- 1 Title: "Prevent perverse outcomes from global protected area policy".
- 2 Running title: Beyond Area Based Targets
- 3 Authors: Megan D. Barnes^{1*}, Louise Glew², Carina Wyborn^{3,4}, Ian D. Craigie⁵
- 4 *corresponding author
- 5 Contact information:
- 6 ¹ARC Centre of Excellence for Conservation Decisions, the University of Queensland, St
- 7 Lucia, Queensland, Australia
- 8 ²University of Hawaii Manoa, College of Tropical Resources and Agriculture, Department
- 9 of Natural Resources and Environmental Management, 2500 Campus Rd, Honolulu, HI
- 10 96822, USA
- ² World Wildlife Fund, 1250 24th Street NW, Washington, DC 20037 USA; +1 (202) 495-
- 13 4184

11

14

- 15 ³Luc Hoffmann Institute, WWF International, Avenue du Mont Blanc, Gland 1296,
- 16 Switzerland
- ⁴ College of Forestry and Conservation, University of Montana, 32 Campus Drive,
- 18 Missoula, MT, 59801, USA
- 19 ⁵ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD
- 20 4811, Australia
- 21 +Corresponding author: Megan Barnes: mdbarnes@hawaii.edu

- 23 **Keywords:** conservation policy, conservation psychology, Convention on Biological
- 24 Diversity, impact evaluation, parks, Sustainable Development Goals

25 **Abstract**

- 26 Aichi Target 11 has galvanized expansion of the global protected area network, but
- 27 there is little evidence that this enlargement brings real biodiversity gains. We argue
- 28 that area-based prioritization risks unintended perverse consequences and that the
- 29 focus of protected-area target development should shift from quantity to quality.

Global policy goals catalyze global action

Global biodiversity conservation goals are catalytic, shaping behaviors of individuals, governments and non-governmental organizations. The Aichi Targets set the current framework for The Convention on Biological Diversity (CBD). At first glance, Target 11 on protected areas (PAs) might appear "on track" to be achieved by 2020¹ (Supplementary Figure 1). Yet, this characterization focuses solely on PA expansion, neglecting other elements of the target critical to halting biodiversity decline.

Global policy targets (e.g., Target 11) define policy norms and shape behavior at multiple scales². Consequently, it is critical policy targets actively direct efforts toward desired outcomes, in this case, biodiversity conservation. Target 11 requires extensive PA networks to be 'equitably and effectively managed', 'ecologically representative', and 'well connected', and to ensure PAs halt biodiversity loss. However, action under Target 11 has focused on PA expansion, to achieve numeric PA extent targets. At least 40% of nations have designated at least 17% of their terrestrial area as PAs, and 13% have exceeded 10% protection in marine environments³. Yet much of this expansion has been 'inadequately targeted'³ (Box 1, Figure 1).

In the past decade, ecological representation of the global PA estate has improved only slightly, and no more than if PAs were established at random⁴. More than a quarter of terrestrial and half of marine ecoregions have under 5% of area protected⁵. Over 85% of threatened vertebrates are unrepresented in PAs, a depressing 4% more species than a

decade earlier⁶. Connectivity is rarely assessed. Management effectiveness is slowly increasing⁷, but chronic capacity shortfalls constrain effectiveness of the global PA estate⁷ - only 30% of MPAs have sufficient capacity to conduct effective management⁸. Funding shortfalls of ~US \$50 billion per annum are at least an order of magnitude greater than existing PA budgets⁸. Poor attention to equity and PA governance also commonly undermine conservation outcomes⁹.

Risks of perverse outcomes

These shortfalls highlight the disconnect between PA quantity, PA quality (e.g., equitable and effective management, representative and connected systems, with sufficient capacity to conduct management), and conservation outcomes (e.g., change in ecological condition), posing a substantive challenge to ensuring current targets catalyze appropriate policy action. Drawing an analogy, it would be inconceivable to monitor healthcare provision based on available beds (quantity) irrespective of the presence of trained medical staff (quality), or whether patients live or die (outcome)¹⁰. Yet, this is exactly what occurs when we *de facto* rely on extent as the benchmark of success in PA policy

When global policy targets are superimposed on underlying political and economic dynamics, they modify the psychological rewards reaped for specific actions¹¹. Under Target 11, the existing indicators for extent (17/10%) and representation (a more specific area-based target)¹² reward PA network expansion. When superimposed on

variable opportunity costs of protection, the pursuit of PA coverage incentivizes the establishment of large PAs with low opportunity costs, rather than maximizing the marginal gain for biodiversity.

This phenomenon is predicted by Goodhart's Law,¹¹ which warns that once an indicator transitions to a *de facto* policy target (due to its measurability relative to the overall target) its power is undermined. Effort shifts to improving the indicator itself (i.e., PA extent), becoming divorced from the underlying values that the Target seeks (i.e., biodiversity conservation). Once embedded in institutions, the actions promoted by an indicator are perceived as the 'right' policy solution, silencing equally or more effective alternatives and perpetuating tradeoffs which are rarely acknowledged.

Consequently, the transition of the PA extent component of Target 11 to *de facto* policy risks an array of perverse outcomes that constrain and undermine conservation end-goals^{13,14} (Figure 1). These include 'under-achievement' (i.e., misdirection of conservation action to areas of low impact) ¹², 'overstatement' (i.e., exaggerated perceptions of progress due to paper parks^{6,15}, and chronic capacity shortfalls²) and reduced social licence for conservation (i.e., PA fatigue), among others (Figure 1).

Barriers to new perspectives

The area-based component of Target 11 is a powerful motivator. Unlike the other elements of Target 11, the 17/10% extent target is numeric, discrete, simple, objective,

comparable and inexpensive to measure (Figure 1). Numeric targets engender trust, provide sufficient abstraction to be broadly applicable, creating a comparable standard, to facilitate trend analysis by reducing complex phenomena to a single dimension¹⁶. Simplification and abstraction are core to the power of numeric goals², but this power belies their weakness in obscuring local context and complexity. As a policy goal, numbers can create incentives that motivate and align the priorities of diverse actors^{17,18}, but also distort national priorities, feasibility, resources and trade-offs¹¹. While the architects of goals frequently acknowledge these flaws, they are glossed over by other actors.

Yet, scientific, political and practical barriers impede transitions to outcomes-based targets, making implementing protected area policy that results in effective protected areas a wicked problem. Barriers include time lags (ecological and social) between policy action and detectable response, misalignment of incentives, motivations and objectives (such as attempting to conserve wilderness only through protected areas) the ability to sell action as achievement, and limited low-cost, practicable methods to monitor outcomes (Figure 1). Given these barriers, it is perhaps unsurprising (though disappointing) that ongoing discussions on post-2020 PA targets remain centered on extent (e.g., natureneedshalf.org, and Hawaii Commitments:

https://portals.iucn.org/congress/hawaii-commitments). However, only by letting go of area-based targets and simultaneously refusing to recognize greater coverage as progress, despite its past utility, will we redirect progress toward greater conservation

Moving beyond area-based targets

It is time to move beyond area-based targets. A new paradigm that explicitly connects targets and indicators with desired conservation outcomes is needed. This requires a monitoring and reporting framework directly linked to conservation objectives that is locally relevant, globally scalable, and realistic given the financial and data constraints many PA agencies face. This challenge is shared by those developing the Sustainable Development Goals (SDGs) indicator framework, and requires immediate attention to put forward a new approach for Target 11's successor in 2020. While there is no short-term panacea to this problem, we propose steps to change the incentive structure of conservation targets, and realign how conservation actors think, feel and act to achieve conservation goals (Box 1, Box 2).

Shifting toward outcomes-based indicators of conservation action requires a clear conceptual foundation for outcomes-based PA monitoring. Existing efforts (e.g., SMART 2015, The Green List of Protected Areas) document the attributes of 'fully-conserved' PAs. Shifting focus from PA extent toward these functional attributes, by setting numeric targets for them would represent a positive interim measure, as we transition toward outcome-focused conservation targets in future. However, any use of proxies must avoid the potential pitfalls of the current Target 11. Adopting appropriate theoretical frameworks that explicitly connect policy targets and indicators with

patterns of expected behavior^{12,14} and incorporate counterfactual thinking, can enable progress to subsequently be evaluated.

More critically, we must refocus PA targets towards end-goals, learning from other indicators and efforts. For instance, Aichi Target 12 ("By 2020, the extinction of known threatened species has been prevented and their conservation status, particularly of those most in decline, has been improved and sustained") which directly embeds outcomes in the target, and adopts metrics (e.g., Living Planet Index and Red List Index) which examine the fundamental objective of reducing extinction.

To do so for PAs requires the creation of a feasible, scalable indicator of PA conservation outcomes that normalizes and aggregates already existing low-precision, routine PA monitoring data (that meet a minimum quality threshold), with high-precision datasets designed for causal inference. Developing methods to aggregate locally relevant metrics to a globally relevant PA outcomes indicator will set a foundation for 'translating' and communicating the likely continuum of PA outcomes in a way that incentivizes progress.

PAs have highly diverse means of effecting conservation impact. The large variety of local PA objectives make explicit proscription of local scale-metrics to monitor conservation progress for a composite PA outcomes indicator inappropriate. However, adopting a standardized suite of recommended indicators and methods, such as estimated avoided deforestation (ideally via quasi- experimental matching techniques

¹⁹) for all forest PAs is a feasible and useful first step. Given disparities in data availability and quality among PAs, an evidence hierarchy, that describes the uncertainty associated with different data sources, similar to the IUCN Red List, will be required to ensure coarse estimates are interpreted with an appropriate level of caution. Providing a clear path linking currently feasible approaches and ideal methods will catalyze gradual evolution towards more robust local measures, especially if combined with technical capacity building efforts and partnerships for PA managers.

PAs, once established, are near permanent. Without action, we risk 'locking-in' a global PA estate designed to maximize area, not impact. The upcoming re-negotiation of the CBD Targets in 2020 provides a rare window of opportunity to ensure future PA establishment is appropriately targeted and the current PA estate is managed to maximize conservation impact. To take advantage of this window, we need to radically reframe the current PA debate to focus on outcomes, and rapidly develop the framework, data collection and analytical techniques needed to make global PA outcomes monitoring feasible.

Acknowledgements

The authors would like to acknowledge Jeremy Ringma for graphic design support and Helen E. Fox, Bob Pressey, and P.J. Stephenson for comments on earlier versions of this manuscript.

183	Com	peting	Intere	ests

184 The authors are not aware of any conflicts of interest affecting this manuscript.

185	85 References		
186 187	1	Tittensor, D. P. <i>et al.</i> A mid-term analysis of progress toward international biodiversity targets. <i>Science</i> 346 , 241-244, doi:10.1126/science.1257484 (2014).	
188 189 190	2	Fukuda-Parr, S. Global goals as a policy tool: intended and unintended consequences. <i>Journal of Human Development and Capabilities</i> 15 , 118-131 (2014).	
191 192	3	Butchart, S. H. et al. Shortfalls and solutions for meeting national and global conservation area targets. <i>Conservation Letters</i> 8 , 329-337 (2015).	
193 194 195	4	Kuempel, C. D., Chauvenet, A. L. M. & Possingham, H. P. Equitable Representation of Ecoregions is Slowly Improving Despite Strategic Planning Shortfalls. <i>Conservation Letters</i> 9 , 422-428, doi:10.1111/conl.12298 (2016).	
196 197	5	UNEP-WCMC and IUCN. Protected Planet Report 2016. (UNEP-WCMC and IUCN, Cambridge UK and Gland, Switzerland, 2016).	
198 199	6	Venter, O. et al. Targeting Global Protected Area Expansion for Imperiled Biodiversity. PLoS Biol 12, e1001891, doi:10.1371/journal.pbio.1001891 (2014).	
200 201	7	McCarthy, D. P. et al. Financial costs of meeting global biodiversity conservation targets: current spending and unmet needs. <i>Science</i> 338 , 946-949 (2012).	
202 203	8	Gill, D. A. et al. Capacity shortfalls hinder the performance of marine protected areas globally. <i>Nature</i> 543 , 665-669, doi:10.1038/nature21708 (2017).	
204 205 206	9	Mascia, M. B. <i>et al.</i> A novel framework for analyzing conservation impacts: evaluation, theory, and marine protected areas. <i>Annals of the New York Academy of Sciences</i> 1399 , 93-115, doi:10.1111/nyas.13428 (2017).	
207 208 209	10	Edgar, G. Marine protected areas need accountability not wasted dollars. Aquatic Conservation: Marine and Freshwater Ecosystems 27, 4–9, doi:DOI: 10.1002/aqc.2745 (2017).	
210	11	Merry, S. E. in <i>Proceedings of the 103rd Annual Meeting</i> . 239-243 (JSTOR).	
211 212 213	12	Pressey, R. L., Weeks, R. & Gurney, G. G. From displacement activities to evidence-informed decisions in conservation. <i>Biological Conservation</i> 212 , 337-348, doi: http://dx.doi.org/10.1016/j.biocon.2017.06.009 (2017).	

214215216	13	Barnes, M. D., Craigie, I. D., Dudley, N. & Hockings, M. Understanding local-scale drivers of biodiversity outcomes in terrestrial protected areas. <i>Annals of the New York Academy of Sciences</i> , doi:10.1111/nyas.13154 (2016).
217 218	14	Barnes, M. D., Glew, L., Craigie, I. D. & Wyborn, C. Aichi targets: Protect biodiversity, not just area. <i>Nature</i> 526 , 195-195 (2015).
219 220 221	15	Barnes, M. D. <i>et al.</i> Wildlife population trends in protected areas predicted by national socio-economic metrics and body size. <i>Nature Communications</i> 7 , 12747 (2016).
222 223 224	16	Dudley, N. & Stolton, S. Conversion of paper parks to effective management: developing a target (IUCN/WWF Forest Innovation Project, Gland, Switzerland, 1999).
225 226 227 228	17	Craigie, I. D., Pressey, R. L. & Barnes, M. Remote regions - The last places where conservation efforts should be intensified. A reply to McCauley et al. (2013). <i>Biological Conservation</i> 172 , 221-222, doi:DOI 10.1016/j.biocon.2014.02.032 (2014).
229 230	18	Joppa, L. N. & Pfaff, A. High and Far: Biases in the Location of Protected Areas. <i>PLoS ONE</i> 4 , e8273 (2009).
231 232 233	19	Joppa, L. & Pfaff, A. Reassessing the forest impacts of protection. <i>Annals of the New York Academy of Sciences</i> 1185 , 135-149, doi:10.1111/j.1749-6632.2009.05162.x (2010).
234 235 236	20	IUCN and World Commission on Protected Areas (WCPA). (IUCN, Gland, Switzerland, 2016).

Box 1. Immediate Actions to shift the focus from quantity to quality

A transition to outcomes-based PA targets and monitoring will take time. Meanwhile, immediate actions can be taken under the existing formulation of Target 11 to avoid perverse outcomes, and maximize the contribution of PAs to global biodiversity conservation.

Avoid making area the headline: Report outcomes, not area. New PA
announcements should focus on the likely biodiversity gains, not the square
kilometers protected. Even when based on patchy or incomplete data, reporting
progress under Aichi Target 11 should focus on equitable and effective
management and outcomes, and tell compelling stories about individual
examples of PA success.

• Celebrate representation, connectivity and outcomes: Provide vocal, public recognition to nations whose actions contribute to representation, connectivity, equitable and effective management and outcomes.

Build the evidence base for PA outcomes: Examine the factors that influence PA outcomes, and how to best manage the current PA estate to deliver maximum gains.

 Establish a reporting framework like the Red list, with rules and guidelines for their application so as to incorporate different data types and qualities.

o Publish the cost of management interventions.

 Embed counterfactual thinking and evaluation deliberately in protected area management and evaluation.

Focus ongoing or proposed actions under Aichi Target 11 on outcomes: Focus
action on where we can achieve most conservation gain, and embed forecasts of
likely PA impacts into core decision-making processes.

277 278	•	Policy makers, governments, and NGOs publically acknowledge perverse outcomes from an area-focused agenda
279 280	•	Editors and journals commit to rejecting evaluations of PA success that focus on area
281	Ch	lange how we DESIGN global policy targets
282	•	Develop new targets utilizing expertise from other disciplines (e.g., behavioral
283 284		psychology, economics, evaluation) to motivate progress towards conservation goals
285	Ch	nange OBJECTIVES and MOTIVATIONS by modifying language of global PA targets
286	•	Report ecologically and social meaningful numeric targets
287		 Representation: Quantify how much is enough and for what?
288		 Management Effectiveness: area under protection meeting green list criteria²⁰
289		 Quantify proportion of network adequately funded
290		
291	•	Commit to a RATE of progress rather than only a THRESHOLD
292	•	Include numeric and impact focused clauses or sub-clauses, such as:
293		 At least 50% of which exceed minimum standards for management effectiveness
294		 Halt deforestation within protected area boundaries
295		
296	•	Specifically reference conservation end-goals:
297		 Reference conservation impacts in the target language
298		e.g. "targeted to maximize conservation impacts"
299		 Incorporate an avoiding clause: "Avoiding residual protected areas"
300		 Reduce conflation of objectives by adding an independent wilderness target.
301		
302	A	CT: Change how we IMPLEMENT global PA targets
303	•	Pilot novel target wording and explore potential perverse outcomes.
304	•	Commit to providing adequate funding for PA outcomes monitoring
305	•	Introduce incentives for demonstrable PA impact under SDG's, CBD so countries are
306 307		motivated to increase conservation impacts (Figure 1)
308	ΑC	CT: Change how we MONITOR global policy targets
309	•	Quantify Perverse outcomes: Paper Parks, Residual Areas
310	•	Transition to global policy target indicators to focus on impact and outcomes
311	•	Design a reporting framework that captures progress other than area
312	•	Invest in research to identify how to best motivate progress (i.e. behavior change

• Develop an evidence hierarchy that facilitates evolution of more robust local-scale monitoring

Box 2. Long term changes to shift the focus from quantity to quality requires:

Change how we THINK ABOUT success

driven by institutions & individuals)

ACT: No more area-based targets

274275276

313

314

315

Figure Captions

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

Figure 1. Perverse Outcomes of Pursuing Percentage Targets. A. No protection: Failure to protect highly threatened, diverse, connected but small areas; B. Delayed protection: Expansion results in delayed protection in areas where PA establishment could have much higher biodiversity benefits, resulting in greater risks to biodiversity; C. Residual protection: Protection of low threat, unrepresentative areas, generating limited protective effect; **D. Paper Parks:** No, or insufficient resources allocated to PA management, resulting in chronic shortfalls of staff, resources and equipment; E. False Advertising: Biodiversity losses in a PA remain undetected, but area celebrated as 'protected'; F. Misallocated protection: Poorly-targeted expansions result in protected area networks that capture common taxa, low risk and abundant in places where threats are low. This results in actions where biodiversity does not benefit, and limiting opportunities for conservation. In some cases, efforts to allocate action in areas of low conflict results in minimising conservation impacts; G. Resource Dilution: PA expansion without associated increases in budget or staff capacity reduces management capacity in situ and across entire PA network; H. PA fatigue: Political and social goodwill for PAs is finite, and due to resource competition, PA establishment is frequently contested. PA expansion may induce apathy or resistance towards establishing new PAs; I. Goodhart's **Law:** The real underlying values and objectives of halting biodiversity decline are subsumed by the metric, resulting in the pursuit of percentage gain even when it has no advantage; J. Threshold alleviation: Since existing PA targets are thresholds, perceptions of success are binary. Pressure to achieve the target is wholly released subsequent to passing threshold values, regardless of biodiversity benefits, potentially resulting in lower overall impact. **K. Lost Conservation Benefits**.

POOR PLACEMENT OVERSTATEMENT A. No protection D. Paper **Parks B.** Delayed protection E. False **Advertising** C. Residual protection **UNDER ACHIEVEMENT WARPED VALUES** G. Resource I. Goodhart's Law **Dilution** J. Threshold H. Protected alleviation **Area Fatigue** Outcome delay Lost conservation benefit due to delay

F. Misallocated protectionK. Lost Conservation Benefits Against a background of ongoing biodiversity decline, any delay or misallocation of limited resources causes long-term harm that may not be reversible at human time scales.

time