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Highlights

• A rigorous analysis of high dimensional parameter sampling techniques

• New theoretical bounds for percentage coverage of parameter space by
sampling

• Numerical simulations confirming bounds on percentage coverage of
parameter space and applications of the coverage formula

• Results verifying t-way interactions coverage estimates in an experi-
mental design setting depend on t not the total dimension
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Abstract

In this paper we use counting arguments to prove that the expected percent-
age coverage of a d dimensional parameter space of size n when performing
k trials with either Latin Hypercube sampling or Orthogonal Array-based
Latin Hypercube sampling is the same. We then extend these results to
an experimental design setting by projecting onto a t < d dimensional sub-
space. These results are confirmed by simulations. The theory presented
has both theoretical and practical significance in modelling and simulation
science when sampling over high dimensional spaces.

Keywords: Latin Hypercube sampling, Orthogonal Array-based Latin
Hypercube sampling, Sample Space Coverage, Simulations

1. Introduction

Efficient and robust mechanisms for sampling high dimensional spaces
are now a cornerstone of simulation and computational science, and arise
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in many different ways that we now briefly discuss. From a modelling and
simulation perspective, increasing model complexity and computational de-
mands together with a move towards quantifying the uncertainty in the data
underpinning the model, has led to the development of surrogate models or
emulators [1, 2]. The construction of these emulators requires the computa-
tionally intensive codes to be trained on an appropriate distribution of points
in parameter space and then tested at a different set of points in order to
capture the response surface appropriately [1]. In the case of uncertainty
quantification, a quantity, either a random variable or a random response, is
often expressed in some basis expansion (Hermite polynomials, for example)
and the coefficients can be estimated using some sampling technique. Such
an approach has been used, for instance, to forecast reservoir-performance
in the petroleum industry [3] and to conduct a buckling analysis of a joined-
wing model [4]. In many cases uncertainty can stem not only from deficiency
of measured data, but also from physical properties such as the heterogeneity
of geological formations or buckling response and aeroelastic complications
under the effect of compressive loads.

In a different setting there may be a high level of uncertainty in the mea-
sured data and then the calibration of an ensemble or population of models
over a high dimensional parameter space can provide deep insights into the
underlying variability that underpins the model [5] - see more details later
in this section. This approach is sometimes called a population of models
(POM). In addition, a sensitivity analysis of parameter subsets is often im-
portant in ascertaining key parameters within the model [6]. Finally, Monte
Carlo simulations for approximating high dimensional integrals is another
area in which effective sampling is important.

The key aspect in all of these approaches is how to sample high dimen-
sional spaces appropriately and effectively. Of course what is meant by these
last two adverbs depends on the questions being asked. This leads us to the
concept of experimental design for simulation experiments, [7, 8] and the cri-
teria for assessing good or even optimal designs [9]. These criteria can include
space filling, orthogonality (to assess impact of pairs of parameters) and noise
reduction (to smooth the response surface). In the context of space-filling
designs, criteria based on potential energy, the Euclidean maximum distance,
discrepancy and D-optimality are commonly used - see [1] for a good discus-
sion. In the context of orthogonality-based criteria, the essential idea is to
minimise the correlation between variables. Most of these approaches de-
pend on trying to find “so-called” optimal designs, which in themselves can
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be highly computationally intensive and depend on the dimension of the un-
derlying computational or parameter space and the sampling technique used
[9, 7, 8].

In addressing this latter issue, we return to a brief discussion on the dif-
ferent types of sampling techniques. Perhaps the most popular technique
is Latin Hypercube sampling (LHS). LHS was first introduced by McKay,
Beckman and Conover [10]. Suppose that a d dimensional parameter space
is divided into n equally sized subdivisions in each dimension then a Latin
Hypercube trial (LHT) is a set of n random samples with one from each
subdivision; that is, each sample is the only one in each axis-aligned hyper-
plane containing it. A variant of LHS is known as Orthogonal Array-based
Latin Hypercube sampling (OALHS) as introduced by Tang [11], and based
on work in [12]. See also Leary et al. [13] for optimal constructions. This
approach adds the requirement that for each trial the entire sample space
must be sampled evenly at some coarse resolution.

An advantage of LHS is that it stratifies each univariate margin simulta-
neously, while Stein [14] showed that with LHS there is a form of variance
reduction compared with uniform random sampling. Tang [11] suggested
that it may also be important to stratify the bivariate margins. For in-
stance, an Experimental Design may involve a large number of variables,
but in reality only a relatively small number of these variables are effective.
One way of dealing with this problem has been to project the factors onto
a subspace spanned by the effective variables. However this can result in a
replication of sample points within the effective subspace. Welch et al. [15]
suggested LHS as a method for screening for effective factors, but there is
still no guarantee, even in the case of bivariate margins, that this projection
is uniformly distributed. On the other hand, OALHS achieves uniformity on
small dimensional margins [11].

Additional sampling techniques are based on Sobol sequences and Ham-
mersley sequences. These latter approaches give a low-discrepancy exper-
imental design and provide a better uniform distribution than LHS. More
recently, it has been pointed out that most sampling approaches generate
the entire set of sample points in one attempt and this does not allow for
flexibility or adaptivity. In [16] the authors introduce an approach called
Progressive LHS in which a series of finer and finer, usually by doubling
the sample size, LHSs are generated. This approach is a generalisation of
Sliced LHS [17] in which a LHS is generated from a collection of smaller
equally-sized LHSs.
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We now return to the application that motivated our work, namely the
building of a population of models. In the setting of a population of models
(POM) a mathematical model is calibrated by a set of points, rather than
a single point, in parameter space, all of which are selected to fit sets of ex-
perimental/observational data. The POM approach was originally proposed
for neuroscience modelling [18], but has been recently extended to a variety
of issues in cardiac electrophysiology. These include studies of inter-subject
variability in cardiac cells [5], inter-subject variability in a population of rab-
bit ventricular action potentials [19], inter-subject variability in human atrial
action potential models [20], and mRNA expression levels in failing and non-
failing human hearts [21]. In these settings, biomarker values are extracted
and then the models are calibrated against these biomarkers. This calibration
is usually against the ranges of the biomarkers but, more recently, calibration
was done against the distribution of data values for each biomarker [22].

The POM approach leads to methodologies that are essentially proba-
bilistic in nature and gives greater weight to the experimental, modelling,
simulation feedback paradigm [23]. By implementing experiments based on
a POM, as distinct from experiments based on a single model, the variability
in the underlying structure can be captured by allowing changes in the pa-
rameter values. This avoids complications arising from decisions on the use of
“best” or “mean” data, and the difficulties of identifying such data. We note
that POM have similarities with Approximate Bayesian Computation (ABC)
[24]. However, in ABC the sampling is usually performed adaptively so as to
converge to subregions of parameter space where the calibrated models lie,
as distinct from random sampling of the entire space.

Given this discussion it is clearly important to be able to estimate the
expected coverage of parameter space using sampling techniques such as LHS
or OALHS. Furthermore, it is also important to understand the relationship
between Experimental Design and POM in this regard. For example, it may
be desirable to know if a POM calibrates for interactions of “small strength”
by checking for all possible combinations of levels for, say, pairs or triples
of variables. This would equate to investigating the coverage of 2 and 3
dimensional subspaces.

In these settings the authors [25] focused on estimating the expected cov-
erage of a 2 dimensional parameter space for a population of k trials forming
a LHS with each trial of size n. In particular, an incomplete counting argu-
ment was used to predict the expected coverage of points in the parameter
space after k trials of size n. These estimates were compared against numer-
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ical results based on a MATLAB implementation of 100 simulations. The
results of the simulations led the authors to conjecture that the expected
percentage coverage by k trials of a 2 dimensional parameter space tended
to 1− e−k/n.

In a later paper [26] the authors extended this work and reported on
the expected coverage of d dimensional space based on MATLAB implemen-
tations of simulations of LHS and OALHS. They also tested for uniform
coverage of lower dimensional subspaces of dimension t. Let the expected
coverage of parameter space be defined as

P (k, n, d, t) =
U(k, n, d, t)

nd
, (1)

where U(k, n, d, t) is the expected number of cells in a parameter space of
dimension d with a partition size of n with k trials, projected onto a t di-
mensional subspace. Then [26] conjectured that the expected coverage of a t
dimensional subspace of a d dimensional parameter space of size n when per-
forming k trials of LHS is P (k, n, d, t) = 1−(1−1/nt−1)k or 1−e−k/nt−1

when
k is large, suggesting that the coverage is independent of d when considering
projections onto a subspace of smaller dimension t.

The aim of this present paper is to synthesise the results in [25, 26] to
prove the above conjecture, to provide additional simulations demonstrat-
ing the result and to discuss how this estimate can be used in a practical
setting. Thus in Section 2 we give some background on LHS and OALHS.
Then in Section 3 we give formal counting arguments and prove that the
conjectures given above are true. We provide counting arguments and use
combinatorial techniques to find the expected coverage of parameter space
when taking the union of k trials in the case of LHS and OALHS. We extend
these arguments in a natural manner to sub-block coverage when projecting
onto a 2 dimensional subspace (Experimental Design). We also give theoret-
ical bounds on the percentage coverage of parameter space for both LHS and
OALHS (showing that they are equivalent with respect to the coverage). We
then extend these estimates to the coverage when projecting down onto a 2
dimensional subspace. In Section 4 we present some simulation results that
support our theoretical results and discuss how our results can be used in a
practical setting. Finally, in Section 5 we give some concluding remarks.
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2. Methods

We begin by reviewing the well known methods used to generate LHSs
and formalise the definitions for OALHS. A LHT on d variables each taking
n values from the set [n] = {1, 2, . . . , n} may be represented as an n by d
matrix where each column is an arbitrary permutation of [n], and with each
row forming a d-tuple of the LHT. Thus a Latin Hypercube trial (LHT or a
LH d-trial) is a randomly generated subset of n points from a d dimensional
parameter space satisfying the condition that the projections onto each of
the 1 dimensional subspaces are permutations. A collection of k LH d-trials
forms a Latin Hypercube sample (LHS).

LHT1 LHT2


1 2 1
2 3 3
3 1 2
4 7 8
5 8 5
6 5 4
7 4 6
8 6 7







1 3 2
2 4 6
3 5 3
4 7 8
5 1 1
6 2 7
7 8 4
8 6 5




LHT3 OALHT4


(1, 1) (1, 2) (1, 1)
(1, 2) (1, 3) (1, 3)
(1, 3) (1, 1) (1, 2)
(1, 4) (2, 3) (2, 4)
(2, 1) (2, 4) (2, 1)
(2, 2) (2, 1) (1, 4)
(2, 3) (1, 4) (2, 2)
(2, 4) (2, 2) (2, 3)







(1, 1) (1, 3) (1, 2)
(1, 2) (1, 4) (2, 2)
(1, 3) (2, 1) (1, 3)
(1, 4) (2, 3) (2, 4)
(2, 1) (1, 1) (1, 1)
(2, 2) (1, 2) (2, 3)
(2, 3) (2, 4) (1, 4)
(2, 4) (2, 2) (2, 1)




By way of an example, the two matrices given above are two LH 3-trials on
the set {1, 2, . . . , 8}, denoted LHT1 and LHT2. Note that since a LH d-trial
is a multiset it is invariant under any permutation of the rows. LH 3-trials,
LHT1 and LHT2, may also be represented diagrammatically as illustrated
in Fig. 1 and Fig. 2, respectively. Collectively the union of LHT1 and
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LHT2 forms a LHS of k = 2 trials. Here the value of the third variable is
represented by the colour:

Third Coordinate
Light Blue 1 Light Pink 2 Light Green 3 Light Red 4
Dark Blue 5 Dark Pink 6 Dark Green 7 Dark Red 8

Figure 1: Projections onto the 2 dimensional subspaces for LHT1.
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Projection onto P1, P2 subspace
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Projection onto P2, P3 subspace
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While LHT1 and LHT2 are both examples of LH 3-trials they exhibit
different properties. The 2 dimensional subspace defined by each of the pairs
of variables P1 and P2, variables P1 and P3 and variables P2 and P3 can be
partitioned into four equally sized sub-blocks as shown by the thicker lines
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Figure 2: Projections onto the 2 dimensional subspaces for LHT2.
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in Fig. 1 and Fig. 2. In LHT2 we see that the 3-tuples (points) are evenly
distributed across the four sub-blocks, while this is not the case in LHT1.

The 3-trial LHT2 is an example of a specific space filling design known as
an OALH d-trial, where the sample points achieve uniformity on the bivariate
margins. With this example in mind it is useful to have a formal definition
for sub-blocks, OALH d-trials and OALHS.

Let n = pd for some p ∈ N. A d dimensional parameter space (the set
of all nd = pd

2
d-tuples), where each variable takes n = pd values, may be

partitioned into pd sub-blocks each of which contain pd
2
/pd = pd(d−1) points

(d-tuples); that is, for each (p1, p2, p3, . . . , pd) ∈ [p]d, the set of pd(d−1) ordered
d-tuples

SB(p1,...,pd) = {((p1, x1), (p2, x2), . . . , (pd, xd)) | xi ∈ [pd−1]}

defines a sub-block. Note that (pi, xi) is interpreted as (pi − 1)pd−1 + xi and,
in our examples, p = 2.

A LH d-trial is said to be an OALH d-trial if the n d-tuples are dis-
tributed evenly across all sub-blocks. Formally, a LH d-trial H is said to be
an Orthogonal Array-based Latin Hypercube d-trial (OALH d-trial) if n = pd

and for each of the pd d-tuples of the form (p1, p2, . . . , pd), where 1 ≤ pi ≤ p,
there exists an element of H of the form ((p1, x1), (p2, x2), . . . , (pd, xd)), where
1 ≤ xi ≤ pd−1 and (pi, xi) is interpreted as (pi− 1)pd−1 + xi. Thus an OALH
d-trial on n = pd values may be represented as an n by d matrix where each
entry is an ordered pair (x, y) ∈ [p]× [pd−1]. Furthermore, when the matrix
entries are restricted to the first coordinates, all pd d-tuples on the set [p]
are covered and when the rows of matrix are partitioned according to the
first coordinate, for each partition, the second coordinate forms an arbitrary
permutation of [pd−1] (that is, we have p arbitrary permutations on the set
[pd−1]).

In the above example the entries of LHT1 and LHT2 have been rewritten
as ordered pairs in LHT3 and LHT4, respectively, and it is easy to see that
LHT4 (LHT2) is an OALH 3-trial, while LHT3 (LHT1) is not.

3. Theoretical Results

In this section we give theoretical arguments that calculate the expected
coverage of the parameter space when taking the union of k d-trials. To
achieve this we begin by using combinatorial techniques to count the ex-
pected intersection sizes for a multiset of m LH d-trials. These arguments

10



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

are presented below and then extended to the expected coverage based on
OALH d-trials.

3.1. The expected intersection size of LH d-trials

As each coordinate in a LH d-trial contains each element of [n] exactly
once and a LH d-trial is invariant under row permutations, the number of
LH d-trials on [n] is n! d−1.

Let M be the set of all selections of m LH d-trials (with repetition re-
tained in each of the selections, so M is a set of multisets each of size m).
The number of ways to choose q elements from a set of size p, with repetition,
is
(
p+q−1

q

)
=
(
p+q−1
p−1

)
, so

|M| =
(
n!d−1 +m− 1

m

)
. (2)

Theorem 3.1. Let M be a multiset of m LH d-trials on [n]; that is M ∈M.
The expected number of ordered d-tuples common to all m LH d-trials in M
is given by

xm(n) = nd

(
(n− 1)! d−1 +m− 1

m

)/(
n! d−1 +m− 1

m

)
. (3)

Proof. Fix a d-tuple a = (a1, a2, . . . , ad) ∈ [n]d. There are (n−1)! d−1 d-trials
that contain this d-tuple. From this set the number of ways to choose, with
repetition, m of these d-trials is

ta =

(
(n− 1)! d−1 +m− 1

m

)
.

That is, there are ta choices of m LH d-trials that have a in their intersection.
For M ∈M denote the number of d-tuples common to all LH d-trials in M
by c(M). Then

∑

M∈M
c(M) =

∑

a∈[n]d
ta = nd

(
(n− 1)! d−1 +m− 1

m

)
.

Hence the expected number of ordered d-tuples common to all m LH d-trials
for an arbitrary M ∈M is
(∑

M∈M
c(M)

)
1

|M| = nd

(
(n− 1)! d−1 +m− 1

m

)/(
n! (d−1) +m− 1

m

)
.
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3.2. The expected intersection size of OALH d-trials

For general d we count the number of OALH d-trials. Thus the assump-
tion is that n = pd. Let H be an OALH d-trial. Recall that for each d-tuple
(p1, p2, , . . . , pd) ∈ [p]d there is precisely one element of H of the form

((p1, x1), (p2, x2), . . . , (pd, xd)),

where xi ∈ [pd−1]. All elements of H are of this form for some (p1, p2, , . . . , pd)
in [p]d.

It will be useful to talk about individual coordinates in H so for each
i = 1, . . . , d, let

Hi(j) = {h ∈ H | the i-th coordinate of h is (j, xi) for some xi ∈ [pd−1]}.

Since H is a LH d-trial, |H| = pd = n = p · pd−1 and for each i = 1, . . . , d and
each j = 1, . . . , p, |Hi(j)| = n/p = pd−1.

Lemma 3.2. The number of OALH d-trials on [p]× [pd−1] is (pd−1)!dp.

Proof. Let H be an OALH d-trial. There are n = pd d-tuples in H. Fix i and
j, where 1 ≤ i ≤ d and 1 ≤ j ≤ p, and define a function fij : [pd−1]→ Hi(j),
by

fij(y) = ((p1, x1), (p2, x2), . . . , (j, y), . . . , (pd, xd)),

where (j, y) is the i-th coordinate. Since fij is a one-to-one and onto function
there are (pd−1)! different functions to choose from and dp choices for i, j so
(pd−1)! pd possible d-trials.

Lemma 3.3. A fixed d-tuple, say ((p1, x1), (p2, x2), . . . , (pd, xd)), occurs in

pd(d−1)(p−1)(pd−1 − 1)!dp

OALH d-trials on [p]× [pd−1].

Proof. By Lemma 3.2 there are (pd−1)!pd OALH d-trials, and each contains
n = pd d-tuples. There are nd distinct d-tuples and any two occur the same
number of times in the disjoint union of the d-trials. Hence a fixed d-tuple
occurs in

(pd−1)!dp × n
nd

= (pd−1)!dp/pd(d−1) = pd(d−1)(p−1)(pd−1 − 1)!dp

OALH d-trials.
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LetMo be the set of all selections of m OALH d-trials (soMo is a set of
multisets each of size m). So by Lemma 3.2

|Mo| =
(

(pd−1)!dp +m− 1

m

)
=

(
(n/p)!dp +m− 1

m

)
.

Theorem 3.4. Let M be a multiset of m OALH d-trials on [p]× [pd−1] where
n = pd; that is M ∈ Mo. The expected number of ordered d-tuples common
to all m OALH d-trials is

xm(n) = pd
2

(
pd(d−1)(p−1)(pd−1 − 1)!dp +m− 1

m

)/(
(pd−1)!dp +m− 1

m

)
.

Proof. The proof follows as in the proof of Theorem 3.1, except that we
consider Mo instead of M and the number of OALH d-trials that intersect
in a fixed d-tuple as established in Lemma 3.3.

3.3. The expected size of edgewise intersection of LH d-trials

Let 1 ≤ i < j ≤ d. An (i, j)-edge of a d-tuple a = (a1, a2, . . . , ad) is an
ordered pair (ai, aj). Two LH d-trials, H1 and H2, are said to intersect in an
(i, j)-edge (ai, aj), if there exists (a1, a2, . . . , ad) ∈ H1 and (a′1, a

′
2, . . . , a

′
d) ∈

H2, such that ai = a′i and aj = a′j.

There are
(
d
2

)
edges in a d-tuple, so the total number of possible distinct

edges is n2
(
d
2

)
. In addition, there are n d-tuples in a LH d-trial, so there are

n
(
d
2

)
edges in total in a d-trial.

Lemma 3.5. A fixed (i, j)-edge (ai, aj) is contained in (n− 1)!n!d−2 distinct
LH d-trials.

Proof. Multiplying the number of distinct LH d-trials by the number of edges
in a LH d-trial and dividing by the total number of distinct edges counts the
number of LH d-trials that contain a fixed (i, j)-edge; that is,

n! d−1 × n
(
d
2

)

n2
(
d
2

) = (n− 1)!n! d−2.
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We now count the expected number of edges common to all LH d-trials
from a selection M ∈M.

Theorem 3.6. Let M represent a multiset of m LH d-trials on [n]; that is,
M ∈M. Then the expected number of edges common to all m LH d-trials in
M is

xm(n) = nt

(
d

t

)(
(n− 1)! d−1nd−2 +m− 1

m

)/(
n! d−1 +m− 1

m

)
, t = 2 ; (4)

that is, xm(n) is the expected intersection in the projection to a subspace of
dimension t = 2.

Proof. The case d = 2 is covered in Theorem 3.1. For general d we fix an
(i, j)-edge, say (ai, aj). By Lemma 3.5 there are (n − 1)!n!d−2 LH d-trials
that contain this edge. From this set the number of ways to choose, with
repetition, m of these LH d-trials is

s(ai,aj) =

(
(n− 1)!(n!)d−2 +m− 1

m

)
.

That is, there are s(ai,aj) choices of m LH d-trials that intersect in the fixed
(i, j)-edge (ai, aj).

For M ∈ M denote the number of edges common to all LH d-trials by
c(M). Then, denoting the set of (i, j)-edges by E,

∑

M∈M
c(M) =

∑

1≤i<j≤d


 ∑

(ai,aj)∈E
s(ai,aj)


 = n2

(
d

2

)(
(n− 1)!(n!)d−2 +m− 1

m

)
.

Hence the expected number of edges common to all m LH d-trials for an
arbitrary M ∈M is

(∑

M∈M
c(M)

)
1

|M| = n2

(
d

2

)(
(n− 1)!n!d−2 +m− 1

m

)/(
(n!)d−1 +m− 1

m

)
.

The result follows by noting that (n− 1)!n!d−2 = (n− 1)!d−1nd−2.

In [26] the authors used MATLAB simulations to test the percentage
coverage of t dimensional subspaces at the sub-block level, where we recall
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that for a d dimensional parameter space with n = pd, the set of pd(d−1)

ordered d-tuples

SB(p1,...,pd) = {((p1, x1), (p2, x2), . . . , (pd, xd)) | xi ∈ [pd−1]}

defines a sub-block. These simulations were focused on testing the percentage
coverage for (i, j)-edges from the set

E(pi,pj) = {((pi, xi), (pj, xj)) | xi, xj ∈ [pd−1]},

where i, j ∈ [d] and pi, pj ∈ [p] are fixed. Note |E(pi,pj)| = (pd−1)2. Theorem
3.6 allows us to calculate the expected coverage of this set of (i, j)-edges.

Corollary 3.7. Let n = pd. Further let M be a multiset of m LH d-trials
on [pd]; that is M ∈ M. Fix i, j ∈ [d] and pi, pj ∈ [p]. Then the expected
number of (i, j)-edges in E(pi,pj) and common to all m LH d-trials in M is

xm(n) = p2d−2
(

(pd − 1)! d−1pd
2−2d +m− 1

m

)/(
pd! d−1 +m− 1

m

)
. (5)

Proof. Theorem 3.6 gives the expected number of edges common to all m LH
d-trials in M (that is, i and j are not fixed). However we are interested in
the expected number of edges in E(pi,pj) (with i and j fixed). There are

(
d
2

)

choices for the pair (i, j), where 1 ≤ i < j ≤ d. Also rather than summing
over all n2 = p2d (i, j)-edges we sum over the p2d−2 edges in E(pi,pj). Therefore

to evaluate xm(n) we divide the result from Theorem 3.6 by p2
(
d
2

)
.

Remark: There is a natural extension of this result to projection onto a
subspace of arbitrary dimension t > 2.

3.4. Bounds on percentage coverage of d-tuples

To estimate the number of cells in the parameter space covered by the
union of k d-trials, with n partitions for each of the d parameters, we count
via the Principle of Inclusion/Exclusion obtaining

U(k, n, d, d) =
k∑

m=1

(−1)m+1

(
k

m

)
xm(n), (6)

where xm(n) denotes the expected intersection size of m arbitrary trials de-
pending on the sampling strategy. We recall the definition of the expected
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percentage coverage of parameter space given in (1). When there is no pro-
jection on to the t-dimensional subspace, we write

P (k, n, d, d) =
U(k, n, d, d)

nd
. (7)

We have from Theorems 3.1, 3.4 and 3.6 three different expressions for the
xm(n). So let the expected numbers of ordered d-tuples in the case of LHS,
OALHS and sub-block coverage for t = 2 be, respectively, xmL(n), xmO(n)
and xm2(n) then from Theorems 3.1, 3.4 and 3.6 we have

xmL(n) = nd

m−1∏

i=0

a+ i

b+ i
, a = (n− 1)!d−1, b = n!d−1

xmO(n) = nd

m−1∏

i=0

a+ i

b+ i
, a = pd(d−1)(p−1)(pd−1 − 1)!dp, b = (pd−1)!dp; and

xm2(n) = n2

m−1∏

i=0

a+ i

b+ i
, a = (n− 1)!d−1nd−2, b = n!d−1.

Note that in the case that d = 2 then xmL(n) = xm2(n).
Now the binomial expansion gives

k∑

m=0

(
k

m

)
um = (1 + u)k. (8)

Also it is easy to see that, for x ≥ 0,

1 + x ≤ ex and 1− e−x ≤ x, (9)

while, for 0 ≤ t < 1,

e
t
2 − 1 ≤ t and − t2

2
≤ t+ ln(1− t) ≤ −t2

4
. (10)

Moreover, for 0 < a ≤ b and i ≥ 0,

a

b
≤ a+ i

b+ i
≤ a

b

(
1 +

i

a

)
≤ a

b
exp

(
i

a

)
. (11)
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Thus for 0 ≤ i ≤ m− 1 ≤ k − 1

(a
b

)m
≤

m−1∏

i=0

(
a+ i

b+ i

)
≤
(a
b

)m m−1∏

i=0

(
1 +

i

a

)
≤
(a
b

)m
exp

(
k(k − 1)

2a

)
, (12)

and for 0 ≤ t = k(k−1)
a
≤ 1, using (10)

0 ≤
m−1∏

i=0

(
a+ i

b+ i

)
−
(a
b

)m
≤
(a
b

)m(
exp

(
k(k − 1)

2a

)
− 1

)
≤
(a
b

)m k(k − 1)

a
.(13)

We relate this back to the expression for the xm(n) for a general a and b with
0 < a ≤ b and

xm(n) = nd

m−1∏

i=0

a+ i

b+ i
.

Recalling that P (k, n, d, d) denotes the expected coverage fraction of d-
tuples in the parameter space by taking the union of k d-trials with either
LHS or OALHS, we have the following result.

Theorem 3.8. In the case of LHS and OALHS (with n = pd)

P (k, n, d, d) ∼ (1− exp(−kλ)) as kλ2 → 0, λ =
1

nd−1 . (14)

Proof. We begin by using the Principle of Inclusion/Exclusion, using (8) and
evaluating P (k, n, d, d) in terms of the general form of xm(n), as follows

P (k, n, d, d) =
k∑

m=1

(−1)m+1

(
k

m

)
xm(n)/nd =

k∑

m=1

(−1)m+1

(
k

m

)m−1∏

i=0

a+ i

b+ i

= 1−
k∑

m=0

(−1)m
(
k

m

)
λm + E1 = 1− exp(−kλ) + E2 + E1,

where λ = a
b
,

E1 =
∑k

m=1(−1)m
(
k
m

) [
λm −∏m−1

i=0

(
a+i
b+i

)]

and

E2 = exp(−kλ)− (1− λ)k.
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It follows from (13) and then (8) and (9) that

|E1| ≤
∑k

m=0

(
k
m

)
λmk(k−1)

a
≤ exp(kλ)k(k−1)

a
.

Moreover, it follows from (9) and (10) that

|E2| = exp(−kλ) |1− exp(kλ+ k ln (1− λ))| ≤ exp(−kλ)kλ2.

As n→∞
E = E1 + E2 = O (1− exp(−kλ)) and

E = E1 + E2 = O (exp(−kλ)) ,

provided kλ ≤ Cn; note it follows from Stirling’s formula that e2kλk2

a
→ 0 in

this case. Thus

P (k, n, d, d) ∼ (1− exp(−kλ)) , as kλ2 → 0.

Finally, in the case of LHS with a = (n− 1)!d−1 and b = n!d−1 then

λ =
1

nd−1 ;

while with OALHS a = (pd−1 − 1)!dppd(d−1)(p−1) and b = (pd−1)!dp and so

λ = pd(d−1)(p−1)
(

(pd−1−1)!
(pd−1)!

)dp
= pd(d−1)(p−1)−(d−1)dp = 1

pd(d−1) = 1
nd−1 .

Thus λ is the same in both cases and the percentage coverage is the same
in both cases (assuming that n = pd for the OALHS case) and so the result
is proved.

We can extend this analysis to the case of the 2 dimensional sub-block
projection (t = 2) but now P (k, n, d, 2) = U(k,n,d,2)

n2 .

Theorem 3.9. For the 2 dimensional sub-block projection

P (k, n, d, 2) ∼ (1− exp(−kλ)) as kλ2 → 0, λ =
1

n
. (15)

Proof. With a = (n− 1)!d−1nd−2 and b = n!d−1 then

λ = (n−1)!d−1nd−2

n!d−1 = nd−2 (n−1)!d−1

n!d−1 = 1
n
.
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4. Simulation Results and Discussion

We now present some simulation results confirming our theoretical results.
We had already given some simulation results in [26] where we first made our
conjecture on the relationship between coverage, trials, and dimension. There
we considered the case d = 5 and gave expected coverage at the 25, 50, 75
and 100 percent levels for t = 2, 3, 4 by plotting the logarithm of the number
of trials as a function of the logarithm of n. We saw the expected linear
relationship. We now give additional simulations for the case d = 5, t = 4
and d = 6, t = 2, 3, for the same expected percentage coverage - see Fig. 3.

Theorem 3.8 states that the expected coverage of both LHS and OALHS
is of the form 1− exp(−kλ) where λ = 1

nd−1 , while Theorem 3.9 states that
the expected coverage when projecting onto a t dimensional subspace with
t = 2 has the same form but now λ = 1

n
and this coverage is independent of d.

Although, we have not presented the analysis here we can extend the results
of Theorem 3.9 to arbitrary t so that λ = 1

nt−1 . Fig.3 confirms these results.
In all but the full coverage case the gradient of the straight line is t − 1. In
the case of the full coverage the gradient appears to behave as t − 1/2. We
think this is partly due to the effect that as the percentage coverage increases
then the higher is the rate of overlapping d-trials. Nevertheless our numerical
results are consistent with the theory.

We now give some brief comments on how our methodology can be used
in practical settings. First we note that if TOL represents a designated
percentage covering of the parameter space then we need to choose k (the
number of trials) and n (the discretisation of parameter space) such that

1− e−k/nd−1

= TOL

or, after simplification

k = −nd−1 ln(1− TOL).

Assuming TOL is small, this gives

k ≈ TOL nd−1, (16)

or with projection onto a t-dimensional subspace

k ≈ TOL nt−1. (17)
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discretisation of the parameter space for a d = 5-dimensional parameter space projected
onto a t = 4-dimensional subspace and for a d = 6-dimensional parameter space projected
onto t = 2 and 3 dimensional subspaces
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In a very recent paper by some of these authors [22], our aim was to build
a population of atrial electrophysiological models such that the outputs from
this population matched as accurately as possible the actual distribution of
values over 7 biomarkers on a cohort of 450 people. The number of pa-
rameters was 11. The 7 biomarkers correspond to different measurements
associated with the propagation of an action potential wave. As a conse-
quence, there are unknown correlations between some of the parameters so
that the whole population of models lies on an unknown subspace of the full
space. Some cursory inspection suggests that there are three-way correla-
tions between three of the ion channel conductance parameters. In order to
guarantee good coverage onto the projected t = 3 dimensional subspace, we
choose a coverage of 25%. In addition, we had chosen n = 50 in order to
build a suitably-sized population of models. Equation (17) then leads to

k ≈ 1

4
502

so that with a value for the number of trials of 625 we are able to analyse
those possible three-way correlations thoroughly. This preliminary study
allows us to improve the process of building a population of models on a
high dimensional space (in this case, dimension 11) by effectively reducing
the dimension of the full space due to these particular correlations.

In a second application, where n = 10 and d = 4, estimate (16) was
used to explore the relationship between coverage of a parameter space and
the accuracy of an emulator used to forecast coal seam gas production. An
emulator, based on an ordinary least squares implementation of a fifth order
Polynomial Chaos Expansion (PCE), was built using a black box approach
(data in and data out) to a standard industry software package [27], used for
the prediction of gas production. The emulator accounted for uncertainty in
four variables (d = 4) permeability, porosity, Langmuir volume and Langmuir
pressure. Seven emulator response surfaces were built from input/output
pairs obtained by running the original model at a set of training points,
which were selected using LHS. The domain for each variable was divided
into n = 10 subdivisions and seven emulators were built, with points coverage
set at 2%, 4%, 5%, 6%, 8%, 10% and 20% of the input space. In each case the
corresponding number of LHSs was calculated using estimate (16) and the
relative root mean square error (rRMSE) was calculated by comparing the
original model,M, and the emulator, P , at a further 65 LHS, approximately
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6% of the input space, where

rRMSE =

√√√√ 1

n

∑

x∈X

(P(x)−M(x)

M(x)

)2

. (18)

The results are displayed in Fig. 4. These data suggest that the trend for
rRMSE (as a function of percentage coverage) follows a power law rRMSE
= 0.08486x−0.3338. Such a power law expansion and estimate (16) could
be used to investigate the relationship between the order of the PCE, the
percentage coverage and the accuracy of the emulator. Without doing this,
it is a rather hit-and-miss approach in order to get an idea of suitable coverage
of parameter space in relation to the emulator accuracy.

Figure 4: Plots of the error convergence of a surrogate model when the number of training
points are increased as a percentage of the parameter space.

In a different setting we could use estimate (16) as part of the iterative
refinement approach, called Progressive LHS, described in [16]. Estimate
(16) could be used to determine how many iterations and trials are needed
in order to attain a given coverage at a given resolution of parameter space.
This would make these approaches truly adaptive.
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5. Conclusions

In conclusion, we have obtained analytical results for the expected cover-
age of parameter space when using both LHS and OALHS. We have shown
that there is no difference between the two in terms of the expected coverage.
We have also obtained analytical results of the expected coverage when pro-
jecting onto small dimension subspaces. In this case the expected coverage
is independent of the dimension of the parameter space and depends only
on the dimension of the projected subspace. The analytical results are also
supported by simulations.

In addition, we have discussed several practical settings in which our
results on the relationship between the number of trials, dimension and per-
centage coverage of space can be used. Of course one limitation of this study
pertains to the curse of dimensionality. As the dimension d of the parameter
space increases, then clearly the percentage coverage as given in Theorem
3.8 becomes small; this may limit the practical use of the result in very large
dimensions. However, this is not a fault of the theory. Nevertheless, even
in this case Theorem 3.8 and Theorem 3.9 are powerful as they show that
the expected coverage when projected into a smaller t dimensional subspace
follows the theory in that d is replaced by t. In light of this, the results are
very significant in practical situations, as the two scenario investigations in
section 4 show.
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