium at FSR values below 0.2 than at values

above 0.2 (Figure 2b). A survey of nine individual Leishmania lysates

(Supplementary Figures S2a and S2b) revealed that this instability of

expression activity at FSR values greater than 0.2 with respect to the

concentration of magnesium, was generally observed.

The range of FSR valueswas then extended, to encompass a range of

0.1 (1μL FS per 9μL lysate) to 0.3 (3μL FS per 7μL lysate). The

consequent range of concentrations of feed solution components is given

in Supplementary Table S1. Analysis of four individual Leishmania lysates

over this range confirmed the initial observation, and suggested that, for

optimal activity, FSR values below 0.2 should be used (Figures 3a and 3b).

3.3 | Effect of feed solution components

In order to investigate which of the feed solution components, varied

in concert in the FSR experiments, was likely to be responsible for the

effects observed, the effects of varying each individually was

investigated. Feed solutions were made lacking each component in

turn. These were then supplemented with the component under

investigation over a range of final concentrations from 0 to 3 times that

under standard (FSR = 0.2) conditions. All other components were

maintained at the standard concentrations except for PEG3350,which

was reduced from nominally 1% to 0.25% on the basis of preliminary

FIGURE 1 shows the effect of varying the magnesium concentration on expression by L. tarentolae cell-free lysate. (a) total expression of
SOX18-GFP by three separate lysates (1: solid circles; 2: solid squares; 3: solid triangles) at varying concentrations of magnesium. Inset, total
expression of mCh-sfGFP by the same lysates, measured by GFP fluorescence. (b) Expression of SOX18-GFP with time for lysate 1, at increasing
concentrations of magnesium from 2mM (lightest gray) to 32mM (black). Data for mCh-sfGFP was similar. (c) Changes in the rate of SOX18-
GFP expression (i.e., increase in fluorescence/minute − the slopes of graphs in b) with time, at increasing concentrations of magnesium from
2mM (lightest gray) to 32mM (black). (d) Maximum rate of expression (open circles), time to reach maximum rate (open squares) and the
reaction lag time (open triangles) defined as the time for the reaction rate to exceed 5 RFU.min−1. Subtraction of the lag time from the time to
reach maximum rate indicated that the changes in kinetics seen in b and c were predominantly due to changes in the lag time
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experiments. The previously determined optimum FSR was used.

Figure 4a–i summarizes the results obtained. For simplicity, CTP and

UTP concentrations were varied together, and the concentrations of

protease inhibitor cocktail, antisense oligonucleotide, and T7 poly-

merase were maintained constant throughout.

Varying the reaction pH had only minor effects on protein

expression (Supplementary Figures S3a and S3b). Other components

fell into three broad categories: 1. dithiothreitol (DTT), PEG 3350,

which had little effect on expression at any concentration tried; 2. ATP,

GTP, CTP/UTP, amino acids, creatine phosphokinase, which produced

little or no expression when absent, but which increased expression to

a maximum as their concentrations increased, with little change in

expression above this concentration; and 3. creatine phosphate,

spermidine, which had a clear optimum concentration, above and

below which expression was reduced. As seen previously, none of the

treatments appeared to alter the quality of the expressed protein,

merely the amount of expression, as judged by SDS-PAGE (data not

shown). The most important observation was that the expression

activity changes resulting from concentration changes in each

individual component which would be caused by varying the FSR of

the range 0.1–0.3 (shaded blocks) was insufficient to fully explain the

often dramatic changes in overall protein expression activity observed.

These experiments had, however, neglected the effect of

magnesium on the expression reactions. Therefore, a subset of

components were re-examined over the same 0–3 times standard

concentrations, at final magnesium concentrations from 4mM to

14mM. The data obtained are summarized in Figure 5a–f. At low

concentrations of magnesium, ATP shows a narrow peak of expression

activitywith concentration at lowATP concentrations, whichmarkedly

broadens and shifts to a higher ATP concentration as the magnesium

concentration increases. GTP also shows a peak of expression activity

at low GTP concentrations when the magnesium concentration is low.

This shifts to higher GTP concentration as the concentration of

magnesium increases. However, further increase in the magnesium

concentration reduces the overall expression activity, which falls close

to 0 at 14mM magnesium.

Creatine phosphate also shows a narrow peak of expression

activity at low concentration when the concentration of magnesium is

low. Thus at 4 mM Mg2+, an increase in creatine phosphate

concentration from 34.3 mM (the approximate equivalent of a FSR

of 0.16) to 51.4 mM (the approximate equivalent of a FSR of 0.26)

essentially abolishes activity. The peak of activity shifts to slightly

higher creatine phosphate concentrations as the magnesium concen-

tration increases, but overall the expression activity decreases.

FIGURE 2 Panel (a) shows the expression levels obtained at four separate FSR values from 0.15 to 0.24, each at three magnesium
concentrations. Inspection of the resulting bar graph suggests that the variation within a FSR set with respect to magnesium concentration is greater
for the two higher values (0.21, 0.24). Panel (b) shows this effect quantitated, with higher standard deviations and coefficients of variation obtained
for these higher FSR values when the expression levels are averaged over the three magnesium concentration within a FSR value. SOX18-GFP:
Open bars/circles; mCh-sfGFP quantitated using GFP: gray solid bars/circles; quantitated using mCherry: black solid bars/circles
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Interestingly, the expression activity at the highest concentrations of

creatine phosphate increases markedly at 14mM magnesium.

Both DTT and amino acids show a simple suppression of

expression activity as the concentration of magnesium increases,

while the narrow optimum concentration peak for spermidine shifts to

a lower concentration and is then suppressed as the magnesium

concentration increases.

3.4 | Pre-incubation of lysate with feed solution

Pre-incubation experiments to test the stability of the protein expression

activity of lysatemayoffer clues as towhere todirect optimisation efforts,

by indicatingwhich reaction components are degraded during expression

(D.M. Kim & Swartz, 2000). Leishmania lysate lost essentially all activity

when incubated alone, on ice. When incubated in the presence of feed

solution, or in the presence of the complete reaction mix (i.e., feed

solution, T7 polymerase, Mg2+, RNaseOUT), retention of expression

activitywas observed at up to 2 hr, albeit at low levels;∼20%at 2 hrwhen

pre-incubated with the complete reaction mix (Supplementary

Figure S3a–c). Attempts were made to improve retention of activity by

the use of common protein stabilization reagents. Glycerol, commonly

used to stabilize proteins,was shown to inhibit expression activity in the L.

tarentolae system (data not shown). Alternative stabilizers; sucrose,

mannose, trehalose, andsorbitol, didnot inhibit the lysateactivity, andhad

at best a minor protective effect on pre-incubation lysate stability above

that seen with complete reaction mix (Supplementary Figure S4d–f).

The phosphatase inhibitor PhosSTOP (Sigma–Aldrich) was also

investigated, since prevention of premature hydrolysis of nucleotide

phosphates and creatine phosphate by endogenous phosphatases

might be expected to increase their availability for use in the

transcription/translation reactions in lysate. However, inclusion of

PhosSTOP in concentrations as low as 0.1 × the recommended

concentration essentially eliminated protein expression activity (data

not shown).

3.5 | Feeding of expression reactions and effect of
phosphate

It was noted that in most reactions, protein expression ceased ∼2 hr

after beginning; see for example, Figures 1b and 1c. Attempts were

FIGURE 3 shows a similar experiment to that displayed in Figure 2, extending over a wider range of FSR and magnesium concentration.
Though the variation is less apparent on inspection of the bar graph, a similar pattern of standard deviations and coefficients of variation to
those seen in Figure 2 panel (b) are observed
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FIGURE 4 (a–g) Lysate activity versus feed solution component concentration, using SOX18-GFP (solid circles) and mCh-sfGFP,
(GFP expression: solid squares; mCh expression: solid triangles) as test DNAs. Expression was quantified by Chemidoc. (h) Lysate
activity versus spermidine concentration, at four concentrations of PEG 3350, using SOX18-GFP as test DNA—mCh-sfGFP data was
similar. Solid circles: 0.1% (v/v) PEG; solid squares: 0.5% PEG; solid triangles: 1.0% PEG; open circles: 1.5% PEG. I: data from h plotted
as lysate activity versus PEG 3350 concentration. Solid circles: 0.00 mM Spermidine; solid squares: 0.29 mM spermidine; solid triangles:
0.57 mM spermidine; open circles: 0.86 mM spermidine; open squares: 1.14 mM spermidine; open triangles: 1.43 mM spermidine; solid
down triangles: 1.71 mM spermidine; open down triangles: 2.00 mM spermidine. In this case, expression was quantitated by plate
reader. In all panels, the shaded area indicates the range of component concentration in the final reaction produced by varying FSR
values between 0.1 and 0.3
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therefore made to prolong the expression reaction by feeding with

either feed solution, amino acids, or additional Mg2+. No extension of

the expression reaction was observed; in all cases where additions

were made, the expression was reduced compared to expression

where no additions were made (Supplementary Figure S5a–f).

Since these results suggested that depletion of reaction components

wasnot thecauseofexpressionceasing, attentionwas turnedto thebuild-

up of waste products, principally inorganic phosphate, which is known to

affect cell-free expression. The effect of inorganic phosphate on protein

expressionwas tested, and amarked inhibition of protein expression was

observedabove20mM,with complete inhibitionof expressionby60mM

added potassium phosphate (Supplementary Figures S5a and S5b). It was

also noted that though the magnitude of protein expression was

dramatically affected, additional phosphate did not appear to affect the

FIGURE 5 Lysate activity versus feed solution component concentration, using mCh-sfGFP as test DNA, at six magnesium concentrations
from 4mM (light gray, open circles) to 14mM (black, solid circles). Expression was quantitated by Chemidoc, using GFP fluorescence;
mCherry fluorescence was similar. In all panels, the shaded area indicates the range of component concentration in the final reaction
produced by varying FSR values between 0.1 and 0.3
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kinetics of the reaction—neither the time taken for the reaction to reach

maximum rate, or for the reaction to cease was affected (Supplementary

Figure S6c–f).

4 | DISCUSSION

Cell-free lysate systems for the expression of proteins are clearly

complex, with requirements for many additional components, each of

which can have a dramatic effect on the overall activity of the lysate,

and on the quality of thematerial produced. It is therefore necessary to

conduct comprehensive testing on the cell-free system in order to

obtain the best performance for the desired task. This performance

may be a trade-off between quantity of expressedmaterial and quality,

since changes to the system to maximize quantity may result in an

increase in errors in protein expression, truncations, and the like. This

study examines the performance of the Leishmania tarentolae cell-free

protein expression system in detail, in order to provide the basis for

optimization of expression, and to solve issues with instability of the

system activity with respect to additional components of the reaction.

Initial experiments with this system indicated that the L. tarentolae

lysate behaved as published, with magnesium and pH dependencies

broadly matching those obtained previously (Johnston & Alexandrov,

2014). The temperature optimum for the majority of constructs

investigated was found to be lower than the 27 °C specified in this

protocol, with the exception of the SOX18-GFP construct. In this case,

a higher temperature was beneficial in producing full-length protein,

but this had to be balanced against the lower expression yield at

temperatures above 30 °C. While 27 °C may be an acceptable

compromise temperature for general protein expression, it is clear

that in specific cases, optimization of the expression temperature may

be necessary to obtain the expression yield and protein quality desired.

The lability of L. tarentolae lysate noted in (Johnston & Alexandrov,

2014) was confirmed by pre-incubation experiments. Though a measure

of protection of the expression activity of the lysate was obtained by

supplementationwith feed solution, this was relatively small. Attempts to

further stabilize the lysate using common reagents—glycerol, sugars,

phosphatase inhibitor—were unsuccessful. Similarly, feeding experiments

designed to alleviate reaction component or magnesium depletion were

unsuccessful, suggesting that the lability of the lysate is themain cause of

loss of activity. This is supported by the effect of additional phosphate,

which decreases the overall yield, but which does not appear to have any

effect on the kinetics of the reaction, suggesting a separate mechanism

may operate to cause cessation of protein expression.

In our hands, the L. tarentolae expression system displayed an

expression reaction-to-expression reaction instability, which mani-

fested as a marked sensitivity to magnesium concentration over and

above the expected lysate-to-lysate variation, when used as described

by Johnston and Alexandrov (2014), at 2 volumes feed solution to 8

volumes lysate (FSR = 0.2). A chance observation that altering the ratio

of feed solution to lysate resulted inmuch less sensitivity tomagnesium

concentration, led to a systematic investigation of the effects of varying

the feed solution ratio and of the reasons for the stability/instability

discovered. Analysis of several individual lysatebatches (Supplementary

Figures S2a and S2b) suggested that, in the main (lysates B, C, D, and F),

protein expression activities showed a “stable” region with respect to

magnesium concentration at FSR values below 0.2, while at FSR = 0.2

and above, protein expression activitywasmuch less stablewith respect

to the magnesium concentration, that is, changes in the magnesium

concentration were more likely to result in large changes in expression

activity. The other lysates (A, E, G, H, I) showed a peak of instability at

FSR = 0.18 − 0.21, depending on the construct used, with greater

stability to magnesium at the extremes of FSR investigated. However,

the apparent high stability at high FSR values observed is likely an

artifact of the low to negligible activities at these values, indicating that

despite the decreased stability to changes in magnesium concentration,

expressing at a low FSR is preferable

FIGURE 6 Comparison of expression yield from nine lysates under
“typical” conditions ((Johnston & Alexandrov, 2014): 5mM Mg2+,
FSR = 0.2–values interpolated from FSR = 0.18 and FSR = 0.21
conditions, black bars) and under the best conditions obtained in our
experiments (open bars). Magnesium concentrations and FSR values
producing the maximum expression activity are given above the bars
for the corresponding lysates. Panel A: SOX18-GFP expression; Panel
B: mCh-sfGFP expression; Panel C: percentage improvement in
expression on changing the expression condition from “typical” to
best (SOX18-GFP: open bars; mCh-sf-GFP, gray bars)
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The initial observations of the effects of varying individual feed

solution components did not yield an explanation for the effects of

varying the feed solution ratio, since the range of component

concentrations accessed by varying the FSR between 0.1 and 0.3

(Figure 4a–i, shaded areas) did not appear to be sufficient to account

for the large changes in expression activity seen. Only when the effect

of the reaction magnesium concentration was simultaneously

investigated, did changes of sufficient magnitude to be responsible

for the observed effects of varying FSR on the expression activity

become apparent (Figure 5a–f). Given the typical reaction volume of

10–20 μL, and a typical stock solution of 100mMmagnesium, a minor

error in pipetting of 0.1 μL would be sufficient to change the final

magnesium concentration in an expression reaction by 1mM. This

would be of minor consequence in the “stable” region of feed solution

ratio. However, in the “unstable” region of feed solution ratio, typically

at and above 0.2, it is sufficient to reduce expression activity

dramatically (compare the results of a 1mM change in magnesium

concentration at FSR 0.18 and at 0.21, Figure 2). In this region, minor

errors in pipetting may lead to a “low-quality lysate.”

As a result of these findings we now routinely screen new lysates

at a range of FSR values and magnesium concentrations, as shown in

Figures 2, S2a, S2b. Inspection of these results then allows the

determination of the best ratio of lysate to feed solution to maximize

stability of the expression reaction to magnesium concentration.

Figure 6 shows the increase in activity obtained by this screening, as

well as the conditions which yield maximum expression, in comparison

to the “typical” conditions (Johnston & Alexandrov, 2014) (FSR = 0.2,

5 mM Mg2+). It is then possible to balance the desire for stability to

magnesium concentration against that for the greatest expression

activity. For example, lysate B produces maximum activities at

FSR = 0.21, 7 mM Mg2+. However, it may be preferable to accept a

minor loss in activity and obtain the greater stability to magnesium

concentration offered by FSR = 0.18 (Supplementary Figures S2a and

S2b). Lysates may thus be produced which perform to their maximum

potential for the desired application.
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